Properties

Label 690.2.q.a.11.12
Level $690$
Weight $2$
Character 690.11
Analytic conductor $5.510$
Analytic rank $0$
Dimension $160$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.q (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(160\)
Relative dimension: \(16\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 11.12
Character \(\chi\) \(=\) 690.11
Dual form 690.2.q.a.251.12

$q$-expansion

\(f(q)\) \(=\) \(q+(0.540641 + 0.841254i) q^{2} +(-0.162462 + 1.72441i) q^{3} +(-0.415415 + 0.909632i) q^{4} +(-0.959493 + 0.281733i) q^{5} +(-1.53850 + 0.795618i) q^{6} +(0.461235 - 0.399662i) q^{7} +(-0.989821 + 0.142315i) q^{8} +(-2.94721 - 0.560302i) q^{9} +O(q^{10})\) \(q+(0.540641 + 0.841254i) q^{2} +(-0.162462 + 1.72441i) q^{3} +(-0.415415 + 0.909632i) q^{4} +(-0.959493 + 0.281733i) q^{5} +(-1.53850 + 0.795618i) q^{6} +(0.461235 - 0.399662i) q^{7} +(-0.989821 + 0.142315i) q^{8} +(-2.94721 - 0.560302i) q^{9} +(-0.755750 - 0.654861i) q^{10} +(-5.37960 - 3.45726i) q^{11} +(-1.50109 - 0.864128i) q^{12} +(-1.40018 + 1.61589i) q^{13} +(0.585580 + 0.171942i) q^{14} +(-0.329943 - 1.70033i) q^{15} +(-0.654861 - 0.755750i) q^{16} +(-0.579107 - 1.26807i) q^{17} +(-1.12203 - 2.78228i) q^{18} +(-1.70660 - 0.779379i) q^{19} +(0.142315 - 0.989821i) q^{20} +(0.614251 + 0.860290i) q^{21} -6.39475i q^{22} +(0.323878 + 4.78488i) q^{23} +(-0.0846018 - 1.72998i) q^{24} +(0.841254 - 0.540641i) q^{25} +(-2.11636 - 0.304287i) q^{26} +(1.44500 - 4.99119i) q^{27} +(0.171942 + 0.585580i) q^{28} +(-2.48534 + 1.13502i) q^{29} +(1.25203 - 1.19684i) q^{30} +(1.19880 + 8.33783i) q^{31} +(0.281733 - 0.959493i) q^{32} +(6.83573 - 8.71500i) q^{33} +(0.753677 - 1.17274i) q^{34} +(-0.329954 + 0.513418i) q^{35} +(1.73399 - 2.44812i) q^{36} +(-2.27843 + 7.75963i) q^{37} +(-0.267003 - 1.85705i) q^{38} +(-2.55899 - 2.67700i) q^{39} +(0.909632 - 0.415415i) q^{40} +(-1.65607 - 5.64005i) q^{41} +(-0.391633 + 0.981848i) q^{42} +(3.10873 + 0.446968i) q^{43} +(5.37960 - 3.45726i) q^{44} +(2.98569 - 0.292720i) q^{45} +(-3.85020 + 2.85937i) q^{46} -4.99298i q^{47} +(1.40962 - 1.00647i) q^{48} +(-0.943196 + 6.56007i) q^{49} +(0.909632 + 0.415415i) q^{50} +(2.28076 - 0.792608i) q^{51} +(-0.888210 - 1.94491i) q^{52} +(-0.888367 - 1.02523i) q^{53} +(4.98008 - 1.48283i) q^{54} +(6.13572 + 1.80161i) q^{55} +(-0.399662 + 0.461235i) q^{56} +(1.62123 - 2.81627i) q^{57} +(-2.29852 - 1.47717i) q^{58} +(-9.84131 - 8.52754i) q^{59} +(1.68374 + 0.406218i) q^{60} +(3.36348 - 0.483595i) q^{61} +(-6.36611 + 5.51627i) q^{62} +(-1.58329 + 0.919459i) q^{63} +(0.959493 - 0.281733i) q^{64} +(0.888210 - 1.94491i) q^{65} +(11.0272 + 1.03890i) q^{66} +(-6.61576 - 10.2943i) q^{67} +1.39404 q^{68} +(-8.30374 - 0.218860i) q^{69} -0.610301 q^{70} +(4.73042 + 7.36068i) q^{71} +(2.99695 + 0.135167i) q^{72} +(-5.31978 + 11.6487i) q^{73} +(-7.75963 + 2.27843i) q^{74} +(0.795618 + 1.53850i) q^{75} +(1.41790 - 1.22861i) q^{76} +(-3.86300 + 0.555415i) q^{77} +(0.868545 - 3.60005i) q^{78} +(1.63339 + 1.41534i) q^{79} +(0.841254 + 0.540641i) q^{80} +(8.37212 + 3.30266i) q^{81} +(3.84937 - 4.44241i) q^{82} +(10.4392 + 3.06521i) q^{83} +(-1.03772 + 0.201365i) q^{84} +(0.912905 + 1.05355i) q^{85} +(1.30469 + 2.85688i) q^{86} +(-1.55347 - 4.47016i) q^{87} +(5.81687 + 2.65647i) q^{88} +(-1.23916 + 8.61853i) q^{89} +(1.86043 + 2.35346i) q^{90} +1.30490i q^{91} +(-4.48703 - 1.69310i) q^{92} +(-14.5726 + 0.712650i) q^{93} +(4.20036 - 2.69941i) q^{94} +(1.85705 + 0.267003i) q^{95} +(1.60879 + 0.641705i) q^{96} +(-1.06339 - 3.62156i) q^{97} +(-6.02862 + 2.75318i) q^{98} +(13.9177 + 13.2035i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160q + 16q^{4} - 16q^{5} - 2q^{6} + 42q^{9} + O(q^{10}) \) \( 160q + 16q^{4} - 16q^{5} - 2q^{6} + 42q^{9} - 12q^{11} - 12q^{14} - 16q^{16} - 8q^{18} + 16q^{20} + 62q^{21} + 4q^{23} + 2q^{24} - 16q^{25} + 42q^{27} - 2q^{30} - 4q^{31} + 16q^{33} + 2q^{36} + 72q^{38} - 124q^{39} + 44q^{41} + 44q^{43} + 12q^{44} - 2q^{45} + 4q^{46} + 70q^{49} - 2q^{51} - 52q^{53} + 92q^{54} + 10q^{55} - 54q^{56} - 38q^{57} - 36q^{58} - 44q^{61} - 220q^{63} + 16q^{64} - 34q^{66} - 44q^{67} + 22q^{69} - 12q^{70} - 36q^{72} - 28q^{73} - 24q^{74} - 88q^{77} - 54q^{78} - 44q^{79} - 16q^{80} - 66q^{81} - 28q^{82} + 4q^{83} - 18q^{84} + 158q^{86} - 64q^{87} + 80q^{89} - 8q^{90} - 4q^{92} + 4q^{93} + 24q^{94} - 2q^{96} - 88q^{98} + 190q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{9}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.540641 + 0.841254i 0.382291 + 0.594856i
\(3\) −0.162462 + 1.72441i −0.0937972 + 0.995591i
\(4\) −0.415415 + 0.909632i −0.207708 + 0.454816i
\(5\) −0.959493 + 0.281733i −0.429098 + 0.125995i
\(6\) −1.53850 + 0.795618i −0.628091 + 0.324810i
\(7\) 0.461235 0.399662i 0.174330 0.151058i −0.563325 0.826235i \(-0.690478\pi\)
0.737656 + 0.675177i \(0.235933\pi\)
\(8\) −0.989821 + 0.142315i −0.349955 + 0.0503159i
\(9\) −2.94721 0.560302i −0.982404 0.186767i
\(10\) −0.755750 0.654861i −0.238989 0.207085i
\(11\) −5.37960 3.45726i −1.62201 1.04240i −0.954676 0.297646i \(-0.903798\pi\)
−0.667335 0.744757i \(-0.732565\pi\)
\(12\) −1.50109 0.864128i −0.433328 0.249452i
\(13\) −1.40018 + 1.61589i −0.388339 + 0.448167i −0.915934 0.401329i \(-0.868548\pi\)
0.527595 + 0.849496i \(0.323094\pi\)
\(14\) 0.585580 + 0.171942i 0.156503 + 0.0459534i
\(15\) −0.329943 1.70033i −0.0851909 0.439024i
\(16\) −0.654861 0.755750i −0.163715 0.188937i
\(17\) −0.579107 1.26807i −0.140454 0.307551i 0.826313 0.563212i \(-0.190434\pi\)
−0.966767 + 0.255660i \(0.917707\pi\)
\(18\) −1.12203 2.78228i −0.264464 0.655789i
\(19\) −1.70660 0.779379i −0.391521 0.178802i 0.209920 0.977718i \(-0.432680\pi\)
−0.601442 + 0.798917i \(0.705407\pi\)
\(20\) 0.142315 0.989821i 0.0318226 0.221331i
\(21\) 0.614251 + 0.860290i 0.134040 + 0.187731i
\(22\) 6.39475i 1.36336i
\(23\) 0.323878 + 4.78488i 0.0675332 + 0.997717i
\(24\) −0.0846018 1.72998i −0.0172693 0.353131i
\(25\) 0.841254 0.540641i 0.168251 0.108128i
\(26\) −2.11636 0.304287i −0.415053 0.0596756i
\(27\) 1.44500 4.99119i 0.278091 0.960555i
\(28\) 0.171942 + 0.585580i 0.0324939 + 0.110664i
\(29\) −2.48534 + 1.13502i −0.461517 + 0.210768i −0.632584 0.774492i \(-0.718006\pi\)
0.171067 + 0.985259i \(0.445278\pi\)
\(30\) 1.25203 1.19684i 0.228589 0.218511i
\(31\) 1.19880 + 8.33783i 0.215311 + 1.49752i 0.755039 + 0.655680i \(0.227618\pi\)
−0.539728 + 0.841839i \(0.681473\pi\)
\(32\) 0.281733 0.959493i 0.0498038 0.169616i
\(33\) 6.83573 8.71500i 1.18995 1.51709i
\(34\) 0.753677 1.17274i 0.129255 0.201124i
\(35\) −0.329954 + 0.513418i −0.0557724 + 0.0867835i
\(36\) 1.73399 2.44812i 0.288998 0.408020i
\(37\) −2.27843 + 7.75963i −0.374572 + 1.27568i 0.529506 + 0.848306i \(0.322377\pi\)
−0.904077 + 0.427369i \(0.859441\pi\)
\(38\) −0.267003 1.85705i −0.0433137 0.301253i
\(39\) −2.55899 2.67700i −0.409766 0.428664i
\(40\) 0.909632 0.415415i 0.143825 0.0656829i
\(41\) −1.65607 5.64005i −0.258634 0.880828i −0.981762 0.190113i \(-0.939114\pi\)
0.723128 0.690714i \(-0.242704\pi\)
\(42\) −0.391633 + 0.981848i −0.0604303 + 0.151502i
\(43\) 3.10873 + 0.446968i 0.474076 + 0.0681619i 0.375212 0.926939i \(-0.377570\pi\)
0.0988644 + 0.995101i \(0.468479\pi\)
\(44\) 5.37960 3.45726i 0.811006 0.521202i
\(45\) 2.98569 0.292720i 0.445080 0.0436361i
\(46\) −3.85020 + 2.85937i −0.567681 + 0.421591i
\(47\) 4.99298i 0.728301i −0.931340 0.364151i \(-0.881359\pi\)
0.931340 0.364151i \(-0.118641\pi\)
\(48\) 1.40962 1.00647i 0.203460 0.145272i
\(49\) −0.943196 + 6.56007i −0.134742 + 0.937153i
\(50\) 0.909632 + 0.415415i 0.128641 + 0.0587486i
\(51\) 2.28076 0.792608i 0.319370 0.110987i
\(52\) −0.888210 1.94491i −0.123173 0.269710i
\(53\) −0.888367 1.02523i −0.122027 0.140826i 0.691449 0.722425i \(-0.256973\pi\)
−0.813476 + 0.581599i \(0.802427\pi\)
\(54\) 4.98008 1.48283i 0.677703 0.201787i
\(55\) 6.13572 + 1.80161i 0.827340 + 0.242929i
\(56\) −0.399662 + 0.461235i −0.0534071 + 0.0616351i
\(57\) 1.62123 2.81627i 0.214737 0.373024i
\(58\) −2.29852 1.47717i −0.301810 0.193962i
\(59\) −9.84131 8.52754i −1.28123 1.11019i −0.988050 0.154134i \(-0.950741\pi\)
−0.293179 0.956057i \(-0.594713\pi\)
\(60\) 1.68374 + 0.406218i 0.217370 + 0.0524425i
\(61\) 3.36348 0.483595i 0.430649 0.0619180i 0.0764180 0.997076i \(-0.475652\pi\)
0.354231 + 0.935158i \(0.384743\pi\)
\(62\) −6.36611 + 5.51627i −0.808497 + 0.700567i
\(63\) −1.58329 + 0.919459i −0.199476 + 0.115841i
\(64\) 0.959493 0.281733i 0.119937 0.0352166i
\(65\) 0.888210 1.94491i 0.110169 0.241236i
\(66\) 11.0272 + 1.03890i 1.35735 + 0.127880i
\(67\) −6.61576 10.2943i −0.808244 1.25765i −0.962947 0.269691i \(-0.913078\pi\)
0.154703 0.987961i \(-0.450558\pi\)
\(68\) 1.39404 0.169053
\(69\) −8.30374 0.218860i −0.999653 0.0263477i
\(70\) −0.610301 −0.0729449
\(71\) 4.73042 + 7.36068i 0.561398 + 0.873552i 0.999680 0.0252852i \(-0.00804938\pi\)
−0.438282 + 0.898837i \(0.644413\pi\)
\(72\) 2.99695 + 0.135167i 0.353194 + 0.0159296i
\(73\) −5.31978 + 11.6487i −0.622633 + 1.36338i 0.290956 + 0.956736i \(0.406027\pi\)
−0.913589 + 0.406639i \(0.866701\pi\)
\(74\) −7.75963 + 2.27843i −0.902038 + 0.264862i
\(75\) 0.795618 + 1.53850i 0.0918700 + 0.177651i
\(76\) 1.41790 1.22861i 0.162644 0.140932i
\(77\) −3.86300 + 0.555415i −0.440229 + 0.0632954i
\(78\) 0.868545 3.60005i 0.0983434 0.407626i
\(79\) 1.63339 + 1.41534i 0.183771 + 0.159239i 0.741888 0.670524i \(-0.233930\pi\)
−0.558117 + 0.829762i \(0.688476\pi\)
\(80\) 0.841254 + 0.540641i 0.0940550 + 0.0604455i
\(81\) 8.37212 + 3.30266i 0.930236 + 0.366962i
\(82\) 3.84937 4.44241i 0.425092 0.490582i
\(83\) 10.4392 + 3.06521i 1.14585 + 0.336451i 0.798918 0.601440i \(-0.205406\pi\)
0.346929 + 0.937891i \(0.387224\pi\)
\(84\) −1.03772 + 0.201365i −0.113224 + 0.0219707i
\(85\) 0.912905 + 1.05355i 0.0990184 + 0.114273i
\(86\) 1.30469 + 2.85688i 0.140689 + 0.308065i
\(87\) −1.55347 4.47016i −0.166549 0.479251i
\(88\) 5.81687 + 2.65647i 0.620080 + 0.283181i
\(89\) −1.23916 + 8.61853i −0.131350 + 0.913562i 0.812446 + 0.583036i \(0.198135\pi\)
−0.943797 + 0.330526i \(0.892774\pi\)
\(90\) 1.86043 + 2.35346i 0.196107 + 0.248077i
\(91\) 1.30490i 0.136791i
\(92\) −4.48703 1.69310i −0.467805 0.176518i
\(93\) −14.5726 + 0.712650i −1.51111 + 0.0738984i
\(94\) 4.20036 2.69941i 0.433235 0.278423i
\(95\) 1.85705 + 0.267003i 0.190529 + 0.0273940i
\(96\) 1.60879 + 0.641705i 0.164197 + 0.0654937i
\(97\) −1.06339 3.62156i −0.107970 0.367713i 0.887728 0.460369i \(-0.152283\pi\)
−0.995698 + 0.0926552i \(0.970465\pi\)
\(98\) −6.02862 + 2.75318i −0.608982 + 0.278113i
\(99\) 13.9177 + 13.2035i 1.39878 + 1.32700i
\(100\) 0.142315 + 0.989821i 0.0142315 + 0.0989821i
\(101\) −3.76620 + 12.8265i −0.374751 + 1.27629i 0.529144 + 0.848532i \(0.322513\pi\)
−0.903895 + 0.427753i \(0.859305\pi\)
\(102\) 1.89985 + 1.49018i 0.188114 + 0.147550i
\(103\) 7.01365 10.9135i 0.691075 1.07533i −0.301472 0.953475i \(-0.597478\pi\)
0.992547 0.121859i \(-0.0388857\pi\)
\(104\) 1.15596 1.79871i 0.113351 0.176378i
\(105\) −0.831741 0.652388i −0.0811696 0.0636665i
\(106\) 0.382191 1.30162i 0.0371217 0.126425i
\(107\) 0.493401 + 3.43168i 0.0476989 + 0.331753i 0.999673 + 0.0255743i \(0.00814144\pi\)
−0.951974 + 0.306179i \(0.900949\pi\)
\(108\) 3.93987 + 3.38784i 0.379114 + 0.325995i
\(109\) 2.94630 1.34553i 0.282205 0.128879i −0.269284 0.963061i \(-0.586787\pi\)
0.551489 + 0.834182i \(0.314060\pi\)
\(110\) 1.80161 + 6.13572i 0.171777 + 0.585018i
\(111\) −13.0107 5.18960i −1.23492 0.492575i
\(112\) −0.604089 0.0868549i −0.0570811 0.00820702i
\(113\) −10.3236 + 6.63455i −0.971160 + 0.624126i −0.927065 0.374901i \(-0.877677\pi\)
−0.0440947 + 0.999027i \(0.514040\pi\)
\(114\) 3.24570 0.158725i 0.303988 0.0148660i
\(115\) −1.65882 4.49981i −0.154685 0.419610i
\(116\) 2.73225i 0.253683i
\(117\) 5.03200 3.97785i 0.465209 0.367752i
\(118\) 1.85321 12.8894i 0.170602 1.18656i
\(119\) −0.773903 0.353430i −0.0709436 0.0323988i
\(120\) 0.568568 + 1.63607i 0.0519029 + 0.149352i
\(121\) 12.4179 + 27.1914i 1.12890 + 2.47195i
\(122\) 2.22526 + 2.56809i 0.201466 + 0.232504i
\(123\) 9.99483 1.93946i 0.901203 0.174875i
\(124\) −8.08236 2.37319i −0.725817 0.213119i
\(125\) −0.654861 + 0.755750i −0.0585725 + 0.0675963i
\(126\) −1.62949 0.834850i −0.145166 0.0743744i
\(127\) −14.4106 9.26116i −1.27874 0.821795i −0.288007 0.957628i \(-0.592992\pi\)
−0.990732 + 0.135833i \(0.956629\pi\)
\(128\) 0.755750 + 0.654861i 0.0667995 + 0.0578821i
\(129\) −1.27581 + 5.28812i −0.112328 + 0.465593i
\(130\) 2.11636 0.304287i 0.185617 0.0266878i
\(131\) −12.6117 + 10.9281i −1.10189 + 0.954790i −0.999203 0.0399239i \(-0.987288\pi\)
−0.102684 + 0.994714i \(0.532743\pi\)
\(132\) 5.08777 + 9.83834i 0.442834 + 0.856318i
\(133\) −1.09863 + 0.322588i −0.0952635 + 0.0279719i
\(134\) 5.08339 11.1311i 0.439138 0.961578i
\(135\) 0.0197109 + 5.19612i 0.00169644 + 0.447210i
\(136\) 0.753677 + 1.17274i 0.0646273 + 0.100562i
\(137\) 2.26583 0.193583 0.0967916 0.995305i \(-0.469142\pi\)
0.0967916 + 0.995305i \(0.469142\pi\)
\(138\) −4.30522 7.10388i −0.366485 0.604722i
\(139\) −16.2548 −1.37872 −0.689358 0.724421i \(-0.742107\pi\)
−0.689358 + 0.724421i \(0.742107\pi\)
\(140\) −0.329954 0.513418i −0.0278862 0.0433917i
\(141\) 8.60997 + 0.811168i 0.725091 + 0.0683127i
\(142\) −3.63474 + 7.95897i −0.305021 + 0.667902i
\(143\) 13.1189 3.85207i 1.09706 0.322126i
\(144\) 1.50657 + 2.59427i 0.125547 + 0.216190i
\(145\) 2.06490 1.78924i 0.171480 0.148589i
\(146\) −12.6756 + 1.82247i −1.04904 + 0.150829i
\(147\) −11.1591 2.69222i −0.920383 0.222051i
\(148\) −6.11191 5.29600i −0.502396 0.435329i
\(149\) −5.90128 3.79252i −0.483452 0.310696i 0.276115 0.961125i \(-0.410953\pi\)
−0.759567 + 0.650429i \(0.774589\pi\)
\(150\) −0.864128 + 1.50109i −0.0705558 + 0.122564i
\(151\) 1.96309 2.26552i 0.159754 0.184366i −0.670230 0.742154i \(-0.733804\pi\)
0.829983 + 0.557788i \(0.188350\pi\)
\(152\) 1.80015 + 0.528571i 0.146011 + 0.0428728i
\(153\) 0.996250 + 4.06174i 0.0805420 + 0.328372i
\(154\) −2.55574 2.94948i −0.205947 0.237676i
\(155\) −3.49928 7.66235i −0.281069 0.615455i
\(156\) 3.49813 1.21567i 0.280075 0.0973315i
\(157\) −12.0907 5.52164i −0.964944 0.440675i −0.130306 0.991474i \(-0.541596\pi\)
−0.834638 + 0.550799i \(0.814323\pi\)
\(158\) −0.307584 + 2.13929i −0.0244700 + 0.170193i
\(159\) 1.91225 1.36535i 0.151651 0.108280i
\(160\) 1.00000i 0.0790569i
\(161\) 2.06172 + 2.07751i 0.162486 + 0.163731i
\(162\) 1.74794 + 8.82863i 0.137331 + 0.693643i
\(163\) 10.4484 6.71476i 0.818379 0.525940i −0.0631866 0.998002i \(-0.520126\pi\)
0.881566 + 0.472061i \(0.156490\pi\)
\(164\) 5.81832 + 0.836549i 0.454335 + 0.0653235i
\(165\) −4.10354 + 10.2878i −0.319460 + 0.800906i
\(166\) 3.06521 + 10.4392i 0.237907 + 0.810236i
\(167\) −4.47364 + 2.04304i −0.346181 + 0.158095i −0.580915 0.813964i \(-0.697305\pi\)
0.234735 + 0.972060i \(0.424578\pi\)
\(168\) −0.730430 0.764116i −0.0563539 0.0589529i
\(169\) 1.19949 + 8.34262i 0.0922683 + 0.641740i
\(170\) −0.392748 + 1.33758i −0.0301224 + 0.102587i
\(171\) 4.59303 + 3.25321i 0.351238 + 0.248779i
\(172\) −1.69799 + 2.64212i −0.129470 + 0.201460i
\(173\) 1.32607 2.06341i 0.100819 0.156878i −0.787179 0.616725i \(-0.788459\pi\)
0.887998 + 0.459847i \(0.152096\pi\)
\(174\) 2.92067 3.72361i 0.221415 0.282286i
\(175\) 0.171942 0.585580i 0.0129976 0.0442657i
\(176\) 0.910067 + 6.32966i 0.0685989 + 0.477116i
\(177\) 16.3039 15.5851i 1.22547 1.17145i
\(178\) −7.92031 + 3.61708i −0.593652 + 0.271112i
\(179\) 2.52495 + 8.59919i 0.188724 + 0.642734i 0.998436 + 0.0559066i \(0.0178049\pi\)
−0.809712 + 0.586827i \(0.800377\pi\)
\(180\) −0.974031 + 2.83747i −0.0726000 + 0.211493i
\(181\) 11.5517 + 1.66088i 0.858630 + 0.123452i 0.557547 0.830146i \(-0.311743\pi\)
0.301083 + 0.953598i \(0.402652\pi\)
\(182\) −1.09775 + 0.705483i −0.0813709 + 0.0522939i
\(183\) 0.287483 + 5.87860i 0.0212513 + 0.434558i
\(184\) −1.00154 4.69009i −0.0738346 0.345758i
\(185\) 8.08722i 0.594584i
\(186\) −8.47808 11.8740i −0.621643 0.870644i
\(187\) −1.26867 + 8.82382i −0.0927747 + 0.645262i
\(188\) 4.54178 + 2.07416i 0.331243 + 0.151274i
\(189\) −1.32830 2.87962i −0.0966199 0.209462i
\(190\) 0.779379 + 1.70660i 0.0565421 + 0.123810i
\(191\) −0.400564 0.462276i −0.0289838 0.0334491i 0.741073 0.671425i \(-0.234317\pi\)
−0.770056 + 0.637976i \(0.779772\pi\)
\(192\) 0.329943 + 1.70033i 0.0238116 + 0.122711i
\(193\) 14.2434 + 4.18223i 1.02526 + 0.301044i 0.750783 0.660549i \(-0.229677\pi\)
0.274479 + 0.961593i \(0.411495\pi\)
\(194\) 2.47174 2.85254i 0.177460 0.204800i
\(195\) 3.20953 + 1.84762i 0.229839 + 0.132311i
\(196\) −5.57544 3.58311i −0.398245 0.255937i
\(197\) 15.7249 + 13.6257i 1.12035 + 0.970789i 0.999760 0.0219134i \(-0.00697580\pi\)
0.120590 + 0.992702i \(0.461521\pi\)
\(198\) −3.58299 + 18.8467i −0.254632 + 1.33938i
\(199\) 5.51496 0.792932i 0.390945 0.0562094i 0.0559605 0.998433i \(-0.482178\pi\)
0.334985 + 0.942224i \(0.391269\pi\)
\(200\) −0.755750 + 0.654861i −0.0534396 + 0.0463056i
\(201\) 18.8265 9.73589i 1.32792 0.686716i
\(202\) −12.8265 + 3.76620i −0.902470 + 0.264989i
\(203\) −0.692703 + 1.51681i −0.0486182 + 0.106459i
\(204\) −0.226479 + 2.40391i −0.0158567 + 0.168307i
\(205\) 3.17797 + 4.94502i 0.221959 + 0.345375i
\(206\) 12.9728 0.903861
\(207\) 1.72644 14.2835i 0.119996 0.992774i
\(208\) 2.13813 0.148252
\(209\) 6.48633 + 10.0929i 0.448669 + 0.698142i
\(210\) 0.0991505 1.05241i 0.00684203 0.0726233i
\(211\) 5.49638 12.0354i 0.378387 0.828551i −0.620625 0.784107i \(-0.713121\pi\)
0.999012 0.0444439i \(-0.0141516\pi\)
\(212\) 1.30162 0.382191i 0.0893959 0.0262490i
\(213\) −13.4614 + 6.96138i −0.922359 + 0.476986i
\(214\) −2.62016 + 2.27038i −0.179110 + 0.155200i
\(215\) −3.10873 + 0.446968i −0.212013 + 0.0304829i
\(216\) −0.719974 + 5.14603i −0.0489880 + 0.350143i
\(217\) 3.88525 + 3.36658i 0.263748 + 0.228539i
\(218\) 2.72483 + 1.75114i 0.184549 + 0.118602i
\(219\) −19.2229 11.0660i −1.29896 0.747768i
\(220\) −4.18767 + 4.83283i −0.282333 + 0.325829i
\(221\) 2.85991 + 0.839745i 0.192378 + 0.0564873i
\(222\) −2.66832 13.7510i −0.179086 0.922905i
\(223\) −11.7998 13.6177i −0.790173 0.911909i 0.207626 0.978208i \(-0.433426\pi\)
−0.997800 + 0.0662996i \(0.978881\pi\)
\(224\) −0.253528 0.555149i −0.0169396 0.0370925i
\(225\) −2.78228 + 1.12203i −0.185485 + 0.0748018i
\(226\) −11.1627 5.09783i −0.742531 0.339102i
\(227\) 3.53477 24.5848i 0.234611 1.63175i −0.443133 0.896456i \(-0.646133\pi\)
0.677744 0.735298i \(-0.262958\pi\)
\(228\) 1.88829 + 2.64464i 0.125055 + 0.175146i
\(229\) 25.3898i 1.67781i −0.544281 0.838903i \(-0.683197\pi\)
0.544281 0.838903i \(-0.316803\pi\)
\(230\) 2.88866 3.82827i 0.190473 0.252429i
\(231\) −0.330177 6.75164i −0.0217241 0.444226i
\(232\) 2.29852 1.47717i 0.150905 0.0969808i
\(233\) 9.03362 + 1.29884i 0.591812 + 0.0850897i 0.431713 0.902011i \(-0.357909\pi\)
0.160099 + 0.987101i \(0.448819\pi\)
\(234\) 6.06688 + 2.08260i 0.396605 + 0.136144i
\(235\) 1.40669 + 4.79073i 0.0917621 + 0.312513i
\(236\) 11.8452 5.40950i 0.771054 0.352128i
\(237\) −2.70600 + 2.58671i −0.175774 + 0.168025i
\(238\) −0.121080 0.842127i −0.00784842 0.0545870i
\(239\) −2.60994 + 8.88865i −0.168823 + 0.574959i 0.831002 + 0.556269i \(0.187768\pi\)
−0.999825 + 0.0186897i \(0.994051\pi\)
\(240\) −1.06896 + 1.36284i −0.0690011 + 0.0879707i
\(241\) −12.2763 + 19.1023i −0.790788 + 1.23049i 0.178349 + 0.983967i \(0.442924\pi\)
−0.969137 + 0.246523i \(0.920712\pi\)
\(242\) −16.1613 + 25.1474i −1.03889 + 1.61654i
\(243\) −7.05530 + 13.9005i −0.452598 + 0.891715i
\(244\) −0.957346 + 3.26042i −0.0612878 + 0.208727i
\(245\) −0.943196 6.56007i −0.0602586 0.419108i
\(246\) 7.03519 + 7.35964i 0.448547 + 0.469233i
\(247\) 3.64893 1.66641i 0.232176 0.106031i
\(248\) −2.37319 8.08236i −0.150698 0.513230i
\(249\) −6.98166 + 17.5035i −0.442445 + 1.10924i
\(250\) −0.989821 0.142315i −0.0626018 0.00900078i
\(251\) −10.6357 + 6.83512i −0.671317 + 0.431429i −0.831400 0.555674i \(-0.812460\pi\)
0.160083 + 0.987104i \(0.448824\pi\)
\(252\) −0.178647 1.82217i −0.0112537 0.114786i
\(253\) 14.8003 26.8605i 0.930484 1.68871i
\(254\) 17.1300i 1.07483i
\(255\) −1.96507 + 1.40307i −0.123057 + 0.0878634i
\(256\) −0.142315 + 0.989821i −0.00889468 + 0.0618638i
\(257\) 3.37681 + 1.54214i 0.210640 + 0.0961960i 0.517941 0.855416i \(-0.326699\pi\)
−0.307301 + 0.951612i \(0.599426\pi\)
\(258\) −5.13840 + 1.78570i −0.319903 + 0.111173i
\(259\) 2.05034 + 4.48961i 0.127402 + 0.278971i
\(260\) 1.40018 + 1.61589i 0.0868352 + 0.100213i
\(261\) 7.96079 1.95260i 0.492760 0.120863i
\(262\) −16.0117 4.70145i −0.989204 0.290456i
\(263\) −6.93839 + 8.00733i −0.427840 + 0.493753i −0.928209 0.372059i \(-0.878652\pi\)
0.500370 + 0.865812i \(0.333197\pi\)
\(264\) −5.52588 + 9.59912i −0.340094 + 0.590785i
\(265\) 1.14122 + 0.733420i 0.0701048 + 0.0450536i
\(266\) −0.865344 0.749825i −0.0530576 0.0459747i
\(267\) −14.6606 3.53700i −0.897214 0.216461i
\(268\) 12.1123 1.74149i 0.739879 0.106379i
\(269\) 10.1911 8.83064i 0.621362 0.538413i −0.286287 0.958144i \(-0.592421\pi\)
0.907649 + 0.419731i \(0.137875\pi\)
\(270\) −4.36059 + 2.82581i −0.265377 + 0.171974i
\(271\) 13.9986 4.11035i 0.850352 0.249686i 0.172614 0.984990i \(-0.444779\pi\)
0.677738 + 0.735304i \(0.262960\pi\)
\(272\) −0.579107 + 1.26807i −0.0351135 + 0.0768879i
\(273\) −2.25019 0.211996i −0.136188 0.0128306i
\(274\) 1.22500 + 1.90614i 0.0740050 + 0.115154i
\(275\) −6.39475 −0.385618
\(276\) 3.64858 7.46243i 0.219619 0.449185i
\(277\) −10.8732 −0.653310 −0.326655 0.945144i \(-0.605921\pi\)
−0.326655 + 0.945144i \(0.605921\pi\)
\(278\) −8.78802 13.6744i −0.527070 0.820137i
\(279\) 1.13859 25.2451i 0.0681656 1.51138i
\(280\) 0.253528 0.555149i 0.0151512 0.0331765i
\(281\) 17.8325 5.23609i 1.06380 0.312359i 0.297418 0.954747i \(-0.403875\pi\)
0.766379 + 0.642388i \(0.222056\pi\)
\(282\) 3.97251 + 7.68172i 0.236559 + 0.457440i
\(283\) 20.5399 17.7979i 1.22097 1.05798i 0.224460 0.974483i \(-0.427938\pi\)
0.996508 0.0834921i \(-0.0266073\pi\)
\(284\) −8.66060 + 1.24521i −0.513912 + 0.0738894i
\(285\) −0.762124 + 3.15894i −0.0451443 + 0.187120i
\(286\) 10.3332 + 8.95377i 0.611015 + 0.529448i
\(287\) −3.01795 1.93952i −0.178144 0.114486i
\(288\) −1.36793 + 2.66997i −0.0806062 + 0.157330i
\(289\) 9.86000 11.3790i 0.580000 0.669356i
\(290\) 2.62158 + 0.769764i 0.153944 + 0.0452021i
\(291\) 6.41783 1.24535i 0.376220 0.0730039i
\(292\) −8.38610 9.67808i −0.490759 0.566367i
\(293\) 0.588198 + 1.28797i 0.0343629 + 0.0752443i 0.926035 0.377437i \(-0.123195\pi\)
−0.891672 + 0.452682i \(0.850467\pi\)
\(294\) −3.76820 10.8431i −0.219766 0.632384i
\(295\) 11.8452 + 5.40950i 0.689652 + 0.314953i
\(296\) 1.15093 8.00490i 0.0668965 0.465275i
\(297\) −25.0294 + 21.8549i −1.45235 + 1.26815i
\(298\) 7.01487i 0.406360i
\(299\) −8.18532 6.17633i −0.473370 0.357186i
\(300\) −1.72998 + 0.0846018i −0.0998806 + 0.00488449i
\(301\) 1.61249 1.03628i 0.0929423 0.0597304i
\(302\) 2.96720 + 0.426619i 0.170743 + 0.0245492i
\(303\) −21.5064 8.57831i −1.23551 0.492811i
\(304\) 0.528571 + 1.80015i 0.0303156 + 0.103246i
\(305\) −3.09099 + 1.41161i −0.176989 + 0.0808284i
\(306\) −2.87834 + 3.03404i −0.164544 + 0.173445i
\(307\) 2.35821 + 16.4017i 0.134590 + 0.936097i 0.939463 + 0.342650i \(0.111324\pi\)
−0.804873 + 0.593447i \(0.797767\pi\)
\(308\) 1.09952 3.74463i 0.0626512 0.213370i
\(309\) 17.6799 + 13.8675i 1.00577 + 0.788892i
\(310\) 4.55413 7.08636i 0.258657 0.402478i
\(311\) −3.97654 + 6.18762i −0.225489 + 0.350868i −0.935502 0.353320i \(-0.885053\pi\)
0.710013 + 0.704188i \(0.248689\pi\)
\(312\) 2.91392 + 2.28557i 0.164968 + 0.129395i
\(313\) −4.54039 + 15.4631i −0.256638 + 0.874028i 0.725874 + 0.687828i \(0.241436\pi\)
−0.982512 + 0.186201i \(0.940383\pi\)
\(314\) −1.89163 13.1566i −0.106751 0.742469i
\(315\) 1.26011 1.32828i 0.0709993 0.0748400i
\(316\) −1.96598 + 0.897833i −0.110595 + 0.0505070i
\(317\) −1.17266 3.99372i −0.0658633 0.224310i 0.919984 0.391956i \(-0.128202\pi\)
−0.985847 + 0.167646i \(0.946383\pi\)
\(318\) 2.18245 + 0.870520i 0.122386 + 0.0488163i
\(319\) 17.2942 + 2.48653i 0.968290 + 0.139219i
\(320\) −0.841254 + 0.540641i −0.0470275 + 0.0302227i
\(321\) −5.99780 + 0.293312i −0.334765 + 0.0163711i
\(322\) −0.633065 + 2.85762i −0.0352793 + 0.159249i
\(323\) 2.61543i 0.145526i
\(324\) −6.48211 + 6.24358i −0.360117 + 0.346865i
\(325\) −0.304287 + 2.11636i −0.0168788 + 0.117395i
\(326\) 11.2976 + 5.15945i 0.625718 + 0.285756i
\(327\) 1.84159 + 5.29925i 0.101840 + 0.293049i
\(328\) 2.44187 + 5.34696i 0.134830 + 0.295236i
\(329\) −1.99551 2.30294i −0.110016 0.126965i
\(330\) −10.8732 + 2.10990i −0.598551 + 0.116146i
\(331\) −24.5930 7.22117i −1.35176 0.396911i −0.475906 0.879496i \(-0.657880\pi\)
−0.875849 + 0.482585i \(0.839698\pi\)
\(332\) −7.12480 + 8.22246i −0.391024 + 0.451266i
\(333\) 11.0628 21.5927i 0.606236 1.18327i
\(334\) −4.13735 2.65891i −0.226386 0.145489i
\(335\) 9.24803 + 8.01346i 0.505274 + 0.437822i
\(336\) 0.247915 1.02759i 0.0135249 0.0560596i
\(337\) 10.0082 1.43896i 0.545181 0.0783852i 0.135779 0.990739i \(-0.456646\pi\)
0.409402 + 0.912354i \(0.365737\pi\)
\(338\) −6.36977 + 5.51944i −0.346470 + 0.300218i
\(339\) −9.76354 18.8800i −0.530283 1.02542i
\(340\) −1.33758 + 0.392748i −0.0725402 + 0.0212997i
\(341\) 22.3770 48.9988i 1.21178 2.65343i
\(342\) −0.253593 + 5.62272i −0.0137128 + 0.304042i
\(343\) 4.49645 + 6.99662i 0.242786 + 0.377782i
\(344\) −3.14070 −0.169335
\(345\) 8.02904 2.12944i 0.432269 0.114645i
\(346\) 2.45278 0.131862
\(347\) −12.4789 19.4176i −0.669903 1.04239i −0.995303 0.0968131i \(-0.969135\pi\)
0.325399 0.945577i \(-0.394501\pi\)
\(348\) 4.71154 + 0.443886i 0.252565 + 0.0237948i
\(349\) 4.53964 9.94042i 0.243001 0.532099i −0.748355 0.663299i \(-0.769156\pi\)
0.991356 + 0.131200i \(0.0418831\pi\)
\(350\) 0.585580 0.171942i 0.0313005 0.00919067i
\(351\) 6.04195 + 9.32350i 0.322495 + 0.497652i
\(352\) −4.83283 + 4.18767i −0.257591 + 0.223204i
\(353\) −35.4192 + 5.09251i −1.88517 + 0.271047i −0.986025 0.166599i \(-0.946722\pi\)
−0.899148 + 0.437645i \(0.855813\pi\)
\(354\) 21.9256 + 5.28973i 1.16533 + 0.281146i
\(355\) −6.61255 5.72981i −0.350958 0.304107i
\(356\) −7.32493 4.70744i −0.388220 0.249494i
\(357\) 0.735189 1.27711i 0.0389103 0.0675919i
\(358\) −5.86901 + 6.77319i −0.310187 + 0.357974i
\(359\) 25.7374 + 7.55718i 1.35837 + 0.398853i 0.878187 0.478317i \(-0.158753\pi\)
0.480180 + 0.877170i \(0.340571\pi\)
\(360\) −2.91364 + 0.714647i −0.153562 + 0.0376652i
\(361\) −10.1373 11.6991i −0.533542 0.615740i
\(362\) 4.84809 + 10.6158i 0.254810 + 0.557956i
\(363\) −48.9068 + 16.9961i −2.56694 + 0.892062i
\(364\) −1.18698 0.542076i −0.0622147 0.0284125i
\(365\) 1.82247 12.6756i 0.0953926 0.663470i
\(366\) −4.78996 + 3.42005i −0.250375 + 0.178769i
\(367\) 6.99368i 0.365067i −0.983200 0.182533i \(-0.941570\pi\)
0.983200 0.182533i \(-0.0584298\pi\)
\(368\) 3.40408 3.37820i 0.177450 0.176101i
\(369\) 1.72065 + 17.5503i 0.0895735 + 0.913633i
\(370\) 6.80340 4.37228i 0.353692 0.227304i
\(371\) −0.819492 0.117825i −0.0425459 0.00611718i
\(372\) 5.40545 13.5518i 0.280259 0.702627i
\(373\) −0.182486 0.621489i −0.00944875 0.0321795i 0.954634 0.297783i \(-0.0962471\pi\)
−0.964082 + 0.265603i \(0.914429\pi\)
\(374\) −8.10897 + 3.70324i −0.419305 + 0.191490i
\(375\) −1.19684 1.25203i −0.0618043 0.0646546i
\(376\) 0.710576 + 4.94216i 0.0366451 + 0.254873i
\(377\) 1.64585 5.60526i 0.0847658 0.288686i
\(378\) 1.70436 2.67428i 0.0876627 0.137550i
\(379\) 5.85621 9.11244i 0.300813 0.468075i −0.657637 0.753335i \(-0.728444\pi\)
0.958450 + 0.285260i \(0.0920801\pi\)
\(380\) −1.01432 + 1.57831i −0.0520336 + 0.0809658i
\(381\) 18.3113 23.3454i 0.938114 1.19602i
\(382\) 0.172330 0.586901i 0.00881716 0.0300285i
\(383\) 2.21272 + 15.3898i 0.113065 + 0.786382i 0.964909 + 0.262586i \(0.0845754\pi\)
−0.851844 + 0.523796i \(0.824516\pi\)
\(384\) −1.25203 + 1.19684i −0.0638925 + 0.0610758i
\(385\) 3.55004 1.62125i 0.180927 0.0826265i
\(386\) 4.18223 + 14.2434i 0.212870 + 0.724969i
\(387\) −8.91164 3.05914i −0.453004 0.155505i
\(388\) 3.73603 + 0.537160i 0.189668 + 0.0272702i
\(389\) −10.5958 + 6.80951i −0.537229 + 0.345256i −0.780954 0.624588i \(-0.785267\pi\)
0.243725 + 0.969844i \(0.421630\pi\)
\(390\) 0.180890 + 3.69892i 0.00915970 + 0.187302i
\(391\) 5.87999 3.18166i 0.297364 0.160903i
\(392\) 6.62753i 0.334741i
\(393\) −16.7956 23.5231i −0.847227 1.18659i
\(394\) −2.96114 + 20.5952i −0.149180 + 1.03757i
\(395\) −1.96598 0.897833i −0.0989192 0.0451749i
\(396\) −17.7919 + 7.17508i −0.894079 + 0.360561i
\(397\) 9.63176 + 21.0906i 0.483404 + 1.05851i 0.981513 + 0.191393i \(0.0613006\pi\)
−0.498109 + 0.867114i \(0.665972\pi\)
\(398\) 3.64867 + 4.21079i 0.182891 + 0.211068i
\(399\) −0.377789 1.94691i −0.0189131 0.0974672i
\(400\) −0.959493 0.281733i −0.0479746 0.0140866i
\(401\) −9.48039 + 10.9409i −0.473428 + 0.546365i −0.941362 0.337398i \(-0.890453\pi\)
0.467934 + 0.883763i \(0.344998\pi\)
\(402\) 18.3687 + 10.5742i 0.916149 + 0.527395i
\(403\) −15.1515 9.73731i −0.754752 0.485050i
\(404\) −10.1029 8.75418i −0.502636 0.435537i
\(405\) −8.96346 0.810179i −0.445398 0.0402581i
\(406\) −1.65052 + 0.237309i −0.0819141 + 0.0117775i
\(407\) 39.0841 33.8666i 1.93733 1.67870i
\(408\) −2.14474 + 1.10913i −0.106181 + 0.0549099i
\(409\) −22.4708 + 6.59801i −1.11111 + 0.326251i −0.785257 0.619170i \(-0.787469\pi\)
−0.325851 + 0.945421i \(0.605651\pi\)
\(410\) −2.44187 + 5.34696i −0.120596 + 0.264067i
\(411\) −0.368111 + 3.90723i −0.0181576 + 0.192730i
\(412\) 7.01365 + 10.9135i 0.345538 + 0.537667i
\(413\) −7.94729 −0.391061
\(414\) 12.9495 6.26989i 0.636431 0.308148i
\(415\) −10.8799 −0.534072
\(416\) 1.15596 + 1.79871i 0.0566755 + 0.0881889i
\(417\) 2.64078 28.0300i 0.129320 1.37264i
\(418\) −4.98393 + 10.9133i −0.243772 + 0.533786i
\(419\) −4.97915 + 1.46201i −0.243247 + 0.0714239i −0.401084 0.916041i \(-0.631366\pi\)
0.157836 + 0.987465i \(0.449548\pi\)
\(420\) 0.938950 0.485566i 0.0458161 0.0236932i
\(421\) −29.2000 + 25.3020i −1.42312 + 1.23314i −0.490920 + 0.871205i \(0.663339\pi\)
−0.932202 + 0.361938i \(0.882115\pi\)
\(422\) 13.0964 1.88298i 0.637522 0.0916619i
\(423\) −2.79758 + 14.7154i −0.136023 + 0.715486i
\(424\) 1.02523 + 0.888367i 0.0497896 + 0.0431429i
\(425\) −1.17274 0.753677i −0.0568865 0.0365587i
\(426\) −13.1341 7.56083i −0.636347 0.366323i
\(427\) 1.35808 1.56731i 0.0657220 0.0758473i
\(428\) −3.32653 0.976758i −0.160794 0.0472134i
\(429\) 4.51124 + 23.2483i 0.217805 + 1.12244i
\(430\) −2.05672 2.37358i −0.0991837 0.114464i
\(431\) −13.1707 28.8398i −0.634411 1.38917i −0.904560 0.426347i \(-0.859800\pi\)
0.270149 0.962818i \(-0.412927\pi\)
\(432\) −4.71836 + 2.17647i −0.227012 + 0.104716i
\(433\) 21.3050 + 9.72964i 1.02385 + 0.467577i 0.855309 0.518118i \(-0.173367\pi\)
0.168541 + 0.985695i \(0.446094\pi\)
\(434\) −0.731629 + 5.08859i −0.0351193 + 0.244260i
\(435\) 2.74993 + 3.85142i 0.131849 + 0.184662i
\(436\) 3.23901i 0.155120i
\(437\) 3.17651 8.41831i 0.151953 0.402703i
\(438\) −1.08341 22.1540i −0.0517671 1.05856i
\(439\) −14.7021 + 9.44844i −0.701691 + 0.450950i −0.842225 0.539126i \(-0.818755\pi\)
0.140534 + 0.990076i \(0.455118\pi\)
\(440\) −6.32966 0.910067i −0.301755 0.0433858i
\(441\) 6.45542 18.8055i 0.307401 0.895498i
\(442\) 0.839745 + 2.85991i 0.0399426 + 0.136032i
\(443\) 16.1533 7.37695i 0.767464 0.350489i 0.00709055 0.999975i \(-0.497743\pi\)
0.760374 + 0.649486i \(0.225016\pi\)
\(444\) 10.1255 9.67907i 0.480533 0.459348i
\(445\) −1.23916 8.61853i −0.0587417 0.408557i
\(446\) 5.07648 17.2889i 0.240378 0.818654i
\(447\) 7.49862 9.56012i 0.354672 0.452178i
\(448\) 0.329954 0.513418i 0.0155888 0.0242567i
\(449\) 15.1589 23.5877i 0.715394 1.11317i −0.273111 0.961983i \(-0.588052\pi\)
0.988504 0.151192i \(-0.0483111\pi\)
\(450\) −2.44812 1.73399i −0.115406 0.0817408i
\(451\) −10.5901 + 36.0667i −0.498670 + 1.69831i
\(452\) −1.74644 12.1467i −0.0821455 0.571335i
\(453\) 3.58777 + 3.75323i 0.168568 + 0.176342i
\(454\) 22.5931 10.3179i 1.06035 0.484245i
\(455\) −0.367633 1.25204i −0.0172349 0.0586967i
\(456\) −1.20393 + 3.01833i −0.0563792 + 0.141346i
\(457\) 24.8101 + 3.56715i 1.16057 + 0.166864i 0.695577 0.718451i \(-0.255149\pi\)
0.464990 + 0.885316i \(0.346058\pi\)
\(458\) 21.3593 13.7268i 0.998053 0.641410i
\(459\) −7.16597 + 1.05807i −0.334479 + 0.0493866i
\(460\) 4.78227 + 0.360379i 0.222975 + 0.0168027i
\(461\) 18.6764i 0.869847i 0.900467 + 0.434924i \(0.143225\pi\)
−0.900467 + 0.434924i \(0.856775\pi\)
\(462\) 5.50134 3.92798i 0.255945 0.182746i
\(463\) 3.17877 22.1089i 0.147730 1.02749i −0.772193 0.635388i \(-0.780840\pi\)
0.919923 0.392098i \(-0.128251\pi\)
\(464\) 2.48534 + 1.13502i 0.115379 + 0.0526919i
\(465\) 13.7816 4.78937i 0.639105 0.222102i
\(466\) 3.79129 + 8.30177i 0.175628 + 0.384572i
\(467\) 14.8219 + 17.1054i 0.685878 + 0.791545i 0.986772 0.162112i \(-0.0518306\pi\)
−0.300894 + 0.953657i \(0.597285\pi\)
\(468\) 1.52801 + 6.22973i 0.0706322 + 0.287969i
\(469\) −7.16567 2.10403i −0.330880 0.0971552i
\(470\) −3.26971 + 3.77344i −0.150820 + 0.174056i
\(471\) 11.4859 19.9524i 0.529242 0.919356i
\(472\) 10.9547 + 7.04018i 0.504233 + 0.324051i
\(473\) −15.1784 13.1522i −0.697905 0.604738i
\(474\) −3.63906 0.877955i −0.167147 0.0403258i
\(475\) −1.85705 + 0.267003i −0.0852073 + 0.0122510i
\(476\) 0.642982 0.557147i 0.0294710 0.0255368i
\(477\) 2.04377 + 3.51933i 0.0935777 + 0.161139i
\(478\) −8.88865 + 2.60994i −0.406557 + 0.119376i
\(479\) 7.69724 16.8546i 0.351696 0.770107i −0.648266 0.761414i \(-0.724506\pi\)
0.999962 0.00869317i \(-0.00276716\pi\)
\(480\) −1.72441 0.162462i −0.0787084 0.00741532i
\(481\) −9.34849 14.5465i −0.426255 0.663265i
\(482\) −22.7070 −1.03428
\(483\) −3.91744 + 3.21775i −0.178250 + 0.146412i
\(484\) −29.8928 −1.35876
\(485\) 2.04062 + 3.17527i 0.0926598 + 0.144182i
\(486\) −15.5082 + 1.57986i −0.703466 + 0.0716637i
\(487\) 13.6490 29.8872i 0.618497 1.35432i −0.298111 0.954531i \(-0.596356\pi\)
0.916608 0.399788i \(-0.130916\pi\)
\(488\) −3.26042 + 0.957346i −0.147592 + 0.0433370i
\(489\) 9.88157 + 19.1082i 0.446860 + 0.864103i
\(490\) 5.00875 4.34011i 0.226272 0.196066i
\(491\) −16.2126 + 2.33102i −0.731663 + 0.105197i −0.498070 0.867137i \(-0.665958\pi\)
−0.233593 + 0.972334i \(0.575048\pi\)
\(492\) −2.38781 + 9.89730i −0.107651 + 0.446205i
\(493\) 2.87856 + 2.49429i 0.129644 + 0.112337i
\(494\) 3.37464 + 2.16875i 0.151832 + 0.0975765i
\(495\) −17.0738 8.74758i −0.767411 0.393174i
\(496\) 5.51627 6.36611i 0.247688 0.285847i
\(497\) 5.12362 + 1.50443i 0.229826 + 0.0674830i
\(498\) −18.4994 + 3.58974i −0.828979 + 0.160860i
\(499\) 2.66886 + 3.08003i 0.119475 + 0.137881i 0.812336 0.583190i \(-0.198196\pi\)
−0.692861 + 0.721071i \(0.743650\pi\)
\(500\) −0.415415 0.909632i −0.0185779 0.0406800i
\(501\) −2.79626 8.04633i −0.124928 0.359483i
\(502\) −11.5001 5.25194i −0.513276 0.234405i
\(503\) −6.17677 + 42.9604i −0.275408 + 1.91551i 0.112204 + 0.993685i \(0.464209\pi\)
−0.387613 + 0.921822i \(0.626700\pi\)
\(504\) 1.43632 1.13543i 0.0639788 0.0505759i
\(505\) 13.3680i 0.594868i
\(506\) 30.5981 2.07112i 1.36025 0.0920724i
\(507\) −14.5810 + 0.713059i −0.647565 + 0.0316681i
\(508\) 14.4106 9.26116i 0.639369 0.410898i
\(509\) 0.656434 + 0.0943810i 0.0290959 + 0.00418336i 0.156847 0.987623i \(-0.449867\pi\)
−0.127751 + 0.991806i \(0.540776\pi\)
\(510\) −2.24273 0.894565i −0.0993097 0.0396120i
\(511\) 2.20187 + 7.49889i 0.0974051 + 0.331731i
\(512\) −0.909632 + 0.415415i −0.0402004 + 0.0183589i
\(513\) −6.35607 + 7.39177i −0.280627 + 0.326355i
\(514\) 0.528313 + 3.67450i 0.0233029 + 0.162075i
\(515\) −3.65487 + 12.4474i −0.161053 + 0.548496i
\(516\) −4.28025 3.35728i −0.188428 0.147796i
\(517\) −17.2620 + 26.8603i −0.759184 + 1.18131i
\(518\) −2.66841 + 4.15212i −0.117243 + 0.182434i
\(519\) 3.34274 + 2.62192i 0.146730 + 0.115090i
\(520\) −0.602380 + 2.05152i −0.0264161 + 0.0899650i
\(521\) −1.50362 10.4579i −0.0658749 0.458170i −0.995884 0.0906342i \(-0.971111\pi\)
0.930009 0.367536i \(-0.119799\pi\)
\(522\) 5.94656 + 5.64139i 0.260274 + 0.246917i
\(523\) −20.0183 + 9.14206i −0.875340 + 0.399754i −0.801839 0.597541i \(-0.796145\pi\)
−0.0735015 + 0.997295i \(0.523417\pi\)
\(524\) −4.70145 16.0117i −0.205384 0.699473i
\(525\) 0.981848 + 0.391633i 0.0428514 + 0.0170923i
\(526\) −10.4874 1.50786i −0.457271 0.0657457i
\(527\) 9.87870 6.34866i 0.430323 0.276552i
\(528\) −11.0628 + 0.541007i −0.481447 + 0.0235443i
\(529\) −22.7902 + 3.09943i −0.990879 + 0.134758i
\(530\) 1.35657i 0.0589258i
\(531\) 24.2264 + 30.6466i 1.05134 + 1.32995i
\(532\) 0.162952 1.13336i 0.00706488 0.0491374i
\(533\) 11.4325 + 5.22104i 0.495196 + 0.226148i
\(534\) −4.95061 14.2455i −0.214234 0.616464i
\(535\) −1.44023 3.15367i −0.0622666 0.136345i
\(536\) 8.01346 + 9.24803i 0.346129 + 0.399454i
\(537\) −15.2388 + 2.95702i −0.657602 + 0.127605i
\(538\) 12.9385 + 3.79909i 0.557820 + 0.163791i
\(539\) 27.7539 32.0297i 1.19545 1.37962i
\(540\) −4.73474 2.14061i −0.203751 0.0921174i
\(541\) −10.5483 6.77896i −0.453506 0.291450i 0.293878 0.955843i \(-0.405054\pi\)
−0.747384 + 0.664393i \(0.768690\pi\)
\(542\) 11.0260 + 9.55412i 0.473609 + 0.410384i
\(543\) −4.74075 + 19.6501i −0.203445 + 0.843265i
\(544\) −1.37985 + 0.198393i −0.0591608 + 0.00850604i
\(545\) −2.44788 + 2.12110i −0.104856 + 0.0908579i
\(546\) −1.03820 2.00760i −0.0444310 0.0859172i
\(547\) −1.34608 + 0.395243i −0.0575540 + 0.0168994i −0.310383 0.950612i \(-0.600457\pi\)
0.252829 + 0.967511i \(0.418639\pi\)
\(548\) −0.941261 + 2.06107i −0.0402087 + 0.0880447i
\(549\) −10.1838 0.459307i −0.434636 0.0196027i
\(550\) −3.45726 5.37960i −0.147418 0.229387i
\(551\) 5.12610 0.218379
\(552\) 8.25037 0.965113i 0.351159 0.0410779i
\(553\) 1.31904 0.0560912
\(554\) −5.87852 9.14715i −0.249754 0.388625i
\(555\) 13.9457 + 1.31386i 0.591963 + 0.0557703i
\(556\) 6.75249 14.7859i 0.286370 0.627062i
\(557\) −2.45513 + 0.720890i −0.104027 + 0.0305451i −0.333332 0.942810i \(-0.608173\pi\)
0.229305 + 0.973355i \(0.426355\pi\)
\(558\) 21.8531 12.6907i 0.925114 0.537239i
\(559\) −5.07501 + 4.39752i −0.214650 + 0.185995i
\(560\) 0.604089 0.0868549i 0.0255274 0.00367029i
\(561\) −15.0098 3.62125i −0.633715 0.152889i
\(562\) 14.0459 + 12.1708i 0.592489 + 0.513394i
\(563\) −5.39076 3.46443i −0.227193 0.146008i 0.422092 0.906553i \(-0.361296\pi\)
−0.649286 + 0.760544i \(0.724932\pi\)
\(564\) −4.31458 + 7.49494i −0.181676 + 0.315594i
\(565\) 8.03622 9.27429i 0.338086 0.390172i
\(566\) 26.0772 + 7.65697i 1.09611 + 0.321846i
\(567\) 5.18146 1.82272i 0.217601 0.0765470i
\(568\) −5.72981 6.61255i −0.240417 0.277456i
\(569\) 16.7269 + 36.6267i 0.701227 + 1.53547i 0.838478 + 0.544936i \(0.183446\pi\)
−0.137251 + 0.990536i \(0.543827\pi\)
\(570\) −3.06951 + 1.06672i −0.128568 + 0.0446798i
\(571\) −37.6231 17.1819i −1.57448 0.719039i −0.579114 0.815246i \(-0.696602\pi\)
−0.995361 + 0.0962073i \(0.969329\pi\)
\(572\) −1.94584 + 13.5336i −0.0813597 + 0.565869i
\(573\) 0.862231 0.615637i 0.0360202 0.0257186i
\(574\) 3.58744i 0.149737i
\(575\) 2.85937 + 3.85020i 0.119244 + 0.160564i
\(576\) −2.98569 + 0.292720i −0.124404 + 0.0121966i
\(577\) −2.86423 + 1.84073i −0.119239 + 0.0766306i −0.598901 0.800823i \(-0.704396\pi\)
0.479662 + 0.877454i \(0.340759\pi\)
\(578\) 14.9034 + 2.14278i 0.619899 + 0.0891280i
\(579\) −9.52591 + 23.8820i −0.395883 + 0.992504i
\(580\) 0.769764 + 2.62158i 0.0319627 + 0.108855i
\(581\) 6.03996 2.75836i 0.250580 0.114436i
\(582\) 4.51740 + 4.72573i 0.187252 + 0.195888i
\(583\) 1.23457 + 8.58665i 0.0511309 + 0.355623i
\(584\) 3.60785 12.2872i 0.149294 0.508448i
\(585\) −3.70748 + 5.23439i −0.153285 + 0.216416i
\(586\) −0.765509 + 1.19116i −0.0316229 + 0.0492062i
\(587\) −3.86156 + 6.00871i −0.159384 + 0.248006i −0.911756 0.410732i \(-0.865273\pi\)
0.752372 + 0.658738i \(0.228909\pi\)
\(588\) 7.08457 9.03224i 0.292163 0.372483i
\(589\) 4.45246 15.1637i 0.183460 0.624809i
\(590\) 1.85321 + 12.8894i 0.0762955 + 0.530647i
\(591\) −26.0510 + 24.9025i −1.07159 + 1.02435i
\(592\) 7.35639 3.35955i 0.302346 0.138077i
\(593\) −2.49832 8.50851i −0.102594 0.349403i 0.892157 0.451725i \(-0.149191\pi\)
−0.994751 + 0.102322i \(0.967373\pi\)
\(594\) −31.9174 9.24043i −1.30959 0.379139i
\(595\) 0.842127 + 0.121080i 0.0345238 + 0.00496378i
\(596\) 5.90128 3.79252i 0.241726 0.155348i
\(597\) 0.471374 + 9.63890i 0.0192920 + 0.394494i
\(598\) 0.770535 10.2251i 0.0315095 0.418136i
\(599\) 33.1679i 1.35520i 0.735429 + 0.677602i \(0.236981\pi\)
−0.735429 + 0.677602i \(0.763019\pi\)
\(600\) −1.00647 1.40962i −0.0410890 0.0575473i
\(601\) −2.53474 + 17.6295i −0.103394 + 0.719123i 0.870508 + 0.492155i \(0.163791\pi\)
−0.973902 + 0.226968i \(0.927119\pi\)
\(602\) 1.74356 + 0.796255i 0.0710620 + 0.0324529i
\(603\) 13.7301 + 34.0464i 0.559134 + 1.38648i
\(604\) 1.24530 + 2.72682i 0.0506704 + 0.110953i
\(605\) −19.5756 22.5915i −0.795862 0.918474i
\(606\) −4.41068 22.7301i −0.179172 0.923346i
\(607\) 42.9858 + 12.6218i 1.74474 + 0.512302i 0.989673 0.143344i \(-0.0457854\pi\)
0.755068 + 0.655646i \(0.227604\pi\)
\(608\) −1.22861 + 1.41790i −0.0498269 + 0.0575033i
\(609\) −2.50307 1.44093i −0.101429 0.0583894i
\(610\) −2.85863 1.83713i −0.115743 0.0743833i
\(611\) 8.06811 + 6.99105i 0.326401 + 0.282828i
\(612\) −4.10854 0.781086i −0.166078 0.0315735i
\(613\) 23.6523 3.40069i 0.955308 0.137353i 0.353006 0.935621i \(-0.385159\pi\)
0.602302 + 0.798268i \(0.294250\pi\)
\(614\) −12.5231 + 10.8513i −0.505390 + 0.437923i
\(615\) −9.04356 + 4.67676i −0.364672 + 0.188585i
\(616\) 3.74463 1.09952i 0.150876 0.0443011i
\(617\) −0.192588 + 0.421710i −0.00775332 + 0.0169774i −0.913469 0.406908i \(-0.866607\pi\)
0.905716 + 0.423886i \(0.139334\pi\)
\(618\) −2.10759 + 22.3706i −0.0847797 + 0.899876i
\(619\) 12.2638 + 19.0828i 0.492923 + 0.767003i 0.995216 0.0976940i \(-0.0311467\pi\)
−0.502294 + 0.864697i \(0.667510\pi\)
\(620\) 8.42357 0.338299
\(621\) 24.3503 + 5.29763i 0.977142 + 0.212587i
\(622\) −7.35524 −0.294918
\(623\) 2.87296 + 4.47041i 0.115103 + 0.179103i
\(624\) −0.347364 + 3.68702i −0.0139057 + 0.147599i
\(625\) 0.415415 0.909632i 0.0166166 0.0363853i
\(626\) −15.4631 + 4.54039i −0.618031 + 0.181470i
\(627\) −18.4582 + 9.54540i −0.737148 + 0.381207i
\(628\) 10.0453 8.70433i 0.400852 0.347340i
\(629\) 11.1592 1.60445i 0.444946 0.0639736i
\(630\) 1.79869 + 0.341953i 0.0716614 + 0.0136237i
\(631\) −3.37017 2.92027i −0.134164 0.116254i 0.585194 0.810894i \(-0.301018\pi\)
−0.719358 + 0.694639i \(0.755564\pi\)
\(632\) −1.81819 1.16848i −0.0723239 0.0464797i
\(633\) 19.8611 + 11.4333i 0.789407 + 0.454434i
\(634\) 2.72574 3.14568i 0.108253 0.124931i
\(635\) 16.4361 + 4.82607i 0.652246 + 0.191517i
\(636\) 0.447592 + 2.30663i 0.0177482 + 0.0914639i
\(637\) −9.27971 10.7094i −0.367675 0.424320i
\(638\) 7.25816 + 15.8931i 0.287353 + 0.629216i
\(639\) −9.81735 24.3440i −0.388369 0.963032i
\(640\) −0.909632 0.415415i −0.0359564 0.0164207i
\(641\) −0.377453 + 2.62524i −0.0149085 + 0.103691i −0.995917 0.0902741i \(-0.971226\pi\)
0.981008 + 0.193965i \(0.0621348\pi\)
\(642\) −3.48940 4.88709i −0.137716 0.192878i
\(643\) 6.06592i 0.239217i 0.992821 + 0.119608i \(0.0381639\pi\)
−0.992821 + 0.119608i \(0.961836\pi\)
\(644\) −2.74624 + 1.01238i −0.108217 + 0.0398932i
\(645\) −0.265709 5.43335i −0.0104623 0.213938i
\(646\) −2.20024 + 1.41401i −0.0865673 + 0.0556334i
\(647\) −34.6297 4.97900i −1.36143 0.195745i −0.577399 0.816462i \(-0.695932\pi\)
−0.784034 + 0.620717i \(0.786841\pi\)
\(648\) −8.75692 2.07757i −0.344004 0.0816145i
\(649\) 23.4604 + 79.8988i 0.920901 + 3.13630i
\(650\) −1.94491 + 0.888210i −0.0762856 + 0.0348385i
\(651\) −6.43659 + 6.15283i −0.252270 + 0.241149i
\(652\) 1.76755 + 12.2936i 0.0692226 + 0.481454i
\(653\) −6.13248 + 20.8853i −0.239982 + 0.817305i 0.748127 + 0.663555i \(0.230953\pi\)
−0.988110 + 0.153750i \(0.950865\pi\)
\(654\) −3.46237 + 4.41424i −0.135389 + 0.172610i
\(655\) 9.02201 14.0385i 0.352519 0.548531i
\(656\) −3.17797 + 4.94502i −0.124079 + 0.193071i
\(657\) 22.2053 31.3505i 0.866311 1.22310i
\(658\) 0.858502 2.92379i 0.0334679 0.113981i
\(659\) 2.89667 + 20.1468i 0.112838 + 0.784809i 0.965136 + 0.261751i \(0.0842998\pi\)
−0.852297 + 0.523058i \(0.824791\pi\)
\(660\) −7.65346 8.00643i −0.297911 0.311650i
\(661\) −32.7797 + 14.9700i −1.27498 + 0.582264i −0.933821 0.357741i \(-0.883547\pi\)
−0.341160 + 0.940005i \(0.610820\pi\)
\(662\) −7.22117 24.5930i −0.280659 0.955836i
\(663\) −1.91269 + 4.79524i −0.0742828 + 0.186232i
\(664\) −10.7691 1.54837i −0.417923 0.0600883i
\(665\) 0.963247 0.619041i 0.0373531 0.0240054i
\(666\) 24.1459 2.36729i 0.935634 0.0917305i
\(667\) −6.23588 11.5245i −0.241454 0.446229i
\(668\) 4.91808i 0.190286i
\(669\) 25.3996 18.1354i 0.982004 0.701155i
\(670\) −1.74149 + 12.1123i −0.0672797 + 0.467940i
\(671\) −19.7661 9.02687i −0.763062 0.348479i
\(672\) 0.998497 0.346997i 0.0385178 0.0133857i
\(673\) 4.81553 + 10.5446i 0.185625 + 0.406463i 0.979451 0.201683i \(-0.0646410\pi\)
−0.793826 + 0.608145i \(0.791914\pi\)
\(674\) 6.62137 + 7.64147i 0.255046 + 0.294338i
\(675\) −1.48283 4.98008i −0.0570740 0.191683i
\(676\) −8.08700 2.37456i −0.311039 0.0913291i
\(677\) 10.5812 12.2113i 0.406668 0.469320i −0.515062 0.857153i \(-0.672231\pi\)
0.921729 + 0.387834i \(0.126776\pi\)
\(678\) 10.6043 18.4209i 0.407255 0.707450i
\(679\) −1.93787 1.24539i −0.0743686 0.0477938i
\(680\) −1.05355 0.912905i −0.0404017 0.0350083i
\(681\) 41.8202 + 10.0895i 1.60255 + 0.386630i
\(682\) 53.3183 7.66602i 2.04166 0.293547i
\(683\) 29.7614 25.7884i 1.13879 0.986765i 0.138793 0.990321i \(-0.455678\pi\)
0.999994 + 0.00355685i \(0.00113218\pi\)
\(684\) −4.86724 + 2.82654i −0.186103 + 0.108075i
\(685\) −2.17405 + 0.638359i −0.0830662 + 0.0243904i
\(686\) −3.45496 + 7.56532i −0.131911 + 0.288845i
\(687\) 43.7826 + 4.12487i 1.67041 + 0.157374i
\(688\) −1.69799 2.64212i −0.0647352 0.100730i
\(689\) 2.90053 0.110501
\(690\) 6.13223 + 5.60320i 0.233450 + 0.213310i
\(691\) −8.83854 −0.336234 −0.168117 0.985767i \(-0.553769\pi\)
−0.168117 + 0.985767i \(0.553769\pi\)
\(692\) 1.32607 + 2.06341i 0.0504097 + 0.0784390i
\(693\) 11.6963 + 0.527520i 0.444305 + 0.0200388i
\(694\) 9.58849 20.9959i 0.363974 0.796992i
\(695\) 15.5964 4.57951i 0.591604 0.173711i
\(696\) 2.17383 + 4.20358i 0.0823987 + 0.159336i
\(697\) −6.19292 + 5.36620i −0.234574 + 0.203259i
\(698\) 10.8167 1.55521i 0.409419 0.0588656i
\(699\) −3.70735 + 15.3667i −0.140225 + 0.581222i
\(700\) 0.461235 + 0.399662i 0.0174330 + 0.0151058i
\(701\) 11.4334 + 7.34782i 0.431835 + 0.277523i 0.738447 0.674311i \(-0.235559\pi\)
−0.306613 + 0.951834i \(0.599196\pi\)
\(702\) −4.57691 + 10.1235i −0.172744 + 0.382086i
\(703\) 9.93607 11.4668i 0.374746 0.432480i
\(704\) −6.13572 1.80161i −0.231248 0.0679007i
\(705\) −8.48974 + 1.64740i −0.319742 + 0.0620447i
\(706\) −23.4331 27.0433i −0.881918 1.01779i
\(707\) 3.38917 + 7.42124i 0.127463 + 0.279104i
\(708\) 7.40384 + 21.3048i 0.278253 + 0.800683i
\(709\) 18.0091 + 8.22448i 0.676346 + 0.308877i 0.723813 0.689996i \(-0.242388\pi\)
−0.0474672 + 0.998873i \(0.515115\pi\)
\(710\) 1.24521 8.66060i 0.0467318 0.325027i
\(711\) −4.02094 5.08652i −0.150797 0.190759i
\(712\) 8.70716i 0.326314i
\(713\) −39.5073 + 8.43655i −1.47956 + 0.315951i
\(714\) 1.47185 0.0719781i 0.0550825 0.00269371i
\(715\) −11.5023 + 7.39207i −0.430161 + 0.276448i
\(716\) −8.87100 1.27546i −0.331525 0.0476661i
\(717\) −14.9037 5.94469i −0.556589 0.222008i
\(718\) 7.55718 + 25.7374i 0.282031 + 0.960511i
\(719\) −47.1700 + 21.5418i −1.75914 + 0.803374i −0.773660 + 0.633601i \(0.781576\pi\)
−0.985483 + 0.169773i \(0.945696\pi\)
\(720\) −2.17643 2.06474i −0.0811108 0.0769483i
\(721\) −1.12676 7.83675i −0.0419626 0.291856i
\(722\) 4.36124 14.8530i 0.162309 0.552772i
\(723\) −30.9459 24.2729i −1.15089 0.902718i
\(724\) −6.30953 + 9.81783i −0.234492 + 0.364877i
\(725\) −1.47717 + 2.29852i −0.0548606 + 0.0853648i
\(726\) −40.7390 31.9542i −1.51197 1.18593i
\(727\) −1.64874 + 5.61508i −0.0611483 + 0.208252i −0.984400 0.175943i \(-0.943703\pi\)
0.923252 + 0.384195i \(0.125521\pi\)
\(728\) −0.185707 1.29162i −0.00688275 0.0478706i
\(729\) −22.8239 14.4246i −0.845331 0.534243i
\(730\) 11.6487 5.31978i 0.431137 0.196894i
\(731\) −1.23350 4.20092i −0.0456227 0.155377i
\(732\) −5.46678 2.18055i −0.202058 0.0805956i
\(733\) −28.7121 4.12818i −1.06051 0.152478i −0.410082 0.912049i \(-0.634500\pi\)
−0.650425 + 0.759571i \(0.725409\pi\)
\(734\) 5.88345 3.78107i 0.217162 0.139562i
\(735\) 11.4655 0.560702i 0.422912 0.0206818i
\(736\) 4.68231 + 1.03730i 0.172592 + 0.0382353i
\(737\) 78.2518i 2.88244i
\(738\) −13.8340 + 10.9359i −0.509237 + 0.402557i
\(739\) −1.63391 + 11.3641i −0.0601045 + 0.418036i 0.937449 + 0.348124i \(0.113181\pi\)
−0.997553 + 0.0699125i \(0.977728\pi\)
\(740\) 7.35639 + 3.35955i 0.270426 + 0.123500i
\(741\) 2.28077 + 6.56300i 0.0837863 + 0.241098i
\(742\) −0.343930 0.753102i −0.0126261 0.0276472i
\(743\) −7.16578 8.26975i −0.262887 0.303388i 0.608926 0.793227i \(-0.291601\pi\)
−0.871813 + 0.489840i \(0.837055\pi\)
\(744\) 14.3229 2.77930i 0.525103 0.101894i
\(745\) 6.73072 + 1.97632i 0.246594 + 0.0724067i
\(746\) 0.424171 0.489519i 0.0155300 0.0179226i
\(747\) −29.0490 14.8829i −1.06285 0.544538i
\(748\) −7.49941 4.81958i −0.274205 0.176221i
\(749\) 1.59909 + 1.38562i 0.0584294 + 0.0506293i
\(750\) 0.406218 1.68374i 0.0148330 0.0614816i
\(751\) 31.6399 4.54913i 1.15456 0.166000i 0.461673 0.887050i \(-0.347249\pi\)
0.692883 + 0.721050i \(0.256340\pi\)
\(752\) −3.77344 + 3.26971i −0.137603 + 0.119234i
\(753\) −10.0587 19.4507i −0.366559 0.708824i
\(754\) 5.60526 1.64585i 0.204132 0.0599385i
\(755\) −1.24530 + 2.72682i −0.0453210 + 0.0992391i
\(756\) 3.17120 0.0120296i 0.115335 0.000437511i
\(757\) −4.50845 7.01529i −0.163862 0.254975i 0.749606 0.661884i \(-0.230243\pi\)
−0.913469 + 0.406909i \(0.866607\pi\)
\(758\) 10.8320 0.393435
\(759\) 43.9142 + 29.8856i 1.59398 + 1.08478i
\(760\) −1.87615 −0.0680549
\(761\) 17.4064 + 27.0850i 0.630983 + 0.981829i 0.998654 + 0.0518727i \(0.0165190\pi\)
−0.367671 + 0.929956i \(0.619845\pi\)
\(762\) 29.5392 + 2.78296i 1.07009 + 0.100816i
\(763\) 0.821180 1.79813i 0.0297287 0.0650968i
\(764\) 0.586901 0.172330i 0.0212333 0.00623467i
\(765\) −2.10022 3.61653i −0.0759336 0.130756i
\(766\) −11.7504 + 10.1818i −0.424560 + 0.367884i
\(767\) 27.5591 3.96240i 0.995102 0.143074i
\(768\) −1.68374 0.406218i −0.0607568 0.0146581i
\(769\) −10.2783 8.90616i −0.370643 0.321164i 0.449545 0.893258i \(-0.351586\pi\)
−0.820189 + 0.572093i \(0.806132\pi\)
\(770\) 3.28318 + 2.10997i 0.118318 + 0.0760381i
\(771\) −3.20789 + 5.57249i −0.115529 + 0.200688i
\(772\) −9.72121 + 11.2189i −0.349874 + 0.403776i
\(773\) 16.1289 + 4.73588i 0.580117 + 0.170338i 0.558609 0.829431i \(-0.311335\pi\)
0.0215077 + 0.999769i \(0.493153\pi\)