Properties

Label 690.2.m.g.331.2
Level $690$
Weight $2$
Character 690.331
Analytic conductor $5.510$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 331.2
Character \(\chi\) \(=\) 690.331
Dual form 690.2.m.g.271.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.959493 + 0.281733i) q^{2} +(-0.654861 - 0.755750i) q^{3} +(0.841254 - 0.540641i) q^{4} +(-0.142315 - 0.989821i) q^{5} +(0.841254 + 0.540641i) q^{6} +(-0.117211 + 0.256656i) q^{7} +(-0.654861 + 0.755750i) q^{8} +(-0.142315 + 0.989821i) q^{9} +O(q^{10})\) \(q+(-0.959493 + 0.281733i) q^{2} +(-0.654861 - 0.755750i) q^{3} +(0.841254 - 0.540641i) q^{4} +(-0.142315 - 0.989821i) q^{5} +(0.841254 + 0.540641i) q^{6} +(-0.117211 + 0.256656i) q^{7} +(-0.654861 + 0.755750i) q^{8} +(-0.142315 + 0.989821i) q^{9} +(0.415415 + 0.909632i) q^{10} +(-1.39757 - 0.410362i) q^{11} +(-0.959493 - 0.281733i) q^{12} +(2.84180 + 6.22268i) q^{13} +(0.0401546 - 0.279282i) q^{14} +(-0.654861 + 0.755750i) q^{15} +(0.415415 - 0.909632i) q^{16} +(3.16135 + 2.03168i) q^{17} +(-0.142315 - 0.989821i) q^{18} +(2.46452 - 1.58385i) q^{19} +(-0.654861 - 0.755750i) q^{20} +(0.270724 - 0.0794918i) q^{21} +1.45657 q^{22} +(1.94865 - 4.38210i) q^{23} +1.00000 q^{24} +(-0.959493 + 0.281733i) q^{25} +(-4.47982 - 5.16999i) q^{26} +(0.841254 - 0.540641i) q^{27} +(0.0401546 + 0.279282i) q^{28} +(-0.776666 - 0.499133i) q^{29} +(0.415415 - 0.909632i) q^{30} +(2.55288 - 2.94618i) q^{31} +(-0.142315 + 0.989821i) q^{32} +(0.605080 + 1.32494i) q^{33} +(-3.60568 - 1.05872i) q^{34} +(0.270724 + 0.0794918i) q^{35} +(0.415415 + 0.909632i) q^{36} +(-0.362593 + 2.52189i) q^{37} +(-1.91846 + 2.21403i) q^{38} +(2.84180 - 6.22268i) q^{39} +(0.841254 + 0.540641i) q^{40} +(-1.56584 - 10.8906i) q^{41} +(-0.237363 + 0.152544i) q^{42} +(2.09148 + 2.41370i) q^{43} +(-1.39757 + 0.410362i) q^{44} +1.00000 q^{45} +(-0.635134 + 4.75359i) q^{46} +10.9883 q^{47} +(-0.959493 + 0.281733i) q^{48} +(4.53189 + 5.23008i) q^{49} +(0.841254 - 0.540641i) q^{50} +(-0.534805 - 3.71965i) q^{51} +(5.75491 + 3.69846i) q^{52} +(-0.896767 + 1.96365i) q^{53} +(-0.654861 + 0.755750i) q^{54} +(-0.207291 + 1.44174i) q^{55} +(-0.117211 - 0.256656i) q^{56} +(-2.81091 - 0.825357i) q^{57} +(0.885828 + 0.260102i) q^{58} +(-1.09762 - 2.40345i) q^{59} +(-0.142315 + 0.989821i) q^{60} +(6.99617 - 8.07400i) q^{61} +(-1.61944 + 3.54607i) q^{62} +(-0.237363 - 0.152544i) q^{63} +(-0.142315 - 0.989821i) q^{64} +(5.75491 - 3.69846i) q^{65} +(-0.953848 - 1.10080i) q^{66} +(13.2343 - 3.88595i) q^{67} +3.75790 q^{68} +(-4.58786 + 1.39697i) q^{69} -0.282154 q^{70} +(-2.52713 + 0.742033i) q^{71} +(-0.654861 - 0.755750i) q^{72} +(-3.47667 + 2.23432i) q^{73} +(-0.362593 - 2.52189i) q^{74} +(0.841254 + 0.540641i) q^{75} +(1.21699 - 2.66484i) q^{76} +(0.269132 - 0.310595i) q^{77} +(-0.973558 + 6.77125i) q^{78} +(2.75667 + 6.03626i) q^{79} +(-0.959493 - 0.281733i) q^{80} +(-0.959493 - 0.281733i) q^{81} +(4.57066 + 10.0083i) q^{82} +(-0.722593 + 5.02574i) q^{83} +(0.184771 - 0.213237i) q^{84} +(1.56109 - 3.41831i) q^{85} +(-2.68678 - 1.72669i) q^{86} +(0.131389 + 0.913828i) q^{87} +(1.22534 - 0.787479i) q^{88} +(2.50730 + 2.89357i) q^{89} +(-0.959493 + 0.281733i) q^{90} -1.93018 q^{91} +(-0.729834 - 4.73997i) q^{92} -3.89836 q^{93} +(-10.5432 + 3.09575i) q^{94} +(-1.91846 - 2.21403i) q^{95} +(0.841254 - 0.540641i) q^{96} +(0.686509 + 4.77478i) q^{97} +(-5.82180 - 3.74144i) q^{98} +(0.605080 - 1.32494i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30q - 3q^{2} - 3q^{3} - 3q^{4} - 3q^{5} - 3q^{6} - 8q^{7} - 3q^{8} - 3q^{9} + O(q^{10}) \) \( 30q - 3q^{2} - 3q^{3} - 3q^{4} - 3q^{5} - 3q^{6} - 8q^{7} - 3q^{8} - 3q^{9} - 3q^{10} + 8q^{11} - 3q^{12} - 5q^{13} - 8q^{14} - 3q^{15} - 3q^{16} + 4q^{17} - 3q^{18} + 6q^{19} - 3q^{20} + 3q^{21} + 8q^{22} + q^{23} + 30q^{24} - 3q^{25} - 5q^{26} - 3q^{27} - 8q^{28} - 10q^{29} - 3q^{30} - 10q^{31} - 3q^{32} - 14q^{33} - 7q^{34} + 3q^{35} - 3q^{36} - 12q^{37} - 5q^{38} - 5q^{39} - 3q^{40} + 5q^{41} + 3q^{42} + 2q^{43} + 8q^{44} + 30q^{45} - 21q^{46} + 96q^{47} - 3q^{48} - 43q^{49} - 3q^{50} + 15q^{51} - 16q^{52} + 12q^{53} - 3q^{54} + 8q^{55} - 8q^{56} + 17q^{57} + q^{58} - 9q^{59} - 3q^{60} + q^{61} - 32q^{62} + 3q^{63} - 3q^{64} - 16q^{65} - 3q^{66} - 28q^{67} + 4q^{68} + 23q^{69} + 14q^{70} + 3q^{71} - 3q^{72} - 27q^{73} - 12q^{74} - 3q^{75} - 16q^{76} + 47q^{77} + 6q^{78} + 2q^{79} - 3q^{80} - 3q^{81} + 27q^{82} + 11q^{83} + 3q^{84} - 7q^{85} + 2q^{86} - 32q^{87} - 3q^{88} + 25q^{89} - 3q^{90} - 90q^{91} - 10q^{92} + 56q^{93} - 25q^{94} - 5q^{95} - 3q^{96} - 7q^{97} - 32q^{98} - 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.959493 + 0.281733i −0.678464 + 0.199215i
\(3\) −0.654861 0.755750i −0.378084 0.436332i
\(4\) 0.841254 0.540641i 0.420627 0.270320i
\(5\) −0.142315 0.989821i −0.0636451 0.442662i
\(6\) 0.841254 + 0.540641i 0.343440 + 0.220716i
\(7\) −0.117211 + 0.256656i −0.0443015 + 0.0970068i −0.930489 0.366321i \(-0.880617\pi\)
0.886187 + 0.463327i \(0.153345\pi\)
\(8\) −0.654861 + 0.755750i −0.231528 + 0.267198i
\(9\) −0.142315 + 0.989821i −0.0474383 + 0.329940i
\(10\) 0.415415 + 0.909632i 0.131366 + 0.287651i
\(11\) −1.39757 0.410362i −0.421382 0.123729i 0.0641654 0.997939i \(-0.479561\pi\)
−0.485547 + 0.874210i \(0.661380\pi\)
\(12\) −0.959493 0.281733i −0.276982 0.0813292i
\(13\) 2.84180 + 6.22268i 0.788175 + 1.72586i 0.681804 + 0.731535i \(0.261196\pi\)
0.106370 + 0.994327i \(0.466077\pi\)
\(14\) 0.0401546 0.279282i 0.0107318 0.0746412i
\(15\) −0.654861 + 0.755750i −0.169084 + 0.195134i
\(16\) 0.415415 0.909632i 0.103854 0.227408i
\(17\) 3.16135 + 2.03168i 0.766740 + 0.492754i 0.864609 0.502446i \(-0.167566\pi\)
−0.0978692 + 0.995199i \(0.531203\pi\)
\(18\) −0.142315 0.989821i −0.0335439 0.233303i
\(19\) 2.46452 1.58385i 0.565399 0.363360i −0.226501 0.974011i \(-0.572729\pi\)
0.791900 + 0.610651i \(0.209092\pi\)
\(20\) −0.654861 0.755750i −0.146431 0.168991i
\(21\) 0.270724 0.0794918i 0.0590769 0.0173465i
\(22\) 1.45657 0.310541
\(23\) 1.94865 4.38210i 0.406321 0.913730i
\(24\) 1.00000 0.204124
\(25\) −0.959493 + 0.281733i −0.191899 + 0.0563465i
\(26\) −4.47982 5.16999i −0.878565 1.01392i
\(27\) 0.841254 0.540641i 0.161899 0.104046i
\(28\) 0.0401546 + 0.279282i 0.00758851 + 0.0527793i
\(29\) −0.776666 0.499133i −0.144223 0.0926867i 0.466539 0.884500i \(-0.345501\pi\)
−0.610763 + 0.791814i \(0.709137\pi\)
\(30\) 0.415415 0.909632i 0.0758441 0.166075i
\(31\) 2.55288 2.94618i 0.458511 0.529150i −0.478669 0.877995i \(-0.658881\pi\)
0.937180 + 0.348845i \(0.113426\pi\)
\(32\) −0.142315 + 0.989821i −0.0251579 + 0.174977i
\(33\) 0.605080 + 1.32494i 0.105331 + 0.230642i
\(34\) −3.60568 1.05872i −0.618369 0.181570i
\(35\) 0.270724 + 0.0794918i 0.0457608 + 0.0134366i
\(36\) 0.415415 + 0.909632i 0.0692358 + 0.151605i
\(37\) −0.362593 + 2.52189i −0.0596099 + 0.414596i 0.938066 + 0.346457i \(0.112615\pi\)
−0.997676 + 0.0681393i \(0.978294\pi\)
\(38\) −1.91846 + 2.21403i −0.311216 + 0.359162i
\(39\) 2.84180 6.22268i 0.455053 0.996427i
\(40\) 0.841254 + 0.540641i 0.133014 + 0.0854828i
\(41\) −1.56584 10.8906i −0.244543 1.70083i −0.628768 0.777593i \(-0.716441\pi\)
0.384226 0.923239i \(-0.374468\pi\)
\(42\) −0.237363 + 0.152544i −0.0366259 + 0.0235380i
\(43\) 2.09148 + 2.41370i 0.318948 + 0.368086i 0.892472 0.451103i \(-0.148969\pi\)
−0.573524 + 0.819189i \(0.694424\pi\)
\(44\) −1.39757 + 0.410362i −0.210691 + 0.0618644i
\(45\) 1.00000 0.149071
\(46\) −0.635134 + 4.75359i −0.0936454 + 0.700878i
\(47\) 10.9883 1.60280 0.801401 0.598127i \(-0.204088\pi\)
0.801401 + 0.598127i \(0.204088\pi\)
\(48\) −0.959493 + 0.281733i −0.138491 + 0.0406646i
\(49\) 4.53189 + 5.23008i 0.647413 + 0.747154i
\(50\) 0.841254 0.540641i 0.118971 0.0764582i
\(51\) −0.534805 3.71965i −0.0748877 0.520855i
\(52\) 5.75491 + 3.69846i 0.798063 + 0.512884i
\(53\) −0.896767 + 1.96365i −0.123180 + 0.269727i −0.961169 0.275960i \(-0.911004\pi\)
0.837989 + 0.545688i \(0.183731\pi\)
\(54\) −0.654861 + 0.755750i −0.0891153 + 0.102844i
\(55\) −0.207291 + 1.44174i −0.0279511 + 0.194404i
\(56\) −0.117211 0.256656i −0.0156630 0.0342971i
\(57\) −2.81091 0.825357i −0.372314 0.109321i
\(58\) 0.885828 + 0.260102i 0.116315 + 0.0341531i
\(59\) −1.09762 2.40345i −0.142898 0.312903i 0.824628 0.565676i \(-0.191385\pi\)
−0.967526 + 0.252773i \(0.918657\pi\)
\(60\) −0.142315 + 0.989821i −0.0183728 + 0.127785i
\(61\) 6.99617 8.07400i 0.895767 1.03377i −0.103467 0.994633i \(-0.532994\pi\)
0.999234 0.0391375i \(-0.0124610\pi\)
\(62\) −1.61944 + 3.54607i −0.205669 + 0.450351i
\(63\) −0.237363 0.152544i −0.0299049 0.0192187i
\(64\) −0.142315 0.989821i −0.0177894 0.123728i
\(65\) 5.75491 3.69846i 0.713809 0.458737i
\(66\) −0.953848 1.10080i −0.117411 0.135499i
\(67\) 13.2343 3.88595i 1.61683 0.474744i 0.656666 0.754181i \(-0.271966\pi\)
0.960164 + 0.279437i \(0.0901479\pi\)
\(68\) 3.75790 0.455713
\(69\) −4.58786 + 1.39697i −0.552314 + 0.168176i
\(70\) −0.282154 −0.0337238
\(71\) −2.52713 + 0.742033i −0.299915 + 0.0880631i −0.428228 0.903671i \(-0.640862\pi\)
0.128313 + 0.991734i \(0.459044\pi\)
\(72\) −0.654861 0.755750i −0.0771761 0.0890659i
\(73\) −3.47667 + 2.23432i −0.406914 + 0.261507i −0.728048 0.685526i \(-0.759572\pi\)
0.321134 + 0.947034i \(0.395936\pi\)
\(74\) −0.362593 2.52189i −0.0421506 0.293164i
\(75\) 0.841254 + 0.540641i 0.0971396 + 0.0624278i
\(76\) 1.21699 2.66484i 0.139598 0.305678i
\(77\) 0.269132 0.310595i 0.0306704 0.0353955i
\(78\) −0.973558 + 6.77125i −0.110234 + 0.766693i
\(79\) 2.75667 + 6.03626i 0.310149 + 0.679132i 0.998950 0.0458187i \(-0.0145896\pi\)
−0.688800 + 0.724951i \(0.741862\pi\)
\(80\) −0.959493 0.281733i −0.107275 0.0314987i
\(81\) −0.959493 0.281733i −0.106610 0.0313036i
\(82\) 4.57066 + 10.0083i 0.504745 + 1.10524i
\(83\) −0.722593 + 5.02574i −0.0793149 + 0.551647i 0.910957 + 0.412501i \(0.135345\pi\)
−0.990272 + 0.139146i \(0.955564\pi\)
\(84\) 0.184771 0.213237i 0.0201602 0.0232661i
\(85\) 1.56109 3.41831i 0.169324 0.370768i
\(86\) −2.68678 1.72669i −0.289723 0.186194i
\(87\) 0.131389 + 0.913828i 0.0140863 + 0.0979726i
\(88\) 1.22534 0.787479i 0.130622 0.0839456i
\(89\) 2.50730 + 2.89357i 0.265773 + 0.306718i 0.872912 0.487877i \(-0.162229\pi\)
−0.607140 + 0.794595i \(0.707683\pi\)
\(90\) −0.959493 + 0.281733i −0.101139 + 0.0296972i
\(91\) −1.93018 −0.202338
\(92\) −0.729834 4.73997i −0.0760904 0.494176i
\(93\) −3.89836 −0.404241
\(94\) −10.5432 + 3.09575i −1.08744 + 0.319302i
\(95\) −1.91846 2.21403i −0.196830 0.227154i
\(96\) 0.841254 0.540641i 0.0858601 0.0551789i
\(97\) 0.686509 + 4.77478i 0.0697044 + 0.484805i 0.994533 + 0.104421i \(0.0332990\pi\)
−0.924829 + 0.380384i \(0.875792\pi\)
\(98\) −5.82180 3.74144i −0.588091 0.377943i
\(99\) 0.605080 1.32494i 0.0608128 0.133161i
\(100\) −0.654861 + 0.755750i −0.0654861 + 0.0755750i
\(101\) −0.482825 + 3.35812i −0.0480429 + 0.334146i 0.951598 + 0.307346i \(0.0994408\pi\)
−0.999641 + 0.0267999i \(0.991468\pi\)
\(102\) 1.56109 + 3.41831i 0.154571 + 0.338463i
\(103\) 7.15522 + 2.10096i 0.705025 + 0.207014i 0.614542 0.788884i \(-0.289341\pi\)
0.0904828 + 0.995898i \(0.471159\pi\)
\(104\) −6.56377 1.92730i −0.643631 0.188987i
\(105\) −0.117211 0.256656i −0.0114386 0.0250471i
\(106\) 0.307219 2.13675i 0.0298397 0.207540i
\(107\) 0.679994 0.784755i 0.0657375 0.0758652i −0.721928 0.691968i \(-0.756744\pi\)
0.787666 + 0.616103i \(0.211289\pi\)
\(108\) 0.415415 0.909632i 0.0399733 0.0875294i
\(109\) 9.59837 + 6.16850i 0.919358 + 0.590835i 0.912471 0.409141i \(-0.134172\pi\)
0.00688638 + 0.999976i \(0.497808\pi\)
\(110\) −0.207291 1.44174i −0.0197644 0.137465i
\(111\) 2.14337 1.37746i 0.203439 0.130742i
\(112\) 0.184771 + 0.213237i 0.0174592 + 0.0201490i
\(113\) −5.50858 + 1.61747i −0.518204 + 0.152158i −0.530368 0.847768i \(-0.677946\pi\)
0.0121639 + 0.999926i \(0.496128\pi\)
\(114\) 2.92958 0.274380
\(115\) −4.61481 1.30518i −0.430334 0.121708i
\(116\) −0.923225 −0.0857193
\(117\) −6.56377 + 1.92730i −0.606821 + 0.178179i
\(118\) 1.73029 + 1.99686i 0.159286 + 0.183826i
\(119\) −0.891986 + 0.573244i −0.0817682 + 0.0525492i
\(120\) −0.142315 0.989821i −0.0129915 0.0903579i
\(121\) −7.46900 4.80003i −0.679000 0.436367i
\(122\) −4.43806 + 9.71800i −0.401803 + 0.879826i
\(123\) −7.20519 + 8.31523i −0.649670 + 0.749759i
\(124\) 0.554794 3.85868i 0.0498220 0.346519i
\(125\) 0.415415 + 0.909632i 0.0371558 + 0.0813600i
\(126\) 0.270724 + 0.0794918i 0.0241180 + 0.00708170i
\(127\) −13.7715 4.04367i −1.22202 0.358817i −0.393787 0.919202i \(-0.628835\pi\)
−0.828233 + 0.560384i \(0.810653\pi\)
\(128\) 0.415415 + 0.909632i 0.0367178 + 0.0804009i
\(129\) 0.454523 3.16128i 0.0400185 0.278335i
\(130\) −4.47982 + 5.16999i −0.392906 + 0.453438i
\(131\) 0.0682194 0.149380i 0.00596036 0.0130514i −0.906628 0.421930i \(-0.861353\pi\)
0.912589 + 0.408879i \(0.134080\pi\)
\(132\) 1.22534 + 0.787479i 0.106652 + 0.0685413i
\(133\) 0.117636 + 0.818177i 0.0102003 + 0.0709449i
\(134\) −11.6034 + 7.45708i −1.00238 + 0.644194i
\(135\) −0.654861 0.755750i −0.0563614 0.0650446i
\(136\) −3.60568 + 1.05872i −0.309185 + 0.0907848i
\(137\) −20.6419 −1.76355 −0.881777 0.471667i \(-0.843652\pi\)
−0.881777 + 0.471667i \(0.843652\pi\)
\(138\) 4.00845 2.63294i 0.341222 0.224130i
\(139\) 9.96149 0.844923 0.422461 0.906381i \(-0.361166\pi\)
0.422461 + 0.906381i \(0.361166\pi\)
\(140\) 0.270724 0.0794918i 0.0228804 0.00671829i
\(141\) −7.19578 8.30437i −0.605994 0.699354i
\(142\) 2.21571 1.42395i 0.185938 0.119495i
\(143\) −1.41805 9.86277i −0.118584 0.824767i
\(144\) 0.841254 + 0.540641i 0.0701045 + 0.0450534i
\(145\) −0.383521 + 0.839795i −0.0318497 + 0.0697412i
\(146\) 2.70636 3.12331i 0.223980 0.258487i
\(147\) 0.984874 6.84995i 0.0812310 0.564974i
\(148\) 1.05840 + 2.31758i 0.0870003 + 0.190504i
\(149\) 19.0515 + 5.59401i 1.56076 + 0.458279i 0.944293 0.329105i \(-0.106747\pi\)
0.616463 + 0.787384i \(0.288565\pi\)
\(150\) −0.959493 0.281733i −0.0783423 0.0230034i
\(151\) −9.19350 20.1310i −0.748157 1.63823i −0.769650 0.638465i \(-0.779570\pi\)
0.0214939 0.999769i \(-0.493158\pi\)
\(152\) −0.416922 + 2.89976i −0.0338168 + 0.235201i
\(153\) −2.46090 + 2.84003i −0.198952 + 0.229603i
\(154\) −0.170725 + 0.373836i −0.0137574 + 0.0301246i
\(155\) −3.27951 2.10761i −0.263416 0.169287i
\(156\) −0.973558 6.77125i −0.0779471 0.542134i
\(157\) −15.1306 + 9.72386i −1.20755 + 0.776048i −0.980247 0.197775i \(-0.936629\pi\)
−0.227307 + 0.973823i \(0.572992\pi\)
\(158\) −4.34561 5.01511i −0.345719 0.398980i
\(159\) 2.07128 0.608183i 0.164263 0.0482321i
\(160\) 1.00000 0.0790569
\(161\) 0.896289 + 1.01376i 0.0706374 + 0.0798956i
\(162\) 1.00000 0.0785674
\(163\) −4.59445 + 1.34905i −0.359865 + 0.105666i −0.456667 0.889638i \(-0.650957\pi\)
0.0968016 + 0.995304i \(0.469139\pi\)
\(164\) −7.20519 8.31523i −0.562631 0.649311i
\(165\) 1.22534 0.787479i 0.0953927 0.0613052i
\(166\) −0.722593 5.02574i −0.0560841 0.390073i
\(167\) −7.12892 4.58148i −0.551653 0.354526i 0.234928 0.972013i \(-0.424514\pi\)
−0.786581 + 0.617487i \(0.788151\pi\)
\(168\) −0.117211 + 0.256656i −0.00904301 + 0.0198014i
\(169\) −22.1327 + 25.5425i −1.70252 + 1.96481i
\(170\) −0.534805 + 3.71965i −0.0410177 + 0.285284i
\(171\) 1.21699 + 2.66484i 0.0930655 + 0.203785i
\(172\) 3.06441 + 0.899793i 0.233659 + 0.0686086i
\(173\) 17.5778 + 5.16129i 1.33641 + 0.392406i 0.870388 0.492366i \(-0.163868\pi\)
0.466024 + 0.884772i \(0.345686\pi\)
\(174\) −0.383521 0.839795i −0.0290747 0.0636647i
\(175\) 0.0401546 0.279282i 0.00303541 0.0211117i
\(176\) −0.953848 + 1.10080i −0.0718990 + 0.0829759i
\(177\) −1.09762 + 2.40345i −0.0825021 + 0.180654i
\(178\) −3.22095 2.06998i −0.241420 0.155151i
\(179\) 0.157157 + 1.09305i 0.0117465 + 0.0816985i 0.994851 0.101344i \(-0.0323144\pi\)
−0.983105 + 0.183043i \(0.941405\pi\)
\(180\) 0.841254 0.540641i 0.0627033 0.0402970i
\(181\) −6.39736 7.38295i −0.475512 0.548770i 0.466424 0.884561i \(-0.345542\pi\)
−0.941937 + 0.335791i \(0.890997\pi\)
\(182\) 1.85199 0.543794i 0.137279 0.0403087i
\(183\) −10.6834 −0.789743
\(184\) 2.03568 + 4.34235i 0.150072 + 0.320122i
\(185\) 2.54782 0.187320
\(186\) 3.74045 1.09829i 0.274263 0.0805308i
\(187\) −3.58447 4.13670i −0.262122 0.302505i
\(188\) 9.24391 5.94070i 0.674182 0.433270i
\(189\) 0.0401546 + 0.279282i 0.00292082 + 0.0203148i
\(190\) 2.46452 + 1.58385i 0.178795 + 0.114904i
\(191\) −4.38511 + 9.60206i −0.317296 + 0.694780i −0.999332 0.0365375i \(-0.988367\pi\)
0.682037 + 0.731318i \(0.261094\pi\)
\(192\) −0.654861 + 0.755750i −0.0472605 + 0.0545415i
\(193\) −0.146114 + 1.01624i −0.0105175 + 0.0731509i −0.994404 0.105642i \(-0.966310\pi\)
0.983887 + 0.178793i \(0.0572193\pi\)
\(194\) −2.00391 4.38795i −0.143872 0.315037i
\(195\) −6.56377 1.92730i −0.470042 0.138017i
\(196\) 6.64006 + 1.94970i 0.474290 + 0.139264i
\(197\) 2.64771 + 5.79768i 0.188642 + 0.413067i 0.980196 0.198032i \(-0.0634549\pi\)
−0.791554 + 0.611099i \(0.790728\pi\)
\(198\) −0.207291 + 1.44174i −0.0147315 + 0.102460i
\(199\) −5.33218 + 6.15366i −0.377988 + 0.436222i −0.912586 0.408885i \(-0.865918\pi\)
0.534598 + 0.845107i \(0.320463\pi\)
\(200\) 0.415415 0.909632i 0.0293743 0.0643207i
\(201\) −11.6034 7.45708i −0.818444 0.525982i
\(202\) −0.482825 3.35812i −0.0339714 0.236277i
\(203\) 0.219139 0.140832i 0.0153805 0.00988448i
\(204\) −2.46090 2.84003i −0.172298 0.198842i
\(205\) −10.5569 + 3.09980i −0.737329 + 0.216499i
\(206\) −7.45729 −0.519574
\(207\) 4.06017 + 2.55245i 0.282201 + 0.177408i
\(208\) 6.84088 0.474330
\(209\) −4.09427 + 1.20219i −0.283207 + 0.0831570i
\(210\) 0.184771 + 0.213237i 0.0127504 + 0.0147148i
\(211\) 15.8791 10.2049i 1.09316 0.702532i 0.135601 0.990764i \(-0.456704\pi\)
0.957561 + 0.288231i \(0.0930672\pi\)
\(212\) 0.307219 + 2.13675i 0.0210999 + 0.146753i
\(213\) 2.21571 + 1.42395i 0.151818 + 0.0975675i
\(214\) −0.431359 + 0.944544i −0.0294871 + 0.0645677i
\(215\) 2.09148 2.41370i 0.142638 0.164613i
\(216\) −0.142315 + 0.989821i −0.00968330 + 0.0673488i
\(217\) 0.456930 + 1.00054i 0.0310184 + 0.0679208i
\(218\) −10.9474 3.21446i −0.741454 0.217711i
\(219\) 3.96532 + 1.16432i 0.267952 + 0.0786777i
\(220\) 0.605080 + 1.32494i 0.0407945 + 0.0893274i
\(221\) −3.65854 + 25.4457i −0.246100 + 1.71166i
\(222\) −1.66847 + 1.92552i −0.111980 + 0.129232i
\(223\) 8.46305 18.5315i 0.566728 1.24096i −0.381793 0.924248i \(-0.624693\pi\)
0.948521 0.316713i \(-0.102579\pi\)
\(224\) −0.237363 0.152544i −0.0158595 0.0101923i
\(225\) −0.142315 0.989821i −0.00948766 0.0659881i
\(226\) 4.82975 3.10389i 0.321270 0.206468i
\(227\) 4.85944 + 5.60809i 0.322532 + 0.372222i 0.893742 0.448582i \(-0.148071\pi\)
−0.571209 + 0.820805i \(0.693525\pi\)
\(228\) −2.81091 + 0.825357i −0.186157 + 0.0546606i
\(229\) −17.4880 −1.15564 −0.577818 0.816165i \(-0.696096\pi\)
−0.577818 + 0.816165i \(0.696096\pi\)
\(230\) 4.79559 0.0478368i 0.316212 0.00315426i
\(231\) −0.410976 −0.0270402
\(232\) 0.885828 0.260102i 0.0581574 0.0170766i
\(233\) 4.60286 + 5.31199i 0.301544 + 0.348000i 0.886218 0.463268i \(-0.153323\pi\)
−0.584675 + 0.811268i \(0.698778\pi\)
\(234\) 5.75491 3.69846i 0.376210 0.241776i
\(235\) −1.56379 10.8764i −0.102011 0.709499i
\(236\) −2.22278 1.42849i −0.144691 0.0929870i
\(237\) 2.75667 6.03626i 0.179065 0.392097i
\(238\) 0.694352 0.801325i 0.0450082 0.0519422i
\(239\) −0.748544 + 5.20624i −0.0484193 + 0.336764i 0.951185 + 0.308622i \(0.0998679\pi\)
−0.999604 + 0.0281413i \(0.991041\pi\)
\(240\) 0.415415 + 0.909632i 0.0268149 + 0.0587165i
\(241\) 18.6608 + 5.47930i 1.20205 + 0.352953i 0.820635 0.571453i \(-0.193620\pi\)
0.381411 + 0.924405i \(0.375438\pi\)
\(242\) 8.51878 + 2.50134i 0.547608 + 0.160792i
\(243\) 0.415415 + 0.909632i 0.0266489 + 0.0583529i
\(244\) 1.52041 10.5747i 0.0973344 0.676976i
\(245\) 4.53189 5.23008i 0.289532 0.334138i
\(246\) 4.57066 10.0083i 0.291414 0.638109i
\(247\) 16.8595 + 10.8349i 1.07274 + 0.689409i
\(248\) 0.554794 + 3.85868i 0.0352295 + 0.245026i
\(249\) 4.27140 2.74506i 0.270689 0.173961i
\(250\) −0.654861 0.755750i −0.0414170 0.0477978i
\(251\) −25.7570 + 7.56292i −1.62576 + 0.477368i −0.962560 0.271070i \(-0.912622\pi\)
−0.663205 + 0.748438i \(0.730804\pi\)
\(252\) −0.282154 −0.0177740
\(253\) −4.52161 + 5.32462i −0.284271 + 0.334756i
\(254\) 14.3529 0.900578
\(255\) −3.60568 + 1.05872i −0.225796 + 0.0662998i
\(256\) −0.654861 0.755750i −0.0409288 0.0472343i
\(257\) −0.667304 + 0.428850i −0.0416253 + 0.0267510i −0.561288 0.827621i \(-0.689694\pi\)
0.519663 + 0.854372i \(0.326058\pi\)
\(258\) 0.454523 + 3.16128i 0.0282974 + 0.196812i
\(259\) −0.604758 0.388655i −0.0375779 0.0241498i
\(260\) 2.84180 6.22268i 0.176241 0.385914i
\(261\) 0.604584 0.697727i 0.0374228 0.0431882i
\(262\) −0.0233709 + 0.162548i −0.00144386 + 0.0100423i
\(263\) −12.6066 27.6047i −0.777358 1.70218i −0.709738 0.704465i \(-0.751187\pi\)
−0.0676196 0.997711i \(-0.521540\pi\)
\(264\) −1.39757 0.410362i −0.0860142 0.0252561i
\(265\) 2.07128 + 0.608183i 0.127238 + 0.0373604i
\(266\) −0.343378 0.751893i −0.0210539 0.0461015i
\(267\) 0.544887 3.78977i 0.0333466 0.231930i
\(268\) 9.03252 10.4241i 0.551749 0.636752i
\(269\) −11.1841 + 24.4897i −0.681906 + 1.49317i 0.178705 + 0.983903i \(0.442809\pi\)
−0.860611 + 0.509263i \(0.829918\pi\)
\(270\) 0.841254 + 0.540641i 0.0511971 + 0.0329024i
\(271\) −3.72391 25.9004i −0.226211 1.57333i −0.713856 0.700292i \(-0.753053\pi\)
0.487645 0.873042i \(-0.337856\pi\)
\(272\) 3.16135 2.03168i 0.191685 0.123188i
\(273\) 1.26400 + 1.45873i 0.0765006 + 0.0882864i
\(274\) 19.8057 5.81549i 1.19651 0.351326i
\(275\) 1.45657 0.0878343
\(276\) −3.10429 + 3.65559i −0.186856 + 0.220041i
\(277\) 7.15030 0.429620 0.214810 0.976656i \(-0.431087\pi\)
0.214810 + 0.976656i \(0.431087\pi\)
\(278\) −9.55798 + 2.80648i −0.573250 + 0.168321i
\(279\) 2.55288 + 2.94618i 0.152837 + 0.176383i
\(280\) −0.237363 + 0.152544i −0.0141851 + 0.00911623i
\(281\) −2.54015 17.6671i −0.151532 1.05393i −0.913653 0.406496i \(-0.866751\pi\)
0.762120 0.647435i \(-0.224158\pi\)
\(282\) 9.24391 + 5.94070i 0.550467 + 0.353764i
\(283\) −3.27495 + 7.17113i −0.194675 + 0.426279i −0.981646 0.190710i \(-0.938921\pi\)
0.786971 + 0.616990i \(0.211648\pi\)
\(284\) −1.72479 + 1.99051i −0.102347 + 0.118115i
\(285\) −0.416922 + 2.89976i −0.0246963 + 0.171767i
\(286\) 4.13928 + 9.06375i 0.244761 + 0.535951i
\(287\) 2.97868 + 0.874619i 0.175826 + 0.0516271i
\(288\) −0.959493 0.281733i −0.0565387 0.0166013i
\(289\) −1.19564 2.61808i −0.0703315 0.154005i
\(290\) 0.131389 0.913828i 0.00771540 0.0536618i
\(291\) 3.15897 3.64564i 0.185182 0.213711i
\(292\) −1.71680 + 3.75926i −0.100468 + 0.219994i
\(293\) 24.9644 + 16.0437i 1.45844 + 0.937281i 0.998790 + 0.0491788i \(0.0156604\pi\)
0.459647 + 0.888102i \(0.347976\pi\)
\(294\) 0.984874 + 6.84995i 0.0574390 + 0.399497i
\(295\) −2.22278 + 1.42849i −0.129415 + 0.0831701i
\(296\) −1.66847 1.92552i −0.0969778 0.111918i
\(297\) −1.39757 + 0.410362i −0.0810950 + 0.0238116i
\(298\) −19.8558 −1.15021
\(299\) 32.8061 0.327246i 1.89722 0.0189251i
\(300\) 1.00000 0.0577350
\(301\) −0.864635 + 0.253880i −0.0498368 + 0.0146334i
\(302\) 14.4926 + 16.7254i 0.833958 + 0.962439i
\(303\) 2.85408 1.83421i 0.163963 0.105372i
\(304\) −0.416922 2.89976i −0.0239121 0.166312i
\(305\) −8.98748 5.77590i −0.514622 0.330727i
\(306\) 1.56109 3.41831i 0.0892415 0.195412i
\(307\) −11.7834 + 13.5988i −0.672514 + 0.776122i −0.984767 0.173877i \(-0.944371\pi\)
0.312254 + 0.949999i \(0.398916\pi\)
\(308\) 0.0584879 0.406792i 0.00333266 0.0231791i
\(309\) −3.09787 6.78339i −0.176232 0.385894i
\(310\) 3.74045 + 1.09829i 0.212443 + 0.0623789i
\(311\) 30.3197 + 8.90267i 1.71927 + 0.504824i 0.984782 0.173794i \(-0.0556028\pi\)
0.734491 + 0.678618i \(0.237421\pi\)
\(312\) 2.84180 + 6.22268i 0.160885 + 0.352290i
\(313\) −0.417265 + 2.90214i −0.0235852 + 0.164039i −0.998210 0.0598060i \(-0.980952\pi\)
0.974625 + 0.223845i \(0.0718609\pi\)
\(314\) 11.7782 13.5928i 0.664682 0.767084i
\(315\) −0.117211 + 0.256656i −0.00660408 + 0.0144609i
\(316\) 5.58251 + 3.58766i 0.314040 + 0.201822i
\(317\) 1.34567 + 9.35936i 0.0755805 + 0.525674i 0.992077 + 0.125631i \(0.0400956\pi\)
−0.916497 + 0.400043i \(0.868995\pi\)
\(318\) −1.81603 + 1.16709i −0.101838 + 0.0654474i
\(319\) 0.880616 + 1.01629i 0.0493050 + 0.0569011i
\(320\) −0.959493 + 0.281733i −0.0536373 + 0.0157493i
\(321\) −1.03838 −0.0579567
\(322\) −1.14559 0.720183i −0.0638414 0.0401342i
\(323\) 11.0091 0.612560
\(324\) −0.959493 + 0.281733i −0.0533052 + 0.0156518i
\(325\) −4.47982 5.16999i −0.248496 0.286779i
\(326\) 4.02827 2.58881i 0.223105 0.143381i
\(327\) −1.62376 11.2935i −0.0897940 0.624531i
\(328\) 9.25600 + 5.94847i 0.511077 + 0.328449i
\(329\) −1.28794 + 2.82020i −0.0710066 + 0.155483i
\(330\) −0.953848 + 1.10080i −0.0525076 + 0.0605970i
\(331\) −2.58079 + 17.9498i −0.141853 + 0.986610i 0.787209 + 0.616686i \(0.211525\pi\)
−0.929062 + 0.369924i \(0.879384\pi\)
\(332\) 2.10924 + 4.61859i 0.115760 + 0.253478i
\(333\) −2.44462 0.717805i −0.133964 0.0393355i
\(334\) 8.13091 + 2.38745i 0.444903 + 0.130635i
\(335\) −5.72984 12.5466i −0.313054 0.685494i
\(336\) 0.0401546 0.279282i 0.00219062 0.0152361i
\(337\) 11.5503 13.3298i 0.629185 0.726118i −0.348239 0.937406i \(-0.613220\pi\)
0.977424 + 0.211288i \(0.0677657\pi\)
\(338\) 14.0400 30.7434i 0.763677 1.67222i
\(339\) 4.82975 + 3.10389i 0.262316 + 0.168580i
\(340\) −0.534805 3.71965i −0.0290039 0.201726i
\(341\) −4.77682 + 3.06988i −0.258679 + 0.166243i
\(342\) −1.91846 2.21403i −0.103739 0.119721i
\(343\) −3.76859 + 1.10656i −0.203485 + 0.0597485i
\(344\) −3.19378 −0.172197
\(345\) 2.03568 + 4.34235i 0.109597 + 0.233784i
\(346\) −18.3198 −0.984880
\(347\) −5.97284 + 1.75378i −0.320639 + 0.0941480i −0.438091 0.898930i \(-0.644345\pi\)
0.117453 + 0.993078i \(0.462527\pi\)
\(348\) 0.604584 + 0.697727i 0.0324091 + 0.0374021i
\(349\) −5.54950 + 3.56645i −0.297058 + 0.190908i −0.680677 0.732584i \(-0.738314\pi\)
0.383619 + 0.923492i \(0.374678\pi\)
\(350\) 0.0401546 + 0.279282i 0.00214636 + 0.0149282i
\(351\) 5.75491 + 3.69846i 0.307175 + 0.197409i
\(352\) 0.605080 1.32494i 0.0322509 0.0706195i
\(353\) 15.4227 17.7987i 0.820866 0.947330i −0.178463 0.983947i \(-0.557113\pi\)
0.999329 + 0.0366164i \(0.0116580\pi\)
\(354\) 0.376027 2.61533i 0.0199856 0.139003i
\(355\) 1.09413 + 2.39581i 0.0580703 + 0.127156i
\(356\) 3.67365 + 1.07868i 0.194703 + 0.0571700i
\(357\) 1.01736 + 0.298723i 0.0538442 + 0.0158101i
\(358\) −0.458739 1.00450i −0.0242451 0.0530894i
\(359\) −2.54832 + 17.7239i −0.134495 + 0.935433i 0.805099 + 0.593141i \(0.202112\pi\)
−0.939594 + 0.342292i \(0.888797\pi\)
\(360\) −0.654861 + 0.755750i −0.0345142 + 0.0398315i
\(361\) −4.32762 + 9.47617i −0.227770 + 0.498746i
\(362\) 8.21824 + 5.28154i 0.431941 + 0.277592i
\(363\) 1.26353 + 8.78804i 0.0663181 + 0.461253i
\(364\) −1.62377 + 1.04353i −0.0851086 + 0.0546960i
\(365\) 2.70636 + 3.12331i 0.141657 + 0.163481i
\(366\) 10.2507 3.00987i 0.535812 0.157329i
\(367\) −19.6644 −1.02647 −0.513237 0.858247i \(-0.671554\pi\)
−0.513237 + 0.858247i \(0.671554\pi\)
\(368\) −3.17660 3.59294i −0.165592 0.187295i
\(369\) 11.0026 0.572774
\(370\) −2.44462 + 0.717805i −0.127090 + 0.0373169i
\(371\) −0.398870 0.460321i −0.0207083 0.0238987i
\(372\) −3.27951 + 2.10761i −0.170035 + 0.109275i
\(373\) −2.99771 20.8495i −0.155215 1.07955i −0.907301 0.420482i \(-0.861861\pi\)
0.752086 0.659065i \(-0.229048\pi\)
\(374\) 4.60471 + 2.95927i 0.238104 + 0.153020i
\(375\) 0.415415 0.909632i 0.0214519 0.0469732i
\(376\) −7.19578 + 8.30437i −0.371094 + 0.428265i
\(377\) 0.898813 6.25138i 0.0462912 0.321963i
\(378\) −0.117211 0.256656i −0.00602867 0.0132010i
\(379\) 13.2968 + 3.90430i 0.683013 + 0.200551i 0.604790 0.796385i \(-0.293257\pi\)
0.0782231 + 0.996936i \(0.475075\pi\)
\(380\) −2.81091 0.825357i −0.144196 0.0423399i
\(381\) 5.96239 + 13.0558i 0.305463 + 0.668870i
\(382\) 1.50227 10.4485i 0.0768630 0.534594i
\(383\) −5.20951 + 6.01210i −0.266194 + 0.307204i −0.873072 0.487591i \(-0.837876\pi\)
0.606879 + 0.794794i \(0.292421\pi\)
\(384\) 0.415415 0.909632i 0.0211991 0.0464195i
\(385\) −0.345735 0.222190i −0.0176203 0.0113239i
\(386\) −0.146114 1.01624i −0.00743700 0.0517255i
\(387\) −2.68678 + 1.72669i −0.136577 + 0.0877726i
\(388\) 3.15897 + 3.64564i 0.160372 + 0.185079i
\(389\) 19.4781 5.71928i 0.987578 0.289979i 0.252229 0.967668i \(-0.418836\pi\)
0.735349 + 0.677689i \(0.237018\pi\)
\(390\) 6.84088 0.346401
\(391\) 15.0634 9.89432i 0.761786 0.500377i
\(392\) −6.92039 −0.349532
\(393\) −0.157568 + 0.0462661i −0.00794825 + 0.00233382i
\(394\) −4.17385 4.81688i −0.210276 0.242671i
\(395\) 5.58251 3.58766i 0.280886 0.180515i
\(396\) −0.207291 1.44174i −0.0104168 0.0724502i
\(397\) −28.9534 18.6073i −1.45313 0.933871i −0.999080 0.0428962i \(-0.986342\pi\)
−0.454052 0.890975i \(-0.650022\pi\)
\(398\) 3.38250 7.40665i 0.169550 0.371262i
\(399\) 0.541301 0.624695i 0.0270990 0.0312739i
\(400\) −0.142315 + 0.989821i −0.00711574 + 0.0494911i
\(401\) 9.48035 + 20.7591i 0.473426 + 1.03666i 0.984219 + 0.176955i \(0.0566246\pi\)
−0.510793 + 0.859704i \(0.670648\pi\)
\(402\) 13.2343 + 3.88595i 0.660068 + 0.193814i
\(403\) 25.5879 + 7.51330i 1.27463 + 0.374264i
\(404\) 1.40936 + 3.08607i 0.0701182 + 0.153538i
\(405\) −0.142315 + 0.989821i −0.00707168 + 0.0491846i
\(406\) −0.170585 + 0.196866i −0.00846601 + 0.00977030i
\(407\) 1.54164 3.37571i 0.0764161 0.167328i
\(408\) 3.16135 + 2.03168i 0.156510 + 0.100583i
\(409\) −3.83749 26.6903i −0.189752 1.31975i −0.832650 0.553800i \(-0.813177\pi\)
0.642898 0.765952i \(-0.277732\pi\)
\(410\) 9.25600 5.94847i 0.457121 0.293774i
\(411\) 13.5175 + 15.6001i 0.666771 + 0.769495i
\(412\) 7.15522 2.10096i 0.352512 0.103507i
\(413\) 0.745512 0.0366843
\(414\) −4.61481 1.30518i −0.226806 0.0641459i
\(415\) 5.07743 0.249241
\(416\) −6.56377 + 1.92730i −0.321816 + 0.0944936i
\(417\) −6.52339 7.52839i −0.319452 0.368667i
\(418\) 3.58973 2.30698i 0.175579 0.112838i
\(419\) −2.61432 18.1830i −0.127718 0.888297i −0.948437 0.316965i \(-0.897336\pi\)
0.820719 0.571332i \(-0.193573\pi\)
\(420\) −0.237363 0.152544i −0.0115821 0.00744337i
\(421\) 10.6849 23.3966i 0.520749 1.14028i −0.448406 0.893830i \(-0.648008\pi\)
0.969155 0.246451i \(-0.0792645\pi\)
\(422\) −12.3608 + 14.2652i −0.601716 + 0.694417i
\(423\) −1.56379 + 10.8764i −0.0760342 + 0.528829i
\(424\) −0.896767 1.96365i −0.0435508 0.0953630i
\(425\) −3.60568 1.05872i −0.174901 0.0513556i
\(426\) −2.52713 0.742033i −0.122440 0.0359516i
\(427\) 1.25221 + 2.74197i 0.0605989 + 0.132693i
\(428\) 0.147777 1.02781i 0.00714307 0.0496811i
\(429\) −6.52516 + 7.53044i −0.315038 + 0.363573i
\(430\) −1.32675 + 2.90517i −0.0639814 + 0.140100i
\(431\) −9.30161 5.97778i −0.448043 0.287940i 0.297098 0.954847i \(-0.403981\pi\)
−0.745141 + 0.666907i \(0.767618\pi\)
\(432\) −0.142315 0.989821i −0.00684713 0.0476228i
\(433\) −32.1362 + 20.6527i −1.54437 + 0.992504i −0.557646 + 0.830079i \(0.688295\pi\)
−0.986721 + 0.162426i \(0.948068\pi\)
\(434\) −0.720305 0.831276i −0.0345757 0.0399025i
\(435\) 0.885828 0.260102i 0.0424722 0.0124710i
\(436\) 11.4096 0.546421
\(437\) −2.13810 13.8861i −0.102279 0.664263i
\(438\) −4.13273 −0.197469
\(439\) −20.9948 + 6.16464i −1.00203 + 0.294222i −0.741288 0.671187i \(-0.765785\pi\)
−0.260740 + 0.965409i \(0.583967\pi\)
\(440\) −0.953848 1.10080i −0.0454729 0.0524786i
\(441\) −5.82180 + 3.74144i −0.277229 + 0.178164i
\(442\) −3.65854 25.4457i −0.174019 1.21033i
\(443\) 16.1353 + 10.3696i 0.766613 + 0.492672i 0.864566 0.502519i \(-0.167593\pi\)
−0.0979533 + 0.995191i \(0.531230\pi\)
\(444\) 1.05840 2.31758i 0.0502296 0.109988i
\(445\) 2.50730 2.89357i 0.118857 0.137169i
\(446\) −2.89931 + 20.1652i −0.137286 + 0.954848i
\(447\) −8.24838 18.0614i −0.390135 0.854276i
\(448\) 0.270724 + 0.0794918i 0.0127905 + 0.00375564i
\(449\) 21.5909 + 6.33967i 1.01894 + 0.299188i 0.748206 0.663467i \(-0.230916\pi\)
0.270734 + 0.962654i \(0.412734\pi\)
\(450\) 0.415415 + 0.909632i 0.0195829 + 0.0428805i
\(451\) −2.28075 + 15.8629i −0.107396 + 0.746957i
\(452\) −3.75965 + 4.33886i −0.176839 + 0.204083i
\(453\) −9.19350 + 20.1310i −0.431948 + 0.945835i
\(454\) −6.24258 4.01186i −0.292979 0.188286i
\(455\) 0.274693 + 1.91053i 0.0128778 + 0.0895671i
\(456\) 2.46452 1.58385i 0.115412 0.0741705i
\(457\) 10.6503 + 12.2911i 0.498201 + 0.574955i 0.948038 0.318156i \(-0.103063\pi\)
−0.449837 + 0.893111i \(0.648518\pi\)
\(458\) 16.7796 4.92693i 0.784058 0.230220i
\(459\) 3.75790 0.175404
\(460\) −4.58786 + 1.39697i −0.213910 + 0.0651342i
\(461\) −23.1320 −1.07737 −0.538683 0.842509i \(-0.681078\pi\)
−0.538683 + 0.842509i \(0.681078\pi\)
\(462\) 0.394328 0.115785i 0.0183458 0.00538681i
\(463\) −11.8052 13.6239i −0.548634 0.633157i 0.411930 0.911215i \(-0.364855\pi\)
−0.960564 + 0.278058i \(0.910309\pi\)
\(464\) −0.776666 + 0.499133i −0.0360558 + 0.0231717i
\(465\) 0.554794 + 3.85868i 0.0257280 + 0.178942i
\(466\) −5.91297 3.80004i −0.273913 0.176033i
\(467\) −12.1233 + 26.5462i −0.560998 + 1.22841i 0.390456 + 0.920622i \(0.372317\pi\)
−0.951454 + 0.307792i \(0.900410\pi\)
\(468\) −4.47982 + 5.16999i −0.207080 + 0.238983i
\(469\) −0.553855 + 3.85214i −0.0255746 + 0.177875i
\(470\) 4.56469 + 9.99527i 0.210553 + 0.461048i
\(471\) 17.2572 + 5.06719i 0.795172 + 0.233484i
\(472\) 2.53519 + 0.744400i 0.116692 + 0.0342638i
\(473\) −1.93249 4.23157i −0.0888562 0.194568i
\(474\) −0.944392 + 6.56839i −0.0433774 + 0.301696i
\(475\) −1.91846 + 2.21403i −0.0880252 + 0.101586i
\(476\) −0.440467 + 0.964488i −0.0201888 + 0.0442072i
\(477\) −1.81603 1.16709i −0.0831505 0.0534376i
\(478\) −0.748544 5.20624i −0.0342376 0.238128i
\(479\) 9.49229 6.10032i 0.433714 0.278731i −0.305513 0.952188i \(-0.598828\pi\)
0.739226 + 0.673457i \(0.235191\pi\)
\(480\) −0.654861 0.755750i −0.0298902 0.0344951i
\(481\) −16.7233 + 4.91042i −0.762519 + 0.223896i
\(482\) −19.4486 −0.885859
\(483\) 0.179205 1.34124i 0.00815413 0.0610286i
\(484\) −8.87841 −0.403564
\(485\) 4.62848 1.35904i 0.210168 0.0617110i
\(486\) −0.654861 0.755750i −0.0297051 0.0342815i
\(487\) 29.7797 19.1383i 1.34945 0.867238i 0.351820 0.936068i \(-0.385563\pi\)
0.997628 + 0.0688301i \(0.0219266\pi\)
\(488\) 1.52041 + 10.5747i 0.0688258 + 0.478694i
\(489\) 4.02827 + 2.58881i 0.182165 + 0.117070i
\(490\) −2.87483 + 6.29501i −0.129872 + 0.284379i
\(491\) −8.70307 + 10.0439i −0.392764 + 0.453274i −0.917349 0.398084i \(-0.869675\pi\)
0.524585 + 0.851358i \(0.324221\pi\)
\(492\) −1.56584 + 10.8906i −0.0705934 + 0.490988i
\(493\) −1.44124 3.15587i −0.0649100 0.142133i
\(494\) −19.2291 5.64616i −0.865157 0.254033i
\(495\) −1.39757 0.410362i −0.0628159 0.0184444i
\(496\) −1.61944 3.54607i −0.0727148 0.159223i
\(497\) 0.105760 0.735578i 0.00474399 0.0329952i
\(498\) −3.32501 + 3.83726i −0.148997 + 0.171952i
\(499\) 2.26974 4.97004i 0.101608 0.222489i −0.852000 0.523541i \(-0.824611\pi\)
0.953608 + 0.301052i \(0.0973378\pi\)
\(500\) 0.841254 + 0.540641i 0.0376220 + 0.0241782i
\(501\) 1.20600 + 8.38791i 0.0538801 + 0.374744i
\(502\) 22.5829 14.5131i 1.00792 0.647753i
\(503\) −22.6596 26.1506i −1.01034 1.16600i −0.986077 0.166291i \(-0.946821\pi\)
−0.0242653 0.999706i \(-0.507725\pi\)
\(504\) 0.270724 0.0794918i 0.0120590 0.00354085i
\(505\) 3.39265 0.150971
\(506\) 2.83833 6.38282i 0.126179 0.283751i
\(507\) 33.7976 1.50100
\(508\) −13.7715 + 4.04367i −0.611010 + 0.179409i
\(509\) −20.8599 24.0736i −0.924597 1.06704i −0.997567 0.0697076i \(-0.977793\pi\)
0.0729706 0.997334i \(-0.476752\pi\)
\(510\) 3.16135 2.03168i 0.139987 0.0899641i
\(511\) −0.165948 1.15419i −0.00734112 0.0510586i
\(512\) 0.841254 + 0.540641i 0.0371785 + 0.0238932i
\(513\) 1.21699 2.66484i 0.0537314 0.117655i
\(514\) 0.519453 0.599480i 0.0229121 0.0264419i
\(515\) 1.06128 7.38139i 0.0467657 0.325263i
\(516\) −1.32675 2.90517i −0.0584067 0.127893i
\(517\) −15.3568 4.50917i −0.675392 0.198313i
\(518\) 0.689758 + 0.202531i 0.0303062 + 0.00889871i
\(519\) −7.61033 16.6643i −0.334057 0.731482i
\(520\) −0.973558 + 6.77125i −0.0426934 + 0.296939i
\(521\) −18.3923 + 21.2259i −0.805782 + 0.929922i −0.998684 0.0512958i \(-0.983665\pi\)
0.192901 + 0.981218i \(0.438210\pi\)
\(522\) −0.383521 + 0.839795i −0.0167863 + 0.0367568i
\(523\) −5.84185 3.75433i −0.255446 0.164165i 0.406650 0.913584i \(-0.366697\pi\)
−0.662096 + 0.749419i \(0.730333\pi\)
\(524\) −0.0233709 0.162548i −0.00102096 0.00710096i
\(525\) −0.237363 + 0.152544i −0.0103594 + 0.00665755i
\(526\) 19.8731 + 22.9348i 0.866508 + 1.00000i
\(527\) 14.0562 4.12728i 0.612299 0.179787i
\(528\) 1.45657 0.0633889
\(529\) −15.4055 17.0783i −0.669806 0.742536i
\(530\) −2.15872 −0.0937690
\(531\) 2.53519 0.744400i 0.110018 0.0323042i
\(532\) 0.541301 + 0.624695i 0.0234684 + 0.0270840i
\(533\) 63.3192 40.6928i 2.74266 1.76260i
\(534\) 0.544887 + 3.78977i 0.0235796 + 0.164000i
\(535\) −0.873541 0.561391i −0.0377665 0.0242710i
\(536\) −5.72984 + 12.5466i −0.247491 + 0.541930i
\(537\) 0.723157 0.834568i 0.0312065 0.0360143i
\(538\) 3.83150 26.6487i 0.165188 1.14891i
\(539\) −4.18739 9.16910i −0.180364 0.394941i
\(540\) −0.959493 0.281733i −0.0412900 0.0121238i
\(541\) 18.9307 + 5.55855i 0.813894 + 0.238981i 0.662085 0.749429i \(-0.269672\pi\)
0.151809 + 0.988410i \(0.451490\pi\)
\(542\) 10.8700 + 23.8021i 0.466908 + 1.02239i
\(543\) −1.39028 + 9.66961i −0.0596626 + 0.414963i
\(544\) −2.46090 + 2.84003i −0.105510 + 0.121765i
\(545\) 4.73972 10.3785i 0.203027 0.444568i
\(546\) −1.62377 1.04353i −0.0694909 0.0446591i
\(547\) −3.86900 26.9095i −0.165426 1.15057i −0.888192 0.459473i \(-0.848038\pi\)
0.722765 0.691093i \(-0.242871\pi\)
\(548\) −17.3650 + 11.1598i −0.741798 + 0.476725i
\(549\) 6.99617 + 8.07400i 0.298589 + 0.344590i
\(550\) −1.39757 + 0.410362i −0.0595924 + 0.0174979i
\(551\) −2.70466 −0.115222
\(552\) 1.94865 4.38210i 0.0829399 0.186514i
\(553\) −1.87235 −0.0796206
\(554\) −6.86066 + 2.01447i −0.291481 + 0.0855867i
\(555\) −1.66847 1.92552i −0.0708226 0.0817336i
\(556\) 8.38014 5.38559i 0.355397 0.228400i
\(557\) −2.58240 17.9610i −0.109420 0.761030i −0.968468 0.249136i \(-0.919853\pi\)
0.859049 0.511894i \(-0.171056\pi\)
\(558\) −3.27951 2.10761i −0.138833 0.0892223i
\(559\) −9.07611 + 19.8739i −0.383878 + 0.840577i
\(560\) 0.184771 0.213237i 0.00780801 0.00901093i
\(561\) −0.778979 + 5.41792i −0.0328885 + 0.228745i
\(562\) 7.41465 + 16.2358i 0.312768 + 0.684867i
\(563\) −45.0754 13.2353i −1.89970 0.557803i −0.989691 0.143216i \(-0.954256\pi\)
−0.910010 0.414586i \(-0.863926\pi\)
\(564\) −10.5432 3.09575i −0.443947 0.130355i
\(565\) 2.38496 + 5.22232i 0.100336 + 0.219705i
\(566\) 1.12195 7.80331i 0.0471589 0.327998i
\(567\) 0.184771 0.213237i 0.00775967 0.00895513i
\(568\) 1.09413 2.39581i 0.0459086 0.100526i
\(569\) −6.21297 3.99284i −0.260461 0.167388i 0.403893 0.914806i \(-0.367657\pi\)
−0.664354 + 0.747418i \(0.731293\pi\)
\(570\) −0.416922 2.89976i −0.0174629 0.121457i
\(571\) 5.40551 3.47391i 0.226214 0.145379i −0.422625 0.906305i \(-0.638891\pi\)
0.648839 + 0.760926i \(0.275255\pi\)
\(572\) −6.52516 7.53044i −0.272831 0.314863i
\(573\) 10.1284 2.97396i 0.423120 0.124239i
\(574\) −3.10443 −0.129576
\(575\) −0.635134 + 4.75359i −0.0264869 + 0.198238i
\(576\) 1.00000 0.0416667
\(577\) 1.53711 0.451337i 0.0639909 0.0187894i −0.249580 0.968354i \(-0.580293\pi\)
0.313571 + 0.949565i \(0.398475\pi\)
\(578\) 1.88480 + 2.17518i 0.0783974 + 0.0904755i
\(579\) 0.863711 0.555073i 0.0358946 0.0230681i
\(580\) 0.131389 + 0.913828i 0.00545561 + 0.0379446i
\(581\) −1.20519 0.774529i −0.0499998 0.0321329i
\(582\) −2.00391 + 4.38795i −0.0830648 + 0.181886i
\(583\) 2.05910 2.37632i 0.0852790 0.0984173i
\(584\) 0.588148 4.09066i 0.0243378 0.169273i
\(585\) 2.84180 + 6.22268i 0.117494 + 0.257276i
\(586\) −28.4732 8.36049i −1.17622 0.345369i
\(587\) −9.22083 2.70748i −0.380584 0.111750i 0.0858441 0.996309i \(-0.472641\pi\)
−0.466428 + 0.884559i \(0.654459\pi\)
\(588\) −2.87483 6.29501i −0.118556 0.259602i
\(589\) 1.62531 11.3043i 0.0669698 0.465785i
\(590\) 1.73029 1.99686i 0.0712348 0.0822094i
\(591\) 2.64771 5.79768i 0.108912 0.238485i
\(592\) 2.14337 + 1.37746i 0.0880918 + 0.0566132i
\(593\) −0.904385 6.29013i −0.0371386 0.258305i 0.962790 0.270251i \(-0.0871065\pi\)
−0.999929 + 0.0119458i \(0.996197\pi\)
\(594\) 1.22534 0.787479i 0.0502764 0.0323107i
\(595\) 0.694352 + 0.801325i 0.0284657 + 0.0328511i
\(596\) 19.0515 5.59401i 0.780378 0.229140i
\(597\) 8.14246 0.333249
\(598\) −31.3850 + 9.55653i −1.28343 + 0.390795i
\(599\) −21.3664 −0.873008 −0.436504 0.899702i \(-0.643784\pi\)
−0.436504 + 0.899702i \(0.643784\pi\)
\(600\) −0.959493 + 0.281733i −0.0391711 + 0.0115017i
\(601\) −21.1358 24.3921i −0.862149 0.994973i −0.999990 0.00451841i \(-0.998562\pi\)
0.137841 0.990454i \(-0.455984\pi\)
\(602\) 0.758085 0.487192i 0.0308972 0.0198565i
\(603\) 1.96295 + 13.6526i 0.0799377 + 0.555979i
\(604\) −18.6177 11.9649i −0.757543 0.486843i
\(605\) −3.68823 + 8.07609i −0.149948 + 0.328340i
\(606\) −2.22172 + 2.56400i −0.0902510 + 0.104155i
\(607\) 1.61903 11.2606i 0.0657144 0.457054i −0.930222 0.366997i \(-0.880386\pi\)
0.995937 0.0900571i \(-0.0287049\pi\)
\(608\) 1.21699 + 2.66484i 0.0493554 + 0.108073i
\(609\) −0.249939 0.0733888i −0.0101281 0.00297387i
\(610\) 10.2507 + 3.00987i 0.415038 + 0.121866i
\(611\) 31.2265 + 68.3764i 1.26329 + 2.76621i
\(612\) −0.534805 + 3.71965i −0.0216182 + 0.150358i
\(613\) −28.9419 + 33.4007i −1.16895 + 1.34904i −0.243627 + 0.969869i \(0.578337\pi\)
−0.925325 + 0.379174i \(0.876208\pi\)
\(614\) 7.47487 16.3677i 0.301661 0.660546i
\(615\) 9.25600 + 5.94847i 0.373238 + 0.239865i
\(616\) 0.0584879 + 0.406792i 0.00235655 + 0.0163901i
\(617\) −20.9852 + 13.4864i −0.844832 + 0.542940i −0.889959 0.456041i \(-0.849267\pi\)
0.0451272 + 0.998981i \(0.485631\pi\)
\(618\) 4.88349 + 5.63585i 0.196443 + 0.226707i
\(619\) −8.49720 + 2.49500i −0.341531 + 0.100283i −0.448000 0.894033i \(-0.647864\pi\)
0.106469 + 0.994316i \(0.466045\pi\)
\(620\) −3.89836 −0.156562
\(621\) −0.729834 4.73997i −0.0292872 0.190209i
\(622\) −31.5997 −1.26703
\(623\) −1.03653 + 0.304354i −0.0415279 + 0.0121937i
\(624\) −4.47982 5.16999i −0.179336 0.206965i
\(625\) 0.841254 0.540641i 0.0336501 0.0216256i
\(626\) −0.417265 2.90214i −0.0166773 0.115993i
\(627\) 3.58973 + 2.30698i 0.143360 + 0.0921319i
\(628\) −7.47157 + 16.3605i −0.298148 + 0.652853i
\(629\) −6.26995 + 7.23590i −0.249999 + 0.288514i
\(630\) 0.0401546 0.279282i 0.00159980 0.0111268i
\(631\) −3.20001 7.00704i −0.127390 0.278946i 0.835181 0.549976i \(-0.185363\pi\)
−0.962571 + 0.271030i \(0.912636\pi\)
\(632\) −6.36713 1.86956i −0.253271 0.0743671i
\(633\) −18.1109 5.31785i −0.719844 0.211365i
\(634\) −3.92800 8.60112i −0.156001 0.341594i
\(635\) −2.04262 + 14.2068i −0.0810591 + 0.563778i
\(636\) 1.41366 1.63146i 0.0560554 0.0646914i
\(637\) −19.6664 + 43.0634i −0.779211 + 1.70623i
\(638\) −1.13127 0.727020i −0.0447872 0.0287830i
\(639\) −0.374832 2.60701i −0.0148281 0.103132i
\(640\) 0.841254 0.540641i 0.0332535 0.0213707i
\(641\) 20.5991 + 23.7727i 0.813616 + 0.938963i 0.999045 0.0436943i \(-0.0139128\pi\)
−0.185428 + 0.982658i \(0.559367\pi\)
\(642\) 0.996319 0.292546i 0.0393216 0.0115459i
\(643\) −9.43504 −0.372082 −0.186041 0.982542i \(-0.559566\pi\)
−0.186041 + 0.982542i \(0.559566\pi\)
\(644\) 1.30209 + 0.368260i 0.0513094 + 0.0145115i
\(645\) −3.19378 −0.125755
\(646\) −10.5631 + 3.10161i −0.415600 + 0.122031i
\(647\) −13.5963 15.6910i −0.534525 0.616875i 0.422682 0.906278i \(-0.361089\pi\)
−0.957207 + 0.289403i \(0.906543\pi\)
\(648\) 0.841254 0.540641i 0.0330476 0.0212384i
\(649\) 0.547709 + 3.80940i 0.0214995 + 0.149532i
\(650\) 5.75491 + 3.69846i 0.225726 + 0.145065i
\(651\) 0.456930 1.00054i 0.0179085 0.0392141i
\(652\) −3.13575 + 3.61885i −0.122805 + 0.141725i
\(653\) 0.327256 2.27611i 0.0128065 0.0890713i −0.982416 0.186706i \(-0.940219\pi\)
0.995222 + 0.0976351i \(0.0311278\pi\)
\(654\) 4.73972 + 10.3785i 0.185338 + 0.405833i
\(655\) −0.157568 0.0462661i −0.00615669 0.00180777i
\(656\) −10.5569 3.09980i −0.412179 0.121027i
\(657\) −1.71680 3.75926i −0.0669786 0.146663i
\(658\) 0.441230 3.06882i 0.0172009 0.119635i
\(659\) −13.0752 + 15.0896i −0.509338 + 0.587808i −0.950929 0.309409i \(-0.899869\pi\)
0.441591 + 0.897217i \(0.354414\pi\)
\(660\) 0.605080 1.32494i 0.0235527 0.0515732i
\(661\) 8.31494 + 5.34369i 0.323414 + 0.207845i 0.692266 0.721643i \(-0.256613\pi\)
−0.368852 + 0.929488i \(0.620249\pi\)
\(662\) −2.58079 17.9498i −0.100305 0.697639i
\(663\) 21.6264 13.8984i 0.839900 0.539771i
\(664\) −3.32501 3.83726i −0.129035 0.148915i
\(665\) 0.793107 0.232877i 0.0307554 0.00903060i
\(666\) 2.54782 0.0987262
\(667\) −3.70070 + 2.43079i −0.143292 + 0.0941206i
\(668\) −8.47417 −0.327875
\(669\) −19.5473 + 5.73960i −0.755742 + 0.221906i
\(670\) 9.03252 + 10.4241i 0.348957 + 0.402718i
\(671\) −13.0909 + 8.41299i −0.505367 + 0.324780i
\(672\) 0.0401546 + 0.279282i 0.00154900 + 0.0107735i
\(673\) 14.5768 + 9.36795i 0.561895 + 0.361108i 0.790548 0.612400i \(-0.209796\pi\)
−0.228653 + 0.973508i \(0.573432\pi\)
\(674\) −7.32700 + 16.0439i −0.282226 + 0.617988i
\(675\) −0.654861 + 0.755750i −0.0252056 + 0.0290888i
\(676\) −4.80990 + 33.4536i −0.184996 + 1.28668i
\(677\) −2.23128 4.88583i −0.0857552 0.187778i 0.861896 0.507085i \(-0.169277\pi\)
−0.947651 + 0.319307i \(0.896550\pi\)
\(678\) −5.50858 1.61747i −0.211556 0.0621184i
\(679\) −1.30594 0.383459i −0.0501174 0.0147158i
\(680\) 1.56109 + 3.41831i 0.0598650 + 0.131086i
\(681\) 1.05606 7.34504i 0.0404682 0.281463i
\(682\) 3.71844 4.29131i 0.142386 0.164323i
\(683\) −7.81598 + 17.1146i −0.299070 + 0.654873i −0.998190 0.0601315i \(-0.980848\pi\)
0.699120 + 0.715004i \(0.253575\pi\)
\(684\) 2.46452 + 1.58385i 0.0942331 + 0.0605599i
\(685\) 2.93764 + 20.4318i 0.112242 + 0.780657i
\(686\) 3.30418 2.12347i 0.126154 0.0810744i
\(687\) 11.4522 + 13.2165i 0.436928 + 0.504241i
\(688\) 3.06441 0.899793i 0.116830 0.0343043i
\(689\) −14.7676 −0.562600
\(690\) −3.17660 3.59294i −0.120931 0.136781i
\(691\) 6.65156 0.253037 0.126519 0.991964i \(-0.459620\pi\)
0.126519 + 0.991964i \(0.459620\pi\)
\(692\) 17.5778 5.16129i 0.668206 0.196203i
\(693\) 0.269132 + 0.310595i 0.0102235 + 0.0117985i
\(694\) 5.23680 3.36549i 0.198786 0.127752i
\(695\) −1.41767 9.86010i −0.0537752 0.374015i
\(696\) −0.776666 0.499133i −0.0294394 0.0189196i
\(697\) 17.1761 37.6104i 0.650591 1.42459i
\(698\) 4.31992 4.98546i 0.163511 0.188702i
\(699\) 1.00030 6.95722i 0.0378347 0.263146i
\(700\) −0.117211 0.256656i −0.00443015 0.00970068i
\(701\) −7.14922 2.09920i −0.270022 0.0792857i 0.143918 0.989590i \(-0.454030\pi\)
−0.413941 + 0.910304i \(0.635848\pi\)
\(702\) −6.56377 1.92730i −0.247734 0.0727412i
\(703\) 3.10067 + 6.78953i 0.116944 + 0.256072i
\(704\) −0.207291 + 1.44174i −0.00781258 + 0.0543377i
\(705\) −7.19578 + 8.30437i −0.271009 + 0.312761i
\(706\) −9.78347 + 21.4228i −0.368206 + 0.806258i
\(707\) −0.805289 0.517528i −0.0302860 0.0194636i
\(708\) 0.376027 + 2.61533i 0.0141320 + 0.0982901i
\(709\) 25.0073 16.0712i 0.939170 0.603568i 0.0210103 0.999779i \(-0.493312\pi\)
0.918159 + 0.396212i \(0.129675\pi\)
\(710\) −1.72479 1.99051i −0.0647300 0.0747024i
\(711\) −6.36713 + 1.86956i −0.238786 + 0.0701140i
\(712\) −3.82875 −0.143488
\(713\) −7.93579 16.9280i −0.297198 0.633960i
\(714\) −1.06031 −0.0396809
\(715\) −9.56058 + 2.80724i −0.357545 + 0.104985i
\(716\) 0.723157 + 0.834568i 0.0270257 + 0.0311893i
\(717\) 4.42480 2.84365i 0.165247 0.106198i
\(718\) −2.54832 17.7239i −0.0951023 0.661451i
\(719\) −5.47787 3.52041i −0.204290 0.131289i 0.434496 0.900674i \(-0.356927\pi\)
−0.638786 + 0.769385i \(0.720563\pi\)
\(720\) 0.415415 0.909632i 0.0154816 0.0339000i
\(721\) −1.37789 + 1.59017i −0.0513155 + 0.0592212i
\(722\) 1.48258 10.3116i 0.0551758 0.383756i
\(723\) −8.07923 17.6910i −0.300470 0.657937i
\(724\) −9.37333 2.75226i −0.348357 0.102287i
\(725\) 0.885828 + 0.260102i 0.0328988 + 0.00965996i
\(726\) −3.68823 8.07609i −0.136883 0.299732i
\(727\) 0.544460 3.78680i 0.0201929 0.140445i −0.977231 0.212179i \(-0.931944\pi\)
0.997424 + 0.0717339i \(0.0228532\pi\)
\(728\) 1.26400 1.45873i 0.0468469 0.0540642i
\(729\) 0.415415 0.909632i 0.0153857 0.0336901i
\(730\) −3.47667 2.23432i −0.128677 0.0826959i
\(731\) 1.70805 + 11.8798i 0.0631746 + 0.439389i
\(732\) −8.98748 + 5.77590i −0.332187 + 0.213484i
\(733\) 23.0417 + 26.5915i 0.851064 + 0.982181i 0.999978 0.00666962i \(-0.00212302\pi\)
−0.148913 + 0.988850i \(0.547578\pi\)
\(734\) 18.8679 5.54011i 0.696426 0.204489i
\(735\) −6.92039 −0.255262
\(736\) 4.06017 + 2.55245i 0.149660 + 0.0940846i
\(737\) −20.0905 −0.740042
\(738\) −10.5569 + 3.09980i −0.388607 + 0.114105i
\(739\) 11.5868 + 13.3718i 0.426226 + 0.491891i 0.927723 0.373268i \(-0.121763\pi\)
−0.501498 + 0.865159i \(0.667217\pi\)
\(740\) 2.14337 1.37746i 0.0787917 0.0506363i
\(741\) −2.85211 19.8369i −0.104775 0.728726i
\(742\) 0.512401 + 0.329300i 0.0188108 + 0.0120890i
\(743\) 4.17787 9.14826i 0.153271 0.335617i −0.817384 0.576093i \(-0.804576\pi\)
0.970655 + 0.240476i \(0.0773037\pi\)
\(744\) 2.55288 2.94618i 0.0935932 0.108012i
\(745\) 2.82577 19.6536i 0.103528 0.720054i
\(746\) 8.75027 + 19.1604i 0.320370 + 0.701512i
\(747\) −4.87175 1.43048i −0.178248 0.0523384i
\(748\) −5.25191 1.54210i −0.192029 0.0563848i
\(749\) 0.121709 + 0.266506i 0.00444717 + 0.00973793i
\(750\) −0.142315 + 0.989821i −0.00519660 + 0.0361432i
\(751\) 21.1717 24.4334i 0.772566 0.891589i −0.223983 0.974593i \(-0.571906\pi\)
0.996549 + 0.0830042i \(0.0264515\pi\)
\(752\) 4.56469 9.99527i 0.166457 0.364490i
\(753\) 22.5829 + 14.5131i 0.822966 + 0.528888i
\(754\) 0.898813 + 6.25138i 0.0327328 + 0.227662i
\(755\) −18.6177 + 11.9649i −0.677567 + 0.435446i
\(756\) 0.184771 + 0.213237i 0.00672007 + 0.00775537i
\(757\) 1.42967 0.419789i 0.0519622 0.0152575i −0.255648 0.966770i \(-0.582289\pi\)
0.307610 + 0.951512i \(0.400471\pi\)
\(758\) −13.8582 −0.503352
\(759\) 6.98510 0.0696775i 0.253543 0.00252913i
\(760\) 2.92958 0.106267
\(761\) 3.07157 0.901895i 0.111344 0.0326937i −0.225586 0.974223i \(-0.572430\pi\)
0.336930 + 0.941530i \(0.390611\pi\)
\(762\) −9.39912 10.8472i −0.340494 0.392951i
\(763\) −2.70822 + 1.74046i −0.0980440 + 0.0630090i
\(764\) 1.50227 + 10.4485i 0.0543503 + 0.378015i
\(765\) 3.16135 + 2.03168i 0.114299 + 0.0734554i
\(766\) 3.30469 7.23625i 0.119403 0.261456i
\(767\) 11.8367 13.6603i 0.427398 0.493244i
\(768\) −0.142315 + 0.989821i −0.00513534 + 0.0357171i
\(769\) 5.98946 + 13.1151i 0.215986 + 0.472943i 0.986350 0.164661i \(-0.0526530\pi\)
−0.770365 + 0.637604i \(0.779926\pi\)
\(770\) 0.394328 + 0.115785i 0.0142106 + 0.00417261i
\(771\) 0.761095 + 0.223478i 0.0274102 + 0.00804835i
\(772\) 0.426505 + 0.933915i 0.0153502 + 0.0336123i
\(773\) 3.79568 26.3995i 0.136521