Properties

Label 690.2.m.h.331.2
Level $690$
Weight $2$
Character 690.331
Analytic conductor $5.510$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 331.2
Character \(\chi\) \(=\) 690.331
Dual form 690.2.m.h.271.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.959493 - 0.281733i) q^{2} +(-0.654861 - 0.755750i) q^{3} +(0.841254 - 0.540641i) q^{4} +(0.142315 + 0.989821i) q^{5} +(-0.841254 - 0.540641i) q^{6} +(0.0700250 - 0.153333i) q^{7} +(0.654861 - 0.755750i) q^{8} +(-0.142315 + 0.989821i) q^{9} +O(q^{10})\) \(q+(0.959493 - 0.281733i) q^{2} +(-0.654861 - 0.755750i) q^{3} +(0.841254 - 0.540641i) q^{4} +(0.142315 + 0.989821i) q^{5} +(-0.841254 - 0.540641i) q^{6} +(0.0700250 - 0.153333i) q^{7} +(0.654861 - 0.755750i) q^{8} +(-0.142315 + 0.989821i) q^{9} +(0.415415 + 0.909632i) q^{10} +(5.28134 + 1.55074i) q^{11} +(-0.959493 - 0.281733i) q^{12} +(1.37637 + 3.01382i) q^{13} +(0.0239895 - 0.166851i) q^{14} +(0.654861 - 0.755750i) q^{15} +(0.415415 - 0.909632i) q^{16} +(-3.71636 - 2.38836i) q^{17} +(0.142315 + 0.989821i) q^{18} +(3.75657 - 2.41420i) q^{19} +(0.654861 + 0.755750i) q^{20} +(-0.161738 + 0.0474906i) q^{21} +5.50431 q^{22} +(3.07972 - 3.67632i) q^{23} -1.00000 q^{24} +(-0.959493 + 0.281733i) q^{25} +(2.16971 + 2.50398i) q^{26} +(0.841254 - 0.540641i) q^{27} +(-0.0239895 - 0.166851i) q^{28} +(3.33941 + 2.14611i) q^{29} +(0.415415 - 0.909632i) q^{30} +(-2.47511 + 2.85642i) q^{31} +(0.142315 - 0.989821i) q^{32} +(-2.28657 - 5.00689i) q^{33} +(-4.23870 - 1.24459i) q^{34} +(0.161738 + 0.0474906i) q^{35} +(0.415415 + 0.909632i) q^{36} +(1.34691 - 9.36797i) q^{37} +(2.92424 - 3.37475i) q^{38} +(1.37637 - 3.01382i) q^{39} +(0.841254 + 0.540641i) q^{40} +(-1.37080 - 9.53411i) q^{41} +(-0.141807 + 0.0911338i) q^{42} +(7.12162 + 8.21879i) q^{43} +(5.28134 - 1.55074i) q^{44} -1.00000 q^{45} +(1.91923 - 4.39506i) q^{46} -8.61654 q^{47} +(-0.959493 + 0.281733i) q^{48} +(4.56542 + 5.26877i) q^{49} +(-0.841254 + 0.540641i) q^{50} +(0.628696 + 4.37268i) q^{51} +(2.78727 + 1.79127i) q^{52} +(-4.59171 + 10.0544i) q^{53} +(0.654861 - 0.755750i) q^{54} +(-0.783344 + 5.44828i) q^{55} +(-0.0700250 - 0.153333i) q^{56} +(-4.28456 - 1.25806i) q^{57} +(3.80877 + 1.11836i) q^{58} +(-1.51648 - 3.32062i) q^{59} +(0.142315 - 0.989821i) q^{60} +(3.28638 - 3.79268i) q^{61} +(-1.57010 + 3.43804i) q^{62} +(0.141807 + 0.0911338i) q^{63} +(-0.142315 - 0.989821i) q^{64} +(-2.78727 + 1.79127i) q^{65} +(-3.60455 - 4.15988i) q^{66} +(-13.1092 + 3.84922i) q^{67} -4.41764 q^{68} +(-4.79516 + 0.0799796i) q^{69} +0.168566 q^{70} +(-9.05657 + 2.65925i) q^{71} +(0.654861 + 0.755750i) q^{72} +(8.80047 - 5.65572i) q^{73} +(-1.34691 - 9.36797i) q^{74} +(0.841254 + 0.540641i) q^{75} +(1.85501 - 4.06191i) q^{76} +(0.607606 - 0.701215i) q^{77} +(0.471522 - 3.27951i) q^{78} +(5.83069 + 12.7674i) q^{79} +(0.959493 + 0.281733i) q^{80} +(-0.959493 - 0.281733i) q^{81} +(-4.00134 - 8.76171i) q^{82} +(-1.07299 + 7.46280i) q^{83} +(-0.110387 + 0.127394i) q^{84} +(1.83516 - 4.01843i) q^{85} +(9.14864 + 5.87948i) q^{86} +(-0.564928 - 3.92916i) q^{87} +(4.63052 - 2.97585i) q^{88} +(-0.489361 - 0.564752i) q^{89} +(-0.959493 + 0.281733i) q^{90} +0.558500 q^{91} +(0.603258 - 4.75774i) q^{92} +3.77959 q^{93} +(-8.26751 + 2.42756i) q^{94} +(2.92424 + 3.37475i) q^{95} +(-0.841254 + 0.540641i) q^{96} +(-1.17604 - 8.17956i) q^{97} +(5.86487 + 3.76912i) q^{98} +(-2.28657 + 5.00689i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30q + 3q^{2} - 3q^{3} - 3q^{4} + 3q^{5} + 3q^{6} + 8q^{7} + 3q^{8} - 3q^{9} + O(q^{10}) \) \( 30q + 3q^{2} - 3q^{3} - 3q^{4} + 3q^{5} + 3q^{6} + 8q^{7} + 3q^{8} - 3q^{9} - 3q^{10} - 18q^{11} - 3q^{12} + 13q^{13} - 8q^{14} + 3q^{15} - 3q^{16} - 6q^{17} + 3q^{18} + 4q^{19} + 3q^{20} - 3q^{21} - 4q^{22} - 23q^{23} - 30q^{24} - 3q^{25} + 9q^{26} - 3q^{27} + 8q^{28} + 18q^{29} - 3q^{30} - 8q^{31} + 3q^{32} + 4q^{33} - 5q^{34} + 3q^{35} - 3q^{36} - 32q^{37} - 15q^{38} + 13q^{39} - 3q^{40} + 35q^{41} + 3q^{42} + 48q^{43} - 18q^{44} - 30q^{45} + q^{46} + 8q^{47} - 3q^{48} - 11q^{49} + 3q^{50} + 27q^{51} + 2q^{52} + 26q^{53} + 3q^{54} - 4q^{55} - 8q^{56} - 29q^{57} - 7q^{58} + 55q^{59} + 3q^{60} + 21q^{61} + 8q^{62} - 3q^{63} - 3q^{64} - 2q^{65} + 7q^{66} + 4q^{67} - 28q^{68} - 45q^{69} - 14q^{70} - 41q^{71} + 3q^{72} - 39q^{73} + 32q^{74} - 3q^{75} + 4q^{76} - 33q^{77} - 2q^{78} + 18q^{79} + 3q^{80} - 3q^{81} + 31q^{82} - 85q^{83} - 3q^{84} - 5q^{85} + 40q^{86} + 18q^{87} - 15q^{88} + 43q^{89} - 3q^{90} + 38q^{91} + 10q^{92} + 36q^{93} - 19q^{94} - 15q^{95} + 3q^{96} + 43q^{97} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.959493 0.281733i 0.678464 0.199215i
\(3\) −0.654861 0.755750i −0.378084 0.436332i
\(4\) 0.841254 0.540641i 0.420627 0.270320i
\(5\) 0.142315 + 0.989821i 0.0636451 + 0.442662i
\(6\) −0.841254 0.540641i −0.343440 0.220716i
\(7\) 0.0700250 0.153333i 0.0264670 0.0579546i −0.895937 0.444181i \(-0.853495\pi\)
0.922404 + 0.386227i \(0.126222\pi\)
\(8\) 0.654861 0.755750i 0.231528 0.267198i
\(9\) −0.142315 + 0.989821i −0.0474383 + 0.329940i
\(10\) 0.415415 + 0.909632i 0.131366 + 0.287651i
\(11\) 5.28134 + 1.55074i 1.59238 + 0.467566i 0.953414 0.301665i \(-0.0975423\pi\)
0.638971 + 0.769231i \(0.279360\pi\)
\(12\) −0.959493 0.281733i −0.276982 0.0813292i
\(13\) 1.37637 + 3.01382i 0.381736 + 0.835884i 0.998800 + 0.0489718i \(0.0155945\pi\)
−0.617065 + 0.786913i \(0.711678\pi\)
\(14\) 0.0239895 0.166851i 0.00641146 0.0445927i
\(15\) 0.654861 0.755750i 0.169084 0.195134i
\(16\) 0.415415 0.909632i 0.103854 0.227408i
\(17\) −3.71636 2.38836i −0.901349 0.579262i 0.00584071 0.999983i \(-0.498141\pi\)
−0.907190 + 0.420721i \(0.861777\pi\)
\(18\) 0.142315 + 0.989821i 0.0335439 + 0.233303i
\(19\) 3.75657 2.41420i 0.861815 0.553855i −0.0334237 0.999441i \(-0.510641\pi\)
0.895239 + 0.445586i \(0.147005\pi\)
\(20\) 0.654861 + 0.755750i 0.146431 + 0.168991i
\(21\) −0.161738 + 0.0474906i −0.0352942 + 0.0103633i
\(22\) 5.50431 1.17352
\(23\) 3.07972 3.67632i 0.642166 0.766566i
\(24\) −1.00000 −0.204124
\(25\) −0.959493 + 0.281733i −0.191899 + 0.0563465i
\(26\) 2.16971 + 2.50398i 0.425515 + 0.491070i
\(27\) 0.841254 0.540641i 0.161899 0.104046i
\(28\) −0.0239895 0.166851i −0.00453359 0.0315318i
\(29\) 3.33941 + 2.14611i 0.620113 + 0.398523i 0.812637 0.582770i \(-0.198031\pi\)
−0.192524 + 0.981292i \(0.561667\pi\)
\(30\) 0.415415 0.909632i 0.0758441 0.166075i
\(31\) −2.47511 + 2.85642i −0.444542 + 0.513029i −0.933156 0.359471i \(-0.882957\pi\)
0.488614 + 0.872500i \(0.337503\pi\)
\(32\) 0.142315 0.989821i 0.0251579 0.174977i
\(33\) −2.28657 5.00689i −0.398041 0.871588i
\(34\) −4.23870 1.24459i −0.726931 0.213446i
\(35\) 0.161738 + 0.0474906i 0.0273387 + 0.00802738i
\(36\) 0.415415 + 0.909632i 0.0692358 + 0.151605i
\(37\) 1.34691 9.36797i 0.221431 1.54008i −0.511202 0.859461i \(-0.670800\pi\)
0.732633 0.680624i \(-0.238291\pi\)
\(38\) 2.92424 3.37475i 0.474374 0.547457i
\(39\) 1.37637 3.01382i 0.220395 0.482598i
\(40\) 0.841254 + 0.540641i 0.133014 + 0.0854828i
\(41\) −1.37080 9.53411i −0.214083 1.48898i −0.759332 0.650703i \(-0.774474\pi\)
0.545249 0.838274i \(-0.316435\pi\)
\(42\) −0.141807 + 0.0911338i −0.0218813 + 0.0140623i
\(43\) 7.12162 + 8.21879i 1.08604 + 1.25335i 0.965433 + 0.260652i \(0.0839376\pi\)
0.120604 + 0.992701i \(0.461517\pi\)
\(44\) 5.28134 1.55074i 0.796192 0.233783i
\(45\) −1.00000 −0.149071
\(46\) 1.91923 4.39506i 0.282975 0.648016i
\(47\) −8.61654 −1.25685 −0.628426 0.777870i \(-0.716300\pi\)
−0.628426 + 0.777870i \(0.716300\pi\)
\(48\) −0.959493 + 0.281733i −0.138491 + 0.0406646i
\(49\) 4.56542 + 5.26877i 0.652203 + 0.752682i
\(50\) −0.841254 + 0.540641i −0.118971 + 0.0764582i
\(51\) 0.628696 + 4.37268i 0.0880351 + 0.612298i
\(52\) 2.78727 + 1.79127i 0.386525 + 0.248404i
\(53\) −4.59171 + 10.0544i −0.630720 + 1.38108i 0.276739 + 0.960945i \(0.410746\pi\)
−0.907459 + 0.420140i \(0.861981\pi\)
\(54\) 0.654861 0.755750i 0.0891153 0.102844i
\(55\) −0.783344 + 5.44828i −0.105626 + 0.734646i
\(56\) −0.0700250 0.153333i −0.00935748 0.0204900i
\(57\) −4.28456 1.25806i −0.567503 0.166634i
\(58\) 3.80877 + 1.11836i 0.500116 + 0.146847i
\(59\) −1.51648 3.32062i −0.197429 0.432308i 0.784862 0.619670i \(-0.212734\pi\)
−0.982291 + 0.187362i \(0.940006\pi\)
\(60\) 0.142315 0.989821i 0.0183728 0.127785i
\(61\) 3.28638 3.79268i 0.420778 0.485604i −0.505296 0.862946i \(-0.668617\pi\)
0.926074 + 0.377343i \(0.123162\pi\)
\(62\) −1.57010 + 3.43804i −0.199403 + 0.436631i
\(63\) 0.141807 + 0.0911338i 0.0178660 + 0.0114818i
\(64\) −0.142315 0.989821i −0.0177894 0.123728i
\(65\) −2.78727 + 1.79127i −0.345718 + 0.222180i
\(66\) −3.60455 4.15988i −0.443690 0.512045i
\(67\) −13.1092 + 3.84922i −1.60155 + 0.470257i −0.955977 0.293442i \(-0.905199\pi\)
−0.645572 + 0.763699i \(0.723381\pi\)
\(68\) −4.41764 −0.535718
\(69\) −4.79516 + 0.0799796i −0.577270 + 0.00962841i
\(70\) 0.168566 0.0201475
\(71\) −9.05657 + 2.65925i −1.07482 + 0.315595i −0.770804 0.637073i \(-0.780145\pi\)
−0.304014 + 0.952668i \(0.598327\pi\)
\(72\) 0.654861 + 0.755750i 0.0771761 + 0.0890659i
\(73\) 8.80047 5.65572i 1.03002 0.661952i 0.0875189 0.996163i \(-0.472106\pi\)
0.942498 + 0.334211i \(0.108470\pi\)
\(74\) −1.34691 9.36797i −0.156575 1.08900i
\(75\) 0.841254 + 0.540641i 0.0971396 + 0.0624278i
\(76\) 1.85501 4.06191i 0.212784 0.465933i
\(77\) 0.607606 0.701215i 0.0692432 0.0799109i
\(78\) 0.471522 3.27951i 0.0533894 0.371331i
\(79\) 5.83069 + 12.7674i 0.656004 + 1.43645i 0.886200 + 0.463303i \(0.153336\pi\)
−0.230196 + 0.973144i \(0.573937\pi\)
\(80\) 0.959493 + 0.281733i 0.107275 + 0.0314987i
\(81\) −0.959493 0.281733i −0.106610 0.0313036i
\(82\) −4.00134 8.76171i −0.441874 0.967569i
\(83\) −1.07299 + 7.46280i −0.117776 + 0.819149i 0.842220 + 0.539134i \(0.181248\pi\)
−0.959996 + 0.280015i \(0.909661\pi\)
\(84\) −0.110387 + 0.127394i −0.0120443 + 0.0138998i
\(85\) 1.83516 4.01843i 0.199051 0.435860i
\(86\) 9.14864 + 5.87948i 0.986523 + 0.634000i
\(87\) −0.564928 3.92916i −0.0605667 0.421250i
\(88\) 4.63052 2.97585i 0.493615 0.317227i
\(89\) −0.489361 0.564752i −0.0518721 0.0598636i 0.729221 0.684279i \(-0.239883\pi\)
−0.781093 + 0.624415i \(0.785337\pi\)
\(90\) −0.959493 + 0.281733i −0.101139 + 0.0296972i
\(91\) 0.558500 0.0585467
\(92\) 0.603258 4.75774i 0.0628939 0.496029i
\(93\) 3.77959 0.391925
\(94\) −8.26751 + 2.42756i −0.852728 + 0.250384i
\(95\) 2.92424 + 3.37475i 0.300021 + 0.346242i
\(96\) −0.841254 + 0.540641i −0.0858601 + 0.0551789i
\(97\) −1.17604 8.17956i −0.119409 0.830508i −0.958209 0.286069i \(-0.907651\pi\)
0.838800 0.544440i \(-0.183258\pi\)
\(98\) 5.86487 + 3.76912i 0.592441 + 0.380739i
\(99\) −2.28657 + 5.00689i −0.229809 + 0.503212i
\(100\) −0.654861 + 0.755750i −0.0654861 + 0.0755750i
\(101\) 0.221197 1.53846i 0.0220099 0.153082i −0.975853 0.218430i \(-0.929907\pi\)
0.997863 + 0.0653476i \(0.0208156\pi\)
\(102\) 1.83516 + 4.01843i 0.181708 + 0.397884i
\(103\) −18.3613 5.39137i −1.80919 0.531227i −0.810667 0.585507i \(-0.800896\pi\)
−0.998526 + 0.0542799i \(0.982714\pi\)
\(104\) 3.17902 + 0.933446i 0.311729 + 0.0915319i
\(105\) −0.0700250 0.153333i −0.00683374 0.0149638i
\(106\) −1.57305 + 10.9408i −0.152788 + 1.06267i
\(107\) 5.87647 6.78181i 0.568100 0.655622i −0.396903 0.917860i \(-0.629915\pi\)
0.965003 + 0.262238i \(0.0844607\pi\)
\(108\) 0.415415 0.909632i 0.0399733 0.0875294i
\(109\) −7.58587 4.87514i −0.726595 0.466954i 0.124331 0.992241i \(-0.460322\pi\)
−0.850925 + 0.525287i \(0.823958\pi\)
\(110\) 0.783344 + 5.44828i 0.0746890 + 0.519473i
\(111\) −7.96188 + 5.11679i −0.755708 + 0.485664i
\(112\) −0.110387 0.127394i −0.0104306 0.0120376i
\(113\) −13.1368 + 3.85731i −1.23580 + 0.362865i −0.833438 0.552613i \(-0.813631\pi\)
−0.402367 + 0.915478i \(0.631812\pi\)
\(114\) −4.46544 −0.418227
\(115\) 4.07719 + 2.52518i 0.380200 + 0.235474i
\(116\) 3.96957 0.368565
\(117\) −3.17902 + 0.933446i −0.293901 + 0.0862971i
\(118\) −2.39058 2.75887i −0.220071 0.253975i
\(119\) −0.626453 + 0.402597i −0.0574269 + 0.0369060i
\(120\) −0.142315 0.989821i −0.0129915 0.0903579i
\(121\) 16.2340 + 10.4330i 1.47582 + 0.948450i
\(122\) 2.08474 4.56493i 0.188743 0.413290i
\(123\) −6.30772 + 7.27949i −0.568748 + 0.656370i
\(124\) −0.537892 + 3.74112i −0.0483041 + 0.335962i
\(125\) −0.415415 0.909632i −0.0371558 0.0813600i
\(126\) 0.161738 + 0.0474906i 0.0144088 + 0.00423080i
\(127\) 18.6711 + 5.48233i 1.65679 + 0.486478i 0.970551 0.240896i \(-0.0774412\pi\)
0.686241 + 0.727374i \(0.259259\pi\)
\(128\) −0.415415 0.909632i −0.0367178 0.0804009i
\(129\) 1.54768 10.7643i 0.136265 0.947745i
\(130\) −2.16971 + 2.50398i −0.190296 + 0.219613i
\(131\) −6.66381 + 14.5917i −0.582220 + 1.27488i 0.357811 + 0.933794i \(0.383523\pi\)
−0.940031 + 0.341089i \(0.889204\pi\)
\(132\) −4.63052 2.97585i −0.403035 0.259015i
\(133\) −0.107124 0.745061i −0.00928879 0.0646050i
\(134\) −11.4938 + 7.38660i −0.992911 + 0.638105i
\(135\) 0.654861 + 0.755750i 0.0563614 + 0.0650446i
\(136\) −4.23870 + 1.24459i −0.363465 + 0.106723i
\(137\) −18.9859 −1.62207 −0.811037 0.584995i \(-0.801096\pi\)
−0.811037 + 0.584995i \(0.801096\pi\)
\(138\) −4.57839 + 1.42769i −0.389739 + 0.121533i
\(139\) −0.127658 −0.0108278 −0.00541391 0.999985i \(-0.501723\pi\)
−0.00541391 + 0.999985i \(0.501723\pi\)
\(140\) 0.161738 0.0474906i 0.0136694 0.00401369i
\(141\) 5.64263 + 6.51194i 0.475195 + 0.548405i
\(142\) −7.94052 + 5.10306i −0.666354 + 0.428239i
\(143\) 2.59540 + 18.0514i 0.217039 + 1.50954i
\(144\) 0.841254 + 0.540641i 0.0701045 + 0.0450534i
\(145\) −1.64902 + 3.61084i −0.136943 + 0.299864i
\(146\) 6.85059 7.90600i 0.566959 0.654305i
\(147\) 0.992160 6.90062i 0.0818320 0.569154i
\(148\) −3.93161 8.60903i −0.323177 0.707658i
\(149\) −13.3751 3.92729i −1.09573 0.321736i −0.316576 0.948567i \(-0.602533\pi\)
−0.779155 + 0.626831i \(0.784352\pi\)
\(150\) 0.959493 + 0.281733i 0.0783423 + 0.0230034i
\(151\) 6.15329 + 13.4738i 0.500748 + 1.09649i 0.976226 + 0.216757i \(0.0695480\pi\)
−0.475478 + 0.879728i \(0.657725\pi\)
\(152\) 0.635498 4.41999i 0.0515457 0.358508i
\(153\) 2.89294 3.33863i 0.233880 0.269912i
\(154\) 0.385439 0.843994i 0.0310596 0.0680109i
\(155\) −3.17959 2.04340i −0.255391 0.164130i
\(156\) −0.471522 3.27951i −0.0377520 0.262571i
\(157\) −9.37886 + 6.02743i −0.748514 + 0.481041i −0.858450 0.512898i \(-0.828572\pi\)
0.109935 + 0.993939i \(0.464936\pi\)
\(158\) 9.19150 + 10.6076i 0.731237 + 0.843892i
\(159\) 10.6056 3.11408i 0.841077 0.246962i
\(160\) 1.00000 0.0790569
\(161\) −0.348045 0.729658i −0.0274298 0.0575051i
\(162\) −1.00000 −0.0785674
\(163\) 8.58113 2.51965i 0.672126 0.197354i 0.0721765 0.997392i \(-0.477006\pi\)
0.599949 + 0.800038i \(0.295187\pi\)
\(164\) −6.30772 7.27949i −0.492550 0.568433i
\(165\) 4.63052 2.97585i 0.360485 0.231670i
\(166\) 1.07299 + 7.46280i 0.0832801 + 0.579226i
\(167\) −12.0549 7.74720i −0.932835 0.599496i −0.0164800 0.999864i \(-0.505246\pi\)
−0.916355 + 0.400368i \(0.868882\pi\)
\(168\) −0.0700250 + 0.153333i −0.00540254 + 0.0118299i
\(169\) 1.32444 1.52849i 0.101880 0.117576i
\(170\) 0.628696 4.37268i 0.0482188 0.335369i
\(171\) 1.85501 + 4.06191i 0.141856 + 0.310622i
\(172\) 10.4345 + 3.06384i 0.795623 + 0.233616i
\(173\) −9.59146 2.81631i −0.729225 0.214120i −0.104014 0.994576i \(-0.533169\pi\)
−0.625211 + 0.780456i \(0.714987\pi\)
\(174\) −1.64902 3.61084i −0.125012 0.273737i
\(175\) −0.0239895 + 0.166851i −0.00181344 + 0.0126127i
\(176\) 3.60455 4.15988i 0.271703 0.313563i
\(177\) −1.51648 + 3.32062i −0.113985 + 0.249593i
\(178\) −0.628647 0.404007i −0.0471191 0.0302816i
\(179\) −2.56683 17.8527i −0.191854 1.33438i −0.827095 0.562062i \(-0.810008\pi\)
0.635241 0.772314i \(-0.280901\pi\)
\(180\) −0.841254 + 0.540641i −0.0627033 + 0.0402970i
\(181\) 7.10140 + 8.19546i 0.527843 + 0.609163i 0.955577 0.294741i \(-0.0952335\pi\)
−0.427734 + 0.903905i \(0.640688\pi\)
\(182\) 0.535877 0.157348i 0.0397218 0.0116634i
\(183\) −5.01844 −0.370974
\(184\) −0.761589 4.73497i −0.0561451 0.349067i
\(185\) 9.46430 0.695829
\(186\) 3.62649 1.06483i 0.265907 0.0780774i
\(187\) −15.9236 18.3769i −1.16445 1.34385i
\(188\) −7.24869 + 4.65845i −0.528665 + 0.339753i
\(189\) −0.0239895 0.166851i −0.00174498 0.0121366i
\(190\) 3.75657 + 2.41420i 0.272530 + 0.175144i
\(191\) 0.307867 0.674135i 0.0222765 0.0487787i −0.898167 0.439655i \(-0.855101\pi\)
0.920443 + 0.390876i \(0.127828\pi\)
\(192\) −0.654861 + 0.755750i −0.0472605 + 0.0545415i
\(193\) −0.240286 + 1.67123i −0.0172962 + 0.120298i −0.996640 0.0819030i \(-0.973900\pi\)
0.979344 + 0.202201i \(0.0648093\pi\)
\(194\) −3.43285 7.51690i −0.246464 0.539682i
\(195\) 3.17902 + 0.933446i 0.227655 + 0.0668455i
\(196\) 6.68919 + 1.96412i 0.477799 + 0.140294i
\(197\) −5.46447 11.9655i −0.389327 0.852508i −0.998242 0.0592721i \(-0.981122\pi\)
0.608915 0.793236i \(-0.291605\pi\)
\(198\) −0.783344 + 5.44828i −0.0556699 + 0.387192i
\(199\) −14.9137 + 17.2113i −1.05720 + 1.22008i −0.0824980 + 0.996591i \(0.526290\pi\)
−0.974707 + 0.223488i \(0.928256\pi\)
\(200\) −0.415415 + 0.909632i −0.0293743 + 0.0643207i
\(201\) 11.4938 + 7.38660i 0.810708 + 0.521011i
\(202\) −0.221197 1.53846i −0.0155633 0.108245i
\(203\) 0.562912 0.361762i 0.0395087 0.0253907i
\(204\) 2.89294 + 3.33863i 0.202546 + 0.233751i
\(205\) 9.24198 2.71369i 0.645488 0.189532i
\(206\) −19.1365 −1.33330
\(207\) 3.20061 + 3.57157i 0.222458 + 0.248241i
\(208\) 3.31323 0.229731
\(209\) 23.5835 6.92474i 1.63131 0.478995i
\(210\) −0.110387 0.127394i −0.00761746 0.00879102i
\(211\) −4.37492 + 2.81159i −0.301182 + 0.193558i −0.682499 0.730886i \(-0.739107\pi\)
0.381317 + 0.924444i \(0.375471\pi\)
\(212\) 1.57305 + 10.9408i 0.108038 + 0.751418i
\(213\) 7.94052 + 5.10306i 0.544075 + 0.349656i
\(214\) 3.72778 8.16269i 0.254825 0.557990i
\(215\) −7.12162 + 8.21879i −0.485690 + 0.560517i
\(216\) 0.142315 0.989821i 0.00968330 0.0673488i
\(217\) 0.264666 + 0.579537i 0.0179667 + 0.0393415i
\(218\) −8.65208 2.54048i −0.585992 0.172063i
\(219\) −10.0374 2.94724i −0.678264 0.199156i
\(220\) 2.28657 + 5.00689i 0.154161 + 0.337565i
\(221\) 2.08302 14.4877i 0.140119 0.974549i
\(222\) −6.19780 + 7.15264i −0.415969 + 0.480054i
\(223\) 10.6000 23.2108i 0.709831 1.55431i −0.117799 0.993037i \(-0.537584\pi\)
0.827629 0.561275i \(-0.189689\pi\)
\(224\) −0.141807 0.0911338i −0.00947488 0.00608914i
\(225\) −0.142315 0.989821i −0.00948766 0.0659881i
\(226\) −11.5179 + 7.40212i −0.766161 + 0.492382i
\(227\) −1.99314 2.30021i −0.132289 0.152670i 0.685740 0.727847i \(-0.259479\pi\)
−0.818029 + 0.575177i \(0.804933\pi\)
\(228\) −4.28456 + 1.25806i −0.283752 + 0.0833170i
\(229\) −0.678727 −0.0448515 −0.0224258 0.999749i \(-0.507139\pi\)
−0.0224258 + 0.999749i \(0.507139\pi\)
\(230\) 4.62346 + 1.27421i 0.304862 + 0.0840192i
\(231\) −0.927841 −0.0610474
\(232\) 3.80877 1.11836i 0.250058 0.0734237i
\(233\) −3.69191 4.26069i −0.241865 0.279127i 0.621819 0.783161i \(-0.286394\pi\)
−0.863684 + 0.504034i \(0.831849\pi\)
\(234\) −2.78727 + 1.79127i −0.182210 + 0.117099i
\(235\) −1.22626 8.52883i −0.0799925 0.556360i
\(236\) −3.07101 1.97362i −0.199906 0.128472i
\(237\) 5.83069 12.7674i 0.378744 0.829333i
\(238\) −0.487653 + 0.562781i −0.0316098 + 0.0364797i
\(239\) 0.365022 2.53878i 0.0236113 0.164220i −0.974604 0.223934i \(-0.928110\pi\)
0.998216 + 0.0597143i \(0.0190190\pi\)
\(240\) −0.415415 0.909632i −0.0268149 0.0587165i
\(241\) −5.53022 1.62382i −0.356233 0.104599i 0.0987193 0.995115i \(-0.468525\pi\)
−0.454952 + 0.890516i \(0.650344\pi\)
\(242\) 18.5157 + 5.43670i 1.19023 + 0.349484i
\(243\) 0.415415 + 0.909632i 0.0266489 + 0.0583529i
\(244\) 0.714199 4.96736i 0.0457219 0.318003i
\(245\) −4.56542 + 5.26877i −0.291674 + 0.336610i
\(246\) −4.00134 + 8.76171i −0.255116 + 0.558626i
\(247\) 12.4464 + 7.99881i 0.791944 + 0.508952i
\(248\) 0.537892 + 3.74112i 0.0341562 + 0.237561i
\(249\) 6.34267 4.07618i 0.401950 0.258318i
\(250\) −0.654861 0.755750i −0.0414170 0.0477978i
\(251\) 15.7585 4.62710i 0.994665 0.292060i 0.256400 0.966571i \(-0.417464\pi\)
0.738265 + 0.674511i \(0.235645\pi\)
\(252\) 0.168566 0.0106187
\(253\) 21.9661 14.6400i 1.38100 0.920412i
\(254\) 19.4593 1.22099
\(255\) −4.23870 + 1.24459i −0.265438 + 0.0779395i
\(256\) −0.654861 0.755750i −0.0409288 0.0472343i
\(257\) 8.95790 5.75689i 0.558779 0.359105i −0.230565 0.973057i \(-0.574057\pi\)
0.789344 + 0.613952i \(0.210421\pi\)
\(258\) −1.54768 10.7643i −0.0963541 0.670157i
\(259\) −1.34210 0.862518i −0.0833943 0.0535943i
\(260\) −1.37637 + 3.01382i −0.0853587 + 0.186909i
\(261\) −2.59951 + 3.00000i −0.160906 + 0.185695i
\(262\) −2.28292 + 15.8781i −0.141039 + 0.980949i
\(263\) 3.85944 + 8.45099i 0.237983 + 0.521111i 0.990508 0.137453i \(-0.0438916\pi\)
−0.752525 + 0.658564i \(0.771164\pi\)
\(264\) −5.28134 1.55074i −0.325044 0.0954416i
\(265\) −10.6056 3.11408i −0.651495 0.191296i
\(266\) −0.312692 0.684701i −0.0191724 0.0419817i
\(267\) −0.106348 + 0.739668i −0.00650840 + 0.0452669i
\(268\) −8.94715 + 10.3256i −0.546534 + 0.630734i
\(269\) 0.944494 2.06815i 0.0575868 0.126097i −0.878651 0.477465i \(-0.841556\pi\)
0.936238 + 0.351367i \(0.114283\pi\)
\(270\) 0.841254 + 0.540641i 0.0511971 + 0.0329024i
\(271\) −0.390663 2.71712i −0.0237311 0.165053i 0.974510 0.224346i \(-0.0720246\pi\)
−0.998241 + 0.0592926i \(0.981116\pi\)
\(272\) −3.71636 + 2.38836i −0.225337 + 0.144816i
\(273\) −0.365740 0.422086i −0.0221356 0.0255458i
\(274\) −18.2168 + 5.34894i −1.10052 + 0.323141i
\(275\) −5.50431 −0.331922
\(276\) −3.99071 + 2.65974i −0.240212 + 0.160098i
\(277\) 4.22724 0.253990 0.126995 0.991903i \(-0.459467\pi\)
0.126995 + 0.991903i \(0.459467\pi\)
\(278\) −0.122487 + 0.0359655i −0.00734629 + 0.00215706i
\(279\) −2.47511 2.85642i −0.148181 0.171010i
\(280\) 0.141807 0.0911338i 0.00847459 0.00544629i
\(281\) −2.80471 19.5072i −0.167315 1.16370i −0.884405 0.466721i \(-0.845435\pi\)
0.717090 0.696981i \(-0.245474\pi\)
\(282\) 7.24869 + 4.65845i 0.431653 + 0.277407i
\(283\) 6.54941 14.3412i 0.389322 0.852496i −0.608921 0.793231i \(-0.708397\pi\)
0.998242 0.0592645i \(-0.0188755\pi\)
\(284\) −6.18117 + 7.13346i −0.366785 + 0.423293i
\(285\) 0.635498 4.41999i 0.0376437 0.261817i
\(286\) 7.57595 + 16.5890i 0.447975 + 0.980929i
\(287\) −1.55789 0.457437i −0.0919591 0.0270016i
\(288\) 0.959493 + 0.281733i 0.0565387 + 0.0166013i
\(289\) 1.04501 + 2.28825i 0.0614712 + 0.134603i
\(290\) −0.564928 + 3.92916i −0.0331737 + 0.230728i
\(291\) −5.41155 + 6.24526i −0.317231 + 0.366104i
\(292\) 4.34571 9.51579i 0.254314 0.556869i
\(293\) −2.47458 1.59031i −0.144566 0.0929072i 0.466358 0.884596i \(-0.345566\pi\)
−0.610925 + 0.791689i \(0.709202\pi\)
\(294\) −0.992160 6.90062i −0.0578639 0.402453i
\(295\) 3.07101 1.97362i 0.178801 0.114908i
\(296\) −6.19780 7.15264i −0.360240 0.415739i
\(297\) 5.28134 1.55074i 0.306455 0.0899832i
\(298\) −13.9398 −0.807509
\(299\) 15.3186 + 4.22177i 0.885898 + 0.244151i
\(300\) 1.00000 0.0577350
\(301\) 1.75890 0.516461i 0.101382 0.0297683i
\(302\) 9.70006 + 11.1945i 0.558176 + 0.644169i
\(303\) −1.30754 + 0.840306i −0.0751163 + 0.0482743i
\(304\) −0.635498 4.41999i −0.0364483 0.253504i
\(305\) 4.22178 + 2.71317i 0.241739 + 0.155356i
\(306\) 1.83516 4.01843i 0.104909 0.229718i
\(307\) −6.50468 + 7.50681i −0.371242 + 0.428436i −0.910375 0.413785i \(-0.864207\pi\)
0.539133 + 0.842221i \(0.318752\pi\)
\(308\) 0.132045 0.918397i 0.00752399 0.0523305i
\(309\) 7.94958 + 17.4071i 0.452236 + 0.990258i
\(310\) −3.62649 1.06483i −0.205971 0.0604785i
\(311\) 29.6211 + 8.69754i 1.67966 + 0.493192i 0.976078 0.217422i \(-0.0697648\pi\)
0.703582 + 0.710615i \(0.251583\pi\)
\(312\) −1.37637 3.01382i −0.0779215 0.170624i
\(313\) −2.73006 + 18.9880i −0.154312 + 1.07327i 0.754572 + 0.656217i \(0.227845\pi\)
−0.908884 + 0.417049i \(0.863064\pi\)
\(314\) −7.30083 + 8.42560i −0.412010 + 0.475484i
\(315\) −0.0700250 + 0.153333i −0.00394546 + 0.00863935i
\(316\) 11.8077 + 7.58833i 0.664234 + 0.426877i
\(317\) −3.00316 20.8874i −0.168674 1.17315i −0.881629 0.471944i \(-0.843553\pi\)
0.712955 0.701210i \(-0.247357\pi\)
\(318\) 9.29864 5.97587i 0.521442 0.335110i
\(319\) 14.3085 + 16.5129i 0.801123 + 0.924545i
\(320\) 0.959493 0.281733i 0.0536373 0.0157493i
\(321\) −8.97362 −0.500858
\(322\) −0.539515 0.602046i −0.0300660 0.0335507i
\(323\) −19.7267 −1.09762
\(324\) −0.959493 + 0.281733i −0.0533052 + 0.0156518i
\(325\) −2.16971 2.50398i −0.120354 0.138896i
\(326\) 7.52367 4.83517i 0.416697 0.267795i
\(327\) 1.28330 + 8.92556i 0.0709667 + 0.493584i
\(328\) −8.10308 5.20753i −0.447418 0.287538i
\(329\) −0.603373 + 1.32120i −0.0332650 + 0.0728402i
\(330\) 3.60455 4.15988i 0.198424 0.228994i
\(331\) 1.64610 11.4489i 0.0904780 0.629288i −0.893241 0.449577i \(-0.851575\pi\)
0.983719 0.179711i \(-0.0575162\pi\)
\(332\) 3.13204 + 6.85821i 0.171893 + 0.376393i
\(333\) 9.08093 + 2.66640i 0.497632 + 0.146118i
\(334\) −13.7492 4.03713i −0.752323 0.220902i
\(335\) −5.67568 12.4280i −0.310096 0.679015i
\(336\) −0.0239895 + 0.166851i −0.00130873 + 0.00910244i
\(337\) 1.95253 2.25334i 0.106361 0.122747i −0.700073 0.714071i \(-0.746849\pi\)
0.806434 + 0.591324i \(0.201395\pi\)
\(338\) 0.840168 1.83971i 0.0456991 0.100067i
\(339\) 11.5179 + 7.40212i 0.625568 + 0.402028i
\(340\) −0.628696 4.37268i −0.0340958 0.237142i
\(341\) −17.5015 + 11.2475i −0.947757 + 0.609086i
\(342\) 2.92424 + 3.37475i 0.158125 + 0.182486i
\(343\) 2.25974 0.663519i 0.122014 0.0358267i
\(344\) 10.8750 0.586341
\(345\) −0.761589 4.73497i −0.0410026 0.254922i
\(346\) −9.99638 −0.537409
\(347\) 0.417172 0.122493i 0.0223950 0.00657576i −0.270516 0.962716i \(-0.587194\pi\)
0.292911 + 0.956140i \(0.405376\pi\)
\(348\) −2.59951 3.00000i −0.139349 0.160817i
\(349\) −4.06580 + 2.61293i −0.217637 + 0.139867i −0.644917 0.764252i \(-0.723108\pi\)
0.427280 + 0.904119i \(0.359472\pi\)
\(350\) 0.0239895 + 0.166851i 0.00128229 + 0.00891854i
\(351\) 2.78727 + 1.79127i 0.148773 + 0.0956109i
\(352\) 2.28657 5.00689i 0.121875 0.266868i
\(353\) 10.6987 12.3469i 0.569433 0.657161i −0.395866 0.918308i \(-0.629555\pi\)
0.965299 + 0.261147i \(0.0841008\pi\)
\(354\) −0.519522 + 3.61336i −0.0276123 + 0.192048i
\(355\) −3.92107 8.58594i −0.208109 0.455694i
\(356\) −0.717004 0.210531i −0.0380012 0.0111581i
\(357\) 0.714502 + 0.209797i 0.0378155 + 0.0111036i
\(358\) −7.49256 16.4064i −0.395994 0.867106i
\(359\) −1.00707 + 7.00432i −0.0531511 + 0.369674i 0.945835 + 0.324648i \(0.105246\pi\)
−0.998986 + 0.0450254i \(0.985663\pi\)
\(360\) −0.654861 + 0.755750i −0.0345142 + 0.0398315i
\(361\) 0.390550 0.855186i 0.0205553 0.0450098i
\(362\) 9.12267 + 5.86279i 0.479477 + 0.308141i
\(363\) −2.74630 19.1010i −0.144144 1.00254i
\(364\) 0.469840 0.301948i 0.0246263 0.0158264i
\(365\) 6.85059 + 7.90600i 0.358576 + 0.413819i
\(366\) −4.81516 + 1.41386i −0.251692 + 0.0739036i
\(367\) −6.72497 −0.351041 −0.175520 0.984476i \(-0.556161\pi\)
−0.175520 + 0.984476i \(0.556161\pi\)
\(368\) −2.06474 4.32861i −0.107632 0.225644i
\(369\) 9.63215 0.501430
\(370\) 9.08093 2.66640i 0.472095 0.138620i
\(371\) 1.22015 + 1.40813i 0.0633469 + 0.0731062i
\(372\) 3.17959 2.04340i 0.164854 0.105945i
\(373\) −2.32023 16.1375i −0.120137 0.835570i −0.957399 0.288768i \(-0.906754\pi\)
0.837262 0.546802i \(-0.184155\pi\)
\(374\) −20.4560 13.1463i −1.05775 0.679777i
\(375\) −0.415415 + 0.909632i −0.0214519 + 0.0469732i
\(376\) −5.64263 + 6.51194i −0.290997 + 0.335828i
\(377\) −1.87174 + 13.0182i −0.0963995 + 0.670473i
\(378\) −0.0700250 0.153333i −0.00360170 0.00788662i
\(379\) 9.17404 + 2.69374i 0.471239 + 0.138368i 0.508725 0.860929i \(-0.330117\pi\)
−0.0374865 + 0.999297i \(0.511935\pi\)
\(380\) 4.28456 + 1.25806i 0.219793 + 0.0645371i
\(381\) −8.08370 17.7008i −0.414141 0.906841i
\(382\) 0.105471 0.733564i 0.00539634 0.0375324i
\(383\) −12.7585 + 14.7241i −0.651930 + 0.752367i −0.981437 0.191786i \(-0.938572\pi\)
0.329507 + 0.944153i \(0.393117\pi\)
\(384\) −0.415415 + 0.909632i −0.0211991 + 0.0464195i
\(385\) 0.780549 + 0.501629i 0.0397805 + 0.0255654i
\(386\) 0.240286 + 1.67123i 0.0122303 + 0.0850633i
\(387\) −9.14864 + 5.87948i −0.465052 + 0.298871i
\(388\) −5.41155 6.24526i −0.274730 0.317055i
\(389\) −27.9536 + 8.20790i −1.41730 + 0.416157i −0.898589 0.438792i \(-0.855407\pi\)
−0.518712 + 0.854949i \(0.673588\pi\)
\(390\) 3.31323 0.167772
\(391\) −20.2257 + 6.30704i −1.02286 + 0.318961i
\(392\) 6.97159 0.352118
\(393\) 15.3915 4.51936i 0.776401 0.227972i
\(394\) −8.61420 9.94131i −0.433977 0.500836i
\(395\) −11.8077 + 7.58833i −0.594109 + 0.381811i
\(396\) 0.783344 + 5.44828i 0.0393645 + 0.273786i
\(397\) 12.5173 + 8.04439i 0.628226 + 0.403736i 0.815652 0.578542i \(-0.196378\pi\)
−0.187426 + 0.982279i \(0.560015\pi\)
\(398\) −9.46060 + 20.7158i −0.474217 + 1.03839i
\(399\) −0.492929 + 0.568870i −0.0246773 + 0.0284791i
\(400\) −0.142315 + 0.989821i −0.00711574 + 0.0494911i
\(401\) 12.2707 + 26.8692i 0.612771 + 1.34178i 0.920662 + 0.390360i \(0.127650\pi\)
−0.307891 + 0.951422i \(0.599623\pi\)
\(402\) 13.1092 + 3.84922i 0.653830 + 0.191982i
\(403\) −12.0154 3.52804i −0.598530 0.175744i
\(404\) −0.645670 1.41382i −0.0321233 0.0703402i
\(405\) 0.142315 0.989821i 0.00707168 0.0491846i
\(406\) 0.438190 0.505699i 0.0217470 0.0250974i
\(407\) 21.6408 47.3868i 1.07269 2.34887i
\(408\) 3.71636 + 2.38836i 0.183987 + 0.118241i
\(409\) −0.749719 5.21441i −0.0370712 0.257836i 0.962855 0.270021i \(-0.0870305\pi\)
−0.999926 + 0.0121846i \(0.996121\pi\)
\(410\) 8.10308 5.20753i 0.400183 0.257182i
\(411\) 12.4331 + 14.3486i 0.613280 + 0.707763i
\(412\) −18.3613 + 5.39137i −0.904597 + 0.265614i
\(413\) −0.615354 −0.0302796
\(414\) 4.07719 + 2.52518i 0.200383 + 0.124106i
\(415\) −7.53954 −0.370102
\(416\) 3.17902 0.933446i 0.155865 0.0457660i
\(417\) 0.0835983 + 0.0964776i 0.00409383 + 0.00472453i
\(418\) 20.6773 13.2885i 1.01136 0.649961i
\(419\) −3.02422 21.0339i −0.147743 1.02757i −0.919903 0.392146i \(-0.871733\pi\)
0.772160 0.635428i \(-0.219176\pi\)
\(420\) −0.141807 0.0911338i −0.00691947 0.00444688i
\(421\) 4.26668 9.34272i 0.207945 0.455336i −0.776708 0.629861i \(-0.783112\pi\)
0.984653 + 0.174525i \(0.0558390\pi\)
\(422\) −3.40559 + 3.93026i −0.165781 + 0.191322i
\(423\) 1.22626 8.52883i 0.0596229 0.414686i
\(424\) 4.59171 + 10.0544i 0.222993 + 0.488287i
\(425\) 4.23870 + 1.24459i 0.205607 + 0.0603717i
\(426\) 9.05657 + 2.65925i 0.438792 + 0.128841i
\(427\) −0.351416 0.769494i −0.0170062 0.0372384i
\(428\) 1.27708 8.88228i 0.0617299 0.429341i
\(429\) 11.9427 13.7826i 0.576600 0.665432i
\(430\) −4.51764 + 9.89226i −0.217860 + 0.477047i
\(431\) 26.8094 + 17.2293i 1.29136 + 0.829908i 0.992244 0.124308i \(-0.0396711\pi\)
0.299118 + 0.954216i \(0.403307\pi\)
\(432\) −0.142315 0.989821i −0.00684713 0.0476228i
\(433\) 10.3243 6.63500i 0.496152 0.318858i −0.268523 0.963273i \(-0.586536\pi\)
0.764676 + 0.644415i \(0.222899\pi\)
\(434\) 0.417219 + 0.481497i 0.0200272 + 0.0231126i
\(435\) 3.80877 1.11836i 0.182617 0.0536211i
\(436\) −9.01734 −0.431852
\(437\) 2.69381 21.2454i 0.128862 1.01630i
\(438\) −10.4611 −0.499853
\(439\) −19.2078 + 5.63993i −0.916740 + 0.269179i −0.705875 0.708336i \(-0.749446\pi\)
−0.210865 + 0.977515i \(0.567628\pi\)
\(440\) 3.60455 + 4.15988i 0.171840 + 0.198314i
\(441\) −5.86487 + 3.76912i −0.279280 + 0.179482i
\(442\) −2.08302 14.4877i −0.0990791 0.689110i
\(443\) 25.4998 + 16.3877i 1.21153 + 0.778605i 0.980915 0.194439i \(-0.0622886\pi\)
0.230619 + 0.973044i \(0.425925\pi\)
\(444\) −3.93161 + 8.60903i −0.186586 + 0.408567i
\(445\) 0.489361 0.564752i 0.0231979 0.0267718i
\(446\) 3.63141 25.2570i 0.171952 1.19595i
\(447\) 5.79079 + 12.6801i 0.273895 + 0.599746i
\(448\) −0.161738 0.0474906i −0.00764141 0.00224372i
\(449\) 31.0567 + 9.11907i 1.46566 + 0.430356i 0.914685 0.404168i \(-0.132439\pi\)
0.550972 + 0.834524i \(0.314257\pi\)
\(450\) −0.415415 0.909632i −0.0195829 0.0428805i
\(451\) 7.54529 52.4786i 0.355294 2.47112i
\(452\) −8.96595 + 10.3473i −0.421723 + 0.486694i
\(453\) 6.15329 13.4738i 0.289107 0.633056i
\(454\) −2.56045 1.64550i −0.120168 0.0772272i
\(455\) 0.0794828 + 0.552815i 0.00372621 + 0.0259164i
\(456\) −3.75657 + 2.41420i −0.175917 + 0.113055i
\(457\) 4.84487 + 5.59127i 0.226633 + 0.261549i 0.857666 0.514208i \(-0.171914\pi\)
−0.631032 + 0.775757i \(0.717368\pi\)
\(458\) −0.651234 + 0.191220i −0.0304302 + 0.00893510i
\(459\) −4.41764 −0.206198
\(460\) 4.79516 0.0799796i 0.223576 0.00372907i
\(461\) −15.8277 −0.737168 −0.368584 0.929594i \(-0.620157\pi\)
−0.368584 + 0.929594i \(0.620157\pi\)
\(462\) −0.890257 + 0.261403i −0.0414185 + 0.0121616i
\(463\) 0.194377 + 0.224323i 0.00903345 + 0.0104252i 0.760248 0.649633i \(-0.225077\pi\)
−0.751215 + 0.660058i \(0.770532\pi\)
\(464\) 3.33941 2.14611i 0.155028 0.0996306i
\(465\) 0.537892 + 3.74112i 0.0249441 + 0.173490i
\(466\) −4.74274 3.04797i −0.219703 0.141195i
\(467\) −5.44610 + 11.9253i −0.252015 + 0.551837i −0.992783 0.119925i \(-0.961735\pi\)
0.740768 + 0.671761i \(0.234462\pi\)
\(468\) −2.16971 + 2.50398i −0.100295 + 0.115746i
\(469\) −0.327761 + 2.27963i −0.0151346 + 0.105263i
\(470\) −3.57944 7.83788i −0.165107 0.361534i
\(471\) 10.6971 + 3.14094i 0.492895 + 0.144727i
\(472\) −3.50264 1.02847i −0.161222 0.0473391i
\(473\) 24.8665 + 54.4500i 1.14336 + 2.50361i
\(474\) 1.99750 13.8930i 0.0917484 0.638124i
\(475\) −2.92424 + 3.37475i −0.134173 + 0.154844i
\(476\) −0.309345 + 0.677372i −0.0141788 + 0.0310473i
\(477\) −9.29864 5.97587i −0.425755 0.273616i
\(478\) −0.365022 2.53878i −0.0166957 0.116121i
\(479\) 1.99506 1.28215i 0.0911568 0.0585829i −0.494268 0.869309i \(-0.664564\pi\)
0.585425 + 0.810726i \(0.300928\pi\)
\(480\) −0.654861 0.755750i −0.0298902 0.0344951i
\(481\) 30.0873 8.83442i 1.37186 0.402815i
\(482\) −5.76369 −0.262529
\(483\) −0.323518 + 0.740859i −0.0147206 + 0.0337103i
\(484\) 19.2974 0.877154
\(485\) 7.92893 2.32814i 0.360034 0.105716i
\(486\) 0.654861 + 0.755750i 0.0297051 + 0.0342815i
\(487\) −7.08794 + 4.55515i −0.321185 + 0.206413i −0.691291 0.722576i \(-0.742958\pi\)
0.370106 + 0.928990i \(0.379321\pi\)
\(488\) −0.714199 4.96736i −0.0323303 0.224862i
\(489\) −7.52367 4.83517i −0.340232 0.218654i
\(490\) −2.89610 + 6.34158i −0.130833 + 0.286483i
\(491\) 5.65835 6.53009i 0.255358 0.294699i −0.613567 0.789643i \(-0.710266\pi\)
0.868925 + 0.494944i \(0.164811\pi\)
\(492\) −1.37080 + 9.53411i −0.0618003 + 0.429831i
\(493\) −7.28477 15.9514i −0.328090 0.718416i
\(494\) 14.1957 + 4.16825i 0.638697 + 0.187538i
\(495\) −5.28134 1.55074i −0.237379 0.0697007i
\(496\) 1.57010 + 3.43804i 0.0704995 + 0.154372i
\(497\) −0.226435 + 1.57489i −0.0101570 + 0.0706434i
\(498\) 4.93735 5.69801i 0.221248 0.255334i
\(499\) −0.656467 + 1.43746i −0.0293875 + 0.0643496i −0.923757 0.382980i \(-0.874898\pi\)
0.894369 + 0.447330i \(0.147625\pi\)
\(500\) −0.841254 0.540641i −0.0376220 0.0241782i
\(501\) 2.03932 + 14.1838i 0.0911103 + 0.633686i
\(502\) 13.8165 8.87934i 0.616661 0.396304i
\(503\) 6.02675 + 6.95524i 0.268719 + 0.310119i 0.874031 0.485870i \(-0.161497\pi\)
−0.605312 + 0.795988i \(0.706952\pi\)
\(504\) 0.161738 0.0474906i 0.00720439 0.00211540i
\(505\) 1.55428 0.0691644
\(506\) 16.9517 20.2356i 0.753596 0.899581i
\(507\) −2.02248 −0.0898214
\(508\) 18.6711 5.48233i 0.828396 0.243239i
\(509\) 0.525344 + 0.606279i 0.0232855 + 0.0268728i 0.767273 0.641321i \(-0.221613\pi\)
−0.743987 + 0.668194i \(0.767068\pi\)
\(510\) −3.71636 + 2.38836i −0.164563 + 0.105758i
\(511\) −0.250957 1.74545i −0.0111017 0.0772140i
\(512\) −0.841254 0.540641i −0.0371785 0.0238932i
\(513\) 1.85501 4.06191i 0.0819007 0.179338i
\(514\) 6.97314 8.04743i 0.307572 0.354957i
\(515\) 2.72340 18.9417i 0.120007 0.834670i
\(516\) −4.51764 9.89226i −0.198878 0.435482i
\(517\) −45.5069 13.3620i −2.00139 0.587661i
\(518\) −1.53074 0.449466i −0.0672568 0.0197484i
\(519\) 4.15265 + 9.09303i 0.182281 + 0.399140i
\(520\) −0.471522 + 3.27951i −0.0206776 + 0.143816i
\(521\) −5.59267 + 6.45429i −0.245019 + 0.282768i −0.864917 0.501915i \(-0.832629\pi\)
0.619897 + 0.784683i \(0.287174\pi\)
\(522\) −1.64902 + 3.61084i −0.0721755 + 0.158042i
\(523\) −16.2789 10.4618i −0.711826 0.457463i 0.133959 0.990987i \(-0.457231\pi\)
−0.845785 + 0.533524i \(0.820867\pi\)
\(524\) 2.28292 + 15.8781i 0.0997298 + 0.693636i
\(525\) 0.141807 0.0911338i 0.00618897 0.00397741i
\(526\) 6.08403 + 7.02134i 0.265276 + 0.306145i
\(527\) 16.0205 4.70406i 0.697866 0.204912i
\(528\) −5.50431 −0.239544
\(529\) −4.03064 22.6441i −0.175245 0.984525i
\(530\) −11.0533 −0.480125
\(531\) 3.50264 1.02847i 0.152002 0.0446317i
\(532\) −0.492929 0.568870i −0.0213712 0.0246636i
\(533\) 26.8474 17.2538i 1.16289 0.747344i
\(534\) 0.106348 + 0.739668i 0.00460214 + 0.0320086i
\(535\) 7.54909 + 4.85150i 0.326375 + 0.209749i
\(536\) −5.67568 + 12.4280i −0.245152 + 0.536808i
\(537\) −11.8113 + 13.6309i −0.509694 + 0.588218i
\(538\) 0.323569 2.25047i 0.0139501 0.0970248i
\(539\) 15.9410 + 34.9060i 0.686629 + 1.50351i
\(540\) 0.959493 + 0.281733i 0.0412900 + 0.0121238i
\(541\) −29.2785 8.59695i −1.25878 0.369612i −0.416741 0.909025i \(-0.636828\pi\)
−0.842041 + 0.539413i \(0.818646\pi\)
\(542\) −1.14034 2.49700i −0.0489818 0.107255i
\(543\) 1.54328 10.7338i 0.0662286 0.460630i
\(544\) −2.89294 + 3.33863i −0.124034 + 0.143143i
\(545\) 3.74594 8.20246i 0.160458 0.351355i
\(546\) −0.469840 0.301948i −0.0201073 0.0129222i
\(547\) 4.23158 + 29.4313i 0.180929 + 1.25839i 0.854572 + 0.519333i \(0.173820\pi\)
−0.673643 + 0.739057i \(0.735271\pi\)
\(548\) −15.9719 + 10.2645i −0.682287 + 0.438479i
\(549\) 3.28638 + 3.79268i 0.140259 + 0.161868i
\(550\) −5.28134 + 1.55074i −0.225197 + 0.0661239i
\(551\) 17.7259 0.755147
\(552\) −3.07972 + 3.67632i −0.131082 + 0.156475i
\(553\) 2.36597 0.100611
\(554\) 4.05601 1.19095i 0.172323 0.0505987i
\(555\) −6.19780 7.15264i −0.263082 0.303613i
\(556\) −0.107393 + 0.0690172i −0.00455447 + 0.00292698i
\(557\) 0.715827 + 4.97869i 0.0303306 + 0.210954i 0.999351 0.0360277i \(-0.0114704\pi\)
−0.969020 + 0.246981i \(0.920561\pi\)
\(558\) −3.17959 2.04340i −0.134603 0.0865040i
\(559\) −14.9680 + 32.7754i −0.633079 + 1.38625i
\(560\) 0.110387 0.127394i 0.00466472 0.00538338i
\(561\) −3.46054 + 24.0686i −0.146104 + 1.01618i
\(562\) −8.18691 17.9268i −0.345344 0.756198i
\(563\) −43.1916 12.6822i −1.82031 0.534491i −0.820976 0.570963i \(-0.806570\pi\)
−0.999335 + 0.0364713i \(0.988388\pi\)
\(564\) 8.26751 + 2.42756i 0.348125 + 0.102219i
\(565\) −5.68761 12.4541i −0.239279 0.523949i
\(566\) 2.24373 15.6055i 0.0943108 0.655946i
\(567\) −0.110387 + 0.127394i −0.00463584 + 0.00535004i
\(568\) −3.92107 + 8.58594i −0.164524 + 0.360258i
\(569\) 12.2803 + 7.89207i 0.514817 + 0.330853i 0.772119 0.635478i \(-0.219197\pi\)
−0.257302 + 0.966331i \(0.582833\pi\)
\(570\) −0.635498 4.41999i −0.0266181 0.185133i
\(571\) −28.6702 + 18.4252i −1.19981 + 0.771071i −0.978923 0.204229i \(-0.934531\pi\)
−0.220886 + 0.975300i \(0.570895\pi\)
\(572\) 11.9427 + 13.7826i 0.499351 + 0.576281i
\(573\) −0.711087 + 0.208794i −0.0297061 + 0.00872249i
\(574\) −1.62366 −0.0677701
\(575\) −1.91923 + 4.39506i −0.0800375 + 0.183287i
\(576\) 1.00000 0.0416667
\(577\) −30.0429 + 8.82139i −1.25070 + 0.367239i −0.839026 0.544091i \(-0.816875\pi\)
−0.411676 + 0.911330i \(0.635056\pi\)
\(578\) 1.64736 + 1.90115i 0.0685210 + 0.0790774i
\(579\) 1.42038 0.912826i 0.0590292 0.0379357i
\(580\) 0.564928 + 3.92916i 0.0234574 + 0.163150i
\(581\) 1.06916 + 0.687108i 0.0443562 + 0.0285060i
\(582\) −3.43285 + 7.51690i −0.142296 + 0.311585i
\(583\) −39.8423 + 45.9804i −1.65010 + 1.90431i
\(584\) 1.48878 10.3547i 0.0616060 0.428479i
\(585\) −1.37637 3.01382i −0.0569058 0.124606i
\(586\) −2.82238 0.828726i −0.116592 0.0342344i
\(587\) 23.4584 + 6.88800i 0.968231 + 0.284298i 0.727358 0.686258i \(-0.240748\pi\)
0.240873 + 0.970557i \(0.422566\pi\)
\(588\) −2.89610 6.34158i −0.119433 0.261522i
\(589\) −2.40192 + 16.7057i −0.0989695 + 0.688348i
\(590\) 2.39058 2.75887i 0.0984185 0.113581i
\(591\) −5.46447 + 11.9655i −0.224778 + 0.492196i
\(592\) −7.96188 5.11679i −0.327231 0.210299i
\(593\) −5.60505 38.9840i −0.230172 1.60088i −0.697359 0.716722i \(-0.745642\pi\)
0.467188 0.884158i \(-0.345267\pi\)
\(594\) 4.63052 2.97585i 0.189992 0.122101i
\(595\) −0.487653 0.562781i −0.0199918 0.0230718i
\(596\) −13.3751 + 3.92729i −0.547866 + 0.160868i
\(597\) 22.7739 0.932072
\(598\) 15.8875 0.264991i 0.649688 0.0108363i
\(599\) −1.52695 −0.0623895 −0.0311947 0.999513i \(-0.509931\pi\)
−0.0311947 + 0.999513i \(0.509931\pi\)
\(600\) 0.959493 0.281733i 0.0391711 0.0115017i
\(601\) −29.3034 33.8180i −1.19531 1.37946i −0.906570 0.422056i \(-0.861309\pi\)
−0.288742 0.957407i \(-0.593237\pi\)
\(602\) 1.54215 0.991082i 0.0628535 0.0403935i
\(603\) −1.94440 13.5236i −0.0791822 0.550724i
\(604\) 12.4610 + 8.00819i 0.507030 + 0.325849i
\(605\) −8.01642 + 17.5535i −0.325914 + 0.713652i
\(606\) −1.01784 + 1.17464i −0.0413467 + 0.0477167i
\(607\) −1.80190 + 12.5325i −0.0731367 + 0.508677i 0.920019 + 0.391875i \(0.128173\pi\)
−0.993155 + 0.116802i \(0.962736\pi\)
\(608\) −1.85501 4.06191i −0.0752306 0.164732i
\(609\) −0.642031 0.188517i −0.0260164 0.00763910i
\(610\) 4.81516 + 1.41386i 0.194960 + 0.0572454i
\(611\) −11.8595 25.9687i −0.479785 1.05058i
\(612\) 0.628696 4.37268i 0.0254135 0.176755i
\(613\) 7.64781 8.82604i 0.308892 0.356480i −0.579984 0.814628i \(-0.696941\pi\)
0.888876 + 0.458147i \(0.151487\pi\)
\(614\) −4.12629 + 9.03531i −0.166523 + 0.364635i
\(615\) −8.10308 5.20753i −0.326748 0.209988i
\(616\) −0.132045 0.918397i −0.00532026 0.0370033i
\(617\) −6.78990 + 4.36360i −0.273351 + 0.175672i −0.670133 0.742241i \(-0.733763\pi\)
0.396782 + 0.917913i \(0.370127\pi\)
\(618\) 12.5317 + 14.4624i 0.504100 + 0.581762i
\(619\) 24.2458 7.11921i 0.974521 0.286145i 0.244560 0.969634i \(-0.421357\pi\)
0.729961 + 0.683489i \(0.239538\pi\)
\(620\) −3.77959 −0.151792
\(621\) 0.603258 4.75774i 0.0242079 0.190921i
\(622\) 30.8716 1.23784
\(623\) −0.120863 + 0.0354885i −0.00484227 + 0.00142182i
\(624\) −2.16971 2.50398i −0.0868578 0.100239i
\(625\) 0.841254 0.540641i 0.0336501 0.0216256i
\(626\) 2.73006 + 18.9880i 0.109115 + 0.758914i
\(627\) −20.6773 13.2885i −0.825771 0.530691i
\(628\) −4.63133 + 10.1412i −0.184810 + 0.404677i
\(629\) −27.3797 + 31.5978i −1.09170 + 1.25989i
\(630\) −0.0239895 + 0.166851i −0.000955764 + 0.00664749i
\(631\) 6.34707 + 13.8982i 0.252673 + 0.553277i 0.992882 0.119100i \(-0.0380009\pi\)
−0.740209 + 0.672377i \(0.765274\pi\)
\(632\) 13.4673 + 3.95435i 0.535699 + 0.157295i
\(633\) 4.98982 + 1.46514i 0.198327 + 0.0582342i
\(634\) −8.76617 19.1952i −0.348149 0.762340i
\(635\) −2.76935 + 19.2613i −0.109898 + 0.764360i
\(636\) 7.23838 8.35354i 0.287020 0.331239i
\(637\) −9.59546 + 21.0111i −0.380186 + 0.832491i
\(638\) 18.3811 + 11.8128i 0.727716 + 0.467675i
\(639\) −1.34330 9.34284i −0.0531400 0.369597i
\(640\) 0.841254 0.540641i 0.0332535 0.0213707i
\(641\) −27.0138 31.1756i −1.06698 1.23136i −0.971777 0.235902i \(-0.924195\pi\)
−0.0952029 0.995458i \(-0.530350\pi\)
\(642\) −8.61012 + 2.52816i −0.339814 + 0.0997785i
\(643\) −17.0899 −0.673959 −0.336979 0.941512i \(-0.609405\pi\)
−0.336979 + 0.941512i \(0.609405\pi\)
\(644\) −0.687277 0.425660i −0.0270825 0.0167734i
\(645\) 10.8750 0.428203
\(646\) −18.9277 + 5.55766i −0.744698 + 0.218663i
\(647\) 2.47593 + 2.85737i 0.0973388 + 0.112335i 0.802329 0.596882i \(-0.203594\pi\)
−0.704990 + 0.709217i \(0.749049\pi\)
\(648\) −0.841254 + 0.540641i −0.0330476 + 0.0212384i
\(649\) −2.85961 19.8890i −0.112249 0.780712i
\(650\) −2.78727 1.79127i −0.109326 0.0702594i
\(651\) 0.264666 0.579537i 0.0103731 0.0227139i
\(652\) 5.85668 6.75897i 0.229365 0.264702i
\(653\) −5.55630 + 38.6449i −0.217435 + 1.51229i 0.530023 + 0.847983i \(0.322183\pi\)
−0.747458 + 0.664309i \(0.768726\pi\)
\(654\) 3.74594 + 8.20246i 0.146478 + 0.320742i
\(655\) −15.3915 4.51936i −0.601397 0.176586i
\(656\) −9.24198 2.71369i −0.360839 0.105952i
\(657\) 4.34571 + 9.51579i 0.169542 + 0.371246i
\(658\) −0.206706 + 1.43767i −0.00805825 + 0.0560464i
\(659\) 23.9926 27.6890i 0.934620 1.07861i −0.0621309 0.998068i \(-0.519790\pi\)
0.996751 0.0805414i \(-0.0256649\pi\)
\(660\) 2.28657 5.00689i 0.0890047 0.194893i
\(661\) −19.1101 12.2813i −0.743297 0.477688i 0.113373 0.993552i \(-0.463834\pi\)
−0.856670 + 0.515864i \(0.827471\pi\)
\(662\) −1.64610 11.4489i −0.0639776 0.444974i
\(663\) −12.3132 + 7.91319i −0.478204 + 0.307323i
\(664\) 4.93735 + 5.69801i 0.191606 + 0.221126i
\(665\) 0.722232 0.212066i 0.0280070 0.00822359i
\(666\) 9.46430 0.366734
\(667\) 18.1742 5.66733i 0.703709 0.219440i
\(668\) −14.3297 −0.554431
\(669\) −24.4831 + 7.18889i −0.946572 + 0.277939i
\(670\) −8.94715 10.3256i −0.345659 0.398911i
\(671\) 23.2380 14.9341i 0.897092 0.576526i
\(672\) 0.0239895 + 0.166851i 0.000925415 + 0.00643640i
\(673\) 23.7399 + 15.2567i 0.915107 + 0.588104i 0.911234 0.411889i \(-0.135131\pi\)
0.00387301 + 0.999992i \(0.498767\pi\)
\(674\) 1.23860 2.71215i 0.0477090 0.104468i
\(675\) −0.654861 + 0.755750i −0.0252056 + 0.0290888i
\(676\) 0.287829 2.00189i 0.0110703 0.0769959i
\(677\) 19.1308 + 41.8907i 0.735258 + 1.60999i 0.791201 + 0.611556i \(0.209456\pi\)
−0.0559435 + 0.998434i \(0.517817\pi\)
\(678\) 13.1368 + 3.85731i 0.504515 + 0.148139i
\(679\) −1.33655 0.392447i −0.0512921 0.0150607i
\(680\) −1.83516 4.01843i −0.0703750 0.154100i
\(681\) −0.433151 + 3.01263i −0.0165984 + 0.115444i
\(682\) −13.6237 + 15.7226i −0.521680 + 0.602051i
\(683\) −11.4163 + 24.9981i −0.436831 + 0.956526i 0.555338 + 0.831624i \(0.312589\pi\)
−0.992169 + 0.124902i \(0.960139\pi\)
\(684\) 3.75657 + 2.41420i 0.143636 + 0.0923092i
\(685\) −2.70197 18.7926i −0.103237 0.718029i
\(686\) 1.98127 1.27328i 0.0756452 0.0486142i
\(687\) 0.444472 + 0.512948i 0.0169577 + 0.0195702i
\(688\) 10.4345 3.06384i 0.397811 0.116808i
\(689\) −36.6222 −1.39520
\(690\) −2.06474 4.32861i −0.0786031 0.164787i
\(691\) 12.8509 0.488872 0.244436 0.969665i \(-0.421397\pi\)
0.244436 + 0.969665i \(0.421397\pi\)
\(692\) −9.59146 + 2.81631i −0.364613 + 0.107060i
\(693\) 0.607606 + 0.701215i 0.0230811 + 0.0266370i
\(694\) 0.365764 0.235062i 0.0138842 0.00892283i
\(695\) −0.0181676 0.126359i −0.000689138 0.00479306i
\(696\) −3.33941 2.14611i −0.126580 0.0813481i
\(697\) −17.6765 + 38.7061i −0.669545 + 1.46610i
\(698\) −3.16496 + 3.65255i −0.119795 + 0.138251i
\(699\) −0.802329 + 5.58032i −0.0303469 + 0.211067i
\(700\) 0.0700250 + 0.153333i 0.00264670 + 0.00579546i
\(701\) −26.4991 7.78085i −1.00086 0.293879i −0.260050 0.965595i \(-0.583739\pi\)
−0.740808 + 0.671716i \(0.765557\pi\)
\(702\) 3.17902 + 0.933446i 0.119985 + 0.0352306i
\(703\) −17.5564 38.4431i −0.662151 1.44991i
\(704\) 0.783344 5.44828i 0.0295234 0.205340i
\(705\) −5.64263 + 6.51194i −0.212514 + 0.245254i
\(706\) 6.78678 14.8610i 0.255424 0.559300i
\(707\) −0.220407 0.141647i −0.00828927 0.00532719i
\(708\) 0.519522 + 3.61336i 0.0195248 + 0.135798i
\(709\) 16.1549 10.3821i 0.606710 0.389909i −0.200912 0.979609i \(-0.564390\pi\)
0.807622 + 0.589700i \(0.200754\pi\)
\(710\) −6.18117 7.13346i −0.231975 0.267714i
\(711\) −13.4673 + 3.95435i −0.505062 + 0.148300i
\(712\) −0.747274 −0.0280053
\(713\) 2.87849 + 17.8963i 0.107800 + 0.670220i
\(714\) 0.744666 0.0278684
\(715\) −17.4983 + 5.13797i −0.654400 + 0.192149i
\(716\) −11.8113 13.6309i −0.441408 0.509412i
\(717\) −2.15772 + 1.38668i −0.0805816 + 0.0517866i
\(718\) 1.00707 + 7.00432i 0.0375835 + 0.261399i
\(719\) 9.37823 + 6.02702i 0.349749 + 0.224770i 0.703705 0.710492i \(-0.251528\pi\)
−0.353957 + 0.935262i \(0.615164\pi\)
\(720\) −0.415415 + 0.909632i −0.0154816 + 0.0339000i
\(721\) −2.11243 + 2.43787i −0.0786709 + 0.0907910i
\(722\) 0.133797 0.930576i 0.00497939 0.0346325i
\(723\) 2.39432 + 5.24284i 0.0890458 + 0.194983i
\(724\) 10.4049 + 3.05515i 0.386694 + 0.113544i
\(725\) −3.80877 1.11836i −0.141454 0.0415347i
\(726\) −8.01642 17.5535i −0.297517 0.651472i
\(727\) 1.80290 12.5394i 0.0668659 0.465062i −0.928687 0.370863i \(-0.879062\pi\)
0.995553 0.0941992i \(-0.0300291\pi\)
\(728\) 0.365740 0.422086i 0.0135552 0.0156435i
\(729\) 0.415415 0.909632i 0.0153857 0.0336901i
\(730\) 8.80047 + 5.65572i 0.325720 + 0.209328i
\(731\) −6.83708 47.5529i −0.252879 1.75881i
\(732\) −4.22178 + 2.71317i −0.156042 + 0.100282i
\(733\) 30.7624 + 35.5017i 1.13623 + 1.31128i 0.944004 + 0.329935i \(0.107027\pi\)
0.192231 + 0.981350i \(0.438428\pi\)
\(734\) −6.45256 + 1.89464i −0.238168 + 0.0699325i
\(735\) 6.97159 0.257151
\(736\) −3.20061 3.57157i −0.117976 0.131650i
\(737\) −75.2036 −2.77016
\(738\) 9.24198 2.71369i 0.340202 0.0998923i
\(739\) −22.2944 25.7291i −0.820111 0.946459i 0.179191 0.983814i \(-0.442652\pi\)
−0.999302 + 0.0373553i \(0.988107\pi\)
\(740\) 7.96188 5.11679i 0.292684 0.188097i
\(741\) −2.10555 14.6445i −0.0773495 0.537977i
\(742\) 1.56744 + 1.00733i 0.0575424 + 0.0369803i
\(743\) −10.5493 + 23.0998i −0.387017 + 0.847449i 0.611406 + 0.791317i \(0.290604\pi\)
−0.998423 + 0.0561323i \(0.982123\pi\)
\(744\) 2.47511 2.85642i 0.0907418 0.104722i
\(745\) 1.98384 13.7979i 0.0726821 0.505515i
\(746\) −6.77271 14.8302i −0.247967 0.542971i
\(747\) −7.23414 2.12413i −0.264683 0.0777180i
\(748\) −23.3311 6.85063i −0.853069 0.250484i
\(749\) −0.628377 1.37595i −0.0229604 0.0502763i
\(750\) −0.142315 + 0.989821i −0.00519660 + 0.0361432i
\(751\) −27.9995 + 32.3131i −1.02171 + 1.17912i −0.0380196 + 0.999277i \(0.512105\pi\)
−0.983695 + 0.179845i \(0.942441\pi\)
\(752\) −3.57944 + 7.83788i −0.130529 + 0.285818i
\(753\) −13.8165 8.87934i −0.503502 0.323581i
\(754\) 1.87174 + 13.0182i 0.0681647 + 0.474096i
\(755\) −12.4610 + 8.00819i −0.453502 + 0.291448i
\(756\) −0.110387 0.127394i −0.00401475 0.00463327i
\(757\) 26.0228 7.64097i 0.945813 0.277716i 0.227771 0.973715i \(-0.426856\pi\)
0.718043 + 0.695999i \(0.245038\pi\)
\(758\) 9.56134 0.347283
\(759\) −25.4489 7.01366i −0.923738 0.254580i
\(760\) 4.46544 0.161978
\(761\) −9.45785 + 2.77708i −0.342847 + 0.100669i −0.448623 0.893721i \(-0.648085\pi\)
0.105776 + 0.994390i \(0.466267\pi\)
\(762\) −12.7432 14.7064i −0.461636 0.532756i
\(763\) −1.27872 + 0.821785i −0.0462929 + 0.0297506i
\(764\) −0.105471 0.733564i −0.00381579 0.0265394i
\(765\) 3.71636 + 2.38836i 0.134365 + 0.0863513i
\(766\) −8.09344 + 17.7222i −0.292428 + 0.640328i
\(767\) 7.92055 9.14080i 0.285994 0.330055i
\(768\) −0.142315 + 0.989821i −0.00513534 + 0.0357171i
\(769\) 16.4501 + 36.0207i 0.593207 + 1.29894i 0.933485 + 0.358617i \(0.116751\pi\)
−0.340278 + 0.940325i \(0.610521\pi\)
\(770\) 0.890257 + 0.261403i 0.0320826 + 0.00942031i
\(771\) −10.2169 2.99997i −0.367954 0.108041i
\(772\) 0.701393 + 1.53584i 0.0252437 + 0.0552759i
\(773\) −6.89427 + 47.9507i −0.247970