Properties

Label 690.2.m.g.301.3
Level $690$
Weight $2$
Character 690.301
Analytic conductor $5.510$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 301.3
Character \(\chi\) \(=\) 690.301
Dual form 690.2.m.g.541.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.841254 + 0.540641i) q^{2} +(-0.142315 - 0.989821i) q^{3} +(0.415415 + 0.909632i) q^{4} +(-0.959493 - 0.281733i) q^{5} +(0.415415 - 0.909632i) q^{6} +(1.76004 - 2.03119i) q^{7} +(-0.142315 + 0.989821i) q^{8} +(-0.959493 + 0.281733i) q^{9} +O(q^{10})\) \(q+(0.841254 + 0.540641i) q^{2} +(-0.142315 - 0.989821i) q^{3} +(0.415415 + 0.909632i) q^{4} +(-0.959493 - 0.281733i) q^{5} +(0.415415 - 0.909632i) q^{6} +(1.76004 - 2.03119i) q^{7} +(-0.142315 + 0.989821i) q^{8} +(-0.959493 + 0.281733i) q^{9} +(-0.654861 - 0.755750i) q^{10} +(1.98022 - 1.27261i) q^{11} +(0.841254 - 0.540641i) q^{12} +(-1.36158 - 1.57134i) q^{13} +(2.57879 - 0.757200i) q^{14} +(-0.142315 + 0.989821i) q^{15} +(-0.654861 + 0.755750i) q^{16} +(1.96729 - 4.30776i) q^{17} +(-0.959493 - 0.281733i) q^{18} +(1.47474 + 3.22923i) q^{19} +(-0.142315 - 0.989821i) q^{20} +(-2.26100 - 1.45306i) q^{21} +2.35390 q^{22} +(-0.956931 - 4.69939i) q^{23} +1.00000 q^{24} +(0.841254 + 0.540641i) q^{25} +(-0.295899 - 2.05802i) q^{26} +(0.415415 + 0.909632i) q^{27} +(2.57879 + 0.757200i) q^{28} +(2.69293 - 5.89669i) q^{29} +(-0.654861 + 0.755750i) q^{30} +(-0.280522 + 1.95108i) q^{31} +(-0.959493 + 0.281733i) q^{32} +(-1.54147 - 1.77896i) q^{33} +(3.98394 - 2.56032i) q^{34} +(-2.26100 + 1.45306i) q^{35} +(-0.654861 - 0.755750i) q^{36} +(7.79797 - 2.28969i) q^{37} +(-0.505223 + 3.51390i) q^{38} +(-1.36158 + 1.57134i) q^{39} +(0.415415 - 0.909632i) q^{40} +(-0.914376 - 0.268485i) q^{41} +(-1.11649 - 2.44478i) q^{42} +(0.512153 + 3.56210i) q^{43} +(1.98022 + 1.27261i) q^{44} +1.00000 q^{45} +(1.73566 - 4.47074i) q^{46} -1.28736 q^{47} +(0.841254 + 0.540641i) q^{48} +(-0.0318055 - 0.221212i) q^{49} +(0.415415 + 0.909632i) q^{50} +(-4.54389 - 1.33421i) q^{51} +(0.863725 - 1.89129i) q^{52} +(-2.57228 + 2.96856i) q^{53} +(-0.142315 + 0.989821i) q^{54} +(-2.25855 + 0.663169i) q^{55} +(1.76004 + 2.03119i) q^{56} +(2.98648 - 1.91930i) q^{57} +(5.45343 - 3.50470i) q^{58} +(-0.927486 - 1.07038i) q^{59} +(-0.959493 + 0.281733i) q^{60} +(-0.359602 + 2.50109i) q^{61} +(-1.29082 + 1.48969i) q^{62} +(-1.11649 + 2.44478i) q^{63} +(-0.959493 - 0.281733i) q^{64} +(0.863725 + 1.89129i) q^{65} +(-0.334994 - 2.32994i) q^{66} +(-4.29809 - 2.76221i) q^{67} +4.73572 q^{68} +(-4.51537 + 1.61598i) q^{69} -2.68765 q^{70} +(0.461255 + 0.296431i) q^{71} +(-0.142315 - 0.989821i) q^{72} +(3.91085 + 8.56356i) q^{73} +(7.79797 + 2.28969i) q^{74} +(0.415415 - 0.909632i) q^{75} +(-2.32478 + 2.68294i) q^{76} +(0.900349 - 6.26206i) q^{77} +(-1.99496 + 0.585774i) q^{78} +(0.555315 + 0.640868i) q^{79} +(0.841254 - 0.540641i) q^{80} +(0.841254 - 0.540641i) q^{81} +(-0.624068 - 0.720213i) q^{82} +(-6.18083 + 1.81486i) q^{83} +(0.382493 - 2.66030i) q^{84} +(-3.10124 + 3.57902i) q^{85} +(-1.49497 + 3.27352i) q^{86} +(-6.21991 - 1.82633i) q^{87} +(0.977844 + 2.14118i) q^{88} +(1.65288 + 11.4960i) q^{89} +(0.841254 + 0.540641i) q^{90} -5.58813 q^{91} +(3.87719 - 2.82265i) q^{92} +1.97114 q^{93} +(-1.08299 - 0.695998i) q^{94} +(-0.505223 - 3.51390i) q^{95} +(0.415415 + 0.909632i) q^{96} +(2.77124 + 0.813708i) q^{97} +(0.0928397 - 0.203291i) q^{98} +(-1.54147 + 1.77896i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30q - 3q^{2} - 3q^{3} - 3q^{4} - 3q^{5} - 3q^{6} - 8q^{7} - 3q^{8} - 3q^{9} + O(q^{10}) \) \( 30q - 3q^{2} - 3q^{3} - 3q^{4} - 3q^{5} - 3q^{6} - 8q^{7} - 3q^{8} - 3q^{9} - 3q^{10} + 8q^{11} - 3q^{12} - 5q^{13} - 8q^{14} - 3q^{15} - 3q^{16} + 4q^{17} - 3q^{18} + 6q^{19} - 3q^{20} + 3q^{21} + 8q^{22} + q^{23} + 30q^{24} - 3q^{25} - 5q^{26} - 3q^{27} - 8q^{28} - 10q^{29} - 3q^{30} - 10q^{31} - 3q^{32} - 14q^{33} - 7q^{34} + 3q^{35} - 3q^{36} - 12q^{37} - 5q^{38} - 5q^{39} - 3q^{40} + 5q^{41} + 3q^{42} + 2q^{43} + 8q^{44} + 30q^{45} - 21q^{46} + 96q^{47} - 3q^{48} - 43q^{49} - 3q^{50} + 15q^{51} - 16q^{52} + 12q^{53} - 3q^{54} + 8q^{55} - 8q^{56} + 17q^{57} + q^{58} - 9q^{59} - 3q^{60} + q^{61} - 32q^{62} + 3q^{63} - 3q^{64} - 16q^{65} - 3q^{66} - 28q^{67} + 4q^{68} + 23q^{69} + 14q^{70} + 3q^{71} - 3q^{72} - 27q^{73} - 12q^{74} - 3q^{75} - 16q^{76} + 47q^{77} + 6q^{78} + 2q^{79} - 3q^{80} - 3q^{81} + 27q^{82} + 11q^{83} + 3q^{84} - 7q^{85} + 2q^{86} - 32q^{87} - 3q^{88} + 25q^{89} - 3q^{90} - 90q^{91} - 10q^{92} + 56q^{93} - 25q^{94} - 5q^{95} - 3q^{96} - 7q^{97} - 32q^{98} - 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.841254 + 0.540641i 0.594856 + 0.382291i
\(3\) −0.142315 0.989821i −0.0821655 0.571474i
\(4\) 0.415415 + 0.909632i 0.207708 + 0.454816i
\(5\) −0.959493 0.281733i −0.429098 0.125995i
\(6\) 0.415415 0.909632i 0.169592 0.371356i
\(7\) 1.76004 2.03119i 0.665232 0.767719i −0.318390 0.947960i \(-0.603142\pi\)
0.983623 + 0.180241i \(0.0576877\pi\)
\(8\) −0.142315 + 0.989821i −0.0503159 + 0.349955i
\(9\) −0.959493 + 0.281733i −0.319831 + 0.0939109i
\(10\) −0.654861 0.755750i −0.207085 0.238989i
\(11\) 1.98022 1.27261i 0.597060 0.383707i −0.206925 0.978357i \(-0.566346\pi\)
0.803985 + 0.594650i \(0.202709\pi\)
\(12\) 0.841254 0.540641i 0.242849 0.156070i
\(13\) −1.36158 1.57134i −0.377633 0.435812i 0.534837 0.844955i \(-0.320373\pi\)
−0.912470 + 0.409143i \(0.865828\pi\)
\(14\) 2.57879 0.757200i 0.689209 0.202370i
\(15\) −0.142315 + 0.989821i −0.0367455 + 0.255571i
\(16\) −0.654861 + 0.755750i −0.163715 + 0.188937i
\(17\) 1.96729 4.30776i 0.477138 1.04479i −0.506103 0.862473i \(-0.668914\pi\)
0.983241 0.182313i \(-0.0583584\pi\)
\(18\) −0.959493 0.281733i −0.226155 0.0664050i
\(19\) 1.47474 + 3.22923i 0.338328 + 0.740836i 0.999960 0.00899360i \(-0.00286279\pi\)
−0.661631 + 0.749829i \(0.730136\pi\)
\(20\) −0.142315 0.989821i −0.0318226 0.221331i
\(21\) −2.26100 1.45306i −0.493390 0.317083i
\(22\) 2.35390 0.501852
\(23\) −0.956931 4.69939i −0.199534 0.979891i
\(24\) 1.00000 0.204124
\(25\) 0.841254 + 0.540641i 0.168251 + 0.108128i
\(26\) −0.295899 2.05802i −0.0580305 0.403611i
\(27\) 0.415415 + 0.909632i 0.0799467 + 0.175059i
\(28\) 2.57879 + 0.757200i 0.487345 + 0.143097i
\(29\) 2.69293 5.89669i 0.500064 1.09499i −0.476384 0.879237i \(-0.658053\pi\)
0.976449 0.215751i \(-0.0692198\pi\)
\(30\) −0.654861 + 0.755750i −0.119561 + 0.137980i
\(31\) −0.280522 + 1.95108i −0.0503833 + 0.350424i 0.948999 + 0.315279i \(0.102098\pi\)
−0.999382 + 0.0351444i \(0.988811\pi\)
\(32\) −0.959493 + 0.281733i −0.169616 + 0.0498038i
\(33\) −1.54147 1.77896i −0.268336 0.309676i
\(34\) 3.98394 2.56032i 0.683241 0.439092i
\(35\) −2.26100 + 1.45306i −0.382179 + 0.245611i
\(36\) −0.654861 0.755750i −0.109143 0.125958i
\(37\) 7.79797 2.28969i 1.28198 0.376423i 0.431347 0.902186i \(-0.358039\pi\)
0.850631 + 0.525764i \(0.176220\pi\)
\(38\) −0.505223 + 3.51390i −0.0819580 + 0.570031i
\(39\) −1.36158 + 1.57134i −0.218027 + 0.251616i
\(40\) 0.415415 0.909632i 0.0656829 0.143825i
\(41\) −0.914376 0.268485i −0.142802 0.0419303i 0.209551 0.977798i \(-0.432800\pi\)
−0.352352 + 0.935867i \(0.614618\pi\)
\(42\) −1.11649 2.44478i −0.172278 0.377237i
\(43\) 0.512153 + 3.56210i 0.0781026 + 0.543216i 0.990879 + 0.134756i \(0.0430250\pi\)
−0.912776 + 0.408460i \(0.866066\pi\)
\(44\) 1.98022 + 1.27261i 0.298530 + 0.191854i
\(45\) 1.00000 0.149071
\(46\) 1.73566 4.47074i 0.255909 0.659174i
\(47\) −1.28736 −0.187780 −0.0938902 0.995583i \(-0.529930\pi\)
−0.0938902 + 0.995583i \(0.529930\pi\)
\(48\) 0.841254 + 0.540641i 0.121424 + 0.0780348i
\(49\) −0.0318055 0.221212i −0.00454364 0.0316017i
\(50\) 0.415415 + 0.909632i 0.0587486 + 0.128641i
\(51\) −4.54389 1.33421i −0.636272 0.186826i
\(52\) 0.863725 1.89129i 0.119777 0.262275i
\(53\) −2.57228 + 2.96856i −0.353329 + 0.407764i −0.904394 0.426699i \(-0.859676\pi\)
0.551065 + 0.834463i \(0.314222\pi\)
\(54\) −0.142315 + 0.989821i −0.0193666 + 0.134698i
\(55\) −2.25855 + 0.663169i −0.304542 + 0.0894217i
\(56\) 1.76004 + 2.03119i 0.235195 + 0.271430i
\(57\) 2.98648 1.91930i 0.395569 0.254217i
\(58\) 5.45343 3.50470i 0.716070 0.460190i
\(59\) −0.927486 1.07038i −0.120748 0.139351i 0.692157 0.721747i \(-0.256661\pi\)
−0.812905 + 0.582396i \(0.802115\pi\)
\(60\) −0.959493 + 0.281733i −0.123870 + 0.0363715i
\(61\) −0.359602 + 2.50109i −0.0460423 + 0.320231i 0.953764 + 0.300556i \(0.0971723\pi\)
−0.999806 + 0.0196751i \(0.993737\pi\)
\(62\) −1.29082 + 1.48969i −0.163935 + 0.189191i
\(63\) −1.11649 + 2.44478i −0.140665 + 0.308013i
\(64\) −0.959493 0.281733i −0.119937 0.0352166i
\(65\) 0.863725 + 1.89129i 0.107132 + 0.234586i
\(66\) −0.334994 2.32994i −0.0412349 0.286795i
\(67\) −4.29809 2.76221i −0.525095 0.337458i 0.251090 0.967964i \(-0.419211\pi\)
−0.776184 + 0.630506i \(0.782847\pi\)
\(68\) 4.73572 0.574291
\(69\) −4.51537 + 1.61598i −0.543587 + 0.194542i
\(70\) −2.68765 −0.321236
\(71\) 0.461255 + 0.296431i 0.0547409 + 0.0351798i 0.567725 0.823218i \(-0.307824\pi\)
−0.512984 + 0.858398i \(0.671460\pi\)
\(72\) −0.142315 0.989821i −0.0167720 0.116652i
\(73\) 3.91085 + 8.56356i 0.457730 + 1.00229i 0.987999 + 0.154459i \(0.0493636\pi\)
−0.530269 + 0.847829i \(0.677909\pi\)
\(74\) 7.79797 + 2.28969i 0.906495 + 0.266171i
\(75\) 0.415415 0.909632i 0.0479680 0.105035i
\(76\) −2.32478 + 2.68294i −0.266671 + 0.307754i
\(77\) 0.900349 6.26206i 0.102604 0.713628i
\(78\) −1.99496 + 0.585774i −0.225885 + 0.0663259i
\(79\) 0.555315 + 0.640868i 0.0624778 + 0.0721033i 0.786128 0.618064i \(-0.212083\pi\)
−0.723650 + 0.690167i \(0.757537\pi\)
\(80\) 0.841254 0.540641i 0.0940550 0.0604455i
\(81\) 0.841254 0.540641i 0.0934726 0.0600712i
\(82\) −0.624068 0.720213i −0.0689168 0.0795342i
\(83\) −6.18083 + 1.81486i −0.678434 + 0.199206i −0.602755 0.797926i \(-0.705931\pi\)
−0.0756788 + 0.997132i \(0.524112\pi\)
\(84\) 0.382493 2.66030i 0.0417334 0.290262i
\(85\) −3.10124 + 3.57902i −0.336377 + 0.388199i
\(86\) −1.49497 + 3.27352i −0.161207 + 0.352993i
\(87\) −6.21991 1.82633i −0.666845 0.195803i
\(88\) 0.977844 + 2.14118i 0.104238 + 0.228250i
\(89\) 1.65288 + 11.4960i 0.175205 + 1.21858i 0.867675 + 0.497132i \(0.165614\pi\)
−0.692470 + 0.721447i \(0.743477\pi\)
\(90\) 0.841254 + 0.540641i 0.0886759 + 0.0569885i
\(91\) −5.58813 −0.585795
\(92\) 3.87719 2.82265i 0.404225 0.294282i
\(93\) 1.97114 0.204398
\(94\) −1.08299 0.695998i −0.111702 0.0717867i
\(95\) −0.505223 3.51390i −0.0518348 0.360519i
\(96\) 0.415415 + 0.909632i 0.0423981 + 0.0928389i
\(97\) 2.77124 + 0.813708i 0.281376 + 0.0826195i 0.419376 0.907813i \(-0.362249\pi\)
−0.137999 + 0.990432i \(0.544067\pi\)
\(98\) 0.0928397 0.203291i 0.00937823 0.0205355i
\(99\) −1.54147 + 1.77896i −0.154924 + 0.178792i
\(100\) −0.142315 + 0.989821i −0.0142315 + 0.0989821i
\(101\) −6.51123 + 1.91187i −0.647892 + 0.190238i −0.589136 0.808034i \(-0.700532\pi\)
−0.0587562 + 0.998272i \(0.518713\pi\)
\(102\) −3.10124 3.57902i −0.307068 0.354376i
\(103\) −4.53844 + 2.91668i −0.447185 + 0.287389i −0.744788 0.667301i \(-0.767449\pi\)
0.297602 + 0.954690i \(0.403813\pi\)
\(104\) 1.74912 1.12409i 0.171515 0.110226i
\(105\) 1.76004 + 2.03119i 0.171762 + 0.198224i
\(106\) −3.76886 + 1.10664i −0.366064 + 0.107486i
\(107\) −0.512436 + 3.56407i −0.0495390 + 0.344552i 0.949945 + 0.312419i \(0.101139\pi\)
−0.999484 + 0.0321331i \(0.989770\pi\)
\(108\) −0.654861 + 0.755750i −0.0630140 + 0.0727220i
\(109\) −6.79994 + 14.8898i −0.651316 + 1.42618i 0.239081 + 0.971000i \(0.423154\pi\)
−0.890397 + 0.455184i \(0.849573\pi\)
\(110\) −2.25855 0.663169i −0.215344 0.0632307i
\(111\) −3.37615 7.39274i −0.320450 0.701688i
\(112\) 0.382493 + 2.66030i 0.0361422 + 0.251375i
\(113\) −6.54469 4.20602i −0.615673 0.395669i 0.195308 0.980742i \(-0.437429\pi\)
−0.810981 + 0.585073i \(0.801066\pi\)
\(114\) 3.55004 0.332492
\(115\) −0.405803 + 4.77863i −0.0378413 + 0.445610i
\(116\) 6.48250 0.601885
\(117\) 1.74912 + 1.12409i 0.161706 + 0.103922i
\(118\) −0.201562 1.40189i −0.0185553 0.129055i
\(119\) −5.28740 11.5778i −0.484695 1.06133i
\(120\) −0.959493 0.281733i −0.0875893 0.0257185i
\(121\) −2.26782 + 4.96584i −0.206166 + 0.451440i
\(122\) −1.65471 + 1.90963i −0.149810 + 0.172890i
\(123\) −0.135623 + 0.943278i −0.0122287 + 0.0850525i
\(124\) −1.89130 + 0.555334i −0.169843 + 0.0498705i
\(125\) −0.654861 0.755750i −0.0585725 0.0675963i
\(126\) −2.26100 + 1.45306i −0.201426 + 0.129448i
\(127\) 16.2375 10.4352i 1.44085 0.925976i 0.441255 0.897382i \(-0.354533\pi\)
0.999591 0.0285942i \(-0.00910305\pi\)
\(128\) −0.654861 0.755750i −0.0578821 0.0667995i
\(129\) 3.45296 1.01388i 0.304016 0.0892672i
\(130\) −0.295899 + 2.05802i −0.0259520 + 0.180500i
\(131\) −10.6837 + 12.3297i −0.933442 + 1.07725i 0.0634120 + 0.997987i \(0.479802\pi\)
−0.996854 + 0.0792619i \(0.974744\pi\)
\(132\) 0.977844 2.14118i 0.0851104 0.186366i
\(133\) 9.15479 + 2.68809i 0.793821 + 0.233087i
\(134\) −2.12242 4.64744i −0.183349 0.401478i
\(135\) −0.142315 0.989821i −0.0122485 0.0851903i
\(136\) 3.98394 + 2.56032i 0.341620 + 0.219546i
\(137\) 4.23295 0.361646 0.180823 0.983516i \(-0.442124\pi\)
0.180823 + 0.983516i \(0.442124\pi\)
\(138\) −4.67224 1.08174i −0.397728 0.0920841i
\(139\) −9.06927 −0.769246 −0.384623 0.923074i \(-0.625669\pi\)
−0.384623 + 0.923074i \(0.625669\pi\)
\(140\) −2.26100 1.45306i −0.191089 0.122806i
\(141\) 0.183210 + 1.27425i 0.0154291 + 0.107312i
\(142\) 0.227770 + 0.498747i 0.0191140 + 0.0418539i
\(143\) −4.69594 1.37885i −0.392694 0.115305i
\(144\) 0.415415 0.909632i 0.0346179 0.0758027i
\(145\) −4.24513 + 4.89915i −0.352539 + 0.406852i
\(146\) −1.33980 + 9.31849i −0.110882 + 0.771203i
\(147\) −0.214434 + 0.0629635i −0.0176862 + 0.00519314i
\(148\) 5.32217 + 6.14211i 0.437479 + 0.504878i
\(149\) 10.5252 6.76416i 0.862261 0.554142i −0.0331153 0.999452i \(-0.510543\pi\)
0.895376 + 0.445310i \(0.146907\pi\)
\(150\) 0.841254 0.540641i 0.0686881 0.0441431i
\(151\) −0.221834 0.256010i −0.0180526 0.0208338i 0.746651 0.665215i \(-0.231660\pi\)
−0.764704 + 0.644382i \(0.777115\pi\)
\(152\) −3.40624 + 1.00016i −0.276282 + 0.0811238i
\(153\) −0.673963 + 4.68752i −0.0544867 + 0.378963i
\(154\) 4.14295 4.78122i 0.333848 0.385282i
\(155\) 0.818841 1.79301i 0.0657709 0.144018i
\(156\) −1.99496 0.585774i −0.159725 0.0468995i
\(157\) 8.45407 + 18.5118i 0.674708 + 1.47740i 0.868155 + 0.496294i \(0.165306\pi\)
−0.193447 + 0.981111i \(0.561967\pi\)
\(158\) 0.120682 + 0.839358i 0.00960091 + 0.0667758i
\(159\) 3.30442 + 2.12362i 0.262058 + 0.168414i
\(160\) 1.00000 0.0790569
\(161\) −11.2296 6.32740i −0.885017 0.498669i
\(162\) 1.00000 0.0785674
\(163\) 16.9082 + 10.8663i 1.32435 + 0.851111i 0.995636 0.0933170i \(-0.0297470\pi\)
0.328718 + 0.944428i \(0.393383\pi\)
\(164\) −0.135623 0.943278i −0.0105904 0.0736577i
\(165\) 0.977844 + 2.14118i 0.0761250 + 0.166691i
\(166\) −6.18083 1.81486i −0.479725 0.140860i
\(167\) 8.16532 17.8796i 0.631851 1.38356i −0.274726 0.961522i \(-0.588587\pi\)
0.906578 0.422039i \(-0.138685\pi\)
\(168\) 1.76004 2.03119i 0.135790 0.156710i
\(169\) 1.23486 8.58867i 0.0949896 0.660667i
\(170\) −4.54389 + 1.33421i −0.348501 + 0.102329i
\(171\) −2.32478 2.68294i −0.177780 0.205170i
\(172\) −3.02745 + 1.94562i −0.230841 + 0.148352i
\(173\) −2.42124 + 1.55604i −0.184084 + 0.118303i −0.629437 0.777052i \(-0.716714\pi\)
0.445353 + 0.895355i \(0.353078\pi\)
\(174\) −4.24513 4.89915i −0.321823 0.371403i
\(175\) 2.57879 0.757200i 0.194938 0.0572389i
\(176\) −0.334994 + 2.32994i −0.0252511 + 0.175626i
\(177\) −0.927486 + 1.07038i −0.0697141 + 0.0804543i
\(178\) −4.82474 + 10.5647i −0.361630 + 0.791858i
\(179\) −8.31816 2.44243i −0.621728 0.182556i −0.0443279 0.999017i \(-0.514115\pi\)
−0.577400 + 0.816461i \(0.695933\pi\)
\(180\) 0.415415 + 0.909632i 0.0309632 + 0.0678000i
\(181\) 1.94605 + 13.5351i 0.144649 + 1.00606i 0.924797 + 0.380461i \(0.124235\pi\)
−0.780148 + 0.625595i \(0.784856\pi\)
\(182\) −4.70103 3.02117i −0.348464 0.223944i
\(183\) 2.52681 0.186787
\(184\) 4.78774 0.278397i 0.352957 0.0205237i
\(185\) −8.12717 −0.597522
\(186\) 1.65823 + 1.06568i 0.121587 + 0.0781394i
\(187\) −1.58644 11.0339i −0.116012 0.806881i
\(188\) −0.534788 1.17102i −0.0390034 0.0854055i
\(189\) 2.57879 + 0.757200i 0.187579 + 0.0550782i
\(190\) 1.47474 3.22923i 0.106989 0.234273i
\(191\) −7.54546 + 8.70792i −0.545970 + 0.630083i −0.959939 0.280208i \(-0.909597\pi\)
0.413969 + 0.910291i \(0.364142\pi\)
\(192\) −0.142315 + 0.989821i −0.0102707 + 0.0714342i
\(193\) 2.47376 0.726362i 0.178065 0.0522847i −0.191484 0.981496i \(-0.561330\pi\)
0.369550 + 0.929211i \(0.379512\pi\)
\(194\) 1.89139 + 2.18278i 0.135794 + 0.156714i
\(195\) 1.74912 1.12409i 0.125257 0.0804979i
\(196\) 0.188009 0.120826i 0.0134292 0.00863043i
\(197\) 12.6829 + 14.6369i 0.903620 + 1.04283i 0.998877 + 0.0473801i \(0.0150872\pi\)
−0.0952572 + 0.995453i \(0.530367\pi\)
\(198\) −2.25855 + 0.663169i −0.160508 + 0.0471294i
\(199\) 2.35611 16.3871i 0.167020 1.16165i −0.717982 0.696062i \(-0.754934\pi\)
0.885002 0.465588i \(-0.154157\pi\)
\(200\) −0.654861 + 0.755750i −0.0463056 + 0.0534396i
\(201\) −2.12242 + 4.64744i −0.149704 + 0.327805i
\(202\) −6.51123 1.91187i −0.458129 0.134519i
\(203\) −7.23766 15.8483i −0.507984 1.11233i
\(204\) −0.673963 4.68752i −0.0471869 0.328192i
\(205\) 0.801696 + 0.515219i 0.0559929 + 0.0359844i
\(206\) −5.39485 −0.375877
\(207\) 2.24214 + 4.23943i 0.155840 + 0.294661i
\(208\) 2.07919 0.144166
\(209\) 7.02987 + 4.51782i 0.486266 + 0.312504i
\(210\) 0.382493 + 2.66030i 0.0263945 + 0.183578i
\(211\) −8.95250 19.6033i −0.616316 1.34954i −0.918169 0.396189i \(-0.870332\pi\)
0.301853 0.953354i \(-0.402395\pi\)
\(212\) −3.76886 1.10664i −0.258847 0.0760042i
\(213\) 0.227770 0.498747i 0.0156065 0.0341736i
\(214\) −2.35797 + 2.72124i −0.161187 + 0.186020i
\(215\) 0.512153 3.56210i 0.0349286 0.242933i
\(216\) −0.959493 + 0.281733i −0.0652852 + 0.0191695i
\(217\) 3.46928 + 4.00377i 0.235510 + 0.271793i
\(218\) −13.7705 + 8.84977i −0.932656 + 0.599382i
\(219\) 7.91982 5.08976i 0.535172 0.343934i
\(220\) −1.54147 1.77896i −0.103926 0.119937i
\(221\) −9.44759 + 2.77406i −0.635514 + 0.186604i
\(222\) 1.15662 8.04445i 0.0776271 0.539908i
\(223\) −7.31262 + 8.43922i −0.489689 + 0.565132i −0.945783 0.324800i \(-0.894703\pi\)
0.456093 + 0.889932i \(0.349248\pi\)
\(224\) −1.11649 + 2.44478i −0.0745988 + 0.163349i
\(225\) −0.959493 0.281733i −0.0639662 0.0187822i
\(226\) −3.23180 7.07666i −0.214976 0.470732i
\(227\) 3.60425 + 25.0681i 0.239223 + 1.66383i 0.655955 + 0.754800i \(0.272266\pi\)
−0.416732 + 0.909029i \(0.636825\pi\)
\(228\) 2.98648 + 1.91930i 0.197785 + 0.127108i
\(229\) −22.8309 −1.50871 −0.754355 0.656466i \(-0.772050\pi\)
−0.754355 + 0.656466i \(0.772050\pi\)
\(230\) −2.92491 + 3.80065i −0.192863 + 0.250607i
\(231\) −6.32646 −0.416250
\(232\) 5.45343 + 3.50470i 0.358035 + 0.230095i
\(233\) −3.29520 22.9186i −0.215876 1.50145i −0.753041 0.657973i \(-0.771414\pi\)
0.537165 0.843477i \(-0.319495\pi\)
\(234\) 0.863725 + 1.89129i 0.0564634 + 0.123638i
\(235\) 1.23521 + 0.362690i 0.0805762 + 0.0236593i
\(236\) 0.588356 1.28832i 0.0382987 0.0838625i
\(237\) 0.555315 0.640868i 0.0360716 0.0416288i
\(238\) 1.81138 12.5984i 0.117414 0.816635i
\(239\) −0.403465 + 0.118468i −0.0260980 + 0.00766305i −0.294755 0.955573i \(-0.595238\pi\)
0.268658 + 0.963236i \(0.413420\pi\)
\(240\) −0.654861 0.755750i −0.0422711 0.0487834i
\(241\) 0.857095 0.550822i 0.0552104 0.0354815i −0.512744 0.858541i \(-0.671371\pi\)
0.567955 + 0.823060i \(0.307735\pi\)
\(242\) −4.59255 + 2.95145i −0.295220 + 0.189727i
\(243\) −0.654861 0.755750i −0.0420093 0.0484814i
\(244\) −2.42445 + 0.711883i −0.155210 + 0.0455737i
\(245\) −0.0318055 + 0.221212i −0.00203198 + 0.0141327i
\(246\) −0.624068 + 0.720213i −0.0397891 + 0.0459191i
\(247\) 3.06626 6.71416i 0.195101 0.427212i
\(248\) −1.89130 0.555334i −0.120097 0.0352638i
\(249\) 2.67601 + 5.85964i 0.169585 + 0.371339i
\(250\) −0.142315 0.989821i −0.00900078 0.0626018i
\(251\) −9.65828 6.20700i −0.609625 0.391782i 0.199091 0.979981i \(-0.436201\pi\)
−0.808717 + 0.588199i \(0.799837\pi\)
\(252\) −2.68765 −0.169306
\(253\) −7.87544 8.08804i −0.495125 0.508491i
\(254\) 19.3016 1.21109
\(255\) 3.98394 + 2.56032i 0.249484 + 0.160334i
\(256\) −0.142315 0.989821i −0.00889468 0.0618638i
\(257\) −3.15200 6.90192i −0.196616 0.430530i 0.785486 0.618880i \(-0.212413\pi\)
−0.982102 + 0.188350i \(0.939686\pi\)
\(258\) 3.45296 + 1.01388i 0.214972 + 0.0631214i
\(259\) 9.07392 19.8691i 0.563826 1.23461i
\(260\) −1.36158 + 1.57134i −0.0844414 + 0.0974506i
\(261\) −0.922556 + 6.41652i −0.0571048 + 0.397172i
\(262\) −15.6537 + 4.59633i −0.967086 + 0.283962i
\(263\) −18.8393 21.7417i −1.16168 1.34065i −0.929868 0.367893i \(-0.880079\pi\)
−0.231814 0.972760i \(-0.574466\pi\)
\(264\) 1.98022 1.27261i 0.121874 0.0783239i
\(265\) 3.30442 2.12362i 0.202989 0.130453i
\(266\) 6.24821 + 7.21082i 0.383102 + 0.442123i
\(267\) 11.1438 3.27212i 0.681990 0.200250i
\(268\) 0.727107 5.05714i 0.0444151 0.308914i
\(269\) 1.88048 2.17019i 0.114655 0.132319i −0.695521 0.718506i \(-0.744826\pi\)
0.810176 + 0.586187i \(0.199372\pi\)
\(270\) 0.415415 0.909632i 0.0252814 0.0553584i
\(271\) 17.7987 + 5.22617i 1.08119 + 0.317467i 0.773356 0.633972i \(-0.218576\pi\)
0.307838 + 0.951439i \(0.400395\pi\)
\(272\) 1.96729 + 4.30776i 0.119284 + 0.261197i
\(273\) 0.795274 + 5.53125i 0.0481322 + 0.334767i
\(274\) 3.56099 + 2.28851i 0.215127 + 0.138254i
\(275\) 2.35390 0.141945
\(276\) −3.34570 3.43602i −0.201388 0.206824i
\(277\) 32.7117 1.96546 0.982728 0.185056i \(-0.0592468\pi\)
0.982728 + 0.185056i \(0.0592468\pi\)
\(278\) −7.62956 4.90322i −0.457591 0.294076i
\(279\) −0.280522 1.95108i −0.0167944 0.116808i
\(280\) −1.11649 2.44478i −0.0667232 0.146103i
\(281\) 27.2795 + 8.00997i 1.62736 + 0.477835i 0.962982 0.269566i \(-0.0868802\pi\)
0.664374 + 0.747401i \(0.268698\pi\)
\(282\) −0.534788 + 1.17102i −0.0318461 + 0.0697333i
\(283\) −9.84225 + 11.3586i −0.585061 + 0.675196i −0.968685 0.248293i \(-0.920130\pi\)
0.383624 + 0.923489i \(0.374676\pi\)
\(284\) −0.0780305 + 0.542714i −0.00463026 + 0.0322042i
\(285\) −3.40624 + 1.00016i −0.201768 + 0.0592445i
\(286\) −3.20501 3.69878i −0.189516 0.218713i
\(287\) −2.15468 + 1.38473i −0.127187 + 0.0817380i
\(288\) 0.841254 0.540641i 0.0495713 0.0318576i
\(289\) −3.55397 4.10150i −0.209057 0.241265i
\(290\) −6.21991 + 1.82633i −0.365246 + 0.107246i
\(291\) 0.411038 2.85883i 0.0240955 0.167588i
\(292\) −6.16506 + 7.11486i −0.360783 + 0.416366i
\(293\) 9.69107 21.2205i 0.566158 1.23971i −0.382660 0.923889i \(-0.624992\pi\)
0.948818 0.315824i \(-0.102281\pi\)
\(294\) −0.214434 0.0629635i −0.0125060 0.00367210i
\(295\) 0.588356 + 1.28832i 0.0342554 + 0.0750089i
\(296\) 1.15662 + 8.04445i 0.0672270 + 0.467574i
\(297\) 1.98022 + 1.27261i 0.114904 + 0.0738444i
\(298\) 12.5114 0.724765
\(299\) −6.08142 + 7.90225i −0.351698 + 0.456999i
\(300\) 1.00000 0.0577350
\(301\) 8.13673 + 5.22916i 0.468994 + 0.301404i
\(302\) −0.0482091 0.335301i −0.00277412 0.0192944i
\(303\) 2.81906 + 6.17287i 0.161951 + 0.354622i
\(304\) −3.40624 1.00016i −0.195361 0.0573632i
\(305\) 1.04967 2.29846i 0.0601041 0.131610i
\(306\) −3.10124 + 3.57902i −0.177286 + 0.204599i
\(307\) 0.594658 4.13594i 0.0339389 0.236050i −0.965790 0.259325i \(-0.916500\pi\)
0.999729 + 0.0232744i \(0.00740913\pi\)
\(308\) 6.07019 1.78237i 0.345881 0.101560i
\(309\) 3.53288 + 4.07716i 0.200978 + 0.231941i
\(310\) 1.65823 1.06568i 0.0941811 0.0605265i
\(311\) 8.59246 5.52204i 0.487234 0.313126i −0.273858 0.961770i \(-0.588300\pi\)
0.761092 + 0.648644i \(0.224664\pi\)
\(312\) −1.36158 1.57134i −0.0770841 0.0889598i
\(313\) 13.1539 3.86234i 0.743504 0.218313i 0.112025 0.993705i \(-0.464266\pi\)
0.631479 + 0.775393i \(0.282448\pi\)
\(314\) −2.89623 + 20.1438i −0.163444 + 1.13678i
\(315\) 1.76004 2.03119i 0.0991670 0.114445i
\(316\) −0.352268 + 0.771358i −0.0198166 + 0.0433923i
\(317\) 20.6197 + 6.05449i 1.15812 + 0.340054i 0.803701 0.595034i \(-0.202861\pi\)
0.354417 + 0.935088i \(0.384679\pi\)
\(318\) 1.63174 + 3.57301i 0.0915034 + 0.200364i
\(319\) −2.17160 15.1038i −0.121586 0.845651i
\(320\) 0.841254 + 0.540641i 0.0470275 + 0.0302227i
\(321\) 3.60072 0.200973
\(322\) −6.02610 11.3941i −0.335821 0.634970i
\(323\) 16.8120 0.935444
\(324\) 0.841254 + 0.540641i 0.0467363 + 0.0300356i
\(325\) −0.295899 2.05802i −0.0164135 0.114159i
\(326\) 8.34936 + 18.2826i 0.462429 + 1.01258i
\(327\) 15.7060 + 4.61169i 0.868542 + 0.255027i
\(328\) 0.395881 0.866859i 0.0218589 0.0478643i
\(329\) −2.26580 + 2.61487i −0.124918 + 0.144163i
\(330\) −0.334994 + 2.32994i −0.0184408 + 0.128259i
\(331\) −9.80666 + 2.87950i −0.539023 + 0.158271i −0.539902 0.841728i \(-0.681539\pi\)
0.000878555 1.00000i \(0.499720\pi\)
\(332\) −4.21846 4.86836i −0.231518 0.267186i
\(333\) −6.83701 + 4.39388i −0.374666 + 0.240783i
\(334\) 16.5355 10.6267i 0.904783 0.581469i
\(335\) 3.34578 + 3.86123i 0.182799 + 0.210962i
\(336\) 2.57879 0.757200i 0.140684 0.0413086i
\(337\) −0.308025 + 2.14236i −0.0167792 + 0.116702i −0.996490 0.0837164i \(-0.973321\pi\)
0.979710 + 0.200418i \(0.0642301\pi\)
\(338\) 5.68222 6.55763i 0.309072 0.356688i
\(339\) −3.23180 + 7.07666i −0.175527 + 0.384351i
\(340\) −4.54389 1.33421i −0.246427 0.0723575i
\(341\) 1.92747 + 4.22056i 0.104378 + 0.228556i
\(342\) −0.505223 3.51390i −0.0273193 0.190010i
\(343\) 15.3217 + 9.84665i 0.827293 + 0.531669i
\(344\) −3.59873 −0.194031
\(345\) 4.78774 0.278397i 0.257763 0.0149884i
\(346\) −2.87814 −0.154730
\(347\) 19.7375 + 12.6845i 1.05957 + 0.680942i 0.949750 0.313010i \(-0.101337\pi\)
0.109817 + 0.993952i \(0.464974\pi\)
\(348\) −0.922556 6.41652i −0.0494542 0.343961i
\(349\) −2.17455 4.76160i −0.116401 0.254882i 0.842460 0.538759i \(-0.181107\pi\)
−0.958861 + 0.283877i \(0.908379\pi\)
\(350\) 2.57879 + 0.757200i 0.137842 + 0.0404740i
\(351\) 0.863725 1.89129i 0.0461022 0.100950i
\(352\) −1.54147 + 1.77896i −0.0821608 + 0.0948187i
\(353\) 3.86812 26.9033i 0.205879 1.43192i −0.580543 0.814230i \(-0.697160\pi\)
0.786422 0.617690i \(-0.211931\pi\)
\(354\) −1.35894 + 0.399021i −0.0722268 + 0.0212077i
\(355\) −0.359057 0.414374i −0.0190568 0.0219927i
\(356\) −9.77054 + 6.27915i −0.517838 + 0.332794i
\(357\) −10.7075 + 6.88127i −0.566699 + 0.364195i
\(358\) −5.67720 6.55184i −0.300049 0.346275i
\(359\) −27.1950 + 7.98518i −1.43530 + 0.421442i −0.904652 0.426151i \(-0.859869\pi\)
−0.530647 + 0.847593i \(0.678051\pi\)
\(360\) −0.142315 + 0.989821i −0.00750065 + 0.0521682i
\(361\) 4.18929 4.83470i 0.220489 0.254458i
\(362\) −5.68050 + 12.4386i −0.298561 + 0.653756i
\(363\) 5.23804 + 1.53803i 0.274926 + 0.0807255i
\(364\) −2.32139 5.08314i −0.121674 0.266429i
\(365\) −1.33980 9.31849i −0.0701281 0.487752i
\(366\) 2.12568 + 1.36609i 0.111111 + 0.0714069i
\(367\) −21.1984 −1.10655 −0.553274 0.832999i \(-0.686622\pi\)
−0.553274 + 0.832999i \(0.686622\pi\)
\(368\) 4.17822 + 2.35425i 0.217805 + 0.122724i
\(369\) 0.952978 0.0496101
\(370\) −6.83701 4.39388i −0.355439 0.228427i
\(371\) 1.50242 + 10.4496i 0.0780019 + 0.542515i
\(372\) 0.818841 + 1.79301i 0.0424549 + 0.0929634i
\(373\) 10.9647 + 3.21951i 0.567728 + 0.166700i 0.552985 0.833191i \(-0.313489\pi\)
0.0147433 + 0.999891i \(0.495307\pi\)
\(374\) 4.63080 10.1400i 0.239453 0.524328i
\(375\) −0.654861 + 0.755750i −0.0338169 + 0.0390267i
\(376\) 0.183210 1.27425i 0.00944834 0.0657146i
\(377\) −12.9324 + 3.79728i −0.666050 + 0.195570i
\(378\) 1.76004 + 2.03119i 0.0905267 + 0.104473i
\(379\) −2.04762 + 1.31593i −0.105179 + 0.0675946i −0.592173 0.805811i \(-0.701730\pi\)
0.486994 + 0.873405i \(0.338093\pi\)
\(380\) 2.98648 1.91930i 0.153203 0.0984578i
\(381\) −12.6398 14.5872i −0.647559 0.747323i
\(382\) −11.0555 + 3.24619i −0.565648 + 0.166089i
\(383\) −2.56757 + 17.8579i −0.131197 + 0.912495i 0.812801 + 0.582542i \(0.197942\pi\)
−0.943998 + 0.329953i \(0.892967\pi\)
\(384\) −0.654861 + 0.755750i −0.0334182 + 0.0385667i
\(385\) −2.62811 + 5.75475i −0.133941 + 0.293289i
\(386\) 2.47376 + 0.726362i 0.125911 + 0.0369709i
\(387\) −1.49497 3.27352i −0.0759935 0.166403i
\(388\) 0.411038 + 2.85883i 0.0208673 + 0.145135i
\(389\) 27.0069 + 17.3563i 1.36930 + 0.879997i 0.998807 0.0488366i \(-0.0155514\pi\)
0.370496 + 0.928834i \(0.379188\pi\)
\(390\) 2.07919 0.105284
\(391\) −22.1264 5.12283i −1.11898 0.259073i
\(392\) 0.223487 0.0112878
\(393\) 13.7246 + 8.82029i 0.692316 + 0.444925i
\(394\) 2.75626 + 19.1702i 0.138858 + 0.965781i
\(395\) −0.352268 0.771358i −0.0177245 0.0388113i
\(396\) −2.25855 0.663169i −0.113496 0.0333255i
\(397\) 5.01974 10.9917i 0.251933 0.551657i −0.740837 0.671685i \(-0.765571\pi\)
0.992771 + 0.120027i \(0.0382983\pi\)
\(398\) 10.8416 12.5119i 0.543441 0.627164i
\(399\) 1.35787 9.44416i 0.0679783 0.472799i
\(400\) −0.959493 + 0.281733i −0.0479746 + 0.0140866i
\(401\) 6.77221 + 7.81555i 0.338188 + 0.390290i 0.899215 0.437508i \(-0.144139\pi\)
−0.561026 + 0.827798i \(0.689593\pi\)
\(402\) −4.29809 + 2.76221i −0.214369 + 0.137767i
\(403\) 3.44776 2.21574i 0.171745 0.110374i
\(404\) −4.44396 5.12861i −0.221095 0.255158i
\(405\) −0.959493 + 0.281733i −0.0476776 + 0.0139994i
\(406\) 2.47951 17.2454i 0.123056 0.855874i
\(407\) 12.5278 14.4579i 0.620981 0.716651i
\(408\) 1.96729 4.30776i 0.0973954 0.213266i
\(409\) −18.7252 5.49822i −0.925903 0.271870i −0.216182 0.976353i \(-0.569361\pi\)
−0.709721 + 0.704483i \(0.751179\pi\)
\(410\) 0.395881 + 0.866859i 0.0195512 + 0.0428111i
\(411\) −0.602412 4.18987i −0.0297148 0.206671i
\(412\) −4.53844 2.91668i −0.223593 0.143694i
\(413\) −3.80655 −0.187308
\(414\) −0.405803 + 4.77863i −0.0199441 + 0.234857i
\(415\) 6.44177 0.316214
\(416\) 1.74912 + 1.12409i 0.0857577 + 0.0551132i
\(417\) 1.29069 + 8.97696i 0.0632055 + 0.439604i
\(418\) 3.47138 + 7.60127i 0.169791 + 0.371790i
\(419\) 10.2472 + 3.00886i 0.500610 + 0.146993i 0.522282 0.852773i \(-0.325081\pi\)
−0.0216718 + 0.999765i \(0.506899\pi\)
\(420\) −1.11649 + 2.44478i −0.0544792 + 0.119293i
\(421\) −25.0605 + 28.9214i −1.22138 + 1.40954i −0.337825 + 0.941209i \(0.609691\pi\)
−0.883551 + 0.468335i \(0.844854\pi\)
\(422\) 3.06699 21.3314i 0.149299 1.03840i
\(423\) 1.23521 0.362690i 0.0600580 0.0176346i
\(424\) −2.57228 2.96856i −0.124921 0.144166i
\(425\) 3.98394 2.56032i 0.193250 0.124194i
\(426\) 0.461255 0.296431i 0.0223479 0.0143621i
\(427\) 4.44728 + 5.13243i 0.215219 + 0.248376i
\(428\) −3.45487 + 1.01444i −0.166997 + 0.0490348i
\(429\) −0.696515 + 4.84437i −0.0336281 + 0.233888i
\(430\) 2.35667 2.71974i 0.113649 0.131158i
\(431\) 15.5837 34.1234i 0.750638 1.64367i −0.0145772 0.999894i \(-0.504640\pi\)
0.765215 0.643774i \(-0.222632\pi\)
\(432\) −0.959493 0.281733i −0.0461636 0.0135549i
\(433\) 0.213500 + 0.467501i 0.0102602 + 0.0224667i 0.914693 0.404150i \(-0.132433\pi\)
−0.904433 + 0.426617i \(0.859705\pi\)
\(434\) 0.753948 + 5.24382i 0.0361906 + 0.251711i
\(435\) 5.45343 + 3.50470i 0.261472 + 0.168038i
\(436\) −16.3690 −0.783934
\(437\) 13.7642 10.0205i 0.658430 0.479347i
\(438\) 9.41431 0.449833
\(439\) 19.9994 + 12.8528i 0.954519 + 0.613432i 0.922476 0.386054i \(-0.126162\pi\)
0.0320432 + 0.999486i \(0.489799\pi\)
\(440\) −0.334994 2.32994i −0.0159702 0.111075i
\(441\) 0.0928397 + 0.203291i 0.00442094 + 0.00968051i
\(442\) −9.44759 2.77406i −0.449376 0.131949i
\(443\) 2.26387 4.95719i 0.107560 0.235523i −0.848197 0.529681i \(-0.822312\pi\)
0.955757 + 0.294157i \(0.0950390\pi\)
\(444\) 5.32217 6.14211i 0.252579 0.291492i
\(445\) 1.65288 11.4960i 0.0783541 0.544965i
\(446\) −10.7144 + 3.14602i −0.507339 + 0.148968i
\(447\) −8.19321 9.45547i −0.387525 0.447228i
\(448\) −2.26100 + 1.45306i −0.106822 + 0.0686504i
\(449\) 0.422475 0.271508i 0.0199378 0.0128133i −0.530634 0.847601i \(-0.678046\pi\)
0.550572 + 0.834788i \(0.314410\pi\)
\(450\) −0.654861 0.755750i −0.0308704 0.0356264i
\(451\) −2.15235 + 0.631986i −0.101350 + 0.0297590i
\(452\) 1.10717 7.70051i 0.0520767 0.362201i
\(453\) −0.221834 + 0.256010i −0.0104227 + 0.0120284i
\(454\) −10.5208 + 23.0372i −0.493764 + 1.08119i
\(455\) 5.36177 + 1.57436i 0.251364 + 0.0738071i
\(456\) 1.47474 + 3.22923i 0.0690610 + 0.151222i
\(457\) 0.234487 + 1.63089i 0.0109688 + 0.0762899i 0.994571 0.104064i \(-0.0331847\pi\)
−0.983602 + 0.180354i \(0.942276\pi\)
\(458\) −19.2066 12.3433i −0.897466 0.576766i
\(459\) 4.73572 0.221045
\(460\) −4.51537 + 1.61598i −0.210530 + 0.0753456i
\(461\) 37.4639 1.74487 0.872435 0.488730i \(-0.162540\pi\)
0.872435 + 0.488730i \(0.162540\pi\)
\(462\) −5.32216 3.42034i −0.247609 0.159129i
\(463\) −2.02814 14.1061i −0.0942559 0.655564i −0.981101 0.193497i \(-0.938017\pi\)
0.886845 0.462067i \(-0.152892\pi\)
\(464\) 2.69293 + 5.89669i 0.125016 + 0.273747i
\(465\) −1.89130 0.555334i −0.0877067 0.0257530i
\(466\) 9.61865 21.0619i 0.445576 0.975674i
\(467\) −13.5572 + 15.6459i −0.627354 + 0.724005i −0.977086 0.212845i \(-0.931727\pi\)
0.349732 + 0.936850i \(0.386273\pi\)
\(468\) −0.295899 + 2.05802i −0.0136779 + 0.0951321i
\(469\) −13.1754 + 3.86864i −0.608383 + 0.178637i
\(470\) 0.843040 + 0.972920i 0.0388865 + 0.0448774i
\(471\) 17.1203 11.0025i 0.788860 0.506970i
\(472\) 1.19148 0.765715i 0.0548421 0.0352449i
\(473\) 5.54735 + 6.40199i 0.255068 + 0.294364i
\(474\) 0.813640 0.238906i 0.0373717 0.0109733i
\(475\) −0.505223 + 3.51390i −0.0231812 + 0.161229i
\(476\) 8.33506 9.61917i 0.382037 0.440894i
\(477\) 1.63174 3.57301i 0.0747122 0.163597i
\(478\) −0.403465 0.118468i −0.0184541 0.00541860i
\(479\) −7.34461 16.0825i −0.335584 0.734826i 0.664337 0.747434i \(-0.268714\pi\)
−0.999921 + 0.0126071i \(0.995987\pi\)
\(480\) −0.142315 0.989821i −0.00649575 0.0451790i
\(481\) −14.2154 9.13569i −0.648167 0.416552i
\(482\) 1.01883 0.0464065
\(483\) −4.66486 + 12.0158i −0.212258 + 0.546738i
\(484\) −5.45917 −0.248144
\(485\) −2.42973 1.56149i −0.110328 0.0709038i
\(486\) −0.142315 0.989821i −0.00645553 0.0448992i
\(487\) −16.1640 35.3942i −0.732461 1.60387i −0.795572 0.605860i \(-0.792829\pi\)
0.0631104 0.998007i \(-0.479898\pi\)
\(488\) −2.42445 0.711883i −0.109750 0.0322254i
\(489\) 8.34936 18.2826i 0.377571 0.826766i
\(490\) −0.146353 + 0.168900i −0.00661154 + 0.00763012i
\(491\) 0.192064 1.33583i 0.00866772 0.0602853i −0.985029 0.172391i \(-0.944851\pi\)
0.993696 + 0.112106i \(0.0357597\pi\)
\(492\) −0.914376 + 0.268485i −0.0412232 + 0.0121042i
\(493\) −20.1038 23.2010i −0.905429 1.04492i
\(494\) 6.20945 3.99057i 0.279376 0.179544i
\(495\) 1.98022 1.27261i 0.0890044 0.0571997i
\(496\) −1.29082 1.48969i −0.0579596 0.0668890i
\(497\) 1.41394 0.415169i 0.0634237 0.0186229i
\(498\) −0.916759 + 6.37620i −0.0410810 + 0.285724i
\(499\) 5.40724 6.24029i 0.242061 0.279354i −0.621699 0.783256i \(-0.713557\pi\)
0.863761 + 0.503902i \(0.168103\pi\)
\(500\) 0.415415 0.909632i 0.0185779 0.0406800i
\(501\) −18.8596 5.53768i −0.842585 0.247405i
\(502\) −4.76930 10.4433i −0.212864 0.466108i
\(503\) −1.60458 11.1601i −0.0715447 0.497604i −0.993814 0.111056i \(-0.964577\pi\)
0.922269 0.386548i \(-0.126333\pi\)
\(504\) −2.26100 1.45306i −0.100713 0.0647242i
\(505\) 6.78612 0.301978
\(506\) −2.25252 11.0619i −0.100137 0.491761i
\(507\) −8.67699 −0.385359
\(508\) 16.2375 + 10.4352i 0.720423 + 0.462988i
\(509\) 4.65199 + 32.3553i 0.206196 + 1.43412i 0.785424 + 0.618959i \(0.212445\pi\)
−0.579228 + 0.815166i \(0.696646\pi\)
\(510\) 1.96729 + 4.30776i 0.0871131 + 0.190751i
\(511\) 24.2775 + 7.12851i 1.07397 + 0.315347i
\(512\) 0.415415 0.909632i 0.0183589 0.0402004i
\(513\) −2.32478 + 2.68294i −0.102642 + 0.118455i
\(514\) 1.07983 7.51037i 0.0476291 0.331268i
\(515\) 5.17632 1.51991i 0.228096 0.0669750i
\(516\) 2.35667 + 2.71974i 0.103747 + 0.119730i
\(517\) −2.54925 + 1.63831i −0.112116 + 0.0720526i
\(518\) 18.3755 11.8092i 0.807374 0.518868i
\(519\) 1.88478 + 2.17515i 0.0827326 + 0.0954785i
\(520\) −1.99496 + 0.585774i −0.0874849 + 0.0256879i
\(521\) −2.99098 + 20.8027i −0.131037 + 0.911383i 0.813169 + 0.582028i \(0.197741\pi\)
−0.944206 + 0.329356i \(0.893169\pi\)
\(522\) −4.24513 + 4.89915i −0.185804 + 0.214430i
\(523\) 7.38640 16.1740i 0.322985 0.707238i −0.676591 0.736359i \(-0.736543\pi\)
0.999576 + 0.0291208i \(0.00927074\pi\)
\(524\) −15.6537 4.59633i −0.683833 0.200792i
\(525\) −1.11649 2.44478i −0.0487277 0.106699i
\(526\) −4.09418 28.4756i −0.178515 1.24160i
\(527\) 7.85291 + 5.04676i 0.342078 + 0.219840i
\(528\) 2.35390 0.102440
\(529\) −21.1686 + 8.99399i −0.920372 + 0.391043i
\(530\) 3.92797 0.170620
\(531\) 1.19148 + 0.765715i 0.0517056 + 0.0332292i
\(532\) 1.35787 + 9.44416i 0.0588709 + 0.409456i
\(533\) 0.823111 + 1.80236i 0.0356529 + 0.0780689i
\(534\) 11.1438 + 3.27212i 0.482240 + 0.141598i
\(535\) 1.49579 3.27533i 0.0646688 0.141605i
\(536\) 3.34578 3.86123i 0.144516 0.166780i
\(537\) −1.23377 + 8.58109i −0.0532413 + 0.370301i
\(538\) 2.75525 0.809014i 0.118787 0.0348791i
\(539\) −0.344499 0.397573i −0.0148386 0.0171247i
\(540\) 0.841254 0.540641i 0.0362018 0.0232655i
\(541\) −25.6931 + 16.5120i −1.10463 + 0.709905i −0.960117 0.279597i \(-0.909799\pi\)
−0.144517 + 0.989502i \(0.546163\pi\)
\(542\) 12.1477 + 14.0192i 0.521790 + 0.602178i
\(543\) 13.1204 3.85249i 0.563049 0.165326i
\(544\) −0.673963 + 4.68752i −0.0288959 + 0.200976i
\(545\) 10.7194 12.3709i 0.459170 0.529911i
\(546\) −2.32139 + 5.08314i −0.0993465 + 0.217538i
\(547\) −32.9897 9.68664i −1.41054 0.414171i −0.514247 0.857642i \(-0.671929\pi\)
−0.896289 + 0.443471i \(0.853747\pi\)
\(548\) 1.75843 + 3.85043i 0.0751165 + 0.164482i
\(549\) −0.359602 2.50109i −0.0153474 0.106744i
\(550\) 1.98022 + 1.27261i 0.0844370 + 0.0542644i
\(551\) 23.0131 0.980392
\(552\) −0.956931 4.69939i −0.0407297 0.200019i
\(553\) 2.27910 0.0969173
\(554\) 27.5188 + 17.6853i 1.16916 + 0.751376i
\(555\) 1.15662 + 8.04445i 0.0490957 + 0.341468i
\(556\) −3.76751 8.24970i −0.159778 0.349865i
\(557\) −5.72534 1.68111i −0.242591 0.0712310i 0.158177 0.987411i \(-0.449438\pi\)
−0.400768 + 0.916180i \(0.631257\pi\)
\(558\) 0.818841 1.79301i 0.0346643 0.0759043i
\(559\) 4.89995 5.65485i 0.207246 0.239175i
\(560\) 0.382493 2.66030i 0.0161633 0.112418i
\(561\) −10.6958 + 3.14058i −0.451579 + 0.132596i
\(562\) 18.6184 + 21.4868i 0.785371 + 0.906366i
\(563\) −37.6931 + 24.2239i −1.58857 + 1.02091i −0.616170 + 0.787613i \(0.711316\pi\)
−0.972405 + 0.233301i \(0.925047\pi\)
\(564\) −1.08299 + 0.695998i −0.0456023 + 0.0293068i
\(565\) 5.09461 + 5.87950i 0.214332 + 0.247352i
\(566\) −14.4207 + 4.23431i −0.606148 + 0.177981i
\(567\) 0.382493 2.66030i 0.0160632 0.111722i
\(568\) −0.359057 + 0.414374i −0.0150657 + 0.0173867i
\(569\) 2.73560 5.99014i 0.114683 0.251120i −0.843583 0.536998i \(-0.819558\pi\)
0.958266 + 0.285879i \(0.0922854\pi\)
\(570\) −3.40624 1.00016i −0.142672 0.0418922i
\(571\) 3.63538 + 7.96036i 0.152136 + 0.333131i 0.970320 0.241826i \(-0.0777462\pi\)
−0.818184 + 0.574957i \(0.805019\pi\)
\(572\) −0.696515 4.84437i −0.0291228 0.202553i
\(573\) 9.69312 + 6.22939i 0.404936 + 0.260236i
\(574\) −2.56128 −0.106906
\(575\) 1.73566 4.47074i 0.0723821 0.186443i
\(576\) 1.00000 0.0416667
\(577\) −29.2735 18.8129i −1.21867 0.783192i −0.236582 0.971611i \(-0.576027\pi\)
−0.982089 + 0.188419i \(0.939664\pi\)
\(578\) −0.772351 5.37182i −0.0321256 0.223438i
\(579\) −1.07102 2.34521i −0.0445102 0.0974636i
\(580\) −6.21991 1.82633i −0.258268 0.0758343i
\(581\) −7.19218 + 15.7487i −0.298382 + 0.653365i
\(582\) 1.89139 2.18278i 0.0784005 0.0904790i
\(583\) −1.31585 + 9.15193i −0.0544969 + 0.379034i
\(584\) −9.03296 + 2.65232i −0.373787 + 0.109754i
\(585\) −1.36158 1.57134i −0.0562943 0.0649670i
\(586\) 19.6253 12.6124i 0.810714 0.521014i
\(587\) −34.7489 + 22.3318i −1.43424 + 0.921730i −0.434462 + 0.900690i \(0.643061\pi\)
−0.999779 + 0.0210402i \(0.993302\pi\)
\(588\) −0.146353 0.168900i −0.00603548 0.00696532i
\(589\) −6.71417 + 1.97146i −0.276653 + 0.0812325i
\(590\) −0.201562 + 1.40189i −0.00829817 + 0.0577151i
\(591\) 12.6829 14.6369i 0.521705 0.602080i
\(592\) −3.37615 + 7.39274i −0.138759 + 0.303840i
\(593\) −35.8502 10.5266i −1.47219 0.432274i −0.555381 0.831596i \(-0.687427\pi\)
−0.916811 + 0.399322i \(0.869246\pi\)
\(594\) 0.977844 + 2.14118i 0.0401214 + 0.0878536i
\(595\) 1.81138 + 12.5984i 0.0742594 + 0.516485i
\(596\) 10.5252 + 6.76416i 0.431131 + 0.277071i
\(597\) −16.5556 −0.677576
\(598\) −9.38830 + 3.35993i −0.383916 + 0.137398i
\(599\) −36.4366 −1.48876 −0.744379 0.667757i \(-0.767254\pi\)
−0.744379 + 0.667757i \(0.767254\pi\)
\(600\) 0.841254 + 0.540641i 0.0343440 + 0.0220716i
\(601\) 1.44474 + 10.0484i 0.0589323 + 0.409883i 0.997839 + 0.0657106i \(0.0209314\pi\)
−0.938906 + 0.344173i \(0.888159\pi\)
\(602\) 4.01796 + 8.79810i 0.163760 + 0.358584i
\(603\) 4.90219 + 1.43941i 0.199633 + 0.0586174i
\(604\) 0.140722 0.308137i 0.00572588 0.0125379i
\(605\) 3.57500 4.12577i 0.145344 0.167736i
\(606\) −0.965765 + 6.71705i −0.0392315 + 0.272861i
\(607\) −19.8573 + 5.83062i −0.805982 + 0.236658i −0.658670 0.752432i \(-0.728881\pi\)
−0.147313 + 0.989090i \(0.547062\pi\)
\(608\) −2.32478 2.68294i −0.0942823 0.108808i
\(609\) −14.6569 + 9.41943i −0.593929 + 0.381695i
\(610\) 2.12568 1.36609i 0.0860664 0.0553115i
\(611\) 1.75284 + 2.02288i 0.0709121 + 0.0818370i
\(612\) −4.54389 + 1.33421i −0.183676 + 0.0539321i
\(613\) 6.37438 44.3348i 0.257459 1.79067i −0.293319 0.956015i \(-0.594760\pi\)
0.550778 0.834652i \(-0.314331\pi\)
\(614\) 2.73631 3.15787i 0.110429 0.127441i
\(615\) 0.395881 0.866859i 0.0159635 0.0349551i
\(616\) 6.07019 + 1.78237i 0.244575 + 0.0718137i
\(617\) 11.4115 + 24.9877i 0.459409 + 1.00597i 0.987622 + 0.156854i \(0.0501351\pi\)
−0.528213 + 0.849112i \(0.677138\pi\)
\(618\) 0.767767 + 5.33994i 0.0308841 + 0.214804i
\(619\) −30.7795 19.7808i −1.23713 0.795057i −0.252146 0.967689i \(-0.581136\pi\)
−0.984986 + 0.172632i \(0.944773\pi\)
\(620\) 1.97114 0.0791629
\(621\) 3.87719 2.82265i 0.155586 0.113269i
\(622\) 10.2139 0.409539
\(623\) 26.2598 + 16.8762i 1.05208 + 0.676130i
\(624\) −0.295899 2.05802i −0.0118454 0.0823868i
\(625\) 0.415415 + 0.909632i 0.0166166 + 0.0363853i
\(626\) 13.1539 + 3.86234i 0.525737 + 0.154370i
\(627\) 3.47138 7.60127i 0.138634 0.303565i
\(628\) −13.3270 + 15.3802i −0.531805 + 0.613736i
\(629\) 5.47742 38.0963i 0.218399 1.51900i
\(630\) 2.57879 0.757200i 0.102741 0.0301676i
\(631\) 2.87255 + 3.31510i 0.114354 + 0.131972i 0.810041 0.586374i \(-0.199445\pi\)
−0.695686 + 0.718346i \(0.744900\pi\)
\(632\) −0.713374 + 0.458458i −0.0283765 + 0.0182365i
\(633\) −18.1296 + 11.6512i −0.720589 + 0.463094i
\(634\) 14.0731 + 16.2412i 0.558914 + 0.645021i
\(635\) −18.5197 + 5.43788i −0.734933 + 0.215796i
\(636\) −0.559009 + 3.88799i −0.0221661 + 0.154169i
\(637\) −0.304294 + 0.351174i −0.0120566 + 0.0139140i
\(638\) 6.33887 13.8802i 0.250958 0.549522i
\(639\) −0.526085 0.154473i −0.0208116 0.00611084i
\(640\) 0.415415 + 0.909632i 0.0164207 + 0.0359564i
\(641\) 2.96320 + 20.6095i 0.117039 + 0.814027i 0.960787 + 0.277287i \(0.0894354\pi\)
−0.843748 + 0.536740i \(0.819656\pi\)
\(642\) 3.02912 + 1.94670i 0.119550 + 0.0768300i
\(643\) −28.5121 −1.12441 −0.562203 0.826999i \(-0.690046\pi\)
−0.562203 + 0.826999i \(0.690046\pi\)
\(644\) 1.09066 12.8433i 0.0429780 0.506097i
\(645\) −3.59873 −0.141700
\(646\) 14.1431 + 9.08925i 0.556455 + 0.357612i
\(647\) −2.15994 15.0227i −0.0849160 0.590603i −0.987203 0.159468i \(-0.949022\pi\)
0.902287 0.431136i \(-0.141887\pi\)
\(648\) 0.415415 + 0.909632i 0.0163190 + 0.0357337i
\(649\) −3.19880 0.939253i −0.125564 0.0368689i
\(650\) 0.863725 1.89129i 0.0338781 0.0741826i
\(651\) 3.46928 4.00377i 0.135972 0.156920i
\(652\) −2.86036 + 19.8943i −0.112021 + 0.779120i
\(653\) −38.2461 + 11.2301i −1.49668 + 0.439466i −0.924667 0.380776i \(-0.875657\pi\)
−0.572017 + 0.820242i \(0.693839\pi\)
\(654\) 10.7194 + 12.3709i 0.419163 + 0.483740i
\(655\) 13.7246 8.82029i 0.536266 0.344637i
\(656\) 0.801696 0.515219i 0.0313010 0.0201159i
\(657\) −6.16506 7.11486i −0.240522 0.277577i
\(658\) −3.31982 + 0.974787i −0.129420 + 0.0380011i
\(659\) −5.89947 + 41.0317i −0.229811 + 1.59837i 0.469091 + 0.883150i \(0.344582\pi\)
−0.698901 + 0.715218i \(0.746327\pi\)
\(660\) −1.54147 + 1.77896i −0.0600018 + 0.0692458i
\(661\) 10.5912 23.1915i 0.411950 0.902045i −0.583967 0.811777i \(-0.698500\pi\)
0.995918 0.0902679i \(-0.0287723\pi\)
\(662\) −9.80666 2.87950i −0.381147 0.111915i
\(663\) 4.09036 + 8.95664i 0.158856 + 0.347847i
\(664\) −0.916759 6.37620i −0.0355772 0.247445i
\(665\) −8.02663 5.15840i −0.311259 0.200034i
\(666\) −8.12717 −0.314922
\(667\) −30.2878 7.01240i −1.17275 0.271521i
\(668\) 19.6558 0.760506
\(669\) 9.39401 + 6.03716i 0.363193 + 0.233410i
\(670\) 0.727107 + 5.05714i 0.0280906 + 0.195374i
\(671\) 2.47082 + 5.41034i 0.0953850 + 0.208864i
\(672\) 2.57879 + 0.757200i 0.0994788 + 0.0292096i
\(673\) −10.1851 + 22.3022i −0.392606 + 0.859688i 0.605360 + 0.795952i \(0.293029\pi\)
−0.997967 + 0.0637367i \(0.979698\pi\)
\(674\) −1.41737 + 1.63574i −0.0545952 + 0.0630062i
\(675\) −0.142315 + 0.989821i −0.00547770 + 0.0380982i
\(676\) 8.32551 2.44459i 0.320212 0.0940227i
\(677\) 20.0769 + 23.1700i 0.771617 + 0.890494i 0.996474 0.0838980i \(-0.0267370\pi\)
−0.224857 + 0.974392i \(0.572192\pi\)
\(678\) −6.54469 + 4.20602i −0.251347 + 0.161531i
\(679\) 6.53028 4.19676i 0.250609 0.161057i
\(680\) −3.10124 3.57902i −0.118927 0.137249i
\(681\) 24.3000 7.13513i 0.931179 0.273419i
\(682\) −0.660321 + 4.59263i −0.0252850 + 0.175861i
\(683\) −18.5011 + 21.3514i −0.707924 + 0.816987i −0.989800 0.142463i \(-0.954498\pi\)
0.281876 + 0.959451i \(0.409043\pi\)
\(684\) 1.47474 3.22923i 0.0563881 0.123473i
\(685\) −4.06149 1.19256i −0.155182 0.0455654i
\(686\) 7.56592 + 16.5671i 0.288868 + 0.632533i
\(687\) 3.24918 + 22.5986i 0.123964 + 0.862189i
\(688\) −3.02745 1.94562i −0.115420 0.0741762i
\(689\) 8.16698 0.311137
\(690\) 4.17822 + 2.35425i 0.159062 + 0.0896247i
\(691\) 17.6587 0.671769 0.335885 0.941903i \(-0.390965\pi\)
0.335885 + 0.941903i \(0.390965\pi\)
\(692\) −2.42124 1.55604i −0.0920418 0.0591517i
\(693\) 0.900349 + 6.26206i 0.0342014 + 0.237876i
\(694\) 9.74649 + 21.3418i 0.369972 + 0.810125i
\(695\) 8.70190 + 2.55511i 0.330082 + 0.0969208i
\(696\) 2.69293 5.89669i 0.102075 0.223513i
\(697\) −2.95541 + 3.41073i −0.111944 + 0.129191i
\(698\) 0.744967 5.18136i 0.0281974 0.196117i
\(699\) −22.2164 + 6.52333i −0.840302 + 0.246735i
\(700\) 1.76004 + 2.03119i 0.0665232 + 0.0767719i
\(701\) −0.0219128 + 0.0140825i −0.000827634 + 0.000531888i −0.541055 0.840987i \(-0.681975\pi\)
0.540227 + 0.841519i \(0.318338\pi\)
\(702\) 1.74912 1.12409i 0.0660163 0.0424261i
\(703\) 18.8939 + 21.8047i 0.712597 + 0.822381i
\(704\) −2.25855 + 0.663169i −0.0851222 + 0.0249941i
\(705\) 0.183210 1.27425i 0.00690009 0.0479912i
\(706\) 17.7991 20.5413i 0.669878 0.773081i
\(707\) −7.57665 + 16.5905i −0.284949 + 0.623952i
\(708\) −1.35894 0.399021i −0.0510721 0.0149961i
\(709\) 8.15230 + 17.8510i 0.306166 + 0.670410i 0.998700 0.0509754i \(-0.0162330\pi\)
−0.692534 + 0.721385i \(0.743506\pi\)
\(710\) −0.0780305 0.542714i −0.00292843 0.0203677i
\(711\) −0.713374 0.458458i −0.0267536 0.0171935i
\(712\) −11.6143 −0.435263
\(713\) 9.43732 0.548760i 0.353430 0.0205512i
\(714\) −12.7280 −0.476333
\(715\) 4.11725 + 2.64600i 0.153976 + 0.0989546i
\(716\) −1.23377 8.58109i −0.0461083 0.320690i
\(717\) 0.174681 + 0.382498i 0.00652359 + 0.0142847i
\(718\) −27.1950 7.98518i −1.01491 0.298004i
\(719\) −6.13191 + 13.4270i −0.228682 + 0.500743i −0.988838 0.148998i \(-0.952395\pi\)
0.760156 + 0.649741i \(0.225123\pi\)
\(720\) −0.654861 + 0.755750i −0.0244052 + 0.0281651i
\(721\) −2.06349 + 14.3519i −0.0768485 + 0.534493i
\(722\) 6.13809 1.80231i 0.228436 0.0670749i
\(723\) −0.667192 0.769981i −0.0248132 0.0286359i
\(724\) −11.5035 + 7.39287i −0.427526 + 0.274754i
\(725\) 5.45343 3.50470i 0.202535 0.130161i
\(726\) 3.57500 + 4.12577i 0.132681 + 0.153122i
\(727\) 6.16919 1.81144i 0.228803 0.0671826i −0.165321 0.986240i \(-0.552866\pi\)
0.394124 + 0.919057i \(0.371048\pi\)
\(728\) 0.795274 5.53125i 0.0294748 0.205002i
\(729\) −0.654861 + 0.755750i −0.0242541 + 0.0279907i
\(730\) 3.91085 8.56356i 0.144747 0.316951i
\(731\) 16.3523 + 4.80146i 0.604810 + 0.177588i
\(732\) 1.04967 + 2.29846i 0.0387970 + 0.0849536i
\(733\) 3.51682 + 24.4600i 0.129897 + 0.903450i 0.945681 + 0.325095i \(0.105396\pi\)
−0.815785 + 0.578355i \(0.803695\pi\)
\(734\) −17.8332 11.4607i −0.658237 0.423023i
\(735\) 0.223487 0.00824343
\(736\) 2.24214 + 4.23943i 0.0826464 + 0.156268i
\(737\) −12.0264 −0.442998
\(738\) 0.801696 + 0.515219i 0.0295108 + 0.0189655i
\(739\) 4.57407 + 31.8134i 0.168260 + 1.17027i 0.882479 + 0.470352i \(0.155873\pi\)
−0.714219 + 0.699922i \(0.753218\pi\)
\(740\) −3.37615 7.39274i −0.124110 0.271762i
\(741\) −7.08220 2.07952i −0.260171 0.0763931i
\(742\) −4.38555 + 9.60302i −0.160999 + 0.352538i
\(743\) −24.4724 + 28.2426i −0.897805 + 1.03612i 0.101343 + 0.994852i \(0.467686\pi\)
−0.999148 + 0.0412702i \(0.986860\pi\)
\(744\) −0.280522 + 1.95108i −0.0102845 + 0.0715299i
\(745\) −12.0046 + 3.52486i −0.439814 + 0.129141i
\(746\) 7.48345 + 8.63636i 0.273989 + 0.316200i
\(747\) 5.41916 3.48268i 0.198277 0.127425i
\(748\) 9.37779 6.02674i 0.342886 0.220359i
\(749\) 6.33741 + 7.31376i 0.231564 + 0.267239i
\(750\) −0.959493 + 0.281733i −0.0350357 + 0.0102874i
\(751\) 6.32545 43.9945i 0.230819 1.60538i −0.463757 0.885963i \(-0.653499\pi\)
0.694576 0.719419i \(-0.255592\pi\)
\(752\) 0.843040 0.972920i 0.0307425 0.0354787i
\(753\) −4.76930 + 10.4433i −0.173803 + 0.380576i
\(754\) −12.9324 3.79728i −0.470968 0.138289i
\(755\) 0.140722 + 0.308137i 0.00512138 + 0.0112143i
\(756\) 0.382493 + 2.66030i 0.0139111 + 0.0967541i
\(757\) 10.4193 + 6.69610i 0.378697 + 0.243374i 0.716117 0.697980i \(-0.245918\pi\)
−0.337420 + 0.941354i \(0.609554\pi\)
\(758\) −2.43401 −0.0884074
\(759\) −6.88493 + 8.94633i −0.249907 + 0.324731i
\(760\) 3.55004 0.128773
\(761\) 21.4150 + 13.7626i 0.776295 + 0.498894i 0.867802 0.496910i \(-0.165532\pi\)
−0.0915073 + 0.995804i \(0.529168\pi\)
\(762\) −2.74690 19.1051i −0.0995097 0.692105i
\(763\) 18.2759 + 40.0186i 0.661632 + 1.44877i
\(764\) −11.0555 3.24619i −0.399974 0.117443i
\(765\) 1.96729 4.30776i 0.0711275 0.155748i
\(766\) −11.8147 + 13.6349i −0.426882 + 0.492648i
\(767\) −0.419084 + 2.91480i −0.0151323 + 0.105247i
\(768\) −0.959493 + 0.281733i −0.0346227 + 0.0101661i
\(769\) −5.66807 6.54131i −0.204396 0.235886i 0.644292 0.764780i \(-0.277152\pi\)
−0.848688 + 0.528894i \(0.822607\pi\)
\(770\) −5.32216 + 3.42034i −0.191797 + 0.123261i
\(771\) −6.38309 + 4.10216i −0.229881 + 0.147736i
\(772\) 1.68836 + 1.94847i 0.0607654 + 0.0701270i
\(773\) −4.66484 + 1.36972i −0.167783 + 0.0492654i −0.364545 0.931186i \(-0.618775\pi\)