Properties

Label 690.2.q.a.11.5
Level $690$
Weight $2$
Character 690.11
Analytic conductor $5.510$
Analytic rank $0$
Dimension $160$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.q (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(160\)
Relative dimension: \(16\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 11.5
Character \(\chi\) \(=\) 690.11
Dual form 690.2.q.a.251.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.540641 - 0.841254i) q^{2} +(0.0741266 - 1.73046i) q^{3} +(-0.415415 + 0.909632i) q^{4} +(-0.959493 + 0.281733i) q^{5} +(-1.49583 + 0.873200i) q^{6} +(1.57600 - 1.36561i) q^{7} +(0.989821 - 0.142315i) q^{8} +(-2.98901 - 0.256547i) q^{9} +O(q^{10})\) \(q+(-0.540641 - 0.841254i) q^{2} +(0.0741266 - 1.73046i) q^{3} +(-0.415415 + 0.909632i) q^{4} +(-0.959493 + 0.281733i) q^{5} +(-1.49583 + 0.873200i) q^{6} +(1.57600 - 1.36561i) q^{7} +(0.989821 - 0.142315i) q^{8} +(-2.98901 - 0.256547i) q^{9} +(0.755750 + 0.654861i) q^{10} +(-1.24535 - 0.800337i) q^{11} +(1.54329 + 0.786289i) q^{12} +(2.35898 - 2.72241i) q^{13} +(-2.00088 - 0.587510i) q^{14} +(0.416404 + 1.68125i) q^{15} +(-0.654861 - 0.755750i) q^{16} +(-0.644355 - 1.41094i) q^{17} +(1.40016 + 2.65322i) q^{18} +(-3.96292 - 1.80980i) q^{19} +(0.142315 - 0.989821i) q^{20} +(-2.24632 - 2.82844i) q^{21} +1.48035i q^{22} +(-4.70815 + 0.912857i) q^{23} +(-0.172899 - 1.72340i) q^{24} +(0.841254 - 0.540641i) q^{25} +(-3.56560 - 0.512655i) q^{26} +(-0.665511 + 5.15336i) q^{27} +(0.587510 + 2.00088i) q^{28} +(-3.46045 + 1.58033i) q^{29} +(1.18923 - 1.25925i) q^{30} +(-0.782046 - 5.43925i) q^{31} +(-0.281733 + 0.959493i) q^{32} +(-1.47727 + 2.09570i) q^{33} +(-0.838595 + 1.30488i) q^{34} +(-1.12742 + 1.75431i) q^{35} +(1.47504 - 2.61233i) q^{36} +(-0.926782 + 3.15633i) q^{37} +(0.620012 + 4.31228i) q^{38} +(-4.53617 - 4.28393i) q^{39} +(-0.909632 + 0.415415i) q^{40} +(0.215704 + 0.734621i) q^{41} +(-1.16498 + 3.41889i) q^{42} +(-0.970313 - 0.139510i) q^{43} +(1.24535 - 0.800337i) q^{44} +(2.94021 - 0.595947i) q^{45} +(3.31336 + 3.46722i) q^{46} -3.52324i q^{47} +(-1.35634 + 1.07719i) q^{48} +(-0.377323 + 2.62434i) q^{49} +(-0.909632 - 0.415415i) q^{50} +(-2.48935 + 1.01045i) q^{51} +(1.49643 + 3.27673i) q^{52} +(0.0457414 + 0.0527884i) q^{53} +(4.69508 - 2.22625i) q^{54} +(1.42038 + 0.417062i) q^{55} +(1.36561 - 1.57600i) q^{56} +(-3.42556 + 6.72354i) q^{57} +(3.20032 + 2.05672i) q^{58} +(-3.63188 - 3.14705i) q^{59} +(-1.70230 - 0.319643i) q^{60} +(7.47445 - 1.07466i) q^{61} +(-4.15298 + 3.59858i) q^{62} +(-5.06102 + 3.67751i) q^{63} +(0.959493 - 0.281733i) q^{64} +(-1.49643 + 3.27673i) q^{65} +(2.56169 + 0.109733i) q^{66} +(-2.17671 - 3.38702i) q^{67} +1.55111 q^{68} +(1.23067 + 8.21495i) q^{69} +2.08535 q^{70} +(0.353774 + 0.550483i) q^{71} +(-2.99510 + 0.171445i) q^{72} +(-2.57958 + 5.64850i) q^{73} +(3.15633 - 0.926782i) q^{74} +(-0.873200 - 1.49583i) q^{75} +(3.29251 - 2.85298i) q^{76} +(-3.05562 + 0.439332i) q^{77} +(-1.15144 + 6.13213i) q^{78} +(-2.27327 - 1.96980i) q^{79} +(0.841254 + 0.540641i) q^{80} +(8.86837 + 1.53364i) q^{81} +(0.501384 - 0.578628i) q^{82} +(2.07167 + 0.608297i) q^{83} +(3.50599 - 0.868347i) q^{84} +(1.01576 + 1.17225i) q^{85} +(0.407228 + 0.891704i) q^{86} +(2.47820 + 6.10533i) q^{87} +(-1.34657 - 0.614959i) q^{88} +(1.04365 - 7.25875i) q^{89} +(-2.09094 - 2.15127i) q^{90} -7.51197i q^{91} +(1.12547 - 4.66190i) q^{92} +(-9.47039 + 0.950109i) q^{93} +(-2.96394 + 1.90481i) q^{94} +(4.31228 + 0.620012i) q^{95} +(1.63948 + 0.558652i) q^{96} +(3.51291 + 11.9639i) q^{97} +(2.41173 - 1.10140i) q^{98} +(3.51703 + 2.71171i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160q + 16q^{4} - 16q^{5} - 2q^{6} + 42q^{9} + O(q^{10}) \) \( 160q + 16q^{4} - 16q^{5} - 2q^{6} + 42q^{9} - 12q^{11} - 12q^{14} - 16q^{16} - 8q^{18} + 16q^{20} + 62q^{21} + 4q^{23} + 2q^{24} - 16q^{25} + 42q^{27} - 2q^{30} - 4q^{31} + 16q^{33} + 2q^{36} + 72q^{38} - 124q^{39} + 44q^{41} + 44q^{43} + 12q^{44} - 2q^{45} + 4q^{46} + 70q^{49} - 2q^{51} - 52q^{53} + 92q^{54} + 10q^{55} - 54q^{56} - 38q^{57} - 36q^{58} - 44q^{61} - 220q^{63} + 16q^{64} - 34q^{66} - 44q^{67} + 22q^{69} - 12q^{70} - 36q^{72} - 28q^{73} - 24q^{74} - 88q^{77} - 54q^{78} - 44q^{79} - 16q^{80} - 66q^{81} - 28q^{82} + 4q^{83} - 18q^{84} + 158q^{86} - 64q^{87} + 80q^{89} - 8q^{90} - 4q^{92} + 4q^{93} + 24q^{94} - 2q^{96} - 88q^{98} + 190q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{9}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.540641 0.841254i −0.382291 0.594856i
\(3\) 0.0741266 1.73046i 0.0427970 0.999084i
\(4\) −0.415415 + 0.909632i −0.207708 + 0.454816i
\(5\) −0.959493 + 0.281733i −0.429098 + 0.125995i
\(6\) −1.49583 + 0.873200i −0.610672 + 0.356482i
\(7\) 1.57600 1.36561i 0.595672 0.516153i −0.304027 0.952663i \(-0.598331\pi\)
0.899699 + 0.436511i \(0.143786\pi\)
\(8\) 0.989821 0.142315i 0.349955 0.0503159i
\(9\) −2.98901 0.256547i −0.996337 0.0855156i
\(10\) 0.755750 + 0.654861i 0.238989 + 0.207085i
\(11\) −1.24535 0.800337i −0.375487 0.241311i 0.339262 0.940692i \(-0.389823\pi\)
−0.714749 + 0.699381i \(0.753459\pi\)
\(12\) 1.54329 + 0.786289i 0.445510 + 0.226982i
\(13\) 2.35898 2.72241i 0.654263 0.755060i −0.327566 0.944828i \(-0.606228\pi\)
0.981829 + 0.189768i \(0.0607737\pi\)
\(14\) −2.00088 0.587510i −0.534756 0.157019i
\(15\) 0.416404 + 1.68125i 0.107515 + 0.434097i
\(16\) −0.654861 0.755750i −0.163715 0.188937i
\(17\) −0.644355 1.41094i −0.156279 0.342204i 0.815255 0.579102i \(-0.196597\pi\)
−0.971535 + 0.236898i \(0.923869\pi\)
\(18\) 1.40016 + 2.65322i 0.330021 + 0.625369i
\(19\) −3.96292 1.80980i −0.909156 0.415198i −0.0947555 0.995501i \(-0.530207\pi\)
−0.814401 + 0.580303i \(0.802934\pi\)
\(20\) 0.142315 0.989821i 0.0318226 0.221331i
\(21\) −2.24632 2.82844i −0.490187 0.617216i
\(22\) 1.48035i 0.315611i
\(23\) −4.70815 + 0.912857i −0.981717 + 0.190344i
\(24\) −0.172899 1.72340i −0.0352928 0.351787i
\(25\) 0.841254 0.540641i 0.168251 0.108128i
\(26\) −3.56560 0.512655i −0.699271 0.100540i
\(27\) −0.665511 + 5.15336i −0.128078 + 0.991764i
\(28\) 0.587510 + 2.00088i 0.111029 + 0.378130i
\(29\) −3.46045 + 1.58033i −0.642589 + 0.293461i −0.709933 0.704269i \(-0.751275\pi\)
0.0673438 + 0.997730i \(0.478548\pi\)
\(30\) 1.18923 1.25925i 0.217123 0.229907i
\(31\) −0.782046 5.43925i −0.140460 0.976918i −0.931133 0.364680i \(-0.881178\pi\)
0.790673 0.612238i \(-0.209731\pi\)
\(32\) −0.281733 + 0.959493i −0.0498038 + 0.169616i
\(33\) −1.47727 + 2.09570i −0.257159 + 0.364815i
\(34\) −0.838595 + 1.30488i −0.143818 + 0.223785i
\(35\) −1.12742 + 1.75431i −0.190569 + 0.296532i
\(36\) 1.47504 2.61233i 0.245841 0.435388i
\(37\) −0.926782 + 3.15633i −0.152362 + 0.518897i −0.999931 0.0117887i \(-0.996247\pi\)
0.847569 + 0.530686i \(0.178066\pi\)
\(38\) 0.620012 + 4.31228i 0.100579 + 0.699543i
\(39\) −4.53617 4.28393i −0.726368 0.685978i
\(40\) −0.909632 + 0.415415i −0.143825 + 0.0656829i
\(41\) 0.215704 + 0.734621i 0.0336873 + 0.114729i 0.974620 0.223864i \(-0.0718673\pi\)
−0.940933 + 0.338593i \(0.890049\pi\)
\(42\) −1.16498 + 3.41889i −0.179761 + 0.527547i
\(43\) −0.970313 0.139510i −0.147971 0.0212751i 0.0679310 0.997690i \(-0.478360\pi\)
−0.215902 + 0.976415i \(0.569269\pi\)
\(44\) 1.24535 0.800337i 0.187743 0.120655i
\(45\) 2.94021 0.595947i 0.438301 0.0888385i
\(46\) 3.31336 + 3.46722i 0.488529 + 0.511214i
\(47\) 3.52324i 0.513917i −0.966422 0.256959i \(-0.917280\pi\)
0.966422 0.256959i \(-0.0827204\pi\)
\(48\) −1.35634 + 1.07719i −0.195771 + 0.155479i
\(49\) −0.377323 + 2.62434i −0.0539034 + 0.374906i
\(50\) −0.909632 0.415415i −0.128641 0.0587486i
\(51\) −2.48935 + 1.01045i −0.348578 + 0.141491i
\(52\) 1.49643 + 3.27673i 0.207518 + 0.454401i
\(53\) 0.0457414 + 0.0527884i 0.00628307 + 0.00725104i 0.758882 0.651228i \(-0.225746\pi\)
−0.752599 + 0.658479i \(0.771200\pi\)
\(54\) 4.69508 2.22625i 0.638920 0.302955i
\(55\) 1.42038 + 0.417062i 0.191525 + 0.0562367i
\(56\) 1.36561 1.57600i 0.182488 0.210602i
\(57\) −3.42556 + 6.72354i −0.453727 + 0.890554i
\(58\) 3.20032 + 2.05672i 0.420223 + 0.270061i
\(59\) −3.63188 3.14705i −0.472831 0.409710i 0.385579 0.922675i \(-0.374002\pi\)
−0.858410 + 0.512964i \(0.828547\pi\)
\(60\) −1.70230 0.319643i −0.219766 0.0412657i
\(61\) 7.47445 1.07466i 0.957005 0.137597i 0.353922 0.935275i \(-0.384848\pi\)
0.603083 + 0.797678i \(0.293939\pi\)
\(62\) −4.15298 + 3.59858i −0.527429 + 0.457020i
\(63\) −5.06102 + 3.67751i −0.637629 + 0.463323i
\(64\) 0.959493 0.281733i 0.119937 0.0352166i
\(65\) −1.49643 + 3.27673i −0.185610 + 0.406429i
\(66\) 2.56169 + 0.109733i 0.315322 + 0.0135072i
\(67\) −2.17671 3.38702i −0.265927 0.413791i 0.682451 0.730931i \(-0.260914\pi\)
−0.948379 + 0.317140i \(0.897277\pi\)
\(68\) 1.55111 0.188100
\(69\) 1.23067 + 8.21495i 0.148155 + 0.988964i
\(70\) 2.08535 0.249247
\(71\) 0.353774 + 0.550483i 0.0419853 + 0.0653303i 0.861612 0.507568i \(-0.169455\pi\)
−0.819626 + 0.572898i \(0.805819\pi\)
\(72\) −2.99510 + 0.171445i −0.352976 + 0.0202050i
\(73\) −2.57958 + 5.64850i −0.301917 + 0.661107i −0.998405 0.0564621i \(-0.982018\pi\)
0.696487 + 0.717569i \(0.254745\pi\)
\(74\) 3.15633 0.926782i 0.366916 0.107736i
\(75\) −0.873200 1.49583i −0.100828 0.172724i
\(76\) 3.29251 2.85298i 0.377677 0.327259i
\(77\) −3.05562 + 0.439332i −0.348220 + 0.0500665i
\(78\) −1.15144 + 6.13213i −0.130375 + 0.694328i
\(79\) −2.27327 1.96980i −0.255763 0.221620i 0.517536 0.855661i \(-0.326849\pi\)
−0.773299 + 0.634042i \(0.781395\pi\)
\(80\) 0.841254 + 0.540641i 0.0940550 + 0.0604455i
\(81\) 8.86837 + 1.53364i 0.985374 + 0.170405i
\(82\) 0.501384 0.578628i 0.0553686 0.0638988i
\(83\) 2.07167 + 0.608297i 0.227395 + 0.0667693i 0.393445 0.919348i \(-0.371283\pi\)
−0.166050 + 0.986117i \(0.553101\pi\)
\(84\) 3.50599 0.868347i 0.382535 0.0947444i
\(85\) 1.01576 + 1.17225i 0.110175 + 0.127149i
\(86\) 0.407228 + 0.891704i 0.0439125 + 0.0961549i
\(87\) 2.47820 + 6.10533i 0.265691 + 0.654560i
\(88\) −1.34657 0.614959i −0.143545 0.0655548i
\(89\) 1.04365 7.25875i 0.110627 0.769426i −0.856686 0.515839i \(-0.827480\pi\)
0.967312 0.253588i \(-0.0816106\pi\)
\(90\) −2.09094 2.15127i −0.220405 0.226764i
\(91\) 7.51197i 0.787468i
\(92\) 1.12547 4.66190i 0.117339 0.486037i
\(93\) −9.47039 + 0.950109i −0.982034 + 0.0985217i
\(94\) −2.96394 + 1.90481i −0.305707 + 0.196466i
\(95\) 4.31228 + 0.620012i 0.442430 + 0.0636118i
\(96\) 1.63948 + 0.558652i 0.167329 + 0.0570172i
\(97\) 3.51291 + 11.9639i 0.356682 + 1.21475i 0.921123 + 0.389273i \(0.127274\pi\)
−0.564441 + 0.825473i \(0.690908\pi\)
\(98\) 2.41173 1.10140i 0.243622 0.111258i
\(99\) 3.51703 + 2.71171i 0.353475 + 0.272537i
\(100\) 0.142315 + 0.989821i 0.0142315 + 0.0989821i
\(101\) 4.47753 15.2491i 0.445531 1.51734i −0.364641 0.931148i \(-0.618808\pi\)
0.810172 0.586192i \(-0.199374\pi\)
\(102\) 2.19588 + 1.54788i 0.217425 + 0.153263i
\(103\) 1.59645 2.48413i 0.157303 0.244769i −0.753652 0.657274i \(-0.771710\pi\)
0.910955 + 0.412505i \(0.135346\pi\)
\(104\) 1.94753 3.03042i 0.190971 0.297157i
\(105\) 2.95219 + 2.08101i 0.288104 + 0.203085i
\(106\) 0.0196788 0.0670197i 0.00191137 0.00650953i
\(107\) −1.66777 11.5996i −0.161230 1.12138i −0.896320 0.443408i \(-0.853769\pi\)
0.735090 0.677969i \(-0.237140\pi\)
\(108\) −4.41120 2.74615i −0.424468 0.264249i
\(109\) −13.3090 + 6.07804i −1.27477 + 0.582170i −0.933764 0.357889i \(-0.883497\pi\)
−0.341011 + 0.940059i \(0.610769\pi\)
\(110\) −0.417062 1.42038i −0.0397653 0.135428i
\(111\) 5.39321 + 1.83773i 0.511901 + 0.174430i
\(112\) −2.06412 0.296776i −0.195041 0.0280427i
\(113\) 8.88865 5.71239i 0.836174 0.537376i −0.0510602 0.998696i \(-0.516260\pi\)
0.887234 + 0.461319i \(0.152624\pi\)
\(114\) 7.50820 0.753253i 0.703207 0.0705486i
\(115\) 4.26026 2.20232i 0.397271 0.205367i
\(116\) 3.80423i 0.353214i
\(117\) −7.74944 + 7.53212i −0.716436 + 0.696345i
\(118\) −0.683918 + 4.75676i −0.0629598 + 0.437895i
\(119\) −2.94230 1.34370i −0.269720 0.123177i
\(120\) 0.651433 + 1.60488i 0.0594674 + 0.146505i
\(121\) −3.65921 8.01256i −0.332656 0.728414i
\(122\) −4.94506 5.70690i −0.447705 0.516679i
\(123\) 1.28722 0.318813i 0.116065 0.0287464i
\(124\) 5.27259 + 1.54817i 0.473492 + 0.139030i
\(125\) −0.654861 + 0.755750i −0.0585725 + 0.0675963i
\(126\) 5.82991 + 2.26939i 0.519370 + 0.202174i
\(127\) 0.315342 + 0.202658i 0.0279820 + 0.0179830i 0.554557 0.832146i \(-0.312888\pi\)
−0.526575 + 0.850129i \(0.676524\pi\)
\(128\) −0.755750 0.654861i −0.0667995 0.0578821i
\(129\) −0.313343 + 1.66875i −0.0275883 + 0.146925i
\(130\) 3.56560 0.512655i 0.312724 0.0449629i
\(131\) 11.6342 10.0811i 1.01648 0.880787i 0.0235808 0.999722i \(-0.492493\pi\)
0.992902 + 0.118934i \(0.0379478\pi\)
\(132\) −1.29264 2.21436i −0.112510 0.192735i
\(133\) −8.71705 + 2.55956i −0.755864 + 0.221942i
\(134\) −1.67253 + 3.66233i −0.144484 + 0.316377i
\(135\) −0.813316 5.13211i −0.0699991 0.441701i
\(136\) −0.838595 1.30488i −0.0719089 0.111892i
\(137\) 5.86299 0.500909 0.250455 0.968128i \(-0.419420\pi\)
0.250455 + 0.968128i \(0.419420\pi\)
\(138\) 6.24551 5.47664i 0.531653 0.466203i
\(139\) −3.49925 −0.296802 −0.148401 0.988927i \(-0.547413\pi\)
−0.148401 + 0.988927i \(0.547413\pi\)
\(140\) −1.12742 1.75431i −0.0952847 0.148266i
\(141\) −6.09684 0.261166i −0.513446 0.0219941i
\(142\) 0.271831 0.595227i 0.0228116 0.0499504i
\(143\) −5.11659 + 1.50237i −0.427871 + 0.125634i
\(144\) 1.76350 + 2.42695i 0.146958 + 0.202245i
\(145\) 2.87505 2.49124i 0.238760 0.206886i
\(146\) 6.14645 0.883726i 0.508684 0.0731377i
\(147\) 4.51336 + 0.847478i 0.372256 + 0.0698988i
\(148\) −2.48610 2.15422i −0.204356 0.177076i
\(149\) −19.7702 12.7056i −1.61964 1.04088i −0.956226 0.292629i \(-0.905470\pi\)
−0.663415 0.748251i \(-0.730894\pi\)
\(150\) −0.786289 + 1.54329i −0.0642002 + 0.126009i
\(151\) 14.9887 17.2979i 1.21976 1.40768i 0.334626 0.942351i \(-0.391390\pi\)
0.885137 0.465331i \(-0.154065\pi\)
\(152\) −4.18015 1.22740i −0.339055 0.0995554i
\(153\) 1.56401 + 4.38263i 0.126443 + 0.354314i
\(154\) 2.02158 + 2.33303i 0.162904 + 0.188001i
\(155\) 2.28278 + 4.99859i 0.183357 + 0.401497i
\(156\) 5.78119 2.34663i 0.462866 0.187881i
\(157\) −14.8467 6.78028i −1.18490 0.541125i −0.277227 0.960805i \(-0.589415\pi\)
−0.907673 + 0.419679i \(0.862143\pi\)
\(158\) −0.428078 + 2.97735i −0.0340561 + 0.236865i
\(159\) 0.0947391 0.0752408i 0.00751330 0.00596699i
\(160\) 1.00000i 0.0790569i
\(161\) −6.17344 + 7.86817i −0.486535 + 0.620099i
\(162\) −3.50442 8.28970i −0.275333 0.651300i
\(163\) 2.08704 1.34126i 0.163469 0.105055i −0.456348 0.889801i \(-0.650843\pi\)
0.619818 + 0.784746i \(0.287207\pi\)
\(164\) −0.757842 0.108961i −0.0591775 0.00850844i
\(165\) 0.827000 2.42701i 0.0643818 0.188942i
\(166\) −0.608297 2.07167i −0.0472130 0.160793i
\(167\) 12.6530 5.77845i 0.979122 0.447150i 0.139441 0.990230i \(-0.455469\pi\)
0.839681 + 0.543080i \(0.182742\pi\)
\(168\) −2.62598 2.47997i −0.202599 0.191333i
\(169\) 0.00337370 + 0.0234646i 0.000259516 + 0.00180497i
\(170\) 0.436999 1.48828i 0.0335163 0.114146i
\(171\) 11.3809 + 6.42620i 0.870320 + 0.491424i
\(172\) 0.529985 0.824673i 0.0404110 0.0628807i
\(173\) 13.3869 20.8304i 1.01779 1.58371i 0.224861 0.974391i \(-0.427807\pi\)
0.792927 0.609317i \(-0.208556\pi\)
\(174\) 3.79631 5.38558i 0.287798 0.408280i
\(175\) 0.587510 2.00088i 0.0444116 0.151252i
\(176\) 0.210676 + 1.46528i 0.0158803 + 0.110450i
\(177\) −5.71507 + 6.05157i −0.429571 + 0.454864i
\(178\) −6.67069 + 3.04640i −0.499990 + 0.228338i
\(179\) 4.08858 + 13.9244i 0.305595 + 1.04076i 0.958918 + 0.283682i \(0.0915561\pi\)
−0.653323 + 0.757079i \(0.726626\pi\)
\(180\) −0.679316 + 2.92208i −0.0506332 + 0.217799i
\(181\) 1.12095 + 0.161169i 0.0833197 + 0.0119796i 0.183849 0.982955i \(-0.441144\pi\)
−0.100529 + 0.994934i \(0.532053\pi\)
\(182\) −6.31947 + 4.06128i −0.468430 + 0.301042i
\(183\) −1.30561 13.0139i −0.0965135 0.962017i
\(184\) −4.53032 + 1.57361i −0.333979 + 0.116008i
\(185\) 3.28958i 0.241855i
\(186\) 5.91936 + 7.45333i 0.434029 + 0.546505i
\(187\) −0.326781 + 2.27281i −0.0238966 + 0.166205i
\(188\) 3.20485 + 1.46361i 0.233738 + 0.106744i
\(189\) 5.98864 + 9.03052i 0.435610 + 0.656874i
\(190\) −1.80980 3.96292i −0.131297 0.287500i
\(191\) 7.44219 + 8.58874i 0.538498 + 0.621459i 0.958164 0.286219i \(-0.0923985\pi\)
−0.419667 + 0.907678i \(0.637853\pi\)
\(192\) −0.416404 1.68125i −0.0300514 0.121334i
\(193\) 12.6716 + 3.72073i 0.912125 + 0.267824i 0.703935 0.710264i \(-0.251425\pi\)
0.208190 + 0.978088i \(0.433243\pi\)
\(194\) 8.16542 9.42340i 0.586243 0.676560i
\(195\) 5.55934 + 2.83242i 0.398113 + 0.202834i
\(196\) −2.23044 1.43342i −0.159317 0.102387i
\(197\) 19.5857 + 16.9711i 1.39542 + 1.20914i 0.949379 + 0.314132i \(0.101714\pi\)
0.446046 + 0.895010i \(0.352832\pi\)
\(198\) 0.379779 4.42478i 0.0269897 0.314455i
\(199\) 21.0112 3.02095i 1.48944 0.214150i 0.650974 0.759100i \(-0.274361\pi\)
0.838468 + 0.544950i \(0.183451\pi\)
\(200\) 0.755750 0.654861i 0.0534396 0.0463056i
\(201\) −6.02247 + 3.51565i −0.424793 + 0.247975i
\(202\) −15.2491 + 4.47753i −1.07292 + 0.315038i
\(203\) −3.29554 + 7.21624i −0.231302 + 0.506481i
\(204\) 0.114979 2.68414i 0.00805012 0.187928i
\(205\) −0.413933 0.644093i −0.0289104 0.0449854i
\(206\) −2.95289 −0.205738
\(207\) 14.3069 1.52068i 0.994399 0.105694i
\(208\) −3.60226 −0.249772
\(209\) 3.48676 + 5.42551i 0.241184 + 0.375290i
\(210\) 0.154580 3.60862i 0.0106670 0.249018i
\(211\) 10.1537 22.2336i 0.699012 1.53062i −0.142154 0.989845i \(-0.545403\pi\)
0.841166 0.540777i \(-0.181870\pi\)
\(212\) −0.0670197 + 0.0196788i −0.00460293 + 0.00135154i
\(213\) 0.978815 0.571388i 0.0670673 0.0391508i
\(214\) −8.85655 + 7.67425i −0.605421 + 0.524601i
\(215\) 0.970313 0.139510i 0.0661748 0.00951450i
\(216\) 0.0746627 + 5.19562i 0.00508015 + 0.353517i
\(217\) −8.66041 7.50428i −0.587907 0.509424i
\(218\) 12.3086 + 7.91024i 0.833642 + 0.535749i
\(219\) 9.58331 + 4.88258i 0.647580 + 0.329934i
\(220\) −0.969422 + 1.11877i −0.0653584 + 0.0754276i
\(221\) −5.36118 1.57418i −0.360632 0.105891i
\(222\) −1.36979 5.53061i −0.0919346 0.371190i
\(223\) 14.3953 + 16.6131i 0.963980 + 1.11249i 0.993603 + 0.112931i \(0.0360240\pi\)
−0.0296227 + 0.999561i \(0.509431\pi\)
\(224\) 0.866284 + 1.89690i 0.0578811 + 0.126742i
\(225\) −2.65322 + 1.40016i −0.176881 + 0.0933440i
\(226\) −9.61114 4.38926i −0.639323 0.291969i
\(227\) 1.95713 13.6121i 0.129899 0.903470i −0.815778 0.578365i \(-0.803691\pi\)
0.945678 0.325105i \(-0.105400\pi\)
\(228\) −4.69291 5.90906i −0.310796 0.391337i
\(229\) 16.1463i 1.06698i 0.845807 + 0.533489i \(0.179120\pi\)
−0.845807 + 0.533489i \(0.820880\pi\)
\(230\) −4.15598 2.39329i −0.274037 0.157809i
\(231\) 0.533745 + 5.32020i 0.0351178 + 0.350044i
\(232\) −3.20032 + 2.05672i −0.210111 + 0.135030i
\(233\) 2.89960 + 0.416899i 0.189959 + 0.0273120i 0.236638 0.971598i \(-0.423955\pi\)
−0.0466787 + 0.998910i \(0.514864\pi\)
\(234\) 10.5261 + 2.44708i 0.688112 + 0.159970i
\(235\) 0.992611 + 3.38052i 0.0647508 + 0.220521i
\(236\) 4.37139 1.99635i 0.284553 0.129951i
\(237\) −3.57717 + 3.78779i −0.232362 + 0.246044i
\(238\) 0.460333 + 3.20168i 0.0298389 + 0.207534i
\(239\) 2.48675 8.46908i 0.160854 0.547820i −0.839138 0.543918i \(-0.816940\pi\)
0.999992 0.00390105i \(-0.00124175\pi\)
\(240\) 0.997919 1.41568i 0.0644154 0.0913819i
\(241\) 3.36324 5.23330i 0.216645 0.337107i −0.715872 0.698231i \(-0.753971\pi\)
0.932518 + 0.361125i \(0.117607\pi\)
\(242\) −4.76227 + 7.41024i −0.306130 + 0.476348i
\(243\) 3.31130 15.2327i 0.212420 0.977179i
\(244\) −2.12745 + 7.24543i −0.136196 + 0.463841i
\(245\) −0.377323 2.62434i −0.0241063 0.167663i
\(246\) −0.964129 0.910519i −0.0614706 0.0580526i
\(247\) −14.2755 + 6.51939i −0.908327 + 0.414819i
\(248\) −1.54817 5.27259i −0.0983090 0.334810i
\(249\) 1.20620 3.53986i 0.0764399 0.224329i
\(250\) 0.989821 + 0.142315i 0.0626018 + 0.00900078i
\(251\) −1.56052 + 1.00289i −0.0984994 + 0.0633017i −0.588963 0.808160i \(-0.700464\pi\)
0.490464 + 0.871462i \(0.336827\pi\)
\(252\) −1.24276 6.13136i −0.0782862 0.386239i
\(253\) 6.59388 + 2.63128i 0.414554 + 0.165427i
\(254\) 0.374847i 0.0235200i
\(255\) 2.10384 1.67085i 0.131747 0.104632i
\(256\) −0.142315 + 0.989821i −0.00889468 + 0.0618638i
\(257\) 9.20998 + 4.20606i 0.574503 + 0.262367i 0.681410 0.731902i \(-0.261367\pi\)
−0.106907 + 0.994269i \(0.534095\pi\)
\(258\) 1.57325 0.638594i 0.0979461 0.0397571i
\(259\) 2.84971 + 6.24000i 0.177072 + 0.387735i
\(260\) −2.35898 2.72241i −0.146298 0.168837i
\(261\) 10.7487 3.83587i 0.665331 0.237434i
\(262\) −14.7707 4.33705i −0.912534 0.267944i
\(263\) −15.1467 + 17.4802i −0.933983 + 1.07787i 0.0628243 + 0.998025i \(0.479989\pi\)
−0.996807 + 0.0798488i \(0.974556\pi\)
\(264\) −1.16398 + 2.28461i −0.0716381 + 0.140608i
\(265\) −0.0587608 0.0377633i −0.00360965 0.00231978i
\(266\) 6.86603 + 5.94945i 0.420983 + 0.364784i
\(267\) −12.4836 2.34407i −0.763987 0.143455i
\(268\) 3.98518 0.572983i 0.243434 0.0350005i
\(269\) −22.0579 + 19.1133i −1.34489 + 1.16536i −0.373568 + 0.927603i \(0.621866\pi\)
−0.971326 + 0.237753i \(0.923589\pi\)
\(270\) −3.87769 + 3.45883i −0.235989 + 0.210498i
\(271\) −23.8672 + 7.00804i −1.44983 + 0.425708i −0.909485 0.415737i \(-0.863524\pi\)
−0.540343 + 0.841445i \(0.681706\pi\)
\(272\) −0.644355 + 1.41094i −0.0390698 + 0.0855509i
\(273\) −12.9992 0.556837i −0.786747 0.0337013i
\(274\) −3.16977 4.93226i −0.191493 0.297969i
\(275\) −1.48035 −0.0892684
\(276\) −7.98382 2.29316i −0.480570 0.138032i
\(277\) −16.5954 −0.997118 −0.498559 0.866856i \(-0.666137\pi\)
−0.498559 + 0.866856i \(0.666137\pi\)
\(278\) 1.89184 + 2.94375i 0.113465 + 0.176555i
\(279\) 0.942121 + 16.4586i 0.0564033 + 0.985351i
\(280\) −0.866284 + 1.89690i −0.0517704 + 0.113361i
\(281\) −26.5272 + 7.78909i −1.58248 + 0.464658i −0.950603 0.310410i \(-0.899534\pi\)
−0.631877 + 0.775068i \(0.717715\pi\)
\(282\) 3.07649 + 5.27018i 0.183202 + 0.313835i
\(283\) 6.33515 5.48944i 0.376585 0.326313i −0.445917 0.895074i \(-0.647123\pi\)
0.822503 + 0.568761i \(0.192577\pi\)
\(284\) −0.647700 + 0.0931252i −0.0384339 + 0.00552596i
\(285\) 1.39256 7.41628i 0.0824883 0.439302i
\(286\) 4.03011 + 3.49211i 0.238306 + 0.206493i
\(287\) 1.34316 + 0.863194i 0.0792840 + 0.0509528i
\(288\) 1.08826 2.79566i 0.0641261 0.164736i
\(289\) 9.55707 11.0294i 0.562181 0.648791i
\(290\) −3.65013 1.07178i −0.214343 0.0629368i
\(291\) 20.9634 5.19212i 1.22890 0.304367i
\(292\) −4.06646 4.69294i −0.237972 0.274634i
\(293\) −5.81051 12.7232i −0.339454 0.743300i 0.660518 0.750810i \(-0.270337\pi\)
−0.999972 + 0.00751020i \(0.997609\pi\)
\(294\) −1.72716 4.25506i −0.100730 0.248160i
\(295\) 4.37139 + 1.99635i 0.254512 + 0.116232i
\(296\) −0.468156 + 3.25610i −0.0272110 + 0.189257i
\(297\) 4.95321 5.88509i 0.287415 0.341488i
\(298\) 23.5009i 1.36137i
\(299\) −8.62127 + 14.9709i −0.498581 + 0.865791i
\(300\) 1.72340 0.172899i 0.0995005 0.00998230i
\(301\) −1.71973 + 1.10520i −0.0991236 + 0.0637028i
\(302\) −22.6554 3.25736i −1.30367 0.187440i
\(303\) −26.0561 8.87857i −1.49688 0.510061i
\(304\) 1.22740 + 4.18015i 0.0703963 + 0.239748i
\(305\) −6.86892 + 3.13693i −0.393313 + 0.179620i
\(306\) 2.84133 3.68516i 0.162428 0.210666i
\(307\) −3.85172 26.7893i −0.219829 1.52895i −0.738666 0.674072i \(-0.764544\pi\)
0.518836 0.854874i \(-0.326365\pi\)
\(308\) 0.869719 2.96199i 0.0495569 0.168775i
\(309\) −4.18036 2.94675i −0.237812 0.167635i
\(310\) 2.97092 4.62284i 0.168737 0.262560i
\(311\) −1.06993 + 1.66485i −0.0606704 + 0.0944050i −0.870263 0.492587i \(-0.836051\pi\)
0.809593 + 0.586992i \(0.199688\pi\)
\(312\) −5.09966 3.59476i −0.288711 0.203513i
\(313\) −1.67277 + 5.69694i −0.0945507 + 0.322010i −0.993163 0.116733i \(-0.962758\pi\)
0.898613 + 0.438743i \(0.144576\pi\)
\(314\) 2.32282 + 16.1556i 0.131084 + 0.911712i
\(315\) 3.81994 4.95440i 0.215229 0.279149i
\(316\) 2.73614 1.24955i 0.153920 0.0702929i
\(317\) 3.95398 + 13.4660i 0.222078 + 0.756327i 0.992866 + 0.119236i \(0.0380444\pi\)
−0.770788 + 0.637091i \(0.780137\pi\)
\(318\) −0.114516 0.0390213i −0.00642176 0.00218821i
\(319\) 5.57426 + 0.801458i 0.312099 + 0.0448730i
\(320\) −0.841254 + 0.540641i −0.0470275 + 0.0302227i
\(321\) −20.1963 + 2.02618i −1.12725 + 0.113090i
\(322\) 9.95674 + 0.939573i 0.554867 + 0.0523604i
\(323\) 6.75761i 0.376003i
\(324\) −5.07910 + 7.42985i −0.282172 + 0.412770i
\(325\) 0.512655 3.56560i 0.0284370 0.197784i
\(326\) −2.25667 1.03059i −0.124986 0.0570790i
\(327\) 9.53127 + 23.4814i 0.527080 + 1.29852i
\(328\) 0.318056 + 0.696446i 0.0175617 + 0.0384548i
\(329\) −4.81138 5.55262i −0.265260 0.306126i
\(330\) −2.48884 + 0.616423i −0.137006 + 0.0339330i
\(331\) 4.42337 + 1.29882i 0.243131 + 0.0713896i 0.401027 0.916066i \(-0.368653\pi\)
−0.157897 + 0.987456i \(0.550471\pi\)
\(332\) −1.41393 + 1.63176i −0.0775994 + 0.0895545i
\(333\) 3.57991 9.19654i 0.196178 0.503967i
\(334\) −11.7019 7.52035i −0.640299 0.411495i
\(335\) 3.04277 + 2.63658i 0.166244 + 0.144052i
\(336\) −0.666566 + 3.54989i −0.0363642 + 0.193662i
\(337\) 9.86785 1.41878i 0.537536 0.0772860i 0.131800 0.991276i \(-0.457924\pi\)
0.405736 + 0.913990i \(0.367015\pi\)
\(338\) 0.0179157 0.0155241i 0.000974487 0.000844398i
\(339\) −9.22620 15.8049i −0.501098 0.858406i
\(340\) −1.48828 + 0.436999i −0.0807134 + 0.0236996i
\(341\) −3.37931 + 7.39966i −0.183000 + 0.400714i
\(342\) −0.746920 13.0485i −0.0403888 0.705582i
\(343\) 10.8811 + 16.9314i 0.587526 + 0.914208i
\(344\) −0.980291 −0.0528537
\(345\) −3.49524 7.53547i −0.188177 0.405696i
\(346\) −24.7612 −1.33117
\(347\) 1.66888 + 2.59683i 0.0895902 + 0.139405i 0.883156 0.469079i \(-0.155414\pi\)
−0.793566 + 0.608484i \(0.791778\pi\)
\(348\) −6.58308 0.281995i −0.352890 0.0151165i
\(349\) 7.86557 17.2232i 0.421035 0.921937i −0.573663 0.819092i \(-0.694478\pi\)
0.994697 0.102845i \(-0.0327947\pi\)
\(350\) −2.00088 + 0.587510i −0.106951 + 0.0314037i
\(351\) 12.4596 + 13.9685i 0.665045 + 0.745581i
\(352\) 1.11877 0.969422i 0.0596308 0.0516704i
\(353\) 11.4708 1.64926i 0.610532 0.0877812i 0.169888 0.985463i \(-0.445659\pi\)
0.440644 + 0.897682i \(0.354750\pi\)
\(354\) 8.18070 + 1.53610i 0.434799 + 0.0816427i
\(355\) −0.494533 0.428515i −0.0262471 0.0227432i
\(356\) 6.16925 + 3.96473i 0.326969 + 0.210130i
\(357\) −2.54333 + 4.99194i −0.134608 + 0.264202i
\(358\) 9.50353 10.9677i 0.502277 0.579659i
\(359\) −23.1957 6.81087i −1.22422 0.359464i −0.395156 0.918614i \(-0.629309\pi\)
−0.829067 + 0.559150i \(0.811128\pi\)
\(360\) 2.82547 1.00832i 0.148916 0.0531429i
\(361\) −0.0130119 0.0150165i −0.000684837 0.000790344i
\(362\) −0.470449 1.03014i −0.0247263 0.0541429i
\(363\) −14.1367 + 5.73819i −0.741983 + 0.301177i
\(364\) 6.83312 + 3.12058i 0.358153 + 0.163563i
\(365\) 0.883726 6.14645i 0.0462563 0.321720i
\(366\) −10.2421 + 8.13421i −0.535366 + 0.425182i
\(367\) 19.8734i 1.03738i 0.854962 + 0.518691i \(0.173580\pi\)
−0.854962 + 0.518691i \(0.826420\pi\)
\(368\) 3.77307 + 2.96039i 0.196685 + 0.154321i
\(369\) −0.456277 2.25113i −0.0237528 0.117189i
\(370\) −2.76737 + 1.77848i −0.143869 + 0.0924588i
\(371\) 0.144177 + 0.0207295i 0.00748529 + 0.00107622i
\(372\) 3.06989 9.00926i 0.159167 0.467109i
\(373\) 9.91044 + 33.7519i 0.513143 + 1.74761i 0.652924 + 0.757423i \(0.273542\pi\)
−0.139781 + 0.990182i \(0.544640\pi\)
\(374\) 2.08868 0.953870i 0.108003 0.0493235i
\(375\) 1.25925 + 1.18923i 0.0650276 + 0.0614118i
\(376\) −0.501409 3.48738i −0.0258582 0.179848i
\(377\) −3.86082 + 13.1487i −0.198842 + 0.677194i
\(378\) 4.35925 9.92023i 0.224216 0.510242i
\(379\) 12.6967 19.7565i 0.652187 1.01482i −0.344907 0.938637i \(-0.612089\pi\)
0.997094 0.0761858i \(-0.0242742\pi\)
\(380\) −2.35537 + 3.66502i −0.120828 + 0.188012i
\(381\) 0.374067 0.530665i 0.0191640 0.0271868i
\(382\) 3.20176 10.9042i 0.163816 0.557907i
\(383\) −3.06919 21.3467i −0.156828 1.09077i −0.904431 0.426619i \(-0.859704\pi\)
0.747603 0.664146i \(-0.231205\pi\)
\(384\) −1.18923 + 1.25925i −0.0606878 + 0.0642611i
\(385\) 2.80807 1.28240i 0.143112 0.0653573i
\(386\) −3.72073 12.6716i −0.189380 0.644970i
\(387\) 2.86448 + 0.665928i 0.145610 + 0.0338510i
\(388\) −12.3420 1.77452i −0.626571 0.0900874i
\(389\) 6.27074 4.02996i 0.317939 0.204327i −0.371931 0.928260i \(-0.621304\pi\)
0.689870 + 0.723933i \(0.257668\pi\)
\(390\) −0.622826 6.20814i −0.0315380 0.314361i
\(391\) 4.32171 + 6.05472i 0.218558 + 0.306200i
\(392\) 2.65133i 0.133912i
\(393\) −16.5825 20.8798i −0.836478 1.05325i
\(394\) 3.68818 25.6518i 0.185808 1.29232i
\(395\) 2.73614 + 1.24955i 0.137670 + 0.0628719i
\(396\) −3.92768 + 2.07272i −0.197373 + 0.104158i
\(397\) 7.08438 + 15.5126i 0.355555 + 0.778556i 0.999904 + 0.0138252i \(0.00440084\pi\)
−0.644350 + 0.764731i \(0.722872\pi\)
\(398\) −13.9009 16.0425i −0.696788 0.804137i
\(399\) 3.78306 + 15.2743i 0.189390 + 0.764670i
\(400\) −0.959493 0.281733i −0.0479746 0.0140866i
\(401\) −12.3979 + 14.3080i −0.619124 + 0.714507i −0.975540 0.219820i \(-0.929453\pi\)
0.356417 + 0.934327i \(0.383998\pi\)
\(402\) 6.21355 + 3.16573i 0.309903 + 0.157892i
\(403\) −16.6527 10.7020i −0.829529 0.533106i
\(404\) 12.0110 + 10.4076i 0.597570 + 0.517798i
\(405\) −8.94121 + 1.02699i −0.444292 + 0.0510315i
\(406\) 7.85239 1.12900i 0.389708 0.0560315i
\(407\) 3.68029 3.18899i 0.182425 0.158072i
\(408\) −2.32021 + 1.35443i −0.114867 + 0.0670544i
\(409\) −23.7146 + 6.96324i −1.17261 + 0.344310i −0.809321 0.587366i \(-0.800165\pi\)
−0.363290 + 0.931676i \(0.618347\pi\)
\(410\) −0.318056 + 0.696446i −0.0157077 + 0.0343950i
\(411\) 0.434604 10.1457i 0.0214374 0.500450i
\(412\) 1.59645 + 2.48413i 0.0786517 + 0.122384i
\(413\) −10.0215 −0.493125
\(414\) −9.01417 11.2136i −0.443022 0.551118i
\(415\) −2.15913 −0.105987
\(416\) 1.94753 + 3.03042i 0.0954855 + 0.148578i
\(417\) −0.259387 + 6.05532i −0.0127023 + 0.296530i
\(418\) 2.67914 5.86650i 0.131041 0.286940i
\(419\) −11.2371 + 3.29950i −0.548967 + 0.161191i −0.544442 0.838799i \(-0.683259\pi\)
−0.00452497 + 0.999990i \(0.501440\pi\)
\(420\) −3.11933 + 1.82092i −0.152208 + 0.0888520i
\(421\) −13.5840 + 11.7706i −0.662042 + 0.573663i −0.919723 0.392567i \(-0.871587\pi\)
0.257681 + 0.966230i \(0.417042\pi\)
\(422\) −24.1936 + 3.47851i −1.17773 + 0.169331i
\(423\) −0.903876 + 10.5310i −0.0439480 + 0.512035i
\(424\) 0.0527884 + 0.0457414i 0.00256363 + 0.00222140i
\(425\) −1.30488 0.838595i −0.0632959 0.0406778i
\(426\) −1.00987 0.514516i −0.0489283 0.0249284i
\(427\) 10.3122 11.9009i 0.499040 0.575923i
\(428\) 11.2442 + 3.30160i 0.543509 + 0.159589i
\(429\) 2.22052 + 8.96545i 0.107208 + 0.432856i
\(430\) −0.641954 0.740854i −0.0309578 0.0357272i
\(431\) 16.2694 + 35.6249i 0.783668 + 1.71599i 0.693947 + 0.720027i \(0.255870\pi\)
0.0897214 + 0.995967i \(0.471402\pi\)
\(432\) 4.33046 2.87177i 0.208350 0.138168i
\(433\) 7.15627 + 3.26816i 0.343908 + 0.157058i 0.579879 0.814703i \(-0.303100\pi\)
−0.235971 + 0.971760i \(0.575827\pi\)
\(434\) −1.63084 + 11.3427i −0.0782827 + 0.544468i
\(435\) −4.09789 5.15983i −0.196479 0.247395i
\(436\) 14.6312i 0.700709i
\(437\) 20.3101 + 4.90326i 0.971565 + 0.234555i
\(438\) −1.07364 10.7017i −0.0513005 0.511348i
\(439\) −3.28588 + 2.11171i −0.156827 + 0.100786i −0.616700 0.787198i \(-0.711531\pi\)
0.459874 + 0.887984i \(0.347895\pi\)
\(440\) 1.46528 + 0.210676i 0.0698545 + 0.0100436i
\(441\) 1.80109 7.74739i 0.0857662 0.368923i
\(442\) 1.57418 + 5.36118i 0.0748763 + 0.255005i
\(443\) −10.1679 + 4.64353i −0.483092 + 0.220621i −0.642047 0.766665i \(-0.721915\pi\)
0.158955 + 0.987286i \(0.449187\pi\)
\(444\) −3.91208 + 4.14242i −0.185659 + 0.196590i
\(445\) 1.04365 + 7.25875i 0.0494738 + 0.344098i
\(446\) 6.19311 21.0918i 0.293252 0.998725i
\(447\) −23.4520 + 33.2699i −1.10924 + 1.57361i
\(448\) 1.12742 1.75431i 0.0532658 0.0828831i
\(449\) 15.3247 23.8457i 0.723217 1.12535i −0.263776 0.964584i \(-0.584968\pi\)
0.986993 0.160764i \(-0.0513957\pi\)
\(450\) 2.61233 + 1.47504i 0.123146 + 0.0695342i
\(451\) 0.319317 1.08749i 0.0150361 0.0512081i
\(452\) 1.50369 + 10.4584i 0.0707278 + 0.491922i
\(453\) −28.8223 27.2196i −1.35419 1.27889i
\(454\) −12.5094 + 5.71284i −0.587094 + 0.268117i
\(455\) 2.11637 + 7.20768i 0.0992167 + 0.337901i
\(456\) −2.43383 + 7.14261i −0.113975 + 0.334483i
\(457\) 19.2217 + 2.76366i 0.899151 + 0.129278i 0.576364 0.817193i \(-0.304471\pi\)
0.322787 + 0.946472i \(0.395380\pi\)
\(458\) 13.5831 8.72936i 0.634699 0.407896i
\(459\) 7.69991 2.38160i 0.359401 0.111163i
\(460\) 0.233526 + 4.79014i 0.0108882 + 0.223342i
\(461\) 40.1433i 1.86966i 0.355096 + 0.934830i \(0.384448\pi\)
−0.355096 + 0.934830i \(0.615552\pi\)
\(462\) 4.18707 3.32533i 0.194800 0.154708i
\(463\) 1.28799 8.95815i 0.0598578 0.416320i −0.937757 0.347292i \(-0.887101\pi\)
0.997615 0.0690280i \(-0.0219898\pi\)
\(464\) 3.46045 + 1.58033i 0.160647 + 0.0733652i
\(465\) 8.81910 3.57974i 0.408976 0.166007i
\(466\) −1.21692 2.66469i −0.0563729 0.123439i
\(467\) −11.1357 12.8513i −0.515300 0.594688i 0.437148 0.899390i \(-0.355989\pi\)
−0.952448 + 0.304702i \(0.901443\pi\)
\(468\) −3.63222 10.1781i −0.167899 0.470483i
\(469\) −8.05585 2.36541i −0.371985 0.109225i
\(470\) 2.30723 2.66269i 0.106425 0.122821i
\(471\) −12.8336 + 25.1892i −0.591340 + 1.16066i
\(472\) −4.04279 2.59814i −0.186084 0.119589i
\(473\) 1.09672 + 0.950316i 0.0504274 + 0.0436956i
\(474\) 5.12046 + 0.961474i 0.235191 + 0.0441620i
\(475\) −4.31228 + 0.620012i −0.197861 + 0.0284481i
\(476\) 2.44455 2.11822i 0.112046 0.0970883i
\(477\) −0.123179 0.169520i −0.00563997 0.00776178i
\(478\) −8.46908 + 2.48675i −0.387367 + 0.113741i
\(479\) 5.35009 11.7151i 0.244452 0.535275i −0.747142 0.664665i \(-0.768574\pi\)
0.991594 + 0.129389i \(0.0413017\pi\)
\(480\) −1.73046 0.0741266i −0.0789845 0.00338340i
\(481\) 6.40656 + 9.96880i 0.292114 + 0.454538i
\(482\) −6.22084 −0.283352
\(483\) 13.1580 + 11.2662i 0.598708 + 0.512628i
\(484\) 8.80857 0.400390
\(485\) −6.74122 10.4895i −0.306103 0.476306i
\(486\) −14.6048 + 5.44978i −0.662487 + 0.247207i
\(487\) 15.7967 34.5900i 0.715817 1.56742i −0.103857 0.994592i \(-0.533119\pi\)
0.819675 0.572829i \(-0.194154\pi\)
\(488\) 7.24543 2.12745i 0.327985 0.0963052i
\(489\) −2.16629 3.71096i −0.0979631 0.167816i
\(490\) −2.00374 + 1.73625i −0.0905198 + 0.0784358i
\(491\) 34.0125 4.89026i 1.53496 0.220694i 0.677609 0.735422i \(-0.263016\pi\)
0.857354 + 0.514728i \(0.172107\pi\)
\(492\) −0.244730 + 1.30334i −0.0110333 + 0.0587591i
\(493\) 4.45952 + 3.86419i 0.200847 + 0.174035i
\(494\) 13.2024 + 8.48465i 0.594003 + 0.381742i
\(495\) −4.13855 1.61100i −0.186014 0.0724090i
\(496\) −3.59858 + 4.15298i −0.161581 + 0.186474i
\(497\) 1.30929 + 0.384443i 0.0587299 + 0.0172446i
\(498\) −3.63004 + 0.899070i −0.162666 + 0.0402883i
\(499\) −24.0198 27.7203i −1.07527 1.24093i −0.969123 0.246580i \(-0.920693\pi\)
−0.106149 0.994350i \(-0.533852\pi\)
\(500\) −0.415415 0.909632i −0.0185779 0.0406800i
\(501\) −9.06147 22.3240i −0.404837 0.997361i
\(502\) 1.68737 + 0.770594i 0.0753108 + 0.0343933i
\(503\) −5.29059 + 36.7968i −0.235896 + 1.64069i 0.435930 + 0.899980i \(0.356419\pi\)
−0.671826 + 0.740709i \(0.734490\pi\)
\(504\) −4.48615 + 4.36034i −0.199829 + 0.194225i
\(505\) 15.8929i 0.707223i
\(506\) −1.35135 6.96970i −0.0600747 0.309841i
\(507\) 0.0408548 0.00409872i 0.00181442 0.000182030i
\(508\) −0.315342 + 0.202658i −0.0139910 + 0.00899148i
\(509\) 9.32660 + 1.34096i 0.413394 + 0.0594371i 0.345874 0.938281i \(-0.387582\pi\)
0.0675199 + 0.997718i \(0.478491\pi\)
\(510\) −2.54302 0.866532i −0.112607 0.0383707i
\(511\) 3.64823 + 12.4247i 0.161388 + 0.549638i
\(512\) 0.909632 0.415415i 0.0402004 0.0183589i
\(513\) 11.9639 19.2179i 0.528221 0.848491i
\(514\) −1.44093 10.0219i −0.0635568 0.442047i
\(515\) −0.831926 + 2.83328i −0.0366590 + 0.124849i
\(516\) −1.38778 0.978251i −0.0610937 0.0430651i
\(517\) −2.81978 + 4.38766i −0.124014 + 0.192969i
\(518\) 3.70875 5.77093i 0.162953 0.253560i
\(519\) −35.0540 24.7096i −1.53870 1.08463i
\(520\) −1.01487 + 3.45635i −0.0445052 + 0.151571i
\(521\) 1.17728 + 8.18815i 0.0515775 + 0.358729i 0.999223 + 0.0394060i \(0.0125466\pi\)
−0.947646 + 0.319323i \(0.896544\pi\)
\(522\) −9.03815 6.96860i −0.395589 0.305007i
\(523\) 11.5841 5.29027i 0.506536 0.231327i −0.145720 0.989326i \(-0.546550\pi\)
0.652256 + 0.757999i \(0.273823\pi\)
\(524\) 4.33705 + 14.7707i 0.189465 + 0.645259i
\(525\) −3.41889 1.16498i −0.149213 0.0508440i
\(526\) 22.8942 + 3.29168i 0.998233 + 0.143524i
\(527\) −7.17055 + 4.60823i −0.312354 + 0.200738i
\(528\) 2.55123 0.255950i 0.111028 0.0111388i
\(529\) 21.3334 8.59574i 0.927538 0.373728i
\(530\) 0.0698491i 0.00303405i
\(531\) 10.0484 + 10.3383i 0.436062 + 0.448644i
\(532\) 1.29294 8.99259i 0.0560560 0.389878i
\(533\) 2.50878 + 1.14572i 0.108667 + 0.0496267i
\(534\) 4.77721 + 11.7692i 0.206730 + 0.509304i
\(535\) 4.86821 + 10.6599i 0.210471 + 0.460867i
\(536\) −2.63658 3.04277i −0.113883 0.131428i
\(537\) 24.3988 6.04297i 1.05289 0.260774i
\(538\) 28.0045 + 8.22286i 1.20736 + 0.354513i
\(539\) 2.57026 2.96623i 0.110709 0.127765i
\(540\) 5.00619 + 1.39214i 0.215432 + 0.0599080i
\(541\) −23.5674 15.1459i −1.01324 0.651172i −0.0750124 0.997183i \(-0.523900\pi\)
−0.938230 + 0.346011i \(0.887536\pi\)
\(542\) 18.7991 + 16.2895i 0.807491 + 0.699695i
\(543\) 0.361989 1.92782i 0.0155344 0.0827307i
\(544\) 1.53532 0.220746i 0.0658265 0.00946442i
\(545\) 11.0576 9.58142i 0.473653 0.410423i
\(546\) 6.55945 + 11.2367i 0.280719 + 0.480885i
\(547\) 4.57827 1.34430i 0.195753 0.0574782i −0.182387 0.983227i \(-0.558382\pi\)
0.378139 + 0.925749i \(0.376564\pi\)
\(548\) −2.43558 + 5.33317i −0.104043 + 0.227822i
\(549\) −22.6169 + 1.29463i −0.965266 + 0.0552536i
\(550\) 0.800337 + 1.24535i 0.0341265 + 0.0531018i
\(551\) 16.5736 0.706058
\(552\) 2.38725 + 7.95619i 0.101608 + 0.338638i
\(553\) −6.27265 −0.266740
\(554\) 8.97213 + 13.9609i 0.381189 + 0.593142i
\(555\) −5.69250 0.243845i −0.241633 0.0103507i
\(556\) 1.45364 3.18303i 0.0616481 0.134990i
\(557\) 17.6154 5.17236i 0.746391 0.219160i 0.113647 0.993521i \(-0.463747\pi\)
0.632744 + 0.774361i \(0.281929\pi\)
\(558\) 13.3365 9.69075i 0.564579 0.410242i
\(559\) −2.66875 + 2.31249i −0.112876 + 0.0978078i
\(560\) 2.06412 0.296776i 0.0872250 0.0125411i
\(561\) 3.90880 + 0.733960i 0.165030 + 0.0309878i
\(562\) 20.8943 + 18.1050i 0.881372 + 0.763713i
\(563\) 15.4353 + 9.91963i 0.650518 + 0.418063i 0.823856 0.566800i \(-0.191819\pi\)
−0.173337 + 0.984863i \(0.555455\pi\)
\(564\) 2.77028 5.43739i 0.116650 0.228955i
\(565\) −6.91923 + 7.98522i −0.291094 + 0.335941i
\(566\) −8.04305 2.36165i −0.338074 0.0992676i
\(567\) 16.0709 9.69372i 0.674915 0.407098i
\(568\) 0.428515 + 0.494533i 0.0179801 + 0.0207501i
\(569\) −3.13536 6.86547i −0.131441 0.287816i 0.832456 0.554091i \(-0.186934\pi\)
−0.963897 + 0.266276i \(0.914207\pi\)
\(570\) −6.99184 + 2.83804i −0.292856 + 0.118873i
\(571\) −29.5680 13.5033i −1.23738 0.565094i −0.314165 0.949369i \(-0.601724\pi\)
−0.923219 + 0.384274i \(0.874452\pi\)
\(572\) 0.758909 5.27832i 0.0317316 0.220698i
\(573\) 15.4142 12.2418i 0.643936 0.511408i
\(574\) 1.59661i 0.0666414i
\(575\) −3.46722 + 3.31336i −0.144593 + 0.138177i
\(576\) −2.94021 + 0.595947i −0.122509 + 0.0248311i
\(577\) −5.97002 + 3.83670i −0.248535 + 0.159724i −0.658977 0.752163i \(-0.729011\pi\)
0.410442 + 0.911887i \(0.365374\pi\)
\(578\) −14.4455 2.07695i −0.600854 0.0863897i
\(579\) 7.37790 21.6520i 0.306615 0.899827i
\(580\) 1.07178 + 3.65013i 0.0445031 + 0.151563i
\(581\) 4.09565 1.87042i 0.169916 0.0775981i
\(582\) −15.7016 14.8285i −0.650851 0.614661i
\(583\) −0.0147155 0.102348i −0.000609453 0.00423884i
\(584\) −1.74946 + 5.95812i −0.0723932 + 0.246549i
\(585\) 5.31349 9.41028i 0.219686 0.389067i
\(586\) −7.56208 + 11.7668i −0.312386 + 0.486083i
\(587\) −7.50009 + 11.6704i −0.309562 + 0.481688i −0.960822 0.277167i \(-0.910604\pi\)
0.651260 + 0.758855i \(0.274241\pi\)
\(588\) −2.64581 + 3.75344i −0.109111 + 0.154789i
\(589\) −6.74479 + 22.9707i −0.277914 + 0.946489i
\(590\) −0.683918 4.75676i −0.0281565 0.195833i
\(591\) 30.8197 32.6344i 1.26775 1.34240i
\(592\) 2.99231 1.36654i 0.122983 0.0561645i
\(593\) 2.68805 + 9.15464i 0.110385 + 0.375936i 0.996093 0.0883054i \(-0.0281452\pi\)
−0.885709 + 0.464242i \(0.846327\pi\)
\(594\) −7.62876 0.985187i −0.313012 0.0404227i
\(595\) 3.20168 + 0.460333i 0.131256 + 0.0188718i
\(596\) 19.7702 12.7056i 0.809821 0.520440i
\(597\) −3.67016 36.5830i −0.150210 1.49724i
\(598\) 17.2554 0.841220i 0.705624 0.0344001i
\(599\) 19.3843i 0.792022i −0.918246 0.396011i \(-0.870394\pi\)
0.918246 0.396011i \(-0.129606\pi\)
\(600\) −1.07719 1.35634i −0.0439762 0.0553723i
\(601\) 3.70050 25.7375i 0.150947 1.04986i −0.763691 0.645582i \(-0.776615\pi\)
0.914638 0.404275i \(-0.132476\pi\)
\(602\) 1.85951 + 0.849211i 0.0757881 + 0.0346112i
\(603\) 5.63727 + 10.6823i 0.229567 + 0.435016i
\(604\) 9.50817 + 20.8200i 0.386882 + 0.847154i
\(605\) 5.76839 + 6.65707i 0.234518 + 0.270648i
\(606\) 6.61785 + 26.7199i 0.268832 + 1.08542i
\(607\) 9.04227 + 2.65505i 0.367014 + 0.107765i 0.460039 0.887899i \(-0.347835\pi\)
−0.0930248 + 0.995664i \(0.529654\pi\)
\(608\) 2.85298 3.29251i 0.115704 0.133529i
\(609\) 12.2431 + 6.23774i 0.496117 + 0.252766i
\(610\) 6.35257 + 4.08255i 0.257208 + 0.165298i
\(611\) −9.59169 8.31125i −0.388038 0.336237i
\(612\) −4.63629 0.397933i −0.187411 0.0160855i
\(613\) −22.3810 + 3.21790i −0.903960 + 0.129970i −0.578591 0.815617i \(-0.696397\pi\)
−0.325368 + 0.945587i \(0.605488\pi\)
\(614\) −20.4542 + 17.7237i −0.825464 + 0.715269i
\(615\) −1.14526 + 0.668552i −0.0461815 + 0.0269586i
\(616\) −2.96199 + 0.869719i −0.119342 + 0.0350420i
\(617\) 15.9515 34.9289i 0.642184 1.40619i −0.256048 0.966664i \(-0.582420\pi\)
0.898232 0.439522i \(-0.144852\pi\)
\(618\) −0.218888 + 5.10987i −0.00880497 + 0.205549i
\(619\) −4.78511 7.44578i −0.192330 0.299271i 0.731674 0.681655i \(-0.238740\pi\)
−0.924004 + 0.382384i \(0.875103\pi\)
\(620\) −5.49518 −0.220692
\(621\) −1.57095 24.8703i −0.0630402 0.998011i
\(622\) 1.97901 0.0793511
\(623\) −8.26784 12.8650i −0.331244 0.515426i
\(624\) −0.267024 + 6.23358i −0.0106895 + 0.249543i
\(625\) 0.415415 0.909632i 0.0166166 0.0363853i
\(626\) 5.69694 1.67277i 0.227696 0.0668574i
\(627\) 9.64711 5.63154i 0.385268 0.224902i
\(628\) 12.3351 10.6884i 0.492225 0.426515i
\(629\) 5.05057 0.726163i 0.201379 0.0289540i
\(630\) −6.23312 0.534989i −0.248334 0.0213145i
\(631\) 23.3976 + 20.2741i 0.931443 + 0.807100i 0.981464 0.191648i \(-0.0613832\pi\)
−0.0500205 + 0.998748i \(0.515929\pi\)
\(632\) −2.53046 1.62623i −0.100656 0.0646879i
\(633\) −37.7217 19.2188i −1.49930 0.763877i
\(634\) 9.19065 10.6066i 0.365007 0.421241i
\(635\) −0.359663 0.105607i −0.0142728 0.00419087i
\(636\) 0.0290854 + 0.117434i 0.00115331 + 0.00465656i
\(637\) 6.25443 + 7.21800i 0.247810 + 0.285988i
\(638\) −2.33945 5.12267i −0.0926195 0.202808i
\(639\) −0.916209 1.73616i −0.0362447 0.0686814i
\(640\) 0.909632 + 0.415415i 0.0359564 + 0.0164207i
\(641\) −3.64547 + 25.3548i −0.143988 + 1.00146i 0.781832 + 0.623489i \(0.214285\pi\)
−0.925819 + 0.377966i \(0.876624\pi\)
\(642\) 12.6235 + 15.8948i 0.498210 + 0.627318i
\(643\) 34.6081i 1.36481i −0.730974 0.682406i \(-0.760934\pi\)
0.730974 0.682406i \(-0.239066\pi\)
\(644\) −4.59260 8.88411i −0.180974 0.350083i
\(645\) −0.169491 1.68943i −0.00667370 0.0665214i
\(646\) 5.68486 3.65344i 0.223668 0.143743i
\(647\) 27.5272 + 3.95781i 1.08220 + 0.155597i 0.660270 0.751029i \(-0.270442\pi\)
0.421935 + 0.906626i \(0.361351\pi\)
\(648\) 8.99636 + 0.255932i 0.353410 + 0.0100540i
\(649\) 2.00426 + 6.82590i 0.0786743 + 0.267940i
\(650\) −3.27673 + 1.49643i −0.128524 + 0.0586950i
\(651\) −13.6279 + 14.4303i −0.534118 + 0.565566i
\(652\) 0.353064 + 2.45561i 0.0138270 + 0.0961692i
\(653\) 8.18759 27.8844i 0.320405 1.09120i −0.629067 0.777351i \(-0.716563\pi\)
0.949473 0.313849i \(-0.101619\pi\)
\(654\) 14.6008 20.7132i 0.570936 0.809950i
\(655\) −8.32275 + 12.9504i −0.325197 + 0.506016i
\(656\) 0.413933 0.644093i 0.0161614 0.0251476i
\(657\) 9.15951 16.2216i 0.357346 0.632867i
\(658\) −2.06994 + 7.04956i −0.0806946 + 0.274821i
\(659\) 1.36848 + 9.51801i 0.0533085 + 0.370769i 0.998960 + 0.0455880i \(0.0145161\pi\)
−0.945652 + 0.325181i \(0.894575\pi\)
\(660\) 1.86414 + 1.76048i 0.0725614 + 0.0685266i
\(661\) −31.2494 + 14.2711i −1.21546 + 0.555082i −0.916826 0.399286i \(-0.869258\pi\)
−0.298633 + 0.954368i \(0.596531\pi\)
\(662\) −1.29882 4.42337i −0.0504801 0.171919i
\(663\) −3.12148 + 9.16064i −0.121228 + 0.355770i
\(664\) 2.13715 + 0.307276i 0.0829376 + 0.0119246i
\(665\) 7.64284 4.91175i 0.296377 0.190470i
\(666\) −9.67206 + 1.96041i −0.374785 + 0.0759645i
\(667\) 14.8497 10.5993i 0.574983 0.410408i
\(668\) 13.9101i 0.538197i
\(669\) 29.8154 23.6791i 1.15273 0.915486i
\(670\) 0.572983 3.98518i 0.0221363 0.153961i
\(671\) −10.1684 4.64375i −0.392546 0.179270i
\(672\) 3.34673 1.35846i 0.129103 0.0524039i
\(673\) 14.1459 + 30.9752i 0.545284 + 1.19400i 0.958950 + 0.283576i \(0.0915208\pi\)
−0.413666 + 0.910429i \(0.635752\pi\)
\(674\) −6.52852 7.53431i −0.251469 0.290211i
\(675\) 2.22625 + 4.69508i 0.0856885 + 0.180714i
\(676\) −0.0227457 0.00667873i −0.000874833 0.000256874i
\(677\) −25.7333 + 29.6978i −0.989012 + 1.14138i 0.000942858 1.00000i \(0.499700\pi\)
−0.989955 + 0.141382i \(0.954846\pi\)
\(678\) −8.30790 + 16.3064i −0.319063 + 0.626242i
\(679\) 21.8743 + 14.0578i 0.839460 + 0.539488i
\(680\) 1.17225 + 1.01576i 0.0449538 + 0.0389527i
\(681\) −23.4103 4.39577i −0.897083 0.168446i
\(682\) 8.05198 1.15770i 0.308326 0.0443306i
\(683\) 12.3670 10.7160i 0.473209 0.410038i −0.385336 0.922776i \(-0.625914\pi\)
0.858545 + 0.512739i \(0.171369\pi\)
\(684\) −10.5733 + 7.68290i −0.404279 + 0.293763i
\(685\) −5.62550 + 1.65180i −0.214939 + 0.0631119i
\(686\) 8.36080 18.3076i 0.319217 0.698987i
\(687\) 27.9406 + 1.19687i 1.06600 + 0.0456635i
\(688\) 0.529985 + 0.824673i 0.0202055 + 0.0314404i
\(689\) 0.251615 0.00958575
\(690\) −4.44957 + 7.01436i −0.169392 + 0.267032i
\(691\) −48.2082 −1.83393 −0.916963 0.398972i \(-0.869367\pi\)
−0.916963 + 0.398972i \(0.869367\pi\)
\(692\) 13.3869 + 20.8304i 0.508894 + 0.791854i
\(693\) 9.24598 0.529257i 0.351226 0.0201048i
\(694\) 1.28233 2.80790i 0.0486765 0.106587i
\(695\) 3.35750 0.985852i 0.127357 0.0373955i
\(696\) 3.32185 + 5.69050i 0.125915 + 0.215698i
\(697\) 0.897517 0.777703i 0.0339959 0.0294576i
\(698\) −18.7415 + 2.69463i −0.709377 + 0.101993i
\(699\) 0.936366 4.98674i 0.0354166 0.188616i
\(700\) 1.57600 + 1.36561i 0.0595672 + 0.0516153i
\(701\) −36.8554 23.6855i −1.39201 0.894590i −0.392328 0.919825i \(-0.628330\pi\)
−0.999682 + 0.0252349i \(0.991967\pi\)
\(702\) 5.01484 18.0336i 0.189273 0.680635i
\(703\) 9.38510 10.8310i 0.353966 0.408498i
\(704\) −1.42038 0.417062i −0.0535327 0.0157186i
\(705\) 5.92345 1.46709i 0.223090 0.0552538i
\(706\) −7.58905 8.75823i −0.285618 0.329620i
\(707\) −13.7677 30.1471i −0.517789 1.13380i
\(708\) −3.13057 7.71252i −0.117654 0.289854i
\(709\) −38.0324 17.3688i −1.42834 0.652299i −0.456881 0.889528i \(-0.651034\pi\)
−0.971454 + 0.237229i \(0.923761\pi\)
\(710\) −0.0931252 + 0.647700i −0.00349493 + 0.0243078i
\(711\) 6.28948 + 6.47095i 0.235874 + 0.242679i
\(712\) 7.33340i 0.274831i
\(713\) 8.64725 + 24.8949i 0.323842 + 0.932322i
\(714\) 5.57452 0.559259i 0.208621 0.0209297i
\(715\) 4.48607 2.88302i 0.167770 0.107819i
\(716\) −14.3646 2.06531i −0.536829 0.0771844i
\(717\) −14.4711 4.93101i −0.540434 0.184152i
\(718\) 6.81087 + 23.1957i 0.254180 + 0.865656i
\(719\) 24.2600 11.0792i 0.904744 0.413183i 0.0919699 0.995762i \(-0.470684\pi\)
0.812774 + 0.582579i \(0.197956\pi\)
\(720\) −2.37582 1.83180i −0.0885414 0.0682672i
\(721\) −0.876347 6.09513i −0.0326369 0.226994i
\(722\) −0.00559795 + 0.0190649i −0.000208334 + 0.000709521i
\(723\) −8.80674 6.20789i −0.327526 0.230874i
\(724\) −0.612265 + 0.952702i −0.0227546 + 0.0354069i
\(725\) −2.05672 + 3.20032i −0.0763847 + 0.118857i
\(726\) 12.4701 + 8.79024i 0.462810 + 0.326236i
\(727\) −10.0118 + 34.0971i −0.371317 + 1.26459i 0.536026 + 0.844201i \(0.319925\pi\)
−0.907344 + 0.420389i \(0.861893\pi\)
\(728\) −1.06906 7.43550i −0.0396222 0.275578i
\(729\) −26.1142 6.85923i −0.967192 0.254045i
\(730\) −5.64850 + 2.57958i −0.209060 + 0.0954747i
\(731\) 0.428386 + 1.45895i 0.0158444 + 0.0539612i
\(732\) 12.3803 + 4.21856i 0.457587 + 0.155922i
\(733\) 17.4721 + 2.51211i 0.645347 + 0.0927869i 0.457214 0.889357i \(-0.348847\pi\)
0.188133 + 0.982144i \(0.439756\pi\)
\(734\) 16.7185 10.7444i 0.617093 0.396582i
\(735\) −4.56930 + 0.458411i −0.168541 + 0.0169087i
\(736\) 0.450560 4.77462i 0.0166079 0.175995i
\(737\) 5.96012i 0.219544i
\(738\) −1.64709 + 1.60090i −0.0606301 + 0.0589298i
\(739\) 4.50273 31.3172i 0.165636 1.15202i −0.722141 0.691746i \(-0.756842\pi\)
0.887776 0.460275i \(-0.152249\pi\)
\(740\) 2.99231 + 1.36654i 0.109999 + 0.0502350i
\(741\) 10.2234 + 25.1865i 0.375565 + 0.925248i
\(742\) −0.0605091 0.132497i −0.00222136 0.00486410i
\(743\) −20.3994 23.5422i −0.748382 0.863679i 0.246028 0.969263i \(-0.420874\pi\)
−0.994410 + 0.105583i \(0.966329\pi\)
\(744\) −9.23878 + 2.28822i −0.338710 + 0.0838901i
\(745\) 22.5490 + 6.62098i 0.826131 + 0.242574i
\(746\) 23.0359 26.5848i 0.843404 0.973340i
\(747\) −6.03618 2.34969i −0.220852 0.0859705i
\(748\) −1.93167 1.24141i −0.0706290 0.0453905i
\(749\) −18.4690 16.0035i −0.674842 0.584754i
\(750\) 0.319643 1.70230i 0.0116717 0.0621592i
\(751\) −37.4182 + 5.37993i −1.36541 + 0.196316i −0.785752 0.618542i \(-0.787724\pi\)
−0.579660 + 0.814859i \(0.696814\pi\)
\(752\) −2.66269 + 2.30723i −0.0970982 + 0.0841361i
\(753\) 1.61978 + 2.77477i 0.0590282 + 0.101118i
\(754\) 13.1487 3.86082i 0.478849 0.140603i
\(755\) −9.50817 + 20.8200i −0.346038 + 0.757717i
\(756\) −10.7022 + 1.69605i −0.389236 + 0.0616846i
\(757\) −3.67189 5.71358i −0.133457 0.207664i 0.768093 0.640339i \(-0.221206\pi\)
−0.901550 + 0.432675i \(0.857570\pi\)
\(758\) −23.4846 −0.852999
\(759\) 5.04212 11.2154i 0.183017 0.407094i
\(760\) 4.35662 0.158031
\(761\) −22.2770 34.6637i −0.807541 1.25656i −0.963210 0.268749i \(-0.913390\pi\)
0.155670 0.987809i \(-0.450246\pi\)
\(762\) −0.648660 0.0277862i −0.0234985 0.00100659i
\(763\) −12.6748 + 27.7540i −0.458859 + 1.00476i
\(764\) −10.9042 + 3.20176i −0.394500 + 0.115836i
\(765\) −2.73539 3.76447i −0.0988981 0.136105i
\(766\) −16.2987 + 14.1229i −0.588894 + 0.510280i
\(767\) −17.1351 + 2.46365i −0.618712 + 0.0889574i
\(768\) 1.70230 + 0.319643i 0.0614265 + 0.0115341i
\(769\) 19.8289 + 17.1818i 0.715047 + 0.619592i 0.934472 0.356038i \(-0.115873\pi\)
−0.219425 + 0.975629i \(0.570418\pi\)
\(770\) −2.59698 1.66898i −0.0935888 0.0601458i
\(771\) 7.96114 15.6258i 0.286713 0.562748i
\(772\) −8.64849 + 9.98089i −0.311266 + 0.359220i
\(773\) 43.1204 + 12.6613i 1.55093 + 0.455395i 0.941379 0.337351i \(-0.109531\pi\)