Properties

Label 690.2.q.a.11.11
Level $690$
Weight $2$
Character 690.11
Analytic conductor $5.510$
Analytic rank $0$
Dimension $160$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.q (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(160\)
Relative dimension: \(16\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 11.11
Character \(\chi\) \(=\) 690.11
Dual form 690.2.q.a.251.11

$q$-expansion

\(f(q)\) \(=\) \(q+(0.540641 + 0.841254i) q^{2} +(-0.549229 - 1.64266i) q^{3} +(-0.415415 + 0.909632i) q^{4} +(-0.959493 + 0.281733i) q^{5} +(1.08496 - 1.35013i) q^{6} +(-0.315364 + 0.273265i) q^{7} +(-0.989821 + 0.142315i) q^{8} +(-2.39669 + 1.80440i) q^{9} +O(q^{10})\) \(q+(0.540641 + 0.841254i) q^{2} +(-0.549229 - 1.64266i) q^{3} +(-0.415415 + 0.909632i) q^{4} +(-0.959493 + 0.281733i) q^{5} +(1.08496 - 1.35013i) q^{6} +(-0.315364 + 0.273265i) q^{7} +(-0.989821 + 0.142315i) q^{8} +(-2.39669 + 1.80440i) q^{9} +(-0.755750 - 0.654861i) q^{10} +(1.39644 + 0.897436i) q^{11} +(1.72238 + 0.182791i) q^{12} +(-0.500791 + 0.577944i) q^{13} +(-0.400384 - 0.117563i) q^{14} +(0.989774 + 1.42139i) q^{15} +(-0.654861 - 0.755750i) q^{16} +(3.26868 + 7.15741i) q^{17} +(-2.81371 - 1.04070i) q^{18} +(2.37198 + 1.08325i) q^{19} +(0.142315 - 0.989821i) q^{20} +(0.622089 + 0.367953i) q^{21} +1.65995i q^{22} +(0.640832 + 4.75282i) q^{23} +(0.777414 + 1.54778i) q^{24} +(0.841254 - 0.540641i) q^{25} +(-0.756945 - 0.108832i) q^{26} +(4.28036 + 2.94594i) q^{27} +(-0.117563 - 0.400384i) q^{28} +(-3.07301 + 1.40340i) q^{29} +(-0.660637 + 1.60111i) q^{30} +(-0.312107 - 2.17075i) q^{31} +(0.281733 - 0.959493i) q^{32} +(0.707222 - 2.78678i) q^{33} +(-4.25401 + 6.61937i) q^{34} +(0.225602 - 0.351044i) q^{35} +(-0.645716 - 2.92968i) q^{36} +(0.803106 - 2.73513i) q^{37} +(0.371104 + 2.58108i) q^{38} +(1.22442 + 0.505208i) q^{39} +(0.909632 - 0.415415i) q^{40} +(0.210784 + 0.717864i) q^{41} +(0.0267854 + 0.722265i) q^{42} +(6.44686 + 0.926918i) q^{43} +(-1.39644 + 0.897436i) q^{44} +(1.79125 - 2.40654i) q^{45} +(-3.65187 + 3.10867i) q^{46} +5.45134i q^{47} +(-0.881774 + 1.49080i) q^{48} +(-0.971423 + 6.75639i) q^{49} +(0.909632 + 0.415415i) q^{50} +(9.96196 - 9.30040i) q^{51} +(-0.317680 - 0.695622i) q^{52} +(-0.203593 - 0.234959i) q^{53} +(-0.164143 + 5.19356i) q^{54} +(-1.59271 - 0.467662i) q^{55} +(0.273265 - 0.315364i) q^{56} +(0.476651 - 4.49132i) q^{57} +(-2.84200 - 1.82644i) q^{58} +(-8.11372 - 7.03058i) q^{59} +(-1.70411 + 0.309863i) q^{60} +(-10.9056 + 1.56799i) q^{61} +(1.65742 - 1.43616i) q^{62} +(0.262753 - 1.22397i) q^{63} +(0.959493 - 0.281733i) q^{64} +(0.317680 - 0.695622i) q^{65} +(2.72674 - 0.911693i) q^{66} +(7.75264 + 12.0633i) q^{67} -7.86846 q^{68} +(7.45533 - 3.66306i) q^{69} +0.417287 q^{70} +(3.35284 + 5.21712i) q^{71} +(2.11551 - 2.12712i) q^{72} +(-2.36201 + 5.17208i) q^{73} +(2.73513 - 0.803106i) q^{74} +(-1.35013 - 1.08496i) q^{75} +(-1.97071 + 1.70763i) q^{76} +(-0.685624 + 0.0985778i) q^{77} +(0.236962 + 1.30318i) q^{78} +(-3.95542 - 3.42739i) q^{79} +(0.841254 + 0.540641i) q^{80} +(2.48829 - 8.64919i) q^{81} +(-0.489947 + 0.565429i) q^{82} +(-7.61204 - 2.23510i) q^{83} +(-0.593127 + 0.413019i) q^{84} +(-5.15275 - 5.94659i) q^{85} +(2.70566 + 5.92457i) q^{86} +(3.99309 + 4.27713i) q^{87} +(-1.50994 - 0.689568i) q^{88} +(1.35432 - 9.41949i) q^{89} +(2.99293 + 0.205827i) q^{90} -0.319111i q^{91} +(-4.58953 - 1.39147i) q^{92} +(-3.39440 + 1.70493i) q^{93} +(-4.58596 + 2.94722i) q^{94} +(-2.58108 - 0.371104i) q^{95} +(-1.73086 + 0.0641895i) q^{96} +(-1.70578 - 5.80934i) q^{97} +(-6.20903 + 2.83557i) q^{98} +(-4.96617 + 0.368851i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160q + 16q^{4} - 16q^{5} - 2q^{6} + 42q^{9} + O(q^{10}) \) \( 160q + 16q^{4} - 16q^{5} - 2q^{6} + 42q^{9} - 12q^{11} - 12q^{14} - 16q^{16} - 8q^{18} + 16q^{20} + 62q^{21} + 4q^{23} + 2q^{24} - 16q^{25} + 42q^{27} - 2q^{30} - 4q^{31} + 16q^{33} + 2q^{36} + 72q^{38} - 124q^{39} + 44q^{41} + 44q^{43} + 12q^{44} - 2q^{45} + 4q^{46} + 70q^{49} - 2q^{51} - 52q^{53} + 92q^{54} + 10q^{55} - 54q^{56} - 38q^{57} - 36q^{58} - 44q^{61} - 220q^{63} + 16q^{64} - 34q^{66} - 44q^{67} + 22q^{69} - 12q^{70} - 36q^{72} - 28q^{73} - 24q^{74} - 88q^{77} - 54q^{78} - 44q^{79} - 16q^{80} - 66q^{81} - 28q^{82} + 4q^{83} - 18q^{84} + 158q^{86} - 64q^{87} + 80q^{89} - 8q^{90} - 4q^{92} + 4q^{93} + 24q^{94} - 2q^{96} - 88q^{98} + 190q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{9}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.540641 + 0.841254i 0.382291 + 0.594856i
\(3\) −0.549229 1.64266i −0.317098 0.948393i
\(4\) −0.415415 + 0.909632i −0.207708 + 0.454816i
\(5\) −0.959493 + 0.281733i −0.429098 + 0.125995i
\(6\) 1.08496 1.35013i 0.442934 0.551189i
\(7\) −0.315364 + 0.273265i −0.119196 + 0.103284i −0.712420 0.701754i \(-0.752401\pi\)
0.593223 + 0.805038i \(0.297855\pi\)
\(8\) −0.989821 + 0.142315i −0.349955 + 0.0503159i
\(9\) −2.39669 + 1.80440i −0.798898 + 0.601466i
\(10\) −0.755750 0.654861i −0.238989 0.207085i
\(11\) 1.39644 + 0.897436i 0.421042 + 0.270587i 0.733960 0.679193i \(-0.237670\pi\)
−0.312918 + 0.949780i \(0.601306\pi\)
\(12\) 1.72238 + 0.182791i 0.497208 + 0.0527672i
\(13\) −0.500791 + 0.577944i −0.138894 + 0.160293i −0.820935 0.571022i \(-0.806547\pi\)
0.682041 + 0.731314i \(0.261093\pi\)
\(14\) −0.400384 0.117563i −0.107007 0.0314201i
\(15\) 0.989774 + 1.42139i 0.255558 + 0.367001i
\(16\) −0.654861 0.755750i −0.163715 0.188937i
\(17\) 3.26868 + 7.15741i 0.792771 + 1.73593i 0.668545 + 0.743672i \(0.266918\pi\)
0.124226 + 0.992254i \(0.460355\pi\)
\(18\) −2.81371 1.04070i −0.663197 0.245294i
\(19\) 2.37198 + 1.08325i 0.544170 + 0.248514i 0.668481 0.743729i \(-0.266945\pi\)
−0.124311 + 0.992243i \(0.539672\pi\)
\(20\) 0.142315 0.989821i 0.0318226 0.221331i
\(21\) 0.622089 + 0.367953i 0.135751 + 0.0802938i
\(22\) 1.65995i 0.353902i
\(23\) 0.640832 + 4.75282i 0.133623 + 0.991032i
\(24\) 0.777414 + 1.54778i 0.158689 + 0.315940i
\(25\) 0.841254 0.540641i 0.168251 0.108128i
\(26\) −0.756945 0.108832i −0.148449 0.0213438i
\(27\) 4.28036 + 2.94594i 0.823755 + 0.566946i
\(28\) −0.117563 0.400384i −0.0222174 0.0756654i
\(29\) −3.07301 + 1.40340i −0.570643 + 0.260604i −0.679772 0.733424i \(-0.737921\pi\)
0.109129 + 0.994028i \(0.465194\pi\)
\(30\) −0.660637 + 1.60111i −0.120615 + 0.292322i
\(31\) −0.312107 2.17075i −0.0560561 0.389879i −0.998464 0.0554119i \(-0.982353\pi\)
0.942407 0.334467i \(-0.108556\pi\)
\(32\) 0.281733 0.959493i 0.0498038 0.169616i
\(33\) 0.707222 2.78678i 0.123112 0.485116i
\(34\) −4.25401 + 6.61937i −0.729557 + 1.13521i
\(35\) 0.225602 0.351044i 0.0381337 0.0593372i
\(36\) −0.645716 2.92968i −0.107619 0.488281i
\(37\) 0.803106 2.73513i 0.132030 0.449652i −0.866766 0.498715i \(-0.833805\pi\)
0.998796 + 0.0490629i \(0.0156235\pi\)
\(38\) 0.371104 + 2.58108i 0.0602010 + 0.418707i
\(39\) 1.22442 + 0.505208i 0.196064 + 0.0808981i
\(40\) 0.909632 0.415415i 0.143825 0.0656829i
\(41\) 0.210784 + 0.717864i 0.0329189 + 0.112112i 0.974314 0.225196i \(-0.0723021\pi\)
−0.941395 + 0.337307i \(0.890484\pi\)
\(42\) 0.0267854 + 0.722265i 0.00413308 + 0.111448i
\(43\) 6.44686 + 0.926918i 0.983136 + 0.141354i 0.615093 0.788455i \(-0.289119\pi\)
0.368044 + 0.929809i \(0.380028\pi\)
\(44\) −1.39644 + 0.897436i −0.210521 + 0.135294i
\(45\) 1.79125 2.40654i 0.267024 0.358745i
\(46\) −3.65187 + 3.10867i −0.538439 + 0.458349i
\(47\) 5.45134i 0.795160i 0.917568 + 0.397580i \(0.130150\pi\)
−0.917568 + 0.397580i \(0.869850\pi\)
\(48\) −0.881774 + 1.49080i −0.127273 + 0.215178i
\(49\) −0.971423 + 6.75639i −0.138775 + 0.965199i
\(50\) 0.909632 + 0.415415i 0.128641 + 0.0587486i
\(51\) 9.96196 9.30040i 1.39495 1.30232i
\(52\) −0.317680 0.695622i −0.0440543 0.0964655i
\(53\) −0.203593 0.234959i −0.0279656 0.0322741i 0.741594 0.670848i \(-0.234070\pi\)
−0.769560 + 0.638574i \(0.779524\pi\)
\(54\) −0.164143 + 5.19356i −0.0223371 + 0.706754i
\(55\) −1.59271 0.467662i −0.214761 0.0630595i
\(56\) 0.273265 0.315364i 0.0365165 0.0421423i
\(57\) 0.476651 4.49132i 0.0631339 0.594890i
\(58\) −2.84200 1.82644i −0.373173 0.239824i
\(59\) −8.11372 7.03058i −1.05632 0.915303i −0.0597592 0.998213i \(-0.519033\pi\)
−0.996557 + 0.0829096i \(0.973579\pi\)
\(60\) −1.70411 + 0.309863i −0.219999 + 0.0400032i
\(61\) −10.9056 + 1.56799i −1.39632 + 0.200761i −0.799044 0.601272i \(-0.794661\pi\)
−0.597280 + 0.802033i \(0.703752\pi\)
\(62\) 1.65742 1.43616i 0.210492 0.182392i
\(63\) 0.262753 1.22397i 0.0331038 0.154206i
\(64\) 0.959493 0.281733i 0.119937 0.0352166i
\(65\) 0.317680 0.695622i 0.0394034 0.0862813i
\(66\) 2.72674 0.911693i 0.335638 0.112222i
\(67\) 7.75264 + 12.0633i 0.947135 + 1.47377i 0.879409 + 0.476067i \(0.157938\pi\)
0.0677266 + 0.997704i \(0.478425\pi\)
\(68\) −7.86846 −0.954191
\(69\) 7.45533 3.66306i 0.897516 0.440981i
\(70\) 0.417287 0.0498753
\(71\) 3.35284 + 5.21712i 0.397909 + 0.619159i 0.981175 0.193123i \(-0.0618616\pi\)
−0.583265 + 0.812282i \(0.698225\pi\)
\(72\) 2.11551 2.12712i 0.249315 0.250683i
\(73\) −2.36201 + 5.17208i −0.276452 + 0.605346i −0.996025 0.0890706i \(-0.971610\pi\)
0.719573 + 0.694417i \(0.244338\pi\)
\(74\) 2.73513 0.803106i 0.317952 0.0933592i
\(75\) −1.35013 1.08496i −0.155900 0.125281i
\(76\) −1.97071 + 1.70763i −0.226056 + 0.195879i
\(77\) −0.685624 + 0.0985778i −0.0781341 + 0.0112340i
\(78\) 0.236962 + 1.30318i 0.0268306 + 0.147556i
\(79\) −3.95542 3.42739i −0.445020 0.385612i 0.403324 0.915057i \(-0.367855\pi\)
−0.848344 + 0.529445i \(0.822400\pi\)
\(80\) 0.841254 + 0.540641i 0.0940550 + 0.0604455i
\(81\) 2.48829 8.64919i 0.276476 0.961021i
\(82\) −0.489947 + 0.565429i −0.0541056 + 0.0624412i
\(83\) −7.61204 2.23510i −0.835530 0.245334i −0.164139 0.986437i \(-0.552485\pi\)
−0.671391 + 0.741104i \(0.734303\pi\)
\(84\) −0.593127 + 0.413019i −0.0647154 + 0.0450641i
\(85\) −5.15275 5.94659i −0.558894 0.644998i
\(86\) 2.70566 + 5.92457i 0.291759 + 0.638863i
\(87\) 3.99309 + 4.27713i 0.428104 + 0.458557i
\(88\) −1.50994 0.689568i −0.160960 0.0735082i
\(89\) 1.35432 9.41949i 0.143557 0.998463i −0.782923 0.622119i \(-0.786272\pi\)
0.926480 0.376344i \(-0.122819\pi\)
\(90\) 2.99293 + 0.205827i 0.315483 + 0.0216961i
\(91\) 0.319111i 0.0334519i
\(92\) −4.58953 1.39147i −0.478492 0.145071i
\(93\) −3.39440 + 1.70493i −0.351983 + 0.176793i
\(94\) −4.58596 + 2.94722i −0.473006 + 0.303982i
\(95\) −2.58108 0.371104i −0.264814 0.0380745i
\(96\) −1.73086 + 0.0641895i −0.176655 + 0.00655132i
\(97\) −1.70578 5.80934i −0.173195 0.589849i −0.999640 0.0268310i \(-0.991458\pi\)
0.826445 0.563018i \(-0.190360\pi\)
\(98\) −6.20903 + 2.83557i −0.627207 + 0.286436i
\(99\) −4.96617 + 0.368851i −0.499119 + 0.0370709i
\(100\) 0.142315 + 0.989821i 0.0142315 + 0.0989821i
\(101\) 4.83354 16.4615i 0.480955 1.63798i −0.259401 0.965770i \(-0.583525\pi\)
0.740357 0.672214i \(-0.234657\pi\)
\(102\) 13.2098 + 3.35236i 1.30797 + 0.331933i
\(103\) 6.36667 9.90673i 0.627326 0.976139i −0.371534 0.928419i \(-0.621168\pi\)
0.998861 0.0477197i \(-0.0151954\pi\)
\(104\) 0.413444 0.643331i 0.0405415 0.0630838i
\(105\) −0.700555 0.177785i −0.0683671 0.0173501i
\(106\) 0.0875893 0.298302i 0.00850742 0.0289736i
\(107\) 0.115181 + 0.801105i 0.0111350 + 0.0774457i 0.994631 0.103483i \(-0.0329988\pi\)
−0.983496 + 0.180929i \(0.942090\pi\)
\(108\) −4.45784 + 2.66976i −0.428956 + 0.256898i
\(109\) 9.70257 4.43102i 0.929338 0.424414i 0.107545 0.994200i \(-0.465701\pi\)
0.821793 + 0.569786i \(0.192974\pi\)
\(110\) −0.467662 1.59271i −0.0445898 0.151859i
\(111\) −4.93399 + 0.182979i −0.468314 + 0.0173676i
\(112\) 0.413039 + 0.0593861i 0.0390285 + 0.00561146i
\(113\) −7.80954 + 5.01889i −0.734660 + 0.472137i −0.853708 0.520751i \(-0.825652\pi\)
0.119049 + 0.992888i \(0.462016\pi\)
\(114\) 4.03604 2.02721i 0.378009 0.189865i
\(115\) −1.95390 4.37976i −0.182202 0.408415i
\(116\) 3.37830i 0.313667i
\(117\) 0.157402 2.28878i 0.0145518 0.211598i
\(118\) 1.52789 10.6267i 0.140654 0.978268i
\(119\) −2.98669 1.36398i −0.273789 0.125035i
\(120\) −1.18198 1.26606i −0.107900 0.115575i
\(121\) −3.42492 7.49952i −0.311356 0.681775i
\(122\) −7.21511 8.32669i −0.653226 0.753863i
\(123\) 1.06344 0.740519i 0.0958873 0.0667704i
\(124\) 2.10424 + 0.617861i 0.188966 + 0.0554855i
\(125\) −0.654861 + 0.755750i −0.0585725 + 0.0675963i
\(126\) 1.17173 0.440689i 0.104386 0.0392597i
\(127\) 8.23700 + 5.29360i 0.730915 + 0.469731i 0.852418 0.522860i \(-0.175135\pi\)
−0.121503 + 0.992591i \(0.538771\pi\)
\(128\) 0.755750 + 0.654861i 0.0667995 + 0.0578821i
\(129\) −2.01819 11.0991i −0.177691 0.977222i
\(130\) 0.756945 0.108832i 0.0663885 0.00954523i
\(131\) −4.04579 + 3.50570i −0.353483 + 0.306295i −0.813443 0.581645i \(-0.802409\pi\)
0.459960 + 0.887940i \(0.347864\pi\)
\(132\) 2.24115 + 1.80098i 0.195067 + 0.156755i
\(133\) −1.04405 + 0.306561i −0.0905307 + 0.0265822i
\(134\) −5.95693 + 13.0439i −0.514601 + 1.12682i
\(135\) −4.93694 1.62069i −0.424904 0.139487i
\(136\) −4.25401 6.61937i −0.364779 0.567607i
\(137\) −6.83462 −0.583921 −0.291961 0.956430i \(-0.594308\pi\)
−0.291961 + 0.956430i \(0.594308\pi\)
\(138\) 7.11222 + 4.29142i 0.605432 + 0.365310i
\(139\) 16.6015 1.40812 0.704061 0.710139i \(-0.251368\pi\)
0.704061 + 0.710139i \(0.251368\pi\)
\(140\) 0.225602 + 0.351044i 0.0190669 + 0.0296686i
\(141\) 8.95473 2.99404i 0.754124 0.252143i
\(142\) −2.57624 + 5.64118i −0.216193 + 0.473397i
\(143\) −1.21799 + 0.357635i −0.101854 + 0.0299069i
\(144\) 2.93317 + 0.629671i 0.244431 + 0.0524726i
\(145\) 2.55315 2.21231i 0.212027 0.183723i
\(146\) −5.62803 + 0.809189i −0.465779 + 0.0669689i
\(147\) 11.6320 2.11509i 0.959393 0.174449i
\(148\) 2.15434 + 1.86674i 0.177086 + 0.153445i
\(149\) −5.77761 3.71305i −0.473321 0.304185i 0.282146 0.959371i \(-0.408954\pi\)
−0.755467 + 0.655187i \(0.772590\pi\)
\(150\) 0.182791 1.72238i 0.0149248 0.140632i
\(151\) −8.19470 + 9.45719i −0.666876 + 0.769615i −0.983884 0.178807i \(-0.942776\pi\)
0.317009 + 0.948423i \(0.397322\pi\)
\(152\) −2.50200 0.734653i −0.202939 0.0595883i
\(153\) −20.7488 11.2561i −1.67744 0.910003i
\(154\) −0.453605 0.523488i −0.0365526 0.0421839i
\(155\) 0.911037 + 1.99489i 0.0731762 + 0.160234i
\(156\) −0.968195 + 0.903898i −0.0775176 + 0.0723698i
\(157\) −5.69493 2.60079i −0.454505 0.207566i 0.174990 0.984570i \(-0.444011\pi\)
−0.629495 + 0.777005i \(0.716738\pi\)
\(158\) 0.744844 5.18050i 0.0592566 0.412139i
\(159\) −0.274139 + 0.463481i −0.0217407 + 0.0367565i
\(160\) 1.00000i 0.0790569i
\(161\) −1.50087 1.32375i −0.118285 0.104326i
\(162\) 8.62143 2.58282i 0.677363 0.202926i
\(163\) 8.63447 5.54904i 0.676304 0.434634i −0.156889 0.987616i \(-0.550147\pi\)
0.833193 + 0.552982i \(0.186510\pi\)
\(164\) −0.740555 0.106476i −0.0578276 0.00831436i
\(165\) 0.106551 + 2.87314i 0.00829501 + 0.223674i
\(166\) −2.23510 7.61204i −0.173477 0.590809i
\(167\) −5.11811 + 2.33736i −0.396052 + 0.180871i −0.603477 0.797380i \(-0.706219\pi\)
0.207426 + 0.978251i \(0.433491\pi\)
\(168\) −0.668122 0.275675i −0.0515468 0.0212688i
\(169\) 1.76687 + 12.2888i 0.135913 + 0.945294i
\(170\) 2.21680 7.54974i 0.170021 0.579038i
\(171\) −7.63952 + 1.68379i −0.584209 + 0.128762i
\(172\) −3.52127 + 5.47921i −0.268495 + 0.417786i
\(173\) 4.99740 7.77611i 0.379946 0.591207i −0.597635 0.801768i \(-0.703893\pi\)
0.977581 + 0.210561i \(0.0675292\pi\)
\(174\) −1.43932 + 5.67160i −0.109115 + 0.429963i
\(175\) −0.117563 + 0.400384i −0.00888694 + 0.0302661i
\(176\) −0.236235 1.64305i −0.0178069 0.123850i
\(177\) −7.09259 + 17.1895i −0.533112 + 1.29204i
\(178\) 8.65637 3.95323i 0.648823 0.296307i
\(179\) 5.15069 + 17.5416i 0.384981 + 1.31112i 0.893108 + 0.449842i \(0.148520\pi\)
−0.508127 + 0.861282i \(0.669662\pi\)
\(180\) 1.44495 + 2.62909i 0.107700 + 0.195961i
\(181\) 3.60240 + 0.517947i 0.267765 + 0.0384987i 0.274889 0.961476i \(-0.411359\pi\)
−0.00712472 + 0.999975i \(0.502268\pi\)
\(182\) 0.268453 0.172525i 0.0198991 0.0127884i
\(183\) 8.56538 + 17.0531i 0.633171 + 1.26060i
\(184\) −1.31071 4.61325i −0.0966266 0.340093i
\(185\) 2.85060i 0.209580i
\(186\) −3.26943 1.93380i −0.239726 0.141793i
\(187\) −1.85881 + 12.9283i −0.135930 + 0.945411i
\(188\) −4.95872 2.26457i −0.361651 0.165161i
\(189\) −2.15489 + 0.240627i −0.156745 + 0.0175031i
\(190\) −1.08325 2.37198i −0.0785870 0.172082i
\(191\) −6.80371 7.85190i −0.492299 0.568143i 0.454180 0.890910i \(-0.349932\pi\)
−0.946478 + 0.322767i \(0.895387\pi\)
\(192\) −0.989774 1.42139i −0.0714308 0.102580i
\(193\) 11.4611 + 3.36527i 0.824986 + 0.242238i 0.666862 0.745181i \(-0.267637\pi\)
0.158124 + 0.987419i \(0.449455\pi\)
\(194\) 3.96491 4.57576i 0.284664 0.328520i
\(195\) −1.31715 0.139786i −0.0943233 0.0100103i
\(196\) −5.74229 3.69034i −0.410163 0.263596i
\(197\) −4.45696 3.86198i −0.317545 0.275155i 0.481473 0.876461i \(-0.340102\pi\)
−0.799019 + 0.601306i \(0.794647\pi\)
\(198\) −2.99521 3.97839i −0.212860 0.282732i
\(199\) 21.3738 3.07309i 1.51515 0.217846i 0.665982 0.745968i \(-0.268013\pi\)
0.849168 + 0.528123i \(0.177104\pi\)
\(200\) −0.755750 + 0.654861i −0.0534396 + 0.0463056i
\(201\) 15.5580 19.3605i 1.09738 1.36559i
\(202\) 16.4615 4.83354i 1.15823 0.340087i
\(203\) 0.585618 1.28232i 0.0411023 0.0900015i
\(204\) 4.32159 + 12.9252i 0.302572 + 0.904948i
\(205\) −0.404491 0.629401i −0.0282509 0.0439593i
\(206\) 11.7761 0.820483
\(207\) −10.1119 10.2347i −0.702824 0.711364i
\(208\) 0.764729 0.0530244
\(209\) 2.34018 + 3.64139i 0.161874 + 0.251880i
\(210\) −0.229186 0.685462i −0.0158153 0.0473014i
\(211\) 2.60378 5.70149i 0.179252 0.392507i −0.798583 0.601885i \(-0.794417\pi\)
0.977835 + 0.209378i \(0.0671439\pi\)
\(212\) 0.298302 0.0875893i 0.0204874 0.00601566i
\(213\) 6.72851 8.37299i 0.461030 0.573708i
\(214\) −0.611660 + 0.530007i −0.0418122 + 0.0362305i
\(215\) −6.44686 + 0.926918i −0.439672 + 0.0632153i
\(216\) −4.65604 2.30679i −0.316803 0.156957i
\(217\) 0.691618 + 0.599290i 0.0469501 + 0.0406825i
\(218\) 8.97322 + 5.76674i 0.607743 + 0.390573i
\(219\) 9.79328 + 1.03933i 0.661768 + 0.0702316i
\(220\) 1.08704 1.25451i 0.0732879 0.0845788i
\(221\) −5.77350 1.69525i −0.388368 0.114035i
\(222\) −2.82145 4.05181i −0.189363 0.271940i
\(223\) 12.7265 + 14.6872i 0.852231 + 0.983527i 0.999985 0.00549735i \(-0.00174987\pi\)
−0.147754 + 0.989024i \(0.547204\pi\)
\(224\) 0.173347 + 0.379577i 0.0115822 + 0.0253616i
\(225\) −1.04070 + 2.81371i −0.0693797 + 0.187581i
\(226\) −8.44431 3.85639i −0.561707 0.256523i
\(227\) −3.31619 + 23.0646i −0.220103 + 1.53085i 0.517539 + 0.855659i \(0.326848\pi\)
−0.737642 + 0.675192i \(0.764061\pi\)
\(228\) 3.88744 + 2.29934i 0.257452 + 0.152277i
\(229\) 25.9795i 1.71677i −0.513004 0.858386i \(-0.671467\pi\)
0.513004 0.858386i \(-0.328533\pi\)
\(230\) 2.62813 4.01160i 0.173294 0.264517i
\(231\) 0.538495 + 1.07211i 0.0354304 + 0.0705396i
\(232\) 2.84200 1.82644i 0.186587 0.119912i
\(233\) 9.88583 + 1.42137i 0.647642 + 0.0931169i 0.458305 0.888795i \(-0.348457\pi\)
0.189338 + 0.981912i \(0.439366\pi\)
\(234\) 2.01054 1.10499i 0.131433 0.0722357i
\(235\) −1.53582 5.23052i −0.100186 0.341202i
\(236\) 9.76580 4.45989i 0.635699 0.290314i
\(237\) −3.45762 + 8.37986i −0.224597 + 0.544330i
\(238\) −0.467277 3.24998i −0.0302891 0.210665i
\(239\) 5.55447 18.9168i 0.359289 1.22363i −0.559485 0.828841i \(-0.689001\pi\)
0.918774 0.394785i \(-0.129181\pi\)
\(240\) 0.426050 1.67883i 0.0275014 0.108368i
\(241\) −4.35664 + 6.77906i −0.280636 + 0.436678i −0.952744 0.303775i \(-0.901753\pi\)
0.672108 + 0.740453i \(0.265389\pi\)
\(242\) 4.45735 6.93577i 0.286529 0.445848i
\(243\) −15.5744 + 0.662964i −0.999095 + 0.0425292i
\(244\) 3.10407 10.5715i 0.198718 0.676770i
\(245\) −0.971423 6.75639i −0.0620619 0.431650i
\(246\) 1.19790 + 0.494269i 0.0763756 + 0.0315134i
\(247\) −1.81392 + 0.828391i −0.115417 + 0.0527093i
\(248\) 0.617861 + 2.10424i 0.0392342 + 0.133619i
\(249\) 0.509241 + 13.7316i 0.0322718 + 0.870205i
\(250\) −0.989821 0.142315i −0.0626018 0.00900078i
\(251\) 9.34513 6.00575i 0.589860 0.379080i −0.211397 0.977400i \(-0.567801\pi\)
0.801257 + 0.598320i \(0.204165\pi\)
\(252\) 1.00421 + 0.747466i 0.0632596 + 0.0470859i
\(253\) −3.37047 + 7.21213i −0.211900 + 0.453423i
\(254\) 9.79134i 0.614363i
\(255\) −6.93821 + 11.7303i −0.434488 + 0.734578i
\(256\) −0.142315 + 0.989821i −0.00889468 + 0.0618638i
\(257\) −5.01762 2.29147i −0.312990 0.142938i 0.252726 0.967538i \(-0.418673\pi\)
−0.565716 + 0.824600i \(0.691400\pi\)
\(258\) 8.24605 7.69844i 0.513377 0.479284i
\(259\) 0.494143 + 1.08202i 0.0307045 + 0.0672336i
\(260\) 0.500791 + 0.577944i 0.0310578 + 0.0358426i
\(261\) 4.83277 8.90844i 0.299141 0.551419i
\(262\) −5.13651 1.50821i −0.317334 0.0931778i
\(263\) −1.57926 + 1.82256i −0.0973813 + 0.112384i −0.802348 0.596856i \(-0.796416\pi\)
0.704967 + 0.709240i \(0.250962\pi\)
\(264\) −0.303424 + 2.85906i −0.0186744 + 0.175963i
\(265\) 0.261542 + 0.168083i 0.0160664 + 0.0103252i
\(266\) −0.822352 0.712572i −0.0504216 0.0436906i
\(267\) −16.2169 + 2.94877i −0.992457 + 0.180462i
\(268\) −14.1938 + 2.04075i −0.867022 + 0.124659i
\(269\) 18.5075 16.0369i 1.12842 0.977784i 0.128520 0.991707i \(-0.458977\pi\)
0.999903 + 0.0139228i \(0.00443191\pi\)
\(270\) −1.30570 5.02943i −0.0794624 0.306081i
\(271\) −8.76344 + 2.57318i −0.532341 + 0.156310i −0.536846 0.843680i \(-0.680384\pi\)
0.00450455 + 0.999990i \(0.498566\pi\)
\(272\) 3.26868 7.15741i 0.198193 0.433982i
\(273\) −0.524193 + 0.175265i −0.0317256 + 0.0106075i
\(274\) −3.69508 5.74965i −0.223228 0.347349i
\(275\) 1.65995 0.100099
\(276\) 0.234982 + 8.30330i 0.0141442 + 0.499800i
\(277\) −6.53114 −0.392418 −0.196209 0.980562i \(-0.562863\pi\)
−0.196209 + 0.980562i \(0.562863\pi\)
\(278\) 8.97546 + 13.9661i 0.538312 + 0.837630i
\(279\) 4.66493 + 4.63947i 0.279282 + 0.277758i
\(280\) −0.173347 + 0.379577i −0.0103595 + 0.0226841i
\(281\) 5.00733 1.47029i 0.298713 0.0877099i −0.128942 0.991652i \(-0.541158\pi\)
0.427655 + 0.903942i \(0.359340\pi\)
\(282\) 7.36003 + 5.91450i 0.438284 + 0.352203i
\(283\) 9.16273 7.93955i 0.544667 0.471957i −0.338532 0.940955i \(-0.609930\pi\)
0.883199 + 0.468998i \(0.155385\pi\)
\(284\) −6.13848 + 0.882581i −0.364252 + 0.0523715i
\(285\) 0.808008 + 4.44368i 0.0478623 + 0.263221i
\(286\) −0.959357 0.831288i −0.0567280 0.0491551i
\(287\) −0.262640 0.168789i −0.0155032 0.00996329i
\(288\) 1.05608 + 2.80797i 0.0622302 + 0.165461i
\(289\) −29.4116 + 33.9428i −1.73009 + 1.99663i
\(290\) 3.24145 + 0.951776i 0.190345 + 0.0558902i
\(291\) −8.60593 + 5.99268i −0.504489 + 0.351297i
\(292\) −3.72348 4.29712i −0.217900 0.251470i
\(293\) 12.8455 + 28.1276i 0.750440 + 1.64323i 0.765573 + 0.643349i \(0.222456\pi\)
−0.0151327 + 0.999885i \(0.504817\pi\)
\(294\) 8.06807 + 8.64198i 0.470540 + 0.504010i
\(295\) 9.76580 + 4.45989i 0.568587 + 0.259665i
\(296\) −0.405682 + 2.82158i −0.0235798 + 0.164001i
\(297\) 3.33346 + 7.95517i 0.193427 + 0.461606i
\(298\) 6.86786i 0.397845i
\(299\) −3.06779 2.00981i −0.177415 0.116230i
\(300\) 1.54778 0.777414i 0.0893612 0.0448840i
\(301\) −2.28640 + 1.46938i −0.131786 + 0.0846937i
\(302\) −12.3863 1.78088i −0.712751 0.102478i
\(303\) −29.6955 + 1.10127i −1.70596 + 0.0632661i
\(304\) −0.734653 2.50200i −0.0421353 0.143500i
\(305\) 10.0221 4.57695i 0.573865 0.262076i
\(306\) −1.74842 23.5406i −0.0999506 1.34572i
\(307\) 4.29993 + 29.9067i 0.245410 + 1.70686i 0.624103 + 0.781342i \(0.285465\pi\)
−0.378693 + 0.925522i \(0.623626\pi\)
\(308\) 0.195149 0.664616i 0.0111196 0.0378700i
\(309\) −19.7702 5.01723i −1.12469 0.285420i
\(310\) −1.18567 + 1.84493i −0.0673413 + 0.104785i
\(311\) −8.02548 + 12.4879i −0.455083 + 0.708123i −0.990659 0.136364i \(-0.956458\pi\)
0.535576 + 0.844487i \(0.320095\pi\)
\(312\) −1.28385 0.325813i −0.0726839 0.0184455i
\(313\) 7.99345 27.2232i 0.451816 1.53874i −0.347409 0.937714i \(-0.612939\pi\)
0.799226 0.601031i \(-0.205243\pi\)
\(314\) −0.890991 6.19698i −0.0502815 0.349716i
\(315\) 0.0927237 + 1.24842i 0.00522439 + 0.0703406i
\(316\) 4.76081 2.17419i 0.267816 0.122308i
\(317\) 7.51925 + 25.6082i 0.422323 + 1.43830i 0.846339 + 0.532645i \(0.178802\pi\)
−0.424016 + 0.905655i \(0.639380\pi\)
\(318\) −0.538116 + 0.0199562i −0.0301761 + 0.00111909i
\(319\) −5.55072 0.798073i −0.310781 0.0446835i
\(320\) −0.841254 + 0.540641i −0.0470275 + 0.0302227i
\(321\) 1.25269 0.629195i 0.0699181 0.0351182i
\(322\) 0.302179 1.97829i 0.0168398 0.110246i
\(323\) 20.5180i 1.14165i
\(324\) 6.83390 + 5.85643i 0.379661 + 0.325357i
\(325\) −0.108832 + 0.756945i −0.00603693 + 0.0419878i
\(326\) 9.33630 + 4.26374i 0.517090 + 0.236147i
\(327\) −12.6076 13.5044i −0.697203 0.746797i
\(328\) −0.310801 0.680560i −0.0171611 0.0375776i
\(329\) −1.48966 1.71916i −0.0821275 0.0947802i
\(330\) −2.35943 + 1.64297i −0.129883 + 0.0904427i
\(331\) −9.76203 2.86639i −0.536570 0.157551i 0.00221031 0.999998i \(-0.499296\pi\)
−0.538780 + 0.842446i \(0.681115\pi\)
\(332\) 5.19527 5.99566i 0.285127 0.329055i
\(333\) 3.01046 + 8.00439i 0.164972 + 0.438638i
\(334\) −4.73338 3.04196i −0.258999 0.166448i
\(335\) −10.8372 9.39052i −0.592101 0.513059i
\(336\) −0.129302 0.711101i −0.00705399 0.0387938i
\(337\) −32.9429 + 4.73647i −1.79451 + 0.258012i −0.957348 0.288937i \(-0.906698\pi\)
−0.837166 + 0.546949i \(0.815789\pi\)
\(338\) −9.38277 + 8.13022i −0.510356 + 0.442226i
\(339\) 12.5336 + 10.0719i 0.680730 + 0.547033i
\(340\) 7.54974 2.21680i 0.409442 0.120223i
\(341\) 1.51227 3.31142i 0.0818943 0.179323i
\(342\) −5.54673 5.51645i −0.299933 0.298296i
\(343\) −3.11915 4.85349i −0.168418 0.262064i
\(344\) −6.51315 −0.351165
\(345\) −6.12133 + 5.61509i −0.329562 + 0.302306i
\(346\) 9.24348 0.496933
\(347\) −2.46933 3.84235i −0.132561 0.206268i 0.768627 0.639697i \(-0.220940\pi\)
−0.901188 + 0.433428i \(0.857304\pi\)
\(348\) −5.54941 + 1.85546i −0.297480 + 0.0994631i
\(349\) −6.70166 + 14.6746i −0.358731 + 0.785512i 0.641105 + 0.767453i \(0.278476\pi\)
−0.999837 + 0.0180595i \(0.994251\pi\)
\(350\) −0.400384 + 0.117563i −0.0214014 + 0.00628402i
\(351\) −3.84615 + 0.998507i −0.205292 + 0.0532964i
\(352\) 1.25451 1.08704i 0.0668654 0.0579392i
\(353\) 9.45718 1.35974i 0.503355 0.0723715i 0.114040 0.993476i \(-0.463621\pi\)
0.389315 + 0.921105i \(0.372712\pi\)
\(354\) −18.2953 + 3.32669i −0.972384 + 0.176812i
\(355\) −4.68686 4.06119i −0.248753 0.215546i
\(356\) 8.00566 + 5.14493i 0.424299 + 0.272681i
\(357\) −0.600177 + 5.65526i −0.0317647 + 0.299308i
\(358\) −11.9723 + 13.8168i −0.632756 + 0.730239i
\(359\) −5.05887 1.48542i −0.266997 0.0783974i 0.145494 0.989359i \(-0.453523\pi\)
−0.412491 + 0.910962i \(0.635341\pi\)
\(360\) −1.43054 + 2.63696i −0.0753958 + 0.138980i
\(361\) −7.98949 9.22036i −0.420499 0.485282i
\(362\) 1.51188 + 3.31056i 0.0794627 + 0.173999i
\(363\) −10.4381 + 9.74495i −0.547860 + 0.511477i
\(364\) 0.290274 + 0.132564i 0.0152145 + 0.00694822i
\(365\) 0.809189 5.62803i 0.0423549 0.294585i
\(366\) −9.71520 + 16.4253i −0.507822 + 0.858563i
\(367\) 9.41345i 0.491378i 0.969349 + 0.245689i \(0.0790142\pi\)
−0.969349 + 0.245689i \(0.920986\pi\)
\(368\) 3.17229 3.59675i 0.165367 0.187493i
\(369\) −1.80050 1.34016i −0.0937302 0.0697661i
\(370\) −2.39808 + 1.54115i −0.124670 + 0.0801206i
\(371\) 0.128412 + 0.0184628i 0.00666681 + 0.000958543i
\(372\) −0.140773 3.79591i −0.00729872 0.196809i
\(373\) −2.74685 9.35490i −0.142226 0.484378i 0.857311 0.514799i \(-0.172133\pi\)
−0.999537 + 0.0304207i \(0.990315\pi\)
\(374\) −11.8809 + 5.42584i −0.614348 + 0.280563i
\(375\) 1.60111 + 0.660637i 0.0826811 + 0.0341151i
\(376\) −0.775807 5.39586i −0.0400092 0.278270i
\(377\) 0.727851 2.47883i 0.0374862 0.127666i
\(378\) −1.36745 1.68272i −0.0703341 0.0865496i
\(379\) 1.29017 2.00754i 0.0662716 0.103121i −0.806536 0.591185i \(-0.798660\pi\)
0.872808 + 0.488064i \(0.162297\pi\)
\(380\) 1.40979 2.19368i 0.0723207 0.112533i
\(381\) 4.17160 16.4380i 0.213718 0.842146i
\(382\) 2.92707 9.96870i 0.149762 0.510043i
\(383\) −4.87866 33.9318i −0.249288 1.73383i −0.602348 0.798233i \(-0.705768\pi\)
0.353061 0.935600i \(-0.385141\pi\)
\(384\) 0.660637 1.60111i 0.0337130 0.0817064i
\(385\) 0.630079 0.287747i 0.0321118 0.0146650i
\(386\) 3.36527 + 11.4611i 0.171288 + 0.583353i
\(387\) −17.1237 + 9.41116i −0.870445 + 0.478396i
\(388\) 5.99296 + 0.861658i 0.304247 + 0.0437441i
\(389\) 20.6269 13.2561i 1.04583 0.672112i 0.0994051 0.995047i \(-0.468306\pi\)
0.946421 + 0.322935i \(0.104670\pi\)
\(390\) −0.594512 1.18363i −0.0301043 0.0599356i
\(391\) −31.9232 + 20.1221i −1.61443 + 1.01762i
\(392\) 6.82587i 0.344759i
\(393\) 7.98076 + 4.72045i 0.402576 + 0.238115i
\(394\) 0.839288 5.83738i 0.0422827 0.294083i
\(395\) 4.76081 + 2.17419i 0.239542 + 0.109395i
\(396\) 1.72750 4.67061i 0.0868102 0.234707i
\(397\) −9.69809 21.2358i −0.486733 1.06580i −0.980557 0.196235i \(-0.937129\pi\)
0.493824 0.869562i \(-0.335599\pi\)
\(398\) 14.1408 + 16.3194i 0.708815 + 0.818016i
\(399\) 1.07700 + 1.54665i 0.0539174 + 0.0774295i
\(400\) −0.959493 0.281733i −0.0479746 0.0140866i
\(401\) −23.8713 + 27.5489i −1.19207 + 1.37573i −0.282987 + 0.959124i \(0.591325\pi\)
−0.909088 + 0.416604i \(0.863220\pi\)
\(402\) 24.6984 + 2.62117i 1.23185 + 0.130732i
\(403\) 1.41087 + 0.906714i 0.0702807 + 0.0451666i
\(404\) 12.9660 + 11.2351i 0.645083 + 0.558968i
\(405\) 0.0492627 + 8.99987i 0.00244788 + 0.447207i
\(406\) 1.39537 0.200624i 0.0692510 0.00995679i
\(407\) 3.57609 3.09870i 0.177260 0.153597i
\(408\) −8.53698 + 10.6235i −0.422644 + 0.525940i
\(409\) 24.2566 7.12237i 1.19941 0.352179i 0.379783 0.925076i \(-0.375999\pi\)
0.819627 + 0.572897i \(0.194180\pi\)
\(410\) 0.310801 0.680560i 0.0153494 0.0336104i
\(411\) 3.75377 + 11.2270i 0.185160 + 0.553787i
\(412\) 6.36667 + 9.90673i 0.313663 + 0.488069i
\(413\) 4.47998 0.220446
\(414\) 3.14313 14.0400i 0.154476 0.690027i
\(415\) 7.93339 0.389435
\(416\) 0.413444 + 0.643331i 0.0202708 + 0.0315419i
\(417\) −9.11804 27.2707i −0.446512 1.33545i
\(418\) −1.79814 + 3.93737i −0.0879497 + 0.192583i
\(419\) 18.5071 5.43417i 0.904129 0.265476i 0.203562 0.979062i \(-0.434748\pi\)
0.700568 + 0.713586i \(0.252930\pi\)
\(420\) 0.452740 0.563392i 0.0220914 0.0274907i
\(421\) 4.63468 4.01597i 0.225881 0.195727i −0.534567 0.845126i \(-0.679525\pi\)
0.760447 + 0.649400i \(0.224980\pi\)
\(422\) 6.20411 0.892016i 0.302011 0.0434227i
\(423\) −9.83640 13.0652i −0.478262 0.635252i
\(424\) 0.234959 + 0.203593i 0.0114106 + 0.00988735i
\(425\) 6.61937 + 4.25401i 0.321087 + 0.206350i
\(426\) 10.6815 + 1.13360i 0.517521 + 0.0549230i
\(427\) 3.01077 3.47461i 0.145701 0.168148i
\(428\) −0.776558 0.228018i −0.0375364 0.0110217i
\(429\) 1.25643 + 1.80433i 0.0606610 + 0.0871138i
\(430\) −4.26521 4.92231i −0.205686 0.237375i
\(431\) 2.24667 + 4.91952i 0.108218 + 0.236965i 0.955992 0.293393i \(-0.0947846\pi\)
−0.847773 + 0.530359i \(0.822057\pi\)
\(432\) −0.576648 5.16406i −0.0277440 0.248456i
\(433\) 28.8357 + 13.1688i 1.38575 + 0.632852i 0.962031 0.272940i \(-0.0879961\pi\)
0.423722 + 0.905792i \(0.360723\pi\)
\(434\) −0.130238 + 0.905826i −0.00625163 + 0.0434811i
\(435\) −5.03635 2.97890i −0.241475 0.142827i
\(436\) 10.6665i 0.510832i
\(437\) −3.62844 + 11.9678i −0.173572 + 0.572497i
\(438\) 4.42030 + 8.80054i 0.211210 + 0.420506i
\(439\) −8.73411 + 5.61307i −0.416856 + 0.267897i −0.732213 0.681076i \(-0.761512\pi\)
0.315356 + 0.948973i \(0.397876\pi\)
\(440\) 1.64305 + 0.236235i 0.0783295 + 0.0112621i
\(441\) −9.86303 17.9458i −0.469668 0.854564i
\(442\) −1.69525 5.77350i −0.0806350 0.274618i
\(443\) 29.4628 13.4552i 1.39982 0.639277i 0.434579 0.900634i \(-0.356897\pi\)
0.965242 + 0.261357i \(0.0841700\pi\)
\(444\) 1.88321 4.56413i 0.0893732 0.216604i
\(445\) 1.35432 + 9.41949i 0.0642008 + 0.446526i
\(446\) −5.47517 + 18.6467i −0.259257 + 0.882948i
\(447\) −2.92606 + 11.5300i −0.138398 + 0.545350i
\(448\) −0.225602 + 0.351044i −0.0106587 + 0.0165853i
\(449\) −3.19537 + 4.97209i −0.150799 + 0.234647i −0.908432 0.418034i \(-0.862719\pi\)
0.757633 + 0.652681i \(0.226356\pi\)
\(450\) −2.92968 + 0.645716i −0.138107 + 0.0304394i
\(451\) −0.349891 + 1.19162i −0.0164757 + 0.0561111i
\(452\) −1.32114 9.18873i −0.0621412 0.432201i
\(453\) 20.0358 + 8.26698i 0.941362 + 0.388417i
\(454\) −21.1960 + 9.67991i −0.994779 + 0.454301i
\(455\) 0.0899040 + 0.306185i 0.00421477 + 0.0143542i
\(456\) 0.167382 + 4.51344i 0.00783840 + 0.211361i
\(457\) −12.7530 1.83361i −0.596561 0.0857725i −0.162581 0.986695i \(-0.551982\pi\)
−0.433980 + 0.900923i \(0.642891\pi\)
\(458\) 21.8553 14.0456i 1.02123 0.656306i
\(459\) −7.09415 + 40.2656i −0.331127 + 1.87944i
\(460\) 4.79565 + 0.0420879i 0.223598 + 0.00196236i
\(461\) 23.4946i 1.09425i −0.837051 0.547126i \(-0.815722\pi\)
0.837051 0.547126i \(-0.184278\pi\)
\(462\) −0.610783 + 1.03264i −0.0284162 + 0.0480426i
\(463\) −0.223489 + 1.55440i −0.0103864 + 0.0722392i −0.994355 0.106100i \(-0.966163\pi\)
0.983969 + 0.178340i \(0.0570726\pi\)
\(464\) 3.07301 + 1.40340i 0.142661 + 0.0651510i
\(465\) 2.77657 2.59218i 0.128760 0.120210i
\(466\) 4.14895 + 9.08494i 0.192197 + 0.420852i
\(467\) 14.7460 + 17.0178i 0.682364 + 0.787490i 0.986257 0.165216i \(-0.0528322\pi\)
−0.303893 + 0.952706i \(0.598287\pi\)
\(468\) 2.01656 + 1.09397i 0.0932156 + 0.0505689i
\(469\) −5.74139 1.68582i −0.265113 0.0778441i
\(470\) 3.56987 4.11985i 0.164666 0.190034i
\(471\) −1.14440 + 10.7833i −0.0527312 + 0.496868i
\(472\) 9.03169 + 5.80431i 0.415717 + 0.267165i
\(473\) 8.17078 + 7.08002i 0.375693 + 0.325540i
\(474\) −8.91892 + 1.62176i −0.409660 + 0.0744897i
\(475\) 2.58108 0.371104i 0.118428 0.0170274i
\(476\) 2.48143 2.15017i 0.113736 0.0985530i
\(477\) 0.911910 + 0.195762i 0.0417535 + 0.00896330i
\(478\) 18.9168 5.55447i 0.865234 0.254056i
\(479\) 8.36279 18.3120i 0.382106 0.836694i −0.616670 0.787222i \(-0.711519\pi\)
0.998775 0.0494726i \(-0.0157540\pi\)
\(480\) 1.64266 0.549229i 0.0749770 0.0250688i
\(481\) 1.17856 + 1.83388i 0.0537378 + 0.0836177i
\(482\) −8.05829 −0.367045
\(483\) −1.35016 + 3.19248i −0.0614344 + 0.145263i
\(484\) 8.24457 0.374753
\(485\) 3.27336 + 5.09345i 0.148636 + 0.231281i
\(486\) −8.97785 12.7436i −0.407244 0.578059i
\(487\) 2.75041 6.02255i 0.124633 0.272908i −0.837023 0.547168i \(-0.815706\pi\)
0.961655 + 0.274260i \(0.0884330\pi\)
\(488\) 10.5715 3.10407i 0.478549 0.140515i
\(489\) −13.8575 11.1358i −0.626659 0.503581i
\(490\) 5.15865 4.47000i 0.233044 0.201934i
\(491\) −6.40023 + 0.920215i −0.288838 + 0.0415287i −0.285211 0.958465i \(-0.592064\pi\)
−0.00362736 + 0.999993i \(0.501155\pi\)
\(492\) 0.231831 + 1.27496i 0.0104517 + 0.0574798i
\(493\) −20.0893 17.4075i −0.904778 0.783995i
\(494\) −1.67757 1.07811i −0.0754773 0.0485063i
\(495\) 4.66109 1.75304i 0.209500 0.0787933i
\(496\) −1.43616 + 1.65742i −0.0644855 + 0.0744202i
\(497\) −2.48302 0.729081i −0.111379 0.0327037i
\(498\) −11.2764 + 7.85227i −0.505309 + 0.351868i
\(499\) 19.4871 + 22.4893i 0.872361 + 1.00676i 0.999889 + 0.0149231i \(0.00475036\pi\)
−0.127528 + 0.991835i \(0.540704\pi\)
\(500\) −0.415415 0.909632i −0.0185779 0.0406800i
\(501\) 6.65052 + 7.12360i 0.297123 + 0.318259i
\(502\) 10.1047 + 4.61467i 0.450996 + 0.205963i
\(503\) 2.90806 20.2260i 0.129664 0.901834i −0.816315 0.577607i \(-0.803987\pi\)
0.945979 0.324227i \(-0.105104\pi\)
\(504\) −0.0858889 + 1.24891i −0.00382580 + 0.0556309i
\(505\) 17.1565i 0.763454i
\(506\) −7.88945 + 1.06375i −0.350729 + 0.0472894i
\(507\) 19.2160 9.65175i 0.853412 0.428649i
\(508\) −8.23700 + 5.29360i −0.365458 + 0.234865i
\(509\) −24.3617 3.50269i −1.07981 0.155254i −0.420628 0.907233i \(-0.638190\pi\)
−0.659187 + 0.751979i \(0.729099\pi\)
\(510\) −13.6192 + 0.505073i −0.603069 + 0.0223650i
\(511\) −0.668453 2.27654i −0.0295706 0.100708i
\(512\) −0.909632 + 0.415415i −0.0402004 + 0.0183589i
\(513\) 6.96175 + 11.6244i 0.307369 + 0.513229i
\(514\) −0.785022 5.45995i −0.0346259 0.240828i
\(515\) −3.31772 + 11.2991i −0.146196 + 0.497899i
\(516\) 10.9345 + 2.77493i 0.481364 + 0.122160i
\(517\) −4.89223 + 7.61246i −0.215160 + 0.334796i
\(518\) −0.643101 + 1.00068i −0.0282562 + 0.0439676i
\(519\) −15.5183 3.93819i −0.681176 0.172867i
\(520\) −0.215449 + 0.733752i −0.00944807 + 0.0321772i
\(521\) −1.63383 11.3635i −0.0715793 0.497845i −0.993800 0.111181i \(-0.964537\pi\)
0.922221 0.386664i \(-0.126373\pi\)
\(522\) 10.1071 0.750679i 0.442374 0.0328563i
\(523\) 14.4091 6.58041i 0.630066 0.287741i −0.0746733 0.997208i \(-0.523791\pi\)
0.704739 + 0.709467i \(0.251064\pi\)
\(524\) −1.50821 5.13651i −0.0658866 0.224389i
\(525\) 0.722265 0.0267854i 0.0315222 0.00116901i
\(526\) −2.38705 0.343206i −0.104080 0.0149645i
\(527\) 14.5168 9.32937i 0.632361 0.406394i
\(528\) −2.56924 + 1.29047i −0.111812 + 0.0561604i
\(529\) −22.1787 + 6.09152i −0.964290 + 0.264849i
\(530\) 0.310895i 0.0135044i
\(531\) 32.1321 + 2.20976i 1.39441 + 0.0958953i
\(532\) 0.154857 1.07705i 0.00671389 0.0466961i
\(533\) −0.520444 0.237679i −0.0225429 0.0102950i
\(534\) −11.2482 12.0483i −0.486756 0.521380i
\(535\) −0.336213 0.736204i −0.0145358 0.0318289i
\(536\) −9.39052 10.8372i −0.405609 0.468097i
\(537\) 25.9861 18.0952i 1.12138 0.780868i
\(538\) 23.4970 + 6.89933i 1.01303 + 0.297451i
\(539\) −7.41996 + 8.56310i −0.319601 + 0.368839i
\(540\) 3.52511 3.81754i 0.151697 0.164281i
\(541\) 13.9705 + 8.97829i 0.600638 + 0.386007i 0.805336 0.592818i \(-0.201985\pi\)
−0.204698 + 0.978825i \(0.565621\pi\)
\(542\) −6.90257 5.98111i −0.296491 0.256911i
\(543\) −1.12773 6.20201i −0.0483956 0.266154i
\(544\) 7.78837 1.11980i 0.333924 0.0480110i
\(545\) −8.06119 + 6.98506i −0.345303 + 0.299207i
\(546\) −0.430843 0.346223i −0.0184384 0.0148170i
\(547\) 34.1812 10.0365i 1.46148 0.429130i 0.548162 0.836372i \(-0.315328\pi\)
0.913320 + 0.407243i \(0.133510\pi\)
\(548\) 2.83920 6.21699i 0.121285 0.265577i
\(549\) 23.3082 23.4361i 0.994770 1.00023i
\(550\) 0.897436 + 1.39644i 0.0382668 + 0.0595443i
\(551\) −8.80934 −0.375290
\(552\) −6.85814 + 4.68678i −0.291902 + 0.199483i
\(553\) 2.18398 0.0928724
\(554\) −3.53100 5.49435i −0.150018 0.233433i
\(555\) 4.68258 1.56563i 0.198764 0.0664574i
\(556\) −6.89652 + 15.1013i −0.292478 + 0.640436i
\(557\) 34.9566 10.2642i 1.48116 0.434907i 0.561449 0.827511i \(-0.310244\pi\)
0.919708 + 0.392604i \(0.128426\pi\)
\(558\) −1.38092 + 6.43268i −0.0584588 + 0.272317i
\(559\) −3.76423 + 3.26173i −0.159210 + 0.137956i
\(560\) −0.413039 + 0.0593861i −0.0174541 + 0.00250952i
\(561\) 22.2578 4.04720i 0.939724 0.170873i
\(562\) 3.94405 + 3.41754i 0.166370 + 0.144160i
\(563\) −36.2946 23.3251i −1.52964 0.983037i −0.989989 0.141145i \(-0.954922\pi\)
−0.539646 0.841892i \(-0.681442\pi\)
\(564\) −0.996456 + 9.38927i −0.0419584 + 0.395360i
\(565\) 6.07922 7.01579i 0.255755 0.295156i
\(566\) 11.6329 + 3.41573i 0.488968 + 0.143574i
\(567\) 1.57880 + 3.40760i 0.0663033 + 0.143106i
\(568\) −4.06119 4.68686i −0.170404 0.196656i
\(569\) 0.350378 + 0.767221i 0.0146886 + 0.0321636i 0.916834 0.399268i \(-0.130736\pi\)
−0.902146 + 0.431432i \(0.858009\pi\)
\(570\) −3.30142 + 3.08217i −0.138281 + 0.129098i
\(571\) 37.6098 + 17.1758i 1.57392 + 0.718786i 0.995303 0.0968130i \(-0.0308649\pi\)
0.578618 + 0.815599i \(0.303592\pi\)
\(572\) 0.180656 1.25649i 0.00755361 0.0525365i
\(573\) −9.16124 + 15.4887i −0.382716 + 0.647050i
\(574\) 0.312201i 0.0130310i
\(575\) 3.10867 + 3.65187i 0.129641 + 0.152293i
\(576\) −1.79125 + 2.40654i −0.0746356 + 0.100272i
\(577\) 10.8882 6.99745i 0.453284 0.291308i −0.294009 0.955803i \(-0.594990\pi\)
0.747293 + 0.664495i \(0.231353\pi\)
\(578\) −44.4556 6.39175i −1.84911 0.265862i
\(579\) −0.766739 20.6750i −0.0318646 0.859224i
\(580\) 0.951776 + 3.24145i 0.0395204 + 0.134594i
\(581\) 3.01134 1.37523i 0.124931 0.0570542i
\(582\) −9.69408 3.99989i −0.401832 0.165801i
\(583\) −0.0734444 0.510817i −0.00304176 0.0211559i
\(584\) 1.60190 5.45559i 0.0662873 0.225754i
\(585\) 0.493798 + 2.24042i 0.0204160 + 0.0926298i
\(586\) −16.7177 + 26.0132i −0.690602 + 1.07460i
\(587\) 21.5259 33.4949i 0.888467 1.38248i −0.0352386 0.999379i \(-0.511219\pi\)
0.923706 0.383103i \(-0.125145\pi\)
\(588\) −2.90817 + 11.4595i −0.119931 + 0.472582i
\(589\) 1.61115 5.48708i 0.0663863 0.226091i
\(590\) 1.52789 + 10.6267i 0.0629023 + 0.437495i
\(591\) −3.89604 + 9.44241i −0.160262 + 0.388409i
\(592\) −2.59300 + 1.18418i −0.106571 + 0.0486696i
\(593\) −4.29136 14.6150i −0.176225 0.600167i −0.999472 0.0324843i \(-0.989658\pi\)
0.823247 0.567683i \(-0.192160\pi\)
\(594\) −4.89010 + 7.10518i −0.200643 + 0.291529i
\(595\) 3.24998 + 0.467277i 0.133236 + 0.0191565i
\(596\) 5.77761 3.71305i 0.236660 0.152092i
\(597\) −16.7872 33.4222i −0.687054 1.36788i
\(598\) 0.0321859 3.66737i 0.00131618 0.149970i
\(599\) 24.7702i 1.01208i 0.862510 + 0.506041i \(0.168891\pi\)
−0.862510 + 0.506041i \(0.831109\pi\)
\(600\) 1.49080 + 0.881774i 0.0608615 + 0.0359983i
\(601\) −5.81780 + 40.4637i −0.237313 + 1.65055i 0.427849 + 0.903850i \(0.359272\pi\)
−0.665162 + 0.746699i \(0.731637\pi\)
\(602\) −2.47224 1.12904i −0.100761 0.0460161i
\(603\) −40.3478 14.9233i −1.64309 0.607723i
\(604\) −5.19836 11.3828i −0.211518 0.463161i
\(605\) 5.39904 + 6.23083i 0.219502 + 0.253319i
\(606\) −16.9810 24.3861i −0.689808 0.990616i
\(607\) −31.6525 9.29402i −1.28474 0.377233i −0.433091 0.901350i \(-0.642577\pi\)
−0.851646 + 0.524117i \(0.824395\pi\)
\(608\) 1.70763 1.97071i 0.0692536 0.0799230i
\(609\) −2.42807 0.257684i −0.0983903 0.0104419i
\(610\) 9.26875 + 5.95666i 0.375281 + 0.241178i
\(611\) −3.15057 2.72998i −0.127458 0.110443i
\(612\) 18.8583 14.1978i 0.762302 0.573914i
\(613\) 6.74535 0.969835i 0.272442 0.0391713i −0.00473956 0.999989i \(-0.501509\pi\)
0.277182 + 0.960817i \(0.410600\pi\)
\(614\) −22.8344 + 19.7861i −0.921521 + 0.798502i
\(615\) −0.811736 + 1.01013i −0.0327324 + 0.0407323i
\(616\) 0.664616 0.195149i 0.0267782 0.00786277i
\(617\) −7.49956 + 16.4217i −0.301921 + 0.661114i −0.998405 0.0564578i \(-0.982019\pi\)
0.696484 + 0.717572i \(0.254747\pi\)
\(618\) −6.46781 19.3443i −0.260173 0.778140i
\(619\) −6.42814 10.0024i −0.258369 0.402029i 0.687700 0.725995i \(-0.258620\pi\)
−0.946069 + 0.323965i \(0.894984\pi\)
\(620\) −2.19308 −0.0880761
\(621\) −11.2585 + 22.2316i −0.451789 + 0.892125i
\(622\) −14.8444 −0.595205
\(623\) 2.14691 + 3.34065i 0.0860141 + 0.133841i
\(624\) −0.420012 1.25619i −0.0168139 0.0502880i
\(625\) 0.415415 0.909632i 0.0166166 0.0363853i
\(626\) 27.2232 7.99345i 1.08806 0.319482i
\(627\) 4.69629 5.84409i 0.187552 0.233390i
\(628\) 4.73152 4.09989i 0.188808 0.163603i
\(629\) 22.2015 3.19210i 0.885233 0.127277i
\(630\) −1.00011 + 0.752951i −0.0398453 + 0.0299983i
\(631\) −17.5970 15.2479i −0.700526 0.607009i 0.230019 0.973186i \(-0.426121\pi\)
−0.930545 + 0.366177i \(0.880667\pi\)
\(632\) 4.40293 + 2.82959i 0.175139 + 0.112555i
\(633\) −10.7957 1.14572i −0.429091 0.0455382i
\(634\) −17.4778 + 20.1704i −0.694131 + 0.801070i
\(635\) −9.39472 2.75854i −0.372818 0.109469i
\(636\) −0.307716 0.441903i −0.0122017 0.0175226i
\(637\) −3.41834 3.94497i −0.135439 0.156305i
\(638\) −2.32956 5.10103i −0.0922283 0.201952i
\(639\) −17.4495 6.45399i −0.690292 0.255316i
\(640\) −0.909632 0.415415i −0.0359564 0.0164207i
\(641\) −1.12575 + 7.82973i −0.0444643 + 0.309256i 0.955437 + 0.295195i \(0.0953848\pi\)
−0.999901 + 0.0140603i \(0.995524\pi\)
\(642\) 1.20656 + 0.713657i 0.0476193 + 0.0281658i
\(643\) 29.8117i 1.17566i −0.808985 0.587830i \(-0.799982\pi\)
0.808985 0.587830i \(-0.200018\pi\)
\(644\) 1.82761 0.815336i 0.0720181 0.0321287i
\(645\) 5.06342 + 10.0809i 0.199372 + 0.396936i
\(646\) −17.2609 + 11.0929i −0.679119 + 0.436443i
\(647\) 5.29425 + 0.761198i 0.208138 + 0.0299258i 0.245595 0.969372i \(-0.421017\pi\)
−0.0374569 + 0.999298i \(0.511926\pi\)
\(648\) −1.23205 + 8.91527i −0.0483996 + 0.350225i
\(649\) −5.02081 17.0993i −0.197084 0.671207i
\(650\) −0.695622 + 0.317680i −0.0272846 + 0.0124604i
\(651\) 0.604576 1.46524i 0.0236952 0.0574274i
\(652\) 1.46069 + 10.1593i 0.0572052 + 0.397871i
\(653\) 0.497497 1.69432i 0.0194686 0.0663038i −0.949186 0.314716i \(-0.898091\pi\)
0.968654 + 0.248412i \(0.0799088\pi\)
\(654\) 4.54446 17.9072i 0.177702 0.700229i
\(655\) 2.89424 4.50353i 0.113087 0.175967i
\(656\) 0.404491 0.629401i 0.0157927 0.0245740i
\(657\) −3.67148 16.6579i −0.143238 0.649887i
\(658\) 0.640877 2.18263i 0.0249840 0.0850877i
\(659\) −2.65372 18.4570i −0.103374 0.718983i −0.973919 0.226895i \(-0.927143\pi\)
0.870545 0.492089i \(-0.163766\pi\)
\(660\) −2.65776 1.09662i −0.103453 0.0426860i
\(661\) 27.4885 12.5536i 1.06918 0.488277i 0.198485 0.980104i \(-0.436398\pi\)
0.870693 + 0.491826i \(0.163671\pi\)
\(662\) −2.86639 9.76203i −0.111405 0.379412i
\(663\) 0.386244 + 10.4150i 0.0150005 + 0.404486i
\(664\) 7.85264 + 1.12904i 0.304742 + 0.0438152i
\(665\) 0.915391 0.588286i 0.0354973 0.0228128i
\(666\) −5.10614 + 6.86007i −0.197859 + 0.265822i
\(667\) −8.63937 13.7061i −0.334518 0.530703i
\(668\) 5.62658i 0.217699i
\(669\) 17.1363 28.9720i 0.662529 1.12012i
\(670\) 2.04075 14.1938i 0.0788412 0.548353i
\(671\) −16.6362 7.59751i −0.642234 0.293299i
\(672\) 0.528311 0.493226i 0.0203800 0.0190266i
\(673\) 4.13866 + 9.06240i 0.159534 + 0.349330i 0.972472 0.233020i \(-0.0748607\pi\)
−0.812938 + 0.582350i \(0.802133\pi\)
\(674\) −21.7948 25.1526i −0.839506 0.968842i
\(675\) 5.19356 + 0.164143i 0.199900 + 0.00631788i
\(676\) −11.9123 3.49776i −0.458165 0.134529i
\(677\) 10.7602 12.4180i 0.413550 0.477262i −0.510311 0.859990i \(-0.670470\pi\)
0.923861 + 0.382728i \(0.125015\pi\)
\(678\) −1.69689 + 15.9892i −0.0651686 + 0.614062i
\(679\) 2.12543 + 1.36593i 0.0815664 + 0.0524195i
\(680\) 5.94659 + 5.15275i 0.228041 + 0.197599i
\(681\) 39.7087 7.22037i 1.52164 0.276685i
\(682\) 3.60334 0.518082i 0.137979 0.0198384i
\(683\) −12.7487 + 11.0468i −0.487817 + 0.422696i −0.863727 0.503961i \(-0.831876\pi\)
0.375910 + 0.926656i \(0.377330\pi\)
\(684\) 1.64195 7.64863i 0.0627814 0.292453i
\(685\) 6.55777 1.92554i 0.250560 0.0735709i
\(686\) 2.39667 5.24799i 0.0915055 0.200369i
\(687\) −42.6756 + 14.2687i −1.62817 + 0.544385i
\(688\) −3.52127 5.47921i −0.134247 0.208893i
\(689\) 0.237751 0.00905758
\(690\) −8.03316 2.11385i −0.305817 0.0804728i
\(691\) 24.9351 0.948574 0.474287 0.880370i \(-0.342706\pi\)
0.474287 + 0.880370i \(0.342706\pi\)
\(692\) 4.99740 + 7.77611i 0.189973 + 0.295603i
\(693\) 1.46536 1.47340i 0.0556643 0.0559698i
\(694\) 1.89737 4.15467i 0.0720233 0.157709i
\(695\) −15.9290 + 4.67719i −0.604223 + 0.177416i
\(696\) −4.56115 3.66532i −0.172890 0.138934i
\(697\) −4.44906 + 3.85513i −0.168520 + 0.146024i
\(698\) −15.9682 + 2.29589i −0.604407 + 0.0869005i
\(699\) −3.09476 17.0198i −0.117054 0.643746i
\(700\) −0.315364 0.273265i −0.0119196 0.0103284i
\(701\) −18.4499 11.8570i −0.696841 0.447833i 0.143671 0.989626i \(-0.454109\pi\)
−0.840512 + 0.541793i \(0.817746\pi\)
\(702\) −2.91938 2.69575i −0.110185 0.101745i
\(703\) 4.86777 5.61771i 0.183592 0.211876i
\(704\) 1.59271 + 0.467662i 0.0600275 + 0.0176257i
\(705\) −7.74848 + 5.39560i −0.291825 + 0.203210i
\(706\) 6.25682 + 7.22076i 0.235479 + 0.271757i
\(707\) 2.97403 + 6.51221i 0.111850 + 0.244917i
\(708\) −12.6898 13.5924i −0.476911 0.510835i
\(709\) −34.6268 15.8135i −1.30044 0.593890i −0.359714 0.933063i \(-0.617126\pi\)
−0.940724 + 0.339172i \(0.889853\pi\)
\(710\) 0.882581 6.13848i 0.0331227 0.230373i
\(711\) 15.6643 + 1.07725i 0.587458 + 0.0404002i
\(712\) 9.51635i 0.356640i
\(713\) 10.1172 2.87448i 0.378892 0.107650i
\(714\) −5.08199 + 2.55257i −0.190189 + 0.0955274i
\(715\) 1.06790 0.686296i 0.0399371 0.0256660i
\(716\) −18.0961 2.60183i −0.676284 0.0972349i
\(717\) −34.1246 + 1.26552i −1.27441 + 0.0472618i
\(718\) −1.48542 5.05887i −0.0554353 0.188795i
\(719\) −0.119704 + 0.0546669i −0.00446420 + 0.00203873i −0.417646 0.908610i \(-0.637145\pi\)
0.413182 + 0.910649i \(0.364417\pi\)
\(720\) −2.99176 + 0.222206i −0.111496 + 0.00828114i
\(721\) 0.699339 + 4.86401i 0.0260448 + 0.181145i
\(722\) 3.43722 11.7061i 0.127920 0.435655i
\(723\) 13.5285 + 3.43324i 0.503131 + 0.127683i
\(724\) −1.96763 + 3.06170i −0.0731266 + 0.113787i
\(725\) −1.82644 + 2.84200i −0.0678325 + 0.105549i
\(726\) −13.8413 3.51260i −0.513697 0.130365i
\(727\) 12.9253 44.0196i 0.479373 1.63260i −0.264579 0.964364i \(-0.585233\pi\)
0.743953 0.668232i \(-0.232949\pi\)
\(728\) 0.0454143 + 0.315863i 0.00168316 + 0.0117067i
\(729\) 9.64292 + 25.2193i 0.357145 + 0.934049i
\(730\) 5.17208 2.36201i 0.191427 0.0874219i
\(731\) 14.4384 + 49.1726i 0.534022 + 1.81871i
\(732\) −19.0703 + 0.707226i −0.704857 + 0.0261398i
\(733\) −41.9068 6.02529i −1.54786 0.222549i −0.685210 0.728346i \(-0.740290\pi\)
−0.862653 + 0.505796i \(0.831199\pi\)
\(734\) −7.91910 + 5.08929i −0.292299 + 0.187849i
\(735\) −10.5650 + 5.30653i −0.389694 + 0.195734i
\(736\) 4.74084 + 0.724151i 0.174750 + 0.0266926i
\(737\) 23.8032i 0.876802i
\(738\) 0.153994 2.23922i 0.00566859 0.0824269i
\(739\) 3.05704 21.2622i 0.112455 0.782143i −0.853063 0.521808i \(-0.825258\pi\)
0.965518 0.260335i \(-0.0838331\pi\)
\(740\) −2.59300 1.18418i −0.0953204 0.0435314i
\(741\) 2.35703 + 2.52469i 0.0865876 + 0.0927468i
\(742\) 0.0538928 + 0.118009i 0.00197847 + 0.00433223i
\(743\) −7.86267 9.07400i −0.288453 0.332893i 0.592966 0.805227i \(-0.297957\pi\)
−0.881419 + 0.472335i \(0.843411\pi\)
\(744\) 3.11722 2.17065i 0.114283 0.0795799i
\(745\) 6.58967 + 1.93490i 0.241427 + 0.0708893i
\(746\) 6.38479 7.36844i 0.233764 0.269778i
\(747\) 22.2767 8.37831i 0.815063 0.306546i
\(748\) −10.9878 7.06144i −0.401755 0.258192i
\(749\) −0.255238 0.221165i −0.00932618 0.00808118i
\(750\) 0.309863 + 1.70411i 0.0113146 + 0.0622252i
\(751\) 13.2635 1.90700i 0.483991 0.0695874i 0.103999 0.994577i \(-0.466836\pi\)
0.379991 + 0.924990i \(0.375927\pi\)
\(752\) 4.11985 3.56987i 0.150235 0.130180i
\(753\) −14.9981 12.0524i −0.546560 0.439213i
\(754\) 2.47883 0.727851i 0.0902738 0.0265068i
\(755\) 5.19836 11.3828i 0.189188 0.414263i
\(756\) 0.676292 2.06012i 0.0245965 0.0749258i
\(757\) −8.33825 12.9746i −0.303059 0.471569i 0.656006 0.754756i \(-0.272245\pi\)
−0.959065 + 0.283187i \(0.908608\pi\)
\(758\) 2.38637 0.0866769
\(759\) 13.6983 + 1.57545i 0.497216 + 0.0571850i
\(760\) 2.60763 0.0945886
\(761\) −28.4762 44.3098i −1.03226 1.60623i −0.766558 0.642175i \(-0.778032\pi\)
−0.265703 0.964055i \(-0.585604\pi\)
\(762\) 16.0839 5.37769i 0.582658 0.194813i
\(763\) −1.84900 + 4.04875i −0.0669384 + 0.146575i
\(764\) 9.96870 2.92707i 0.360655 0.105898i
\(765\) 23.0796 + 4.95454i 0.834444 + 0.179132i
\(766\) 25.9076 22.4491i 0.936081 0.811119i
\(767\) 8.12656 1.16842i 0.293433 0.0421893i
\(768\) 1.70411 0.309863i 0.0614917 0.0111812i
\(769\) −12.4089 10.7524i −0.447476 0.387740i 0.401767 0.915742i \(-0.368396\pi\)
−0.849243 + 0.528002i \(0.822941\pi\)
\(770\) 0.582715 + 0.374488i 0.0209996 + 0.0134956i
\(771\) −1.00829 + 9.50081i −0.0363128 + 0.342163i
\(772\) −7.82226 + 9.02737i −0.281529 + 0.324902i
\(773\) 25.6912 + 7.54362i 0.924048 + 0.271325i 0.708943 0.705266i \(-0.249172\pi\)
0.215105