Properties

Label 690.2.m.g.211.2
Level $690$
Weight $2$
Character 690.211
Analytic conductor $5.510$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 211.2
Character \(\chi\) \(=\) 690.211
Dual form 690.2.m.g.121.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.415415 + 0.909632i) q^{2} +(-0.959493 + 0.281733i) q^{3} +(-0.654861 + 0.755750i) q^{4} +(0.841254 + 0.540641i) q^{5} +(-0.654861 - 0.755750i) q^{6} +(-0.188781 - 1.31300i) q^{7} +(-0.959493 - 0.281733i) q^{8} +(0.841254 - 0.540641i) q^{9} +O(q^{10})\) \(q+(0.415415 + 0.909632i) q^{2} +(-0.959493 + 0.281733i) q^{3} +(-0.654861 + 0.755750i) q^{4} +(0.841254 + 0.540641i) q^{5} +(-0.654861 - 0.755750i) q^{6} +(-0.188781 - 1.31300i) q^{7} +(-0.959493 - 0.281733i) q^{8} +(0.841254 - 0.540641i) q^{9} +(-0.142315 + 0.989821i) q^{10} +(-1.37573 + 3.01243i) q^{11} +(0.415415 - 0.909632i) q^{12} +(-0.119230 + 0.829266i) q^{13} +(1.11592 - 0.717161i) q^{14} +(-0.959493 - 0.281733i) q^{15} +(-0.142315 - 0.989821i) q^{16} +(4.35615 + 5.02726i) q^{17} +(0.841254 + 0.540641i) q^{18} +(-4.28346 + 4.94338i) q^{19} +(-0.959493 + 0.281733i) q^{20} +(0.551049 + 1.20663i) q^{21} -3.31170 q^{22} +(-3.75276 + 2.98611i) q^{23} +1.00000 q^{24} +(0.415415 + 0.909632i) q^{25} +(-0.803857 + 0.236034i) q^{26} +(-0.654861 + 0.755750i) q^{27} +(1.11592 + 0.717161i) q^{28} +(-3.58395 - 4.13609i) q^{29} +(-0.142315 - 0.989821i) q^{30} +(-2.09882 - 0.616268i) q^{31} +(0.841254 - 0.540641i) q^{32} +(0.471304 - 3.27799i) q^{33} +(-2.76335 + 6.05089i) q^{34} +(0.551049 - 1.20663i) q^{35} +(-0.142315 + 0.989821i) q^{36} +(-0.797314 + 0.512403i) q^{37} +(-6.27607 - 1.84282i) q^{38} +(-0.119230 - 0.829266i) q^{39} +(-0.654861 - 0.755750i) q^{40} +(-0.106571 - 0.0684892i) q^{41} +(-0.868674 + 1.00250i) q^{42} +(-1.86611 + 0.547940i) q^{43} +(-1.37573 - 3.01243i) q^{44} +1.00000 q^{45} +(-4.27521 - 2.17315i) q^{46} +7.35491 q^{47} +(0.415415 + 0.909632i) q^{48} +(5.02812 - 1.47639i) q^{49} +(-0.654861 + 0.755750i) q^{50} +(-5.59604 - 3.59635i) q^{51} +(-0.548638 - 0.633162i) q^{52} +(1.08325 + 7.53417i) q^{53} +(-0.959493 - 0.281733i) q^{54} +(-2.78598 + 1.79044i) q^{55} +(-0.188781 + 1.31300i) q^{56} +(2.71724 - 5.94992i) q^{57} +(2.27350 - 4.97827i) q^{58} +(-1.02489 + 7.12828i) q^{59} +(0.841254 - 0.540641i) q^{60} +(-13.6565 - 4.00990i) q^{61} +(-0.311303 - 2.16516i) q^{62} +(-0.868674 - 1.00250i) q^{63} +(0.841254 + 0.540641i) q^{64} +(-0.548638 + 0.633162i) q^{65} +(3.17756 - 0.933014i) q^{66} +(2.30217 + 5.04105i) q^{67} -6.65202 q^{68} +(2.75946 - 3.92242i) q^{69} +1.32650 q^{70} +(-3.19536 - 6.99686i) q^{71} +(-0.959493 + 0.281733i) q^{72} +(-6.56875 + 7.58074i) q^{73} +(-0.797314 - 0.512403i) q^{74} +(-0.654861 - 0.755750i) q^{75} +(-0.930885 - 6.47445i) q^{76} +(4.21503 + 1.23765i) q^{77} +(0.704797 - 0.452945i) q^{78} +(0.0967853 - 0.673156i) q^{79} +(0.415415 - 0.909632i) q^{80} +(0.415415 - 0.909632i) q^{81} +(0.0180287 - 0.125392i) q^{82} +(5.66470 - 3.64048i) q^{83} +(-1.27277 - 0.373719i) q^{84} +(0.946681 + 6.58431i) q^{85} +(-1.27363 - 1.46985i) q^{86} +(4.60404 + 2.95884i) q^{87} +(2.16870 - 2.50282i) q^{88} +(17.0069 - 4.99368i) q^{89} +(0.415415 + 0.909632i) q^{90} +1.11133 q^{91} +(0.200784 - 4.79163i) q^{92} +2.18742 q^{93} +(3.05534 + 6.69026i) q^{94} +(-6.27607 + 1.84282i) q^{95} +(-0.654861 + 0.755750i) q^{96} +(10.1243 + 6.50651i) q^{97} +(3.43173 + 3.96042i) q^{98} +(0.471304 + 3.27799i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30q - 3q^{2} - 3q^{3} - 3q^{4} - 3q^{5} - 3q^{6} - 8q^{7} - 3q^{8} - 3q^{9} + O(q^{10}) \) \( 30q - 3q^{2} - 3q^{3} - 3q^{4} - 3q^{5} - 3q^{6} - 8q^{7} - 3q^{8} - 3q^{9} - 3q^{10} + 8q^{11} - 3q^{12} - 5q^{13} - 8q^{14} - 3q^{15} - 3q^{16} + 4q^{17} - 3q^{18} + 6q^{19} - 3q^{20} + 3q^{21} + 8q^{22} + q^{23} + 30q^{24} - 3q^{25} - 5q^{26} - 3q^{27} - 8q^{28} - 10q^{29} - 3q^{30} - 10q^{31} - 3q^{32} - 14q^{33} - 7q^{34} + 3q^{35} - 3q^{36} - 12q^{37} - 5q^{38} - 5q^{39} - 3q^{40} + 5q^{41} + 3q^{42} + 2q^{43} + 8q^{44} + 30q^{45} - 21q^{46} + 96q^{47} - 3q^{48} - 43q^{49} - 3q^{50} + 15q^{51} - 16q^{52} + 12q^{53} - 3q^{54} + 8q^{55} - 8q^{56} + 17q^{57} + q^{58} - 9q^{59} - 3q^{60} + q^{61} - 32q^{62} + 3q^{63} - 3q^{64} - 16q^{65} - 3q^{66} - 28q^{67} + 4q^{68} + 23q^{69} + 14q^{70} + 3q^{71} - 3q^{72} - 27q^{73} - 12q^{74} - 3q^{75} - 16q^{76} + 47q^{77} + 6q^{78} + 2q^{79} - 3q^{80} - 3q^{81} + 27q^{82} + 11q^{83} + 3q^{84} - 7q^{85} + 2q^{86} - 32q^{87} - 3q^{88} + 25q^{89} - 3q^{90} - 90q^{91} - 10q^{92} + 56q^{93} - 25q^{94} - 5q^{95} - 3q^{96} - 7q^{97} - 32q^{98} - 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.415415 + 0.909632i 0.293743 + 0.643207i
\(3\) −0.959493 + 0.281733i −0.553964 + 0.162658i
\(4\) −0.654861 + 0.755750i −0.327430 + 0.377875i
\(5\) 0.841254 + 0.540641i 0.376220 + 0.241782i
\(6\) −0.654861 0.755750i −0.267346 0.308533i
\(7\) −0.188781 1.31300i −0.0713525 0.496267i −0.993891 0.110363i \(-0.964799\pi\)
0.922539 0.385904i \(-0.126110\pi\)
\(8\) −0.959493 0.281733i −0.339232 0.0996075i
\(9\) 0.841254 0.540641i 0.280418 0.180214i
\(10\) −0.142315 + 0.989821i −0.0450039 + 0.313009i
\(11\) −1.37573 + 3.01243i −0.414799 + 0.908282i 0.580754 + 0.814079i \(0.302758\pi\)
−0.995553 + 0.0942033i \(0.969970\pi\)
\(12\) 0.415415 0.909632i 0.119920 0.262588i
\(13\) −0.119230 + 0.829266i −0.0330686 + 0.229997i −0.999653 0.0263526i \(-0.991611\pi\)
0.966584 + 0.256350i \(0.0825198\pi\)
\(14\) 1.11592 0.717161i 0.298243 0.191669i
\(15\) −0.959493 0.281733i −0.247740 0.0727430i
\(16\) −0.142315 0.989821i −0.0355787 0.247455i
\(17\) 4.35615 + 5.02726i 1.05652 + 1.21929i 0.974904 + 0.222626i \(0.0714630\pi\)
0.0816169 + 0.996664i \(0.473992\pi\)
\(18\) 0.841254 + 0.540641i 0.198285 + 0.127430i
\(19\) −4.28346 + 4.94338i −0.982693 + 1.13409i 0.00827174 + 0.999966i \(0.497367\pi\)
−0.990965 + 0.134122i \(0.957178\pi\)
\(20\) −0.959493 + 0.281733i −0.214549 + 0.0629973i
\(21\) 0.551049 + 1.20663i 0.120249 + 0.263308i
\(22\) −3.31170 −0.706057
\(23\) −3.75276 + 2.98611i −0.782504 + 0.622646i
\(24\) 1.00000 0.204124
\(25\) 0.415415 + 0.909632i 0.0830830 + 0.181926i
\(26\) −0.803857 + 0.236034i −0.157649 + 0.0462900i
\(27\) −0.654861 + 0.755750i −0.126028 + 0.145444i
\(28\) 1.11592 + 0.717161i 0.210890 + 0.135531i
\(29\) −3.58395 4.13609i −0.665522 0.768054i 0.318147 0.948042i \(-0.396940\pi\)
−0.983669 + 0.179988i \(0.942394\pi\)
\(30\) −0.142315 0.989821i −0.0259830 0.180716i
\(31\) −2.09882 0.616268i −0.376959 0.110685i 0.0877641 0.996141i \(-0.472028\pi\)
−0.464723 + 0.885456i \(0.653846\pi\)
\(32\) 0.841254 0.540641i 0.148714 0.0955727i
\(33\) 0.471304 3.27799i 0.0820436 0.570626i
\(34\) −2.76335 + 6.05089i −0.473910 + 1.03772i
\(35\) 0.551049 1.20663i 0.0931442 0.203957i
\(36\) −0.142315 + 0.989821i −0.0237191 + 0.164970i
\(37\) −0.797314 + 0.512403i −0.131078 + 0.0842385i −0.604536 0.796577i \(-0.706642\pi\)
0.473459 + 0.880816i \(0.343005\pi\)
\(38\) −6.27607 1.84282i −1.01811 0.298945i
\(39\) −0.119230 0.829266i −0.0190921 0.132789i
\(40\) −0.654861 0.755750i −0.103543 0.119494i
\(41\) −0.106571 0.0684892i −0.0166436 0.0106962i 0.532293 0.846560i \(-0.321331\pi\)
−0.548936 + 0.835864i \(0.684967\pi\)
\(42\) −0.868674 + 1.00250i −0.134039 + 0.154690i
\(43\) −1.86611 + 0.547940i −0.284579 + 0.0835600i −0.420907 0.907104i \(-0.638288\pi\)
0.136328 + 0.990664i \(0.456470\pi\)
\(44\) −1.37573 3.01243i −0.207399 0.454141i
\(45\) 1.00000 0.149071
\(46\) −4.27521 2.17315i −0.630345 0.320414i
\(47\) 7.35491 1.07282 0.536412 0.843956i \(-0.319779\pi\)
0.536412 + 0.843956i \(0.319779\pi\)
\(48\) 0.415415 + 0.909632i 0.0599600 + 0.131294i
\(49\) 5.02812 1.47639i 0.718303 0.210913i
\(50\) −0.654861 + 0.755750i −0.0926113 + 0.106879i
\(51\) −5.59604 3.59635i −0.783602 0.503590i
\(52\) −0.548638 0.633162i −0.0760824 0.0878038i
\(53\) 1.08325 + 7.53417i 0.148796 + 1.03490i 0.918195 + 0.396129i \(0.129647\pi\)
−0.769399 + 0.638769i \(0.779444\pi\)
\(54\) −0.959493 0.281733i −0.130570 0.0383389i
\(55\) −2.78598 + 1.79044i −0.375662 + 0.241423i
\(56\) −0.188781 + 1.31300i −0.0252269 + 0.175457i
\(57\) 2.71724 5.94992i 0.359907 0.788087i
\(58\) 2.27350 4.97827i 0.298525 0.653679i
\(59\) −1.02489 + 7.12828i −0.133430 + 0.928023i 0.807608 + 0.589720i \(0.200762\pi\)
−0.941037 + 0.338303i \(0.890147\pi\)
\(60\) 0.841254 0.540641i 0.108605 0.0697964i
\(61\) −13.6565 4.00990i −1.74853 0.513415i −0.758187 0.652038i \(-0.773914\pi\)
−0.990345 + 0.138622i \(0.955733\pi\)
\(62\) −0.311303 2.16516i −0.0395355 0.274975i
\(63\) −0.868674 1.00250i −0.109443 0.126304i
\(64\) 0.841254 + 0.540641i 0.105157 + 0.0675801i
\(65\) −0.548638 + 0.633162i −0.0680502 + 0.0785341i
\(66\) 3.17756 0.933014i 0.391130 0.114846i
\(67\) 2.30217 + 5.04105i 0.281255 + 0.615863i 0.996553 0.0829568i \(-0.0264364\pi\)
−0.715298 + 0.698819i \(0.753709\pi\)
\(68\) −6.65202 −0.806676
\(69\) 2.75946 3.92242i 0.332200 0.472204i
\(70\) 1.32650 0.158547
\(71\) −3.19536 6.99686i −0.379219 0.830375i −0.998961 0.0455690i \(-0.985490\pi\)
0.619742 0.784806i \(-0.287237\pi\)
\(72\) −0.959493 + 0.281733i −0.113077 + 0.0332025i
\(73\) −6.56875 + 7.58074i −0.768814 + 0.887259i −0.996249 0.0865344i \(-0.972421\pi\)
0.227435 + 0.973793i \(0.426966\pi\)
\(74\) −0.797314 0.512403i −0.0926859 0.0595656i
\(75\) −0.654861 0.755750i −0.0756168 0.0872664i
\(76\) −0.930885 6.47445i −0.106780 0.742670i
\(77\) 4.21503 + 1.23765i 0.480348 + 0.141043i
\(78\) 0.704797 0.452945i 0.0798025 0.0512859i
\(79\) 0.0967853 0.673156i 0.0108892 0.0757360i −0.983652 0.180079i \(-0.942365\pi\)
0.994541 + 0.104343i \(0.0332739\pi\)
\(80\) 0.415415 0.909632i 0.0464448 0.101700i
\(81\) 0.415415 0.909632i 0.0461572 0.101070i
\(82\) 0.0180287 0.125392i 0.00199093 0.0138472i
\(83\) 5.66470 3.64048i 0.621782 0.399595i −0.191477 0.981497i \(-0.561328\pi\)
0.813259 + 0.581902i \(0.197691\pi\)
\(84\) −1.27277 0.373719i −0.138871 0.0407761i
\(85\) 0.946681 + 6.58431i 0.102682 + 0.714169i
\(86\) −1.27363 1.46985i −0.137340 0.158498i
\(87\) 4.60404 + 2.95884i 0.493605 + 0.317221i
\(88\) 2.16870 2.50282i 0.231185 0.266801i
\(89\) 17.0069 4.99368i 1.80273 0.529329i 0.804793 0.593556i \(-0.202277\pi\)
0.997935 + 0.0642276i \(0.0204584\pi\)
\(90\) 0.415415 + 0.909632i 0.0437886 + 0.0958836i
\(91\) 1.11133 0.116499
\(92\) 0.200784 4.79163i 0.0209332 0.499562i
\(93\) 2.18742 0.226825
\(94\) 3.05534 + 6.69026i 0.315134 + 0.690048i
\(95\) −6.27607 + 1.84282i −0.643911 + 0.189069i
\(96\) −0.654861 + 0.755750i −0.0668364 + 0.0771334i
\(97\) 10.1243 + 6.50651i 1.02797 + 0.660636i 0.941983 0.335660i \(-0.108959\pi\)
0.0859866 + 0.996296i \(0.472596\pi\)
\(98\) 3.43173 + 3.96042i 0.346657 + 0.400063i
\(99\) 0.471304 + 3.27799i 0.0473679 + 0.329451i
\(100\) −0.959493 0.281733i −0.0959493 0.0281733i
\(101\) 11.7751 7.56737i 1.17166 0.752981i 0.197827 0.980237i \(-0.436612\pi\)
0.973835 + 0.227256i \(0.0729753\pi\)
\(102\) 0.946681 6.58431i 0.0937354 0.651944i
\(103\) −1.92169 + 4.20791i −0.189350 + 0.414618i −0.980369 0.197174i \(-0.936824\pi\)
0.791019 + 0.611792i \(0.209551\pi\)
\(104\) 0.348032 0.762084i 0.0341273 0.0747284i
\(105\) −0.188781 + 1.31300i −0.0184231 + 0.128136i
\(106\) −6.40332 + 4.11517i −0.621946 + 0.399700i
\(107\) 12.7263 + 3.73679i 1.23030 + 0.361249i 0.831364 0.555728i \(-0.187560\pi\)
0.398939 + 0.916978i \(0.369379\pi\)
\(108\) −0.142315 0.989821i −0.0136943 0.0952456i
\(109\) −4.51839 5.21450i −0.432783 0.499458i 0.496906 0.867805i \(-0.334470\pi\)
−0.929689 + 0.368346i \(0.879924\pi\)
\(110\) −2.78598 1.79044i −0.265633 0.170712i
\(111\) 0.620657 0.716276i 0.0589101 0.0679859i
\(112\) −1.27277 + 0.373719i −0.120265 + 0.0353131i
\(113\) 1.67759 + 3.67341i 0.157814 + 0.345565i 0.971979 0.235070i \(-0.0755318\pi\)
−0.814164 + 0.580635i \(0.802805\pi\)
\(114\) 6.54102 0.612623
\(115\) −4.77143 + 0.483179i −0.444938 + 0.0450567i
\(116\) 5.47284 0.508140
\(117\) 0.348032 + 0.762084i 0.0321756 + 0.0704546i
\(118\) −6.90987 + 2.02892i −0.636105 + 0.186777i
\(119\) 5.77844 6.66867i 0.529708 0.611316i
\(120\) 0.841254 + 0.540641i 0.0767956 + 0.0493535i
\(121\) 0.0213649 + 0.0246564i 0.00194226 + 0.00224149i
\(122\) −2.02557 14.0881i −0.183386 1.27548i
\(123\) 0.121550 + 0.0356903i 0.0109598 + 0.00321809i
\(124\) 1.84018 1.18261i 0.165253 0.106202i
\(125\) −0.142315 + 0.989821i −0.0127290 + 0.0885323i
\(126\) 0.551049 1.20663i 0.0490913 0.107495i
\(127\) 1.72031 3.76695i 0.152653 0.334263i −0.817820 0.575474i \(-0.804817\pi\)
0.970473 + 0.241211i \(0.0775447\pi\)
\(128\) −0.142315 + 0.989821i −0.0125790 + 0.0874887i
\(129\) 1.63615 1.05149i 0.144055 0.0925784i
\(130\) −0.803857 0.236034i −0.0705029 0.0207015i
\(131\) −1.04865 7.29355i −0.0916213 0.637240i −0.982949 0.183880i \(-0.941134\pi\)
0.891327 0.453360i \(-0.149775\pi\)
\(132\) 2.16870 + 2.50282i 0.188761 + 0.217842i
\(133\) 7.29929 + 4.69097i 0.632929 + 0.406758i
\(134\) −3.62915 + 4.18826i −0.313510 + 0.361810i
\(135\) −0.959493 + 0.281733i −0.0825800 + 0.0242477i
\(136\) −2.76335 6.05089i −0.236955 0.518860i
\(137\) 12.0309 1.02787 0.513933 0.857831i \(-0.328188\pi\)
0.513933 + 0.857831i \(0.328188\pi\)
\(138\) 4.71428 + 0.880660i 0.401306 + 0.0749668i
\(139\) −4.24808 −0.360318 −0.180159 0.983638i \(-0.557661\pi\)
−0.180159 + 0.983638i \(0.557661\pi\)
\(140\) 0.551049 + 1.20663i 0.0465721 + 0.101979i
\(141\) −7.05698 + 2.07212i −0.594305 + 0.174504i
\(142\) 5.03717 5.81320i 0.422710 0.487833i
\(143\) −2.33408 1.50002i −0.195185 0.125438i
\(144\) −0.654861 0.755750i −0.0545717 0.0629791i
\(145\) −0.778866 5.41713i −0.0646813 0.449868i
\(146\) −9.62445 2.82599i −0.796525 0.233881i
\(147\) −4.40850 + 2.83317i −0.363607 + 0.233676i
\(148\) 0.134882 0.938122i 0.0110872 0.0771132i
\(149\) 7.06463 15.4694i 0.578757 1.26730i −0.363244 0.931694i \(-0.618331\pi\)
0.942002 0.335608i \(-0.108942\pi\)
\(150\) 0.415415 0.909632i 0.0339185 0.0742711i
\(151\) −1.66829 + 11.6032i −0.135764 + 0.944257i 0.802084 + 0.597211i \(0.203724\pi\)
−0.937848 + 0.347046i \(0.887185\pi\)
\(152\) 5.50266 3.53634i 0.446325 0.286835i
\(153\) 6.38257 + 1.87409i 0.516000 + 0.151511i
\(154\) 0.625186 + 4.34827i 0.0503789 + 0.350393i
\(155\) −1.43246 1.65314i −0.115058 0.132784i
\(156\) 0.704797 + 0.452945i 0.0564289 + 0.0362646i
\(157\) 6.57902 7.59260i 0.525063 0.605955i −0.429828 0.902911i \(-0.641426\pi\)
0.954891 + 0.296955i \(0.0959713\pi\)
\(158\) 0.652531 0.191600i 0.0519126 0.0152429i
\(159\) −3.16199 6.92380i −0.250762 0.549093i
\(160\) 1.00000 0.0790569
\(161\) 4.62920 + 4.36365i 0.364832 + 0.343904i
\(162\) 1.00000 0.0785674
\(163\) −6.81631 14.9256i −0.533895 1.16907i −0.963906 0.266243i \(-0.914218\pi\)
0.430011 0.902823i \(-0.358510\pi\)
\(164\) 0.121550 0.0356903i 0.00949146 0.00278695i
\(165\) 2.16870 2.50282i 0.168833 0.194844i
\(166\) 5.66470 + 3.64048i 0.439666 + 0.282556i
\(167\) −0.920903 1.06278i −0.0712616 0.0822403i 0.718999 0.695011i \(-0.244600\pi\)
−0.790261 + 0.612771i \(0.790055\pi\)
\(168\) −0.188781 1.31300i −0.0145648 0.101300i
\(169\) 11.7999 + 3.46478i 0.907688 + 0.266521i
\(170\) −5.59604 + 3.59635i −0.429196 + 0.275828i
\(171\) −0.930885 + 6.47445i −0.0711865 + 0.495113i
\(172\) 0.807938 1.76914i 0.0616047 0.134895i
\(173\) −0.218237 + 0.477873i −0.0165923 + 0.0363320i −0.917747 0.397166i \(-0.869994\pi\)
0.901154 + 0.433498i \(0.142721\pi\)
\(174\) −0.778866 + 5.41713i −0.0590457 + 0.410672i
\(175\) 1.11592 0.717161i 0.0843560 0.0542123i
\(176\) 3.17756 + 0.933014i 0.239517 + 0.0703286i
\(177\) −1.02489 7.12828i −0.0770356 0.535794i
\(178\) 11.6073 + 13.3956i 0.870006 + 1.00404i
\(179\) −4.72325 3.03545i −0.353032 0.226880i 0.352089 0.935966i \(-0.385471\pi\)
−0.705122 + 0.709086i \(0.749108\pi\)
\(180\) −0.654861 + 0.755750i −0.0488104 + 0.0563302i
\(181\) −4.75457 + 1.39607i −0.353404 + 0.103769i −0.453616 0.891197i \(-0.649866\pi\)
0.100212 + 0.994966i \(0.468048\pi\)
\(182\) 0.461665 + 1.01091i 0.0342209 + 0.0749333i
\(183\) 14.2330 1.05213
\(184\) 4.44203 1.80787i 0.327470 0.133278i
\(185\) −0.947769 −0.0696814
\(186\) 0.908688 + 1.98975i 0.0666283 + 0.145896i
\(187\) −21.1372 + 6.20643i −1.54570 + 0.453859i
\(188\) −4.81644 + 5.55847i −0.351275 + 0.405393i
\(189\) 1.11592 + 0.717161i 0.0811716 + 0.0521658i
\(190\) −4.28346 4.94338i −0.310755 0.358630i
\(191\) 2.26811 + 15.7751i 0.164115 + 1.14144i 0.890775 + 0.454445i \(0.150163\pi\)
−0.726660 + 0.686997i \(0.758928\pi\)
\(192\) −0.959493 0.281733i −0.0692454 0.0203323i
\(193\) 19.7321 12.6811i 1.42035 0.912803i 0.420365 0.907355i \(-0.361902\pi\)
0.999985 0.00544806i \(-0.00173418\pi\)
\(194\) −1.71273 + 11.9123i −0.122967 + 0.855254i
\(195\) 0.348032 0.762084i 0.0249231 0.0545739i
\(196\) −2.17694 + 4.76683i −0.155496 + 0.340488i
\(197\) −3.30089 + 22.9582i −0.235179 + 1.63570i 0.439964 + 0.898015i \(0.354991\pi\)
−0.675143 + 0.737687i \(0.735918\pi\)
\(198\) −2.78598 + 1.79044i −0.197991 + 0.127241i
\(199\) −3.10057 0.910409i −0.219793 0.0645372i 0.169982 0.985447i \(-0.445629\pi\)
−0.389775 + 0.920910i \(0.627447\pi\)
\(200\) −0.142315 0.989821i −0.0100632 0.0699909i
\(201\) −3.62915 4.18826i −0.255980 0.295417i
\(202\) 11.7751 + 7.56737i 0.828490 + 0.532438i
\(203\) −4.75411 + 5.48654i −0.333673 + 0.385079i
\(204\) 6.38257 1.87409i 0.446869 0.131213i
\(205\) −0.0526254 0.115234i −0.00367552 0.00804826i
\(206\) −4.62595 −0.322305
\(207\) −1.54261 + 4.54096i −0.107219 + 0.315619i
\(208\) 0.837793 0.0580905
\(209\) −8.99869 19.7044i −0.622452 1.36298i
\(210\) −1.27277 + 0.373719i −0.0878294 + 0.0257890i
\(211\) −14.5487 + 16.7901i −1.00157 + 1.15588i −0.0138104 + 0.999905i \(0.504396\pi\)
−0.987762 + 0.155971i \(0.950149\pi\)
\(212\) −6.40332 4.11517i −0.439782 0.282631i
\(213\) 5.03717 + 5.81320i 0.345141 + 0.398314i
\(214\) 1.88761 + 13.1286i 0.129034 + 0.897454i
\(215\) −1.86611 0.547940i −0.127268 0.0373692i
\(216\) 0.841254 0.540641i 0.0572401 0.0367859i
\(217\) −0.412944 + 2.87209i −0.0280324 + 0.194970i
\(218\) 2.86627 6.27625i 0.194128 0.425081i
\(219\) 4.16693 9.12430i 0.281575 0.616563i
\(220\) 0.471304 3.27799i 0.0317753 0.221002i
\(221\) −4.68832 + 3.01300i −0.315371 + 0.202676i
\(222\) 0.909378 + 0.267017i 0.0610334 + 0.0179210i
\(223\) −0.607602 4.22597i −0.0406881 0.282992i −1.00000 0.000642567i \(-0.999795\pi\)
0.959312 0.282349i \(-0.0911136\pi\)
\(224\) −0.868674 1.00250i −0.0580407 0.0669826i
\(225\) 0.841254 + 0.540641i 0.0560836 + 0.0360427i
\(226\) −2.64455 + 3.05198i −0.175913 + 0.203014i
\(227\) 24.4519 7.17972i 1.62293 0.476535i 0.661125 0.750276i \(-0.270079\pi\)
0.961803 + 0.273741i \(0.0882611\pi\)
\(228\) 2.71724 + 5.94992i 0.179954 + 0.394043i
\(229\) −24.4996 −1.61898 −0.809490 0.587133i \(-0.800257\pi\)
−0.809490 + 0.587133i \(0.800257\pi\)
\(230\) −2.42164 4.13953i −0.159678 0.272952i
\(231\) −4.39298 −0.289037
\(232\) 2.27350 + 4.97827i 0.149263 + 0.326839i
\(233\) −18.6139 + 5.46554i −1.21944 + 0.358059i −0.827254 0.561828i \(-0.810098\pi\)
−0.392183 + 0.919887i \(0.628280\pi\)
\(234\) −0.548638 + 0.633162i −0.0358656 + 0.0413911i
\(235\) 6.18734 + 3.97636i 0.403618 + 0.259389i
\(236\) −4.71603 5.44259i −0.306988 0.354283i
\(237\) 0.0967853 + 0.673156i 0.00628688 + 0.0437262i
\(238\) 8.46649 + 2.48598i 0.548801 + 0.161142i
\(239\) 5.99817 3.85479i 0.387990 0.249346i −0.332075 0.943253i \(-0.607749\pi\)
0.720064 + 0.693907i \(0.244112\pi\)
\(240\) −0.142315 + 0.989821i −0.00918638 + 0.0638927i
\(241\) 5.44242 11.9172i 0.350577 0.767657i −0.649397 0.760450i \(-0.724979\pi\)
0.999974 0.00720702i \(-0.00229409\pi\)
\(242\) −0.0135530 + 0.0296769i −0.000871218 + 0.00190770i
\(243\) −0.142315 + 0.989821i −0.00912950 + 0.0634971i
\(244\) 11.9736 7.69494i 0.766529 0.492618i
\(245\) 5.02812 + 1.47639i 0.321235 + 0.0943231i
\(246\) 0.0180287 + 0.125392i 0.00114947 + 0.00799471i
\(247\) −3.58865 4.14153i −0.228341 0.263519i
\(248\) 1.84018 + 1.18261i 0.116851 + 0.0750958i
\(249\) −4.40960 + 5.08895i −0.279447 + 0.322499i
\(250\) −0.959493 + 0.281733i −0.0606837 + 0.0178183i
\(251\) −12.1715 26.6520i −0.768261 1.68226i −0.730444 0.682973i \(-0.760687\pi\)
−0.0378176 0.999285i \(-0.512041\pi\)
\(252\) 1.32650 0.0835618
\(253\) −3.83265 15.4130i −0.240957 0.969007i
\(254\) 4.14118 0.259841
\(255\) −2.76335 6.05089i −0.173048 0.378921i
\(256\) −0.959493 + 0.281733i −0.0599683 + 0.0176083i
\(257\) −3.59520 + 4.14908i −0.224262 + 0.258812i −0.856719 0.515783i \(-0.827501\pi\)
0.632457 + 0.774595i \(0.282047\pi\)
\(258\) 1.63615 + 1.05149i 0.101862 + 0.0654628i
\(259\) 0.823302 + 0.950141i 0.0511575 + 0.0590389i
\(260\) −0.119230 0.829266i −0.00739436 0.0514289i
\(261\) −5.25115 1.54188i −0.325038 0.0954398i
\(262\) 6.19882 3.98374i 0.382964 0.246116i
\(263\) 1.67399 11.6429i 0.103223 0.717929i −0.870826 0.491591i \(-0.836415\pi\)
0.974049 0.226338i \(-0.0726754\pi\)
\(264\) −1.37573 + 3.01243i −0.0846704 + 0.185402i
\(265\) −3.16199 + 6.92380i −0.194240 + 0.425325i
\(266\) −1.23482 + 8.58836i −0.0757117 + 0.526586i
\(267\) −14.9111 + 9.58279i −0.912546 + 0.586458i
\(268\) −5.31738 1.56132i −0.324810 0.0953729i
\(269\) 4.34255 + 30.2031i 0.264770 + 1.84151i 0.495639 + 0.868529i \(0.334934\pi\)
−0.230869 + 0.972985i \(0.574157\pi\)
\(270\) −0.654861 0.755750i −0.0398536 0.0459935i
\(271\) −1.91901 1.23327i −0.116571 0.0749158i 0.481056 0.876690i \(-0.340253\pi\)
−0.597627 + 0.801774i \(0.703890\pi\)
\(272\) 4.35615 5.02726i 0.264130 0.304823i
\(273\) −1.06632 + 0.313099i −0.0645365 + 0.0189496i
\(274\) 4.99780 + 10.9437i 0.301928 + 0.661130i
\(275\) −3.31170 −0.199703
\(276\) 1.15731 + 4.65410i 0.0696616 + 0.280144i
\(277\) 12.9595 0.778659 0.389329 0.921099i \(-0.372707\pi\)
0.389329 + 0.921099i \(0.372707\pi\)
\(278\) −1.76472 3.86419i −0.105841 0.231759i
\(279\) −2.09882 + 0.616268i −0.125653 + 0.0368950i
\(280\) −0.868674 + 1.00250i −0.0519132 + 0.0599110i
\(281\) 4.29140 + 2.75792i 0.256004 + 0.164523i 0.662348 0.749197i \(-0.269560\pi\)
−0.406344 + 0.913720i \(0.633197\pi\)
\(282\) −4.81644 5.55847i −0.286815 0.331002i
\(283\) −1.69832 11.8120i −0.100954 0.702153i −0.975946 0.218014i \(-0.930042\pi\)
0.874991 0.484139i \(-0.160867\pi\)
\(284\) 7.38039 + 2.16708i 0.437946 + 0.128592i
\(285\) 5.50266 3.53634i 0.325949 0.209475i
\(286\) 0.394856 2.74628i 0.0233483 0.162391i
\(287\) −0.0698077 + 0.152858i −0.00412062 + 0.00902290i
\(288\) 0.415415 0.909632i 0.0244786 0.0536006i
\(289\) −3.87799 + 26.9720i −0.228117 + 1.58659i
\(290\) 4.60404 2.95884i 0.270359 0.173749i
\(291\) −11.5473 3.39060i −0.676916 0.198760i
\(292\) −1.42753 9.92866i −0.0835397 0.581031i
\(293\) 0.756833 + 0.873431i 0.0442146 + 0.0510264i 0.777426 0.628974i \(-0.216525\pi\)
−0.733211 + 0.680001i \(0.761979\pi\)
\(294\) −4.40850 2.83317i −0.257109 0.165234i
\(295\) −4.71603 + 5.44259i −0.274578 + 0.316880i
\(296\) 0.909378 0.267017i 0.0528565 0.0155201i
\(297\) −1.37573 3.01243i −0.0798280 0.174799i
\(298\) 17.0062 0.985143
\(299\) −2.02883 3.46807i −0.117330 0.200563i
\(300\) 1.00000 0.0577350
\(301\) 1.07173 + 2.34676i 0.0617735 + 0.135265i
\(302\) −11.2477 + 3.30262i −0.647232 + 0.190045i
\(303\) −9.16611 + 10.5783i −0.526579 + 0.607705i
\(304\) 5.50266 + 3.53634i 0.315599 + 0.202823i
\(305\) −9.32064 10.7566i −0.533698 0.615921i
\(306\) 0.946681 + 6.58431i 0.0541182 + 0.376400i
\(307\) −1.85037 0.543319i −0.105606 0.0310089i 0.228502 0.973543i \(-0.426617\pi\)
−0.334109 + 0.942534i \(0.608435\pi\)
\(308\) −3.69561 + 2.37502i −0.210577 + 0.135330i
\(309\) 0.658342 4.57887i 0.0374517 0.260483i
\(310\) 0.908688 1.98975i 0.0516100 0.113010i
\(311\) 4.73426 10.3666i 0.268455 0.587835i −0.726611 0.687049i \(-0.758906\pi\)
0.995066 + 0.0992140i \(0.0316328\pi\)
\(312\) −0.119230 + 0.829266i −0.00675009 + 0.0469479i
\(313\) 20.9187 13.4437i 1.18240 0.759881i 0.206572 0.978431i \(-0.433769\pi\)
0.975826 + 0.218551i \(0.0701329\pi\)
\(314\) 9.63950 + 2.83041i 0.543988 + 0.159729i
\(315\) −0.188781 1.31300i −0.0106366 0.0739792i
\(316\) 0.445357 + 0.513969i 0.0250533 + 0.0289130i
\(317\) −17.5754 11.2950i −0.987134 0.634393i −0.0557557 0.998444i \(-0.517757\pi\)
−0.931379 + 0.364052i \(0.881393\pi\)
\(318\) 4.98457 5.75250i 0.279521 0.322584i
\(319\) 17.3902 5.10624i 0.973667 0.285894i
\(320\) 0.415415 + 0.909632i 0.0232224 + 0.0508500i
\(321\) −13.2636 −0.740303
\(322\) −2.04627 + 6.02360i −0.114034 + 0.335682i
\(323\) −43.5110 −2.42102
\(324\) 0.415415 + 0.909632i 0.0230786 + 0.0505351i
\(325\) −0.803857 + 0.236034i −0.0445899 + 0.0130928i
\(326\) 10.7452 12.4007i 0.595124 0.686809i
\(327\) 5.80446 + 3.73030i 0.320987 + 0.206286i
\(328\) 0.0829588 + 0.0957395i 0.00458063 + 0.00528633i
\(329\) −1.38847 9.65700i −0.0765486 0.532407i
\(330\) 3.17756 + 0.933014i 0.174919 + 0.0513608i
\(331\) 9.01534 5.79381i 0.495528 0.318457i −0.268897 0.963169i \(-0.586659\pi\)
0.764425 + 0.644712i \(0.223023\pi\)
\(332\) −0.958298 + 6.66511i −0.0525934 + 0.365795i
\(333\) −0.393717 + 0.862121i −0.0215756 + 0.0472439i
\(334\) 0.584181 1.27918i 0.0319649 0.0699935i
\(335\) −0.788689 + 5.48545i −0.0430907 + 0.299702i
\(336\) 1.11592 0.717161i 0.0608787 0.0391243i
\(337\) −24.3675 7.15493i −1.32738 0.389754i −0.460230 0.887800i \(-0.652233\pi\)
−0.867151 + 0.498046i \(0.834051\pi\)
\(338\) 1.75020 + 12.1729i 0.0951985 + 0.662120i
\(339\) −2.64455 3.05198i −0.143632 0.165761i
\(340\) −5.59604 3.59635i −0.303488 0.195040i
\(341\) 4.74387 5.47472i 0.256895 0.296473i
\(342\) −6.27607 + 1.84282i −0.339371 + 0.0996483i
\(343\) −6.74505 14.7696i −0.364199 0.797484i
\(344\) 1.94489 0.104862
\(345\) 4.44203 1.80787i 0.239151 0.0973327i
\(346\) −0.525348 −0.0282429
\(347\) 13.1718 + 28.8423i 0.707102 + 1.54834i 0.831142 + 0.556060i \(0.187687\pi\)
−0.124041 + 0.992277i \(0.539585\pi\)
\(348\) −5.25115 + 1.54188i −0.281491 + 0.0826533i
\(349\) 8.58368 9.90610i 0.459474 0.530261i −0.477980 0.878371i \(-0.658631\pi\)
0.937454 + 0.348110i \(0.113176\pi\)
\(350\) 1.11592 + 0.717161i 0.0596487 + 0.0383339i
\(351\) −0.548638 0.633162i −0.0292841 0.0337957i
\(352\) 0.471304 + 3.27799i 0.0251206 + 0.174718i
\(353\) −12.2250 3.58960i −0.650674 0.191055i −0.0602940 0.998181i \(-0.519204\pi\)
−0.590380 + 0.807126i \(0.701022\pi\)
\(354\) 6.05836 3.89347i 0.321998 0.206936i
\(355\) 1.09468 7.61368i 0.0580997 0.404092i
\(356\) −7.36318 + 16.1231i −0.390248 + 0.854524i
\(357\) −3.66559 + 8.02652i −0.194003 + 0.424808i
\(358\) 0.799032 5.55739i 0.0422302 0.293717i
\(359\) −9.51841 + 6.11711i −0.502362 + 0.322849i −0.767161 0.641455i \(-0.778331\pi\)
0.264798 + 0.964304i \(0.414695\pi\)
\(360\) −0.959493 0.281733i −0.0505697 0.0148486i
\(361\) −3.38496 23.5429i −0.178156 1.23910i
\(362\) −3.24503 3.74496i −0.170555 0.196831i
\(363\) −0.0274460 0.0176385i −0.00144054 0.000925780i
\(364\) −0.727769 + 0.839890i −0.0381455 + 0.0440222i
\(365\) −9.62445 + 2.82599i −0.503767 + 0.147919i
\(366\) 5.91260 + 12.9468i 0.309057 + 0.676740i
\(367\) 5.41379 0.282598 0.141299 0.989967i \(-0.454872\pi\)
0.141299 + 0.989967i \(0.454872\pi\)
\(368\) 3.48978 + 3.28959i 0.181918 + 0.171482i
\(369\) −0.126682 −0.00659478
\(370\) −0.393717 0.862121i −0.0204684 0.0448195i
\(371\) 9.68787 2.84462i 0.502969 0.147685i
\(372\) −1.43246 + 1.65314i −0.0742694 + 0.0857115i
\(373\) 29.1821 + 18.7542i 1.51099 + 0.971057i 0.993309 + 0.115485i \(0.0368421\pi\)
0.517684 + 0.855572i \(0.326794\pi\)
\(374\) −14.4263 16.6488i −0.745964 0.860889i
\(375\) −0.142315 0.989821i −0.00734911 0.0511142i
\(376\) −7.05698 2.07212i −0.363936 0.106861i
\(377\) 3.85724 2.47890i 0.198658 0.127670i
\(378\) −0.188781 + 1.31300i −0.00970984 + 0.0675334i
\(379\) −5.15144 + 11.2801i −0.264612 + 0.579419i −0.994570 0.104073i \(-0.966812\pi\)
0.729958 + 0.683492i \(0.239540\pi\)
\(380\) 2.71724 5.94992i 0.139391 0.305225i
\(381\) −0.589352 + 4.09903i −0.0301934 + 0.210000i
\(382\) −13.4073 + 8.61634i −0.685976 + 0.440850i
\(383\) −13.0658 3.83647i −0.667632 0.196035i −0.0696839 0.997569i \(-0.522199\pi\)
−0.597948 + 0.801535i \(0.704017\pi\)
\(384\) −0.142315 0.989821i −0.00726247 0.0505116i
\(385\) 2.87679 + 3.31999i 0.146615 + 0.169202i
\(386\) 19.7321 + 12.6811i 1.00434 + 0.645449i
\(387\) −1.27363 + 1.46985i −0.0647425 + 0.0747168i
\(388\) −11.5473 + 3.39060i −0.586226 + 0.172132i
\(389\) −10.6043 23.2202i −0.537660 1.17731i −0.962310 0.271954i \(-0.912330\pi\)
0.424650 0.905358i \(-0.360397\pi\)
\(390\) 0.837793 0.0424233
\(391\) −31.3595 5.85817i −1.58592 0.296260i
\(392\) −5.24039 −0.264680
\(393\) 3.06101 + 6.70267i 0.154407 + 0.338105i
\(394\) −22.2547 + 6.53458i −1.12118 + 0.329207i
\(395\) 0.445357 0.513969i 0.0224083 0.0258606i
\(396\) −2.78598 1.79044i −0.140001 0.0899731i
\(397\) −0.224868 0.259512i −0.0112858 0.0130245i 0.750079 0.661349i \(-0.230016\pi\)
−0.761364 + 0.648324i \(0.775470\pi\)
\(398\) −0.459885 3.19857i −0.0230520 0.160330i
\(399\) −8.32521 2.44450i −0.416782 0.122378i
\(400\) 0.841254 0.540641i 0.0420627 0.0270320i
\(401\) −5.01036 + 34.8478i −0.250205 + 1.74022i 0.346764 + 0.937952i \(0.387280\pi\)
−0.596970 + 0.802264i \(0.703629\pi\)
\(402\) 2.30217 5.04105i 0.114822 0.251425i
\(403\) 0.761293 1.66700i 0.0379227 0.0830391i
\(404\) −1.99199 + 13.8546i −0.0991050 + 0.689290i
\(405\) 0.841254 0.540641i 0.0418022 0.0268647i
\(406\) −6.96566 2.04530i −0.345700 0.101507i
\(407\) −0.446688 3.10678i −0.0221415 0.153997i
\(408\) 4.35615 + 5.02726i 0.215661 + 0.248887i
\(409\) −15.6714 10.0714i −0.774900 0.497998i 0.0924374 0.995719i \(-0.470534\pi\)
−0.867338 + 0.497720i \(0.834171\pi\)
\(410\) 0.0829588 0.0957395i 0.00409704 0.00472824i
\(411\) −11.5435 + 3.38948i −0.569400 + 0.167191i
\(412\) −1.92169 4.20791i −0.0946749 0.207309i
\(413\) 9.55291 0.470068
\(414\) −4.77143 + 0.483179i −0.234503 + 0.0237469i
\(415\) 6.73365 0.330542
\(416\) 0.348032 + 0.762084i 0.0170637 + 0.0373642i
\(417\) 4.07600 1.19682i 0.199603 0.0586087i
\(418\) 14.1855 16.3710i 0.693838 0.800731i
\(419\) 23.3553 + 15.0096i 1.14098 + 0.733265i 0.967824 0.251629i \(-0.0809663\pi\)
0.173159 + 0.984894i \(0.444603\pi\)
\(420\) −0.868674 1.00250i −0.0423869 0.0489171i
\(421\) 3.62561 + 25.2167i 0.176702 + 1.22899i 0.864331 + 0.502924i \(0.167742\pi\)
−0.687629 + 0.726062i \(0.741348\pi\)
\(422\) −21.3165 6.25909i −1.03767 0.304688i
\(423\) 6.18734 3.97636i 0.300839 0.193337i
\(424\) 1.08325 7.53417i 0.0526073 0.365892i
\(425\) −2.76335 + 6.05089i −0.134042 + 0.293511i
\(426\) −3.19536 + 6.99686i −0.154816 + 0.338999i
\(427\) −2.68692 + 18.6879i −0.130029 + 0.904373i
\(428\) −11.1581 + 7.17085i −0.539345 + 0.346616i
\(429\) 2.66213 + 0.781673i 0.128529 + 0.0377395i
\(430\) −0.276787 1.92510i −0.0133479 0.0928364i
\(431\) 14.4668 + 16.6956i 0.696842 + 0.804198i 0.988322 0.152379i \(-0.0486933\pi\)
−0.291481 + 0.956577i \(0.594148\pi\)
\(432\) 0.841254 + 0.540641i 0.0404748 + 0.0260116i
\(433\) 5.94939 6.86596i 0.285909 0.329957i −0.594568 0.804045i \(-0.702677\pi\)
0.880477 + 0.474089i \(0.157222\pi\)
\(434\) −2.78408 + 0.817481i −0.133640 + 0.0392403i
\(435\) 2.27350 + 4.97827i 0.109006 + 0.238690i
\(436\) 6.89977 0.330439
\(437\) 1.31334 31.3421i 0.0628253 1.49930i
\(438\) 10.0308 0.479288
\(439\) −7.93377 17.3725i −0.378658 0.829145i −0.998996 0.0448104i \(-0.985732\pi\)
0.620337 0.784335i \(-0.286996\pi\)
\(440\) 3.17756 0.933014i 0.151484 0.0444797i
\(441\) 3.43173 3.96042i 0.163416 0.188592i
\(442\) −4.68832 3.01300i −0.223001 0.143314i
\(443\) −1.23947 1.43042i −0.0588890 0.0679615i 0.725541 0.688179i \(-0.241590\pi\)
−0.784430 + 0.620218i \(0.787044\pi\)
\(444\) 0.134882 + 0.938122i 0.00640120 + 0.0445213i
\(445\) 17.0069 + 4.99368i 0.806204 + 0.236723i
\(446\) 3.59167 2.30822i 0.170070 0.109298i
\(447\) −2.42024 + 16.8331i −0.114473 + 0.796179i
\(448\) 0.551049 1.20663i 0.0260346 0.0570078i
\(449\) −9.96793 + 21.8267i −0.470416 + 1.03007i 0.514573 + 0.857447i \(0.327950\pi\)
−0.984989 + 0.172620i \(0.944777\pi\)
\(450\) −0.142315 + 0.989821i −0.00670879 + 0.0466606i
\(451\) 0.352932 0.226816i 0.0166189 0.0106803i
\(452\) −3.87476 1.13773i −0.182253 0.0535144i
\(453\) −1.66829 11.6032i −0.0783832 0.545167i
\(454\) 16.6886 + 19.2597i 0.783234 + 0.903900i
\(455\) 0.934914 + 0.600833i 0.0438294 + 0.0281675i
\(456\) −4.28346 + 4.94338i −0.200591 + 0.231495i
\(457\) −0.785138 + 0.230537i −0.0367272 + 0.0107841i −0.300045 0.953925i \(-0.597002\pi\)
0.263317 + 0.964709i \(0.415183\pi\)
\(458\) −10.1775 22.2856i −0.475564 1.04134i
\(459\) −6.65202 −0.310490
\(460\) 2.75946 3.92242i 0.128660 0.182884i
\(461\) −23.9880 −1.11723 −0.558617 0.829426i \(-0.688668\pi\)
−0.558617 + 0.829426i \(0.688668\pi\)
\(462\) −1.82491 3.99599i −0.0849025 0.185911i
\(463\) −22.1134 + 6.49309i −1.02770 + 0.301759i −0.751775 0.659420i \(-0.770802\pi\)
−0.275923 + 0.961180i \(0.588984\pi\)
\(464\) −3.58395 + 4.13609i −0.166381 + 0.192013i
\(465\) 1.84018 + 1.18261i 0.0853362 + 0.0548422i
\(466\) −12.7041 14.6613i −0.588507 0.679173i
\(467\) 5.27018 + 36.6549i 0.243875 + 1.69619i 0.632314 + 0.774712i \(0.282105\pi\)
−0.388440 + 0.921474i \(0.626986\pi\)
\(468\) −0.803857 0.236034i −0.0371583 0.0109107i
\(469\) 6.18430 3.97441i 0.285564 0.183521i
\(470\) −1.04671 + 7.28005i −0.0482813 + 0.335804i
\(471\) −4.17345 + 9.13857i −0.192302 + 0.421083i
\(472\) 2.99165 6.55079i 0.137702 0.301525i
\(473\) 0.916637 6.37535i 0.0421470 0.293139i
\(474\) −0.572119 + 0.367678i −0.0262783 + 0.0168880i
\(475\) −6.27607 1.84282i −0.287966 0.0845544i
\(476\) 1.25577 + 8.73410i 0.0575583 + 0.400327i
\(477\) 4.98457 + 5.75250i 0.228228 + 0.263389i
\(478\) 5.99817 + 3.85479i 0.274350 + 0.176314i
\(479\) −7.65346 + 8.83257i −0.349696 + 0.403570i −0.903161 0.429302i \(-0.858760\pi\)
0.553465 + 0.832872i \(0.313305\pi\)
\(480\) −0.959493 + 0.281733i −0.0437947 + 0.0128593i
\(481\) −0.329854 0.722279i −0.0150400 0.0329331i
\(482\) 13.1012 0.596742
\(483\) −5.67107 2.88269i −0.258043 0.131167i
\(484\) −0.0326251 −0.00148296
\(485\) 4.99944 + 10.9472i 0.227013 + 0.497089i
\(486\) −0.959493 + 0.281733i −0.0435235 + 0.0127796i
\(487\) 15.3412 17.7047i 0.695176 0.802276i −0.292916 0.956138i \(-0.594626\pi\)
0.988092 + 0.153862i \(0.0491711\pi\)
\(488\) 11.9736 + 7.69494i 0.542018 + 0.348334i
\(489\) 10.7452 + 12.4007i 0.485917 + 0.560778i
\(490\) 0.745786 + 5.18705i 0.0336912 + 0.234327i
\(491\) 17.6563 + 5.18435i 0.796816 + 0.233966i 0.654705 0.755884i \(-0.272793\pi\)
0.142111 + 0.989851i \(0.454611\pi\)
\(492\) −0.106571 + 0.0684892i −0.00480461 + 0.00308773i
\(493\) 5.18103 36.0349i 0.233342 1.62293i
\(494\) 2.27648 4.98481i 0.102424 0.224277i
\(495\) −1.37573 + 3.01243i −0.0618345 + 0.135399i
\(496\) −0.311303 + 2.16516i −0.0139779 + 0.0972185i
\(497\) −8.58366 + 5.51638i −0.385030 + 0.247444i
\(498\) −6.46089 1.89709i −0.289519 0.0850105i
\(499\) −1.16786 8.12261i −0.0522804 0.363618i −0.999121 0.0419155i \(-0.986654\pi\)
0.946841 0.321703i \(-0.104255\pi\)
\(500\) −0.654861 0.755750i −0.0292863 0.0337981i
\(501\) 1.18302 + 0.760281i 0.0528534 + 0.0339668i
\(502\) 19.1872 22.1433i 0.856369 0.988302i
\(503\) 17.2071 5.05246i 0.767226 0.225278i 0.125377 0.992109i \(-0.459986\pi\)
0.641849 + 0.766831i \(0.278168\pi\)
\(504\) 0.551049 + 1.20663i 0.0245457 + 0.0537475i
\(505\) 13.9970 0.622860
\(506\) 12.4280 9.88909i 0.552492 0.439624i
\(507\) −12.2981 −0.546178
\(508\) 1.72031 + 3.76695i 0.0763264 + 0.167131i
\(509\) −4.43398 + 1.30194i −0.196533 + 0.0577073i −0.378518 0.925594i \(-0.623566\pi\)
0.181985 + 0.983301i \(0.441748\pi\)
\(510\) 4.35615 5.02726i 0.192893 0.222611i
\(511\) 11.1936 + 7.19367i 0.495174 + 0.318229i
\(512\) −0.654861 0.755750i −0.0289410 0.0333997i
\(513\) −0.930885 6.47445i −0.0410996 0.285854i
\(514\) −5.26763 1.54672i −0.232345 0.0682228i
\(515\) −3.89160 + 2.50098i −0.171484 + 0.110206i
\(516\) −0.276787 + 1.92510i −0.0121849 + 0.0847477i
\(517\) −10.1184 + 22.1562i −0.445006 + 0.974427i
\(518\) −0.522267 + 1.14361i −0.0229471 + 0.0502471i
\(519\) 0.0747648 0.520001i 0.00328181 0.0228255i
\(520\) 0.704797 0.452945i 0.0309074 0.0198630i
\(521\) −4.99662 1.46714i −0.218906 0.0642766i 0.170440 0.985368i \(-0.445481\pi\)
−0.389347 + 0.921091i \(0.627299\pi\)
\(522\) −0.778866 5.41713i −0.0340900 0.237101i
\(523\) 15.1080 + 17.4355i 0.660626 + 0.762403i 0.982879 0.184251i \(-0.0589858\pi\)
−0.322254 + 0.946653i \(0.604440\pi\)
\(524\) 6.19882 + 3.98374i 0.270797 + 0.174030i
\(525\) −0.868674 + 1.00250i −0.0379120 + 0.0437528i
\(526\) 11.2861 3.31390i 0.492098 0.144493i
\(527\) −6.04461 13.2359i −0.263307 0.576563i
\(528\) −3.31170 −0.144123
\(529\) 5.16635 22.4122i 0.224624 0.974446i
\(530\) −7.61165 −0.330629
\(531\) 2.99165 + 6.55079i 0.129826 + 0.284280i
\(532\) −8.32521 + 2.44450i −0.360944 + 0.105983i
\(533\) 0.0695023 0.0802099i 0.00301048 0.00347428i
\(534\) −14.9111 9.58279i −0.645267 0.414688i
\(535\) 8.68582 + 10.0240i 0.375521 + 0.433374i
\(536\) −0.788689 5.48545i −0.0340662 0.236935i
\(537\) 5.38711 + 1.58180i 0.232471 + 0.0682596i
\(538\) −25.6697 + 16.4969i −1.10670 + 0.711233i
\(539\) −2.46982 + 17.1780i −0.106383 + 0.739908i
\(540\) 0.415415 0.909632i 0.0178766 0.0391443i
\(541\) −5.35319 + 11.7219i −0.230152 + 0.503962i −0.989110 0.147177i \(-0.952981\pi\)
0.758958 + 0.651139i \(0.225709\pi\)
\(542\) 0.324638 2.25791i 0.0139444 0.0969854i
\(543\) 4.16866 2.67903i 0.178894 0.114968i
\(544\) 6.38257 + 1.87409i 0.273650 + 0.0803510i
\(545\) −0.981940 6.82954i −0.0420617 0.292545i
\(546\) −0.727769 0.839890i −0.0311456 0.0359440i
\(547\) −1.94908 1.25259i −0.0833365 0.0535571i 0.498309 0.867000i \(-0.333955\pi\)
−0.581645 + 0.813442i \(0.697591\pi\)
\(548\) −7.87853 + 9.09231i −0.336554 + 0.388404i
\(549\) −13.6565 + 4.00990i −0.582844 + 0.171138i
\(550\) −1.37573 3.01243i −0.0586614 0.128450i
\(551\) 35.7980 1.52504
\(552\) −3.75276 + 2.98611i −0.159728 + 0.127097i
\(553\) −0.902126 −0.0383623
\(554\) 5.38356 + 11.7883i 0.228725 + 0.500839i
\(555\) 0.909378 0.267017i 0.0386009 0.0113343i
\(556\) 2.78190 3.21049i 0.117979 0.136155i
\(557\) 0.726261 + 0.466739i 0.0307727 + 0.0197764i 0.555937 0.831225i \(-0.312360\pi\)
−0.525164 + 0.851001i \(0.675996\pi\)
\(558\) −1.43246 1.65314i −0.0606408 0.0699832i
\(559\) −0.231890 1.61283i −0.00980792 0.0682156i
\(560\) −1.27277 0.373719i −0.0537843 0.0157925i
\(561\) 18.5324 11.9101i 0.782439 0.502843i
\(562\) −0.725976 + 5.04928i −0.0306235 + 0.212991i
\(563\) −14.1812 + 31.0525i −0.597667 + 1.30871i 0.333030 + 0.942916i \(0.391929\pi\)
−0.930697 + 0.365791i \(0.880798\pi\)
\(564\) 3.05534 6.69026i 0.128653 0.281711i
\(565\) −0.574716 + 3.99724i −0.0241785 + 0.168165i
\(566\) 10.0391 6.45174i 0.421975 0.271187i
\(567\) −1.27277 0.373719i −0.0534513 0.0156947i
\(568\) 1.09468 + 7.61368i 0.0459318 + 0.319463i
\(569\) 16.4640 + 19.0004i 0.690205 + 0.796540i 0.987394 0.158279i \(-0.0505946\pi\)
−0.297189 + 0.954819i \(0.596049\pi\)
\(570\) 5.50266 + 3.53634i 0.230481 + 0.148121i
\(571\) 6.02376 6.95179i 0.252087 0.290924i −0.615575 0.788078i \(-0.711076\pi\)
0.867662 + 0.497154i \(0.165622\pi\)
\(572\) 2.66213 0.781673i 0.111309 0.0326834i
\(573\) −6.62058 14.4971i −0.276579 0.605623i
\(574\) −0.168043 −0.00701399
\(575\) −4.27521 2.17315i −0.178289 0.0906268i
\(576\) 1.00000 0.0416667
\(577\) −17.1398 37.5309i −0.713538 1.56243i −0.822745 0.568411i \(-0.807558\pi\)
0.109207 0.994019i \(-0.465169\pi\)
\(578\) −26.1456 + 7.67704i −1.08751 + 0.319323i
\(579\) −15.3602 + 17.7266i −0.638347 + 0.736692i
\(580\) 4.60404 + 2.95884i 0.191173 + 0.122859i
\(581\) −5.84934 6.75050i −0.242672 0.280058i
\(582\) −1.71273 11.9123i −0.0709950 0.493781i
\(583\) −24.1864 7.10178i −1.00170 0.294126i
\(584\) 8.43841 5.42304i 0.349184 0.224407i
\(585\) −0.119230 + 0.829266i −0.00492957 + 0.0342859i
\(586\) −0.480102 + 1.05128i −0.0198328 + 0.0434278i
\(587\) 8.90200 19.4927i 0.367425 0.804549i −0.632134 0.774859i \(-0.717821\pi\)
0.999559 0.0296896i \(-0.00945189\pi\)
\(588\) 0.745786 5.18705i 0.0307557 0.213910i
\(589\) 12.0366 7.73548i 0.495961 0.318735i
\(590\) −6.90987 2.02892i −0.284475 0.0835293i
\(591\) −3.30089 22.9582i −0.135780 0.944373i
\(592\) 0.620657 + 0.716276i 0.0255088 + 0.0294388i
\(593\) 0.576131 + 0.370257i 0.0236588 + 0.0152046i 0.552417 0.833568i \(-0.313706\pi\)
−0.528758 + 0.848773i \(0.677342\pi\)
\(594\) 2.16870 2.50282i 0.0889830 0.102692i
\(595\) 8.46649 2.48598i 0.347092 0.101915i
\(596\) 7.06463 + 15.4694i 0.289379 + 0.633651i
\(597\) 3.23146 0.132255
\(598\) 2.31186 3.28618i 0.0945388 0.134382i
\(599\) 44.7482 1.82836 0.914180 0.405307i \(-0.132835\pi\)
0.914180 + 0.405307i \(0.132835\pi\)
\(600\) 0.415415 + 0.909632i 0.0169592 + 0.0371356i
\(601\) 30.7334 9.02413i 1.25364 0.368102i 0.413516 0.910497i \(-0.364301\pi\)
0.840124 + 0.542395i \(0.182482\pi\)
\(602\) −1.68948 + 1.94976i −0.0688580 + 0.0794664i
\(603\) 4.66211 + 2.99616i 0.189856 + 0.122013i
\(604\) −7.67663 8.85930i −0.312358 0.360480i
\(605\) 0.00464304 + 0.0322930i 0.000188766 + 0.00131290i
\(606\) −13.4301 3.94342i −0.545559 0.160191i
\(607\) 5.12186 3.29162i 0.207890 0.133603i −0.432553 0.901609i \(-0.642387\pi\)
0.640443 + 0.768006i \(0.278751\pi\)
\(608\) −0.930885 + 6.47445i −0.0377524 + 0.262573i
\(609\) 3.01580 6.60368i 0.122206 0.267595i
\(610\) 5.91260 12.9468i 0.239394 0.524201i
\(611\) −0.876929 + 6.09917i −0.0354767 + 0.246746i
\(612\) −5.59604 + 3.59635i −0.226206 + 0.145374i
\(613\) 18.6274 + 5.46950i 0.752353 + 0.220911i 0.635354 0.772221i \(-0.280854\pi\)
0.116999 + 0.993132i \(0.462672\pi\)
\(614\) −0.274453 1.90886i −0.0110760 0.0770354i
\(615\) 0.0829588 + 0.0957395i 0.00334522 + 0.00386059i
\(616\) −3.69561 2.37502i −0.148900 0.0956925i
\(617\) −23.2722 + 26.8576i −0.936904 + 1.08124i 0.0596433 + 0.998220i \(0.481004\pi\)
−0.996547 + 0.0830252i \(0.973542\pi\)
\(618\) 4.43857 1.30328i 0.178545 0.0524257i
\(619\) −5.51382 12.0736i −0.221619 0.485278i 0.765864 0.643003i \(-0.222312\pi\)
−0.987483 + 0.157724i \(0.949584\pi\)
\(620\) 2.18742 0.0878490
\(621\) 0.200784 4.79163i 0.00805720 0.192281i
\(622\) 11.3965 0.456957
\(623\) −9.76727 21.3873i −0.391318 0.856866i
\(624\) −0.803857 + 0.236034i −0.0321800 + 0.00944891i
\(625\) −0.654861 + 0.755750i −0.0261944 + 0.0302300i
\(626\) 20.9187 + 13.4437i 0.836081 + 0.537317i
\(627\) 14.1855 + 16.3710i 0.566516 + 0.653794i
\(628\) 1.42976 + 9.94419i 0.0570536 + 0.396816i
\(629\) −6.04920 1.77621i −0.241197 0.0708219i
\(630\) 1.11592 0.717161i 0.0444595 0.0285724i
\(631\) 0.598173 4.16038i 0.0238129 0.165622i −0.974445 0.224627i \(-0.927884\pi\)
0.998258 + 0.0590048i \(0.0187927\pi\)
\(632\) −0.282515 + 0.618621i −0.0112378 + 0.0246074i
\(633\) 9.22904 20.2088i 0.366822 0.803227i
\(634\) 2.97323 20.6793i 0.118082 0.821280i
\(635\) 3.48378 2.23889i 0.138250 0.0888477i
\(636\) 7.30332 + 2.14445i 0.289596 + 0.0850329i
\(637\) 0.624814 + 4.34568i 0.0247560 + 0.172182i
\(638\) 11.8690 + 13.6975i 0.469897 + 0.542290i
\(639\) −6.47090 4.15859i −0.255985 0.164511i
\(640\) −0.654861 + 0.755750i −0.0258856 + 0.0298736i
\(641\) 24.4631 7.18301i 0.966234 0.283712i 0.239704 0.970846i \(-0.422950\pi\)
0.726531 + 0.687134i \(0.241131\pi\)
\(642\) −5.50991 12.0650i −0.217459 0.476168i
\(643\) 28.7862 1.13522 0.567608 0.823299i \(-0.307869\pi\)
0.567608 + 0.823299i \(0.307869\pi\)
\(644\) −6.32931 + 0.640938i −0.249410 + 0.0252565i
\(645\) 1.94489 0.0765801
\(646\) −18.0751 39.5790i −0.711157 1.55722i
\(647\) 18.5223 5.43864i 0.728187 0.213815i 0.103433 0.994636i \(-0.467017\pi\)
0.624754 + 0.780821i \(0.285199\pi\)
\(648\) −0.654861 + 0.755750i −0.0257254 + 0.0296886i
\(649\) −20.0635 12.8940i −0.787560 0.506134i
\(650\) −0.548638 0.633162i −0.0215193 0.0248347i
\(651\) −0.412944 2.87209i −0.0161845 0.112566i
\(652\) 15.7438 + 4.62279i 0.616574 + 0.181042i
\(653\) −24.6848 + 15.8639i −0.965989 + 0.620803i −0.925649 0.378383i \(-0.876480\pi\)
−0.0403398 + 0.999186i \(0.512844\pi\)
\(654\) −0.981940 + 6.82954i −0.0383969 + 0.267056i
\(655\) 3.06101 6.70267i 0.119603 0.261895i
\(656\) −0.0526254 + 0.115234i −0.00205468 + 0.00449912i
\(657\) −1.42753 + 9.92866i −0.0556931 + 0.387354i
\(658\) 8.20752 5.27465i 0.319963 0.205627i
\(659\) −23.0140 6.75753i −0.896499 0.263236i −0.199151 0.979969i \(-0.563819\pi\)
−0.697348 + 0.716733i \(0.745637\pi\)
\(660\) 0.471304 + 3.27799i 0.0183455 + 0.127596i
\(661\) 29.2218 + 33.7237i 1.13659 + 1.31170i 0.943821 + 0.330457i \(0.107203\pi\)
0.192773 + 0.981243i \(0.438252\pi\)
\(662\) 9.01534 + 5.79381i 0.350391 + 0.225183i
\(663\) 3.64955 4.21181i 0.141737 0.163573i
\(664\) −6.46089 + 1.89709i −0.250731 + 0.0736213i
\(665\) 3.60442 + 7.89259i 0.139774 + 0.306061i
\(666\) −0.947769 −0.0367253
\(667\) 25.8005 + 4.81971i 0.998999 + 0.186620i
\(668\) 1.40626 0.0544098
\(669\) 1.77358 + 3.88360i 0.0685706 + 0.150149i
\(670\) −5.31738 + 1.56132i −0.205428 + 0.0603191i
\(671\) 30.8672 35.6226i 1.19161 1.37520i
\(672\) 1.11592 + 0.717161i 0.0430477 + 0.0276651i
\(673\) 7.67888 + 8.86191i 0.295999 + 0.341601i 0.884196 0.467117i \(-0.154707\pi\)
−0.588196 + 0.808718i \(0.700162\pi\)
\(674\) −3.61426 25.1377i −0.139216 0.968268i
\(675\) −0.959493 0.281733i −0.0369309 0.0108439i
\(676\) −10.3458 + 6.64886i −0.397916 + 0.255725i
\(677\) −0.339063 + 2.35823i −0.0130312 + 0.0906343i −0.995299 0.0968485i \(-0.969124\pi\)
0.982268 + 0.187483i \(0.0600329\pi\)
\(678\) 1.67759 3.67341i 0.0644274 0.141076i
\(679\) 6.63177 14.5215i 0.254504 0.557286i
\(680\) 0.946681 6.58431i 0.0363036 0.252497i
\(681\) −21.4386 + 13.7778i −0.821531 + 0.527966i
\(682\) 6.95066 + 2.04090i 0.266154 + 0.0781500i
\(683\) 4.61383 + 32.0899i 0.176543 + 1.22789i 0.864687 + 0.502311i \(0.167517\pi\)
−0.688144 + 0.725574i \(0.741574\pi\)
\(684\) −4.28346 4.94338i −0.163782 0.189015i
\(685\) 10.1210 + 6.50437i 0.386703 + 0.248519i
\(686\) 10.6329 12.2710i 0.405966 0.468510i
\(687\) 23.5072 6.90234i 0.896856 0.263341i
\(688\) 0.807938 + 1.76914i 0.0308023 + 0.0674477i
\(689\) −6.37699 −0.242944
\(690\) 3.48978 + 3.28959i 0.132854 + 0.125233i
\(691\) 24.4378 0.929657 0.464828 0.885401i \(-0.346116\pi\)
0.464828 + 0.885401i \(0.346116\pi\)
\(692\) −0.218237 0.477873i −0.00829614 0.0181660i
\(693\) 4.21503 1.23765i 0.160116 0.0470143i
\(694\) −20.7641 + 23.9631i −0.788195 + 0.909625i
\(695\) −3.57371 2.29669i −0.135559 0.0871183i
\(696\) −3.58395 4.13609i −0.135849 0.156778i
\(697\) −0.119927 0.834111i −0.00454256 0.0315942i
\(698\) 12.5767 + 3.69285i 0.476035 + 0.139776i
\(699\) 16.3201 10.4883i 0.617283 0.396703i
\(700\) −0.188781 + 1.31300i −0.00713525 + 0.0496267i
\(701\) 2.76501 6.05453i 0.104433 0.228676i −0.850201 0.526458i \(-0.823520\pi\)
0.954634 + 0.297782i \(0.0962468\pi\)
\(702\) 0.348032 0.762084i 0.0131356 0.0287630i
\(703\) 0.882264 6.13628i 0.0332752 0.231434i
\(704\) −2.78598 + 1.79044i −0.105001 + 0.0674798i
\(705\) −7.05698 2.07212i −0.265781 0.0780405i
\(706\) −1.81326 12.6115i −0.0682428 0.474639i
\(707\) −12.1589 14.0321i −0.457281 0.527730i
\(708\) 6.05836 + 3.89347i 0.227687 + 0.146326i
\(709\) −6.66346 + 7.69004i −0.250251 + 0.288806i −0.866951 0.498393i \(-0.833924\pi\)
0.616700 + 0.787198i \(0.288469\pi\)
\(710\) 7.38039 2.16708i 0.276981 0.0813290i
\(711\) −0.282515 0.618621i −0.0105951 0.0232001i
\(712\) −17.7249 −0.664268
\(713\) 9.71659 3.95458i 0.363889 0.148100i
\(714\) −8.82392 −0.330227
\(715\) −1.15258 2.52379i −0.0431040 0.0943846i
\(716\) 5.38711 1.58180i 0.201326 0.0591146i
\(717\) −4.66918 + 5.38853i −0.174374 + 0.201238i
\(718\) −9.51841 6.11711i −0.355224 0.228288i
\(719\) −22.3379 25.7793i −0.833063 0.961406i 0.166634 0.986019i \(-0.446710\pi\)
−0.999697 + 0.0246129i \(0.992165\pi\)
\(720\) −0.142315 0.989821i −0.00530376 0.0368885i
\(721\) 5.88777 + 1.72881i 0.219272 + 0.0643841i
\(722\) 20.0092 12.8591i 0.744666 0.478568i
\(723\) −1.86449 + 12.9678i −0.0693411 + 0.482278i
\(724\) 2.05850 4.50749i 0.0765036 0.167520i
\(725\) 2.27350 4.97827i 0.0844356 0.184888i
\(726\) 0.00464304 0.0322930i 0.000172319 0.00119851i
\(727\) −31.4906 + 20.2378i −1.16792 + 0.750578i −0.973128 0.230266i \(-0.926040\pi\)
−0.194794 + 0.980844i \(0.562404\pi\)
\(728\) −1.06632 0.313099i −0.0395204 0.0116042i
\(729\) −0.142315 0.989821i −0.00527092 0.0366601i
\(730\) −6.56875 7.58074i −0.243120 0.280576i
\(731\) −10.8837 6.99452i −0.402548 0.258702i
\(732\) −9.32064 + 10.7566i −0.344501 + 0.397575i
\(733\) −8.78058 + 2.57821i −0.324318 + 0.0952284i −0.439839 0.898077i \(-0.644964\pi\)
0.115521 + 0.993305i \(0.463146\pi\)
\(734\) 2.24897 + 4.92456i 0.0830110 + 0.181769i
\(735\) −5.24039 −0.193295
\(736\) −1.54261 + 4.54096i −0.0568613 + 0.167382i
\(737\) −18.3530 −0.676041
\(738\) −0.0526254 0.115234i −0.00193717 0.00424181i
\(739\) −47.2710 + 13.8800i −1.73889 + 0.510584i −0.988605 0.150530i \(-0.951902\pi\)
−0.750285 + 0.661114i \(0.770084\pi\)
\(740\) 0.620657 0.716276i 0.0228158 0.0263308i
\(741\) 4.61009 + 2.96273i 0.169356 + 0.108838i
\(742\) 6.61204 + 7.63070i 0.242736 + 0.280132i
\(743\) −4.88079 33.9466i −0.179059 1.24538i −0.858947 0.512065i \(-0.828881\pi\)
0.679888 0.733316i \(-0.262028\pi\)
\(744\) −2.09882 0.616268i −0.0769464 0.0225935i
\(745\) 14.3065 9.19425i 0.524151 0.336851i
\(746\) −4.93674 + 34.3358i −0.180747 + 1.25712i
\(747\) 2.79726 6.12514i 0.102346 0.224107i
\(748\) 9.15139 20.0388i 0.334608 0.732689i
\(749\) 2.50392 17.4151i 0.0914912 0.636335i
\(750\) 0.841254 0.540641i 0.0307182 0.0197414i
\(751\) 42.6065 + 12.5104i 1.55473 + 0.456511i 0.942511 0.334175i \(-0.108458\pi\)
0.612222 + 0.790686i \(0.290276\pi\)
\(752\) −1.04671 7.28005i −0.0381697 0.265476i
\(753\) 19.1872 + 22.1433i 0.699222 + 0.806945i
\(754\) 3.85724 + 2.47890i 0.140472 + 0.0902761i
\(755\) −7.67663 + 8.85930i −0.279381 + 0.322423i
\(756\) −1.27277 + 0.373719i −0.0462902 + 0.0135920i
\(757\) −1.20108 2.62999i −0.0436538 0.0955885i 0.886549 0.462635i \(-0.153096\pi\)
−0.930202 + 0.367047i \(0.880369\pi\)
\(758\) −12.4007 −0.450414
\(759\) 8.01975 + 13.7089i 0.291098 + 0.497601i
\(760\) 6.54102 0.237268
\(761\) −9.17197 20.0838i −0.332484 0.728038i 0.667377 0.744720i \(-0.267417\pi\)
−0.999861 + 0.0166820i \(0.994690\pi\)
\(762\) −3.97343 + 1.16671i −0.143942 + 0.0422653i
\(763\) −5.99365 + 6.91704i −0.216985 + 0.250414i
\(764\) −13.4073 8.61634i −0.485059 0.311728i
\(765\) 4.35615 + 5.02726i 0.157497 + 0.181761i
\(766\) −1.93796 13.4788i −0.0700214 0.487009i
\(767\) −5.78904 1.69982i −0.209030 0.0613768i
\(768\) 0.841254 0.540641i 0.0303561 0.0195087i
\(769\) 3.84871 26.7684i 0.138788 0.965293i −0.794781 0.606896i \(-0.792414\pi\)
0.933569 0.358397i \(-0.116677\pi\)
\(770\) −1.82491 + 3.99599i −0.0657652 + 0.144006i
\(771\) 2.28064 4.99390i 0.0821351 0.179851i
\(772\) −3.33808 + 23.2169i −0.120140 + 0.835594i
\(773\) −9.72527 + 6.25005i −0.349794