Properties

Label 690.2.m.g.211.1
Level $690$
Weight $2$
Character 690.211
Analytic conductor $5.510$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 211.1
Character \(\chi\) \(=\) 690.211
Dual form 690.2.m.g.121.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.415415 + 0.909632i) q^{2} +(-0.959493 + 0.281733i) q^{3} +(-0.654861 + 0.755750i) q^{4} +(0.841254 + 0.540641i) q^{5} +(-0.654861 - 0.755750i) q^{6} +(-0.498068 - 3.46414i) q^{7} +(-0.959493 - 0.281733i) q^{8} +(0.841254 - 0.540641i) q^{9} +O(q^{10})\) \(q+(0.415415 + 0.909632i) q^{2} +(-0.959493 + 0.281733i) q^{3} +(-0.654861 + 0.755750i) q^{4} +(0.841254 + 0.540641i) q^{5} +(-0.654861 - 0.755750i) q^{6} +(-0.498068 - 3.46414i) q^{7} +(-0.959493 - 0.281733i) q^{8} +(0.841254 - 0.540641i) q^{9} +(-0.142315 + 0.989821i) q^{10} +(1.29808 - 2.84240i) q^{11} +(0.415415 - 0.909632i) q^{12} +(-0.133837 + 0.930855i) q^{13} +(2.94419 - 1.89212i) q^{14} +(-0.959493 - 0.281733i) q^{15} +(-0.142315 - 0.989821i) q^{16} +(-4.81901 - 5.56143i) q^{17} +(0.841254 + 0.540641i) q^{18} +(1.23702 - 1.42759i) q^{19} +(-0.959493 + 0.281733i) q^{20} +(1.45385 + 3.18350i) q^{21} +3.12478 q^{22} +(3.42329 - 3.35873i) q^{23} +1.00000 q^{24} +(0.415415 + 0.909632i) q^{25} +(-0.902333 + 0.264949i) q^{26} +(-0.654861 + 0.755750i) q^{27} +(2.94419 + 1.89212i) q^{28} +(-0.455579 - 0.525766i) q^{29} +(-0.142315 - 0.989821i) q^{30} +(4.98844 + 1.46474i) q^{31} +(0.841254 - 0.540641i) q^{32} +(-0.444702 + 3.09297i) q^{33} +(3.05697 - 6.69383i) q^{34} +(1.45385 - 3.18350i) q^{35} +(-0.142315 + 0.989821i) q^{36} +(-0.958486 + 0.615982i) q^{37} +(1.81246 + 0.532186i) q^{38} +(-0.133837 - 0.930855i) q^{39} +(-0.654861 - 0.755750i) q^{40} +(1.73927 + 1.11776i) q^{41} +(-2.29186 + 2.64495i) q^{42} +(9.55053 - 2.80429i) q^{43} +(1.29808 + 2.84240i) q^{44} +1.00000 q^{45} +(4.47729 + 1.71867i) q^{46} -3.43994 q^{47} +(0.415415 + 0.909632i) q^{48} +(-5.03575 + 1.47863i) q^{49} +(-0.654861 + 0.755750i) q^{50} +(6.19064 + 3.97848i) q^{51} +(-0.615849 - 0.710727i) q^{52} +(-0.573236 - 3.98694i) q^{53} +(-0.959493 - 0.281733i) q^{54} +(2.62873 - 1.68938i) q^{55} +(-0.498068 + 3.46414i) q^{56} +(-0.784708 + 1.71827i) q^{57} +(0.288999 - 0.632820i) q^{58} +(-1.82681 + 12.7058i) q^{59} +(0.841254 - 0.540641i) q^{60} +(-2.91105 - 0.854761i) q^{61} +(0.739901 + 5.14612i) q^{62} +(-2.29186 - 2.64495i) q^{63} +(0.841254 + 0.540641i) q^{64} +(-0.615849 + 0.710727i) q^{65} +(-2.99820 + 0.880352i) q^{66} +(1.53188 + 3.35435i) q^{67} +7.35883 q^{68} +(-2.33836 + 4.18713i) q^{69} +3.49976 q^{70} +(-1.92059 - 4.20550i) q^{71} +(-0.959493 + 0.281733i) q^{72} +(-0.931680 + 1.07522i) q^{73} +(-0.958486 - 0.615982i) q^{74} +(-0.654861 - 0.755750i) q^{75} +(0.268829 + 1.86975i) q^{76} +(-10.4930 - 3.08102i) q^{77} +(0.791138 - 0.508433i) q^{78} +(2.40418 - 16.7215i) q^{79} +(0.415415 - 0.909632i) q^{80} +(0.415415 - 0.909632i) q^{81} +(-0.294231 + 2.04642i) q^{82} +(5.18106 - 3.32966i) q^{83} +(-3.35800 - 0.985998i) q^{84} +(-1.04727 - 7.28393i) q^{85} +(6.51831 + 7.52253i) q^{86} +(0.585250 + 0.376117i) q^{87} +(-2.04630 + 2.36155i) q^{88} +(-3.33736 + 0.979938i) q^{89} +(0.415415 + 0.909632i) q^{90} +3.29127 q^{91} +(0.296577 + 4.78665i) q^{92} -5.19904 q^{93} +(-1.42900 - 3.12908i) q^{94} +(1.81246 - 0.532186i) q^{95} +(-0.654861 + 0.755750i) q^{96} +(-4.25851 - 2.73678i) q^{97} +(-3.43694 - 3.96644i) q^{98} +(-0.444702 - 3.09297i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30q - 3q^{2} - 3q^{3} - 3q^{4} - 3q^{5} - 3q^{6} - 8q^{7} - 3q^{8} - 3q^{9} + O(q^{10}) \) \( 30q - 3q^{2} - 3q^{3} - 3q^{4} - 3q^{5} - 3q^{6} - 8q^{7} - 3q^{8} - 3q^{9} - 3q^{10} + 8q^{11} - 3q^{12} - 5q^{13} - 8q^{14} - 3q^{15} - 3q^{16} + 4q^{17} - 3q^{18} + 6q^{19} - 3q^{20} + 3q^{21} + 8q^{22} + q^{23} + 30q^{24} - 3q^{25} - 5q^{26} - 3q^{27} - 8q^{28} - 10q^{29} - 3q^{30} - 10q^{31} - 3q^{32} - 14q^{33} - 7q^{34} + 3q^{35} - 3q^{36} - 12q^{37} - 5q^{38} - 5q^{39} - 3q^{40} + 5q^{41} + 3q^{42} + 2q^{43} + 8q^{44} + 30q^{45} - 21q^{46} + 96q^{47} - 3q^{48} - 43q^{49} - 3q^{50} + 15q^{51} - 16q^{52} + 12q^{53} - 3q^{54} + 8q^{55} - 8q^{56} + 17q^{57} + q^{58} - 9q^{59} - 3q^{60} + q^{61} - 32q^{62} + 3q^{63} - 3q^{64} - 16q^{65} - 3q^{66} - 28q^{67} + 4q^{68} + 23q^{69} + 14q^{70} + 3q^{71} - 3q^{72} - 27q^{73} - 12q^{74} - 3q^{75} - 16q^{76} + 47q^{77} + 6q^{78} + 2q^{79} - 3q^{80} - 3q^{81} + 27q^{82} + 11q^{83} + 3q^{84} - 7q^{85} + 2q^{86} - 32q^{87} - 3q^{88} + 25q^{89} - 3q^{90} - 90q^{91} - 10q^{92} + 56q^{93} - 25q^{94} - 5q^{95} - 3q^{96} - 7q^{97} - 32q^{98} - 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.415415 + 0.909632i 0.293743 + 0.643207i
\(3\) −0.959493 + 0.281733i −0.553964 + 0.162658i
\(4\) −0.654861 + 0.755750i −0.327430 + 0.377875i
\(5\) 0.841254 + 0.540641i 0.376220 + 0.241782i
\(6\) −0.654861 0.755750i −0.267346 0.308533i
\(7\) −0.498068 3.46414i −0.188252 1.30932i −0.836531 0.547920i \(-0.815420\pi\)
0.648279 0.761403i \(-0.275489\pi\)
\(8\) −0.959493 0.281733i −0.339232 0.0996075i
\(9\) 0.841254 0.540641i 0.280418 0.180214i
\(10\) −0.142315 + 0.989821i −0.0450039 + 0.313009i
\(11\) 1.29808 2.84240i 0.391386 0.857016i −0.606686 0.794942i \(-0.707501\pi\)
0.998072 0.0620738i \(-0.0197714\pi\)
\(12\) 0.415415 0.909632i 0.119920 0.262588i
\(13\) −0.133837 + 0.930855i −0.0371196 + 0.258173i −0.999928 0.0120131i \(-0.996176\pi\)
0.962808 + 0.270186i \(0.0870851\pi\)
\(14\) 2.94419 1.89212i 0.786868 0.505689i
\(15\) −0.959493 0.281733i −0.247740 0.0727430i
\(16\) −0.142315 0.989821i −0.0355787 0.247455i
\(17\) −4.81901 5.56143i −1.16878 1.34885i −0.925435 0.378906i \(-0.876300\pi\)
−0.243346 0.969940i \(-0.578245\pi\)
\(18\) 0.841254 + 0.540641i 0.198285 + 0.127430i
\(19\) 1.23702 1.42759i 0.283791 0.327512i −0.595900 0.803059i \(-0.703204\pi\)
0.879690 + 0.475547i \(0.157750\pi\)
\(20\) −0.959493 + 0.281733i −0.214549 + 0.0629973i
\(21\) 1.45385 + 3.18350i 0.317257 + 0.694696i
\(22\) 3.12478 0.666205
\(23\) 3.42329 3.35873i 0.713806 0.700343i
\(24\) 1.00000 0.204124
\(25\) 0.415415 + 0.909632i 0.0830830 + 0.181926i
\(26\) −0.902333 + 0.264949i −0.176962 + 0.0519608i
\(27\) −0.654861 + 0.755750i −0.126028 + 0.145444i
\(28\) 2.94419 + 1.89212i 0.556399 + 0.357576i
\(29\) −0.455579 0.525766i −0.0845988 0.0976322i 0.711872 0.702309i \(-0.247848\pi\)
−0.796471 + 0.604677i \(0.793302\pi\)
\(30\) −0.142315 0.989821i −0.0259830 0.180716i
\(31\) 4.98844 + 1.46474i 0.895951 + 0.263075i 0.697116 0.716958i \(-0.254466\pi\)
0.198835 + 0.980033i \(0.436284\pi\)
\(32\) 0.841254 0.540641i 0.148714 0.0955727i
\(33\) −0.444702 + 3.09297i −0.0774128 + 0.538418i
\(34\) 3.05697 6.69383i 0.524266 1.14798i
\(35\) 1.45385 3.18350i 0.245746 0.538109i
\(36\) −0.142315 + 0.989821i −0.0237191 + 0.164970i
\(37\) −0.958486 + 0.615982i −0.157574 + 0.101267i −0.617052 0.786923i \(-0.711673\pi\)
0.459477 + 0.888189i \(0.348037\pi\)
\(38\) 1.81246 + 0.532186i 0.294020 + 0.0863319i
\(39\) −0.133837 0.930855i −0.0214310 0.149056i
\(40\) −0.654861 0.755750i −0.103543 0.119494i
\(41\) 1.73927 + 1.11776i 0.271628 + 0.174564i 0.669363 0.742936i \(-0.266567\pi\)
−0.397735 + 0.917500i \(0.630204\pi\)
\(42\) −2.29186 + 2.64495i −0.353641 + 0.408124i
\(43\) 9.55053 2.80429i 1.45644 0.427650i 0.544776 0.838581i \(-0.316615\pi\)
0.911666 + 0.410931i \(0.134796\pi\)
\(44\) 1.29808 + 2.84240i 0.195693 + 0.428508i
\(45\) 1.00000 0.149071
\(46\) 4.47729 + 1.71867i 0.660141 + 0.253404i
\(47\) −3.43994 −0.501767 −0.250883 0.968017i \(-0.580721\pi\)
−0.250883 + 0.968017i \(0.580721\pi\)
\(48\) 0.415415 + 0.909632i 0.0599600 + 0.131294i
\(49\) −5.03575 + 1.47863i −0.719393 + 0.211233i
\(50\) −0.654861 + 0.755750i −0.0926113 + 0.106879i
\(51\) 6.19064 + 3.97848i 0.866863 + 0.557099i
\(52\) −0.615849 0.710727i −0.0854029 0.0985601i
\(53\) −0.573236 3.98694i −0.0787400 0.547649i −0.990562 0.137063i \(-0.956234\pi\)
0.911822 0.410585i \(-0.134676\pi\)
\(54\) −0.959493 0.281733i −0.130570 0.0383389i
\(55\) 2.62873 1.68938i 0.354458 0.227796i
\(56\) −0.498068 + 3.46414i −0.0665572 + 0.462915i
\(57\) −0.784708 + 1.71827i −0.103937 + 0.227591i
\(58\) 0.288999 0.632820i 0.0379474 0.0830933i
\(59\) −1.82681 + 12.7058i −0.237831 + 1.65415i 0.424863 + 0.905257i \(0.360322\pi\)
−0.662694 + 0.748890i \(0.730587\pi\)
\(60\) 0.841254 0.540641i 0.108605 0.0697964i
\(61\) −2.91105 0.854761i −0.372722 0.109441i 0.0900064 0.995941i \(-0.471311\pi\)
−0.462728 + 0.886500i \(0.653129\pi\)
\(62\) 0.739901 + 5.14612i 0.0939675 + 0.653558i
\(63\) −2.29186 2.64495i −0.288747 0.333232i
\(64\) 0.841254 + 0.540641i 0.105157 + 0.0675801i
\(65\) −0.615849 + 0.710727i −0.0763866 + 0.0881549i
\(66\) −2.99820 + 0.880352i −0.369053 + 0.108364i
\(67\) 1.53188 + 3.35435i 0.187149 + 0.409799i 0.979829 0.199839i \(-0.0640421\pi\)
−0.792680 + 0.609638i \(0.791315\pi\)
\(68\) 7.35883 0.892389
\(69\) −2.33836 + 4.18713i −0.281506 + 0.504071i
\(70\) 3.49976 0.418302
\(71\) −1.92059 4.20550i −0.227932 0.499102i 0.760765 0.649027i \(-0.224824\pi\)
−0.988697 + 0.149926i \(0.952097\pi\)
\(72\) −0.959493 + 0.281733i −0.113077 + 0.0332025i
\(73\) −0.931680 + 1.07522i −0.109045 + 0.125845i −0.807648 0.589665i \(-0.799260\pi\)
0.698603 + 0.715509i \(0.253805\pi\)
\(74\) −0.958486 0.615982i −0.111422 0.0716064i
\(75\) −0.654861 0.755750i −0.0756168 0.0872664i
\(76\) 0.268829 + 1.86975i 0.0308368 + 0.214475i
\(77\) −10.4930 3.08102i −1.19579 0.351115i
\(78\) 0.791138 0.508433i 0.0895787 0.0575687i
\(79\) 2.40418 16.7215i 0.270492 1.88131i −0.172836 0.984951i \(-0.555293\pi\)
0.443327 0.896360i \(-0.353798\pi\)
\(80\) 0.415415 0.909632i 0.0464448 0.101700i
\(81\) 0.415415 0.909632i 0.0461572 0.101070i
\(82\) −0.294231 + 2.04642i −0.0324924 + 0.225990i
\(83\) 5.18106 3.32966i 0.568695 0.365478i −0.224474 0.974480i \(-0.572066\pi\)
0.793169 + 0.609002i \(0.208430\pi\)
\(84\) −3.35800 0.985998i −0.366388 0.107581i
\(85\) −1.04727 7.28393i −0.113592 0.790053i
\(86\) 6.51831 + 7.52253i 0.702887 + 0.811175i
\(87\) 0.585250 + 0.376117i 0.0627454 + 0.0403240i
\(88\) −2.04630 + 2.36155i −0.218136 + 0.251742i
\(89\) −3.33736 + 0.979938i −0.353760 + 0.103873i −0.453784 0.891112i \(-0.649926\pi\)
0.100024 + 0.994985i \(0.468108\pi\)
\(90\) 0.415415 + 0.909632i 0.0437886 + 0.0958836i
\(91\) 3.29127 0.345019
\(92\) 0.296577 + 4.78665i 0.0309203 + 0.499043i
\(93\) −5.19904 −0.539115
\(94\) −1.42900 3.12908i −0.147390 0.322740i
\(95\) 1.81246 0.532186i 0.185954 0.0546011i
\(96\) −0.654861 + 0.755750i −0.0668364 + 0.0771334i
\(97\) −4.25851 2.73678i −0.432386 0.277877i 0.306290 0.951938i \(-0.400912\pi\)
−0.738676 + 0.674061i \(0.764549\pi\)
\(98\) −3.43694 3.96644i −0.347183 0.400671i
\(99\) −0.444702 3.09297i −0.0446943 0.310856i
\(100\) −0.959493 0.281733i −0.0959493 0.0281733i
\(101\) −1.58475 + 1.01846i −0.157689 + 0.101340i −0.617105 0.786880i \(-0.711695\pi\)
0.459417 + 0.888221i \(0.348058\pi\)
\(102\) −1.04727 + 7.28393i −0.103695 + 0.721216i
\(103\) −0.363212 + 0.795324i −0.0357884 + 0.0783656i −0.926682 0.375847i \(-0.877352\pi\)
0.890894 + 0.454212i \(0.150079\pi\)
\(104\) 0.390668 0.855443i 0.0383081 0.0838830i
\(105\) −0.498068 + 3.46414i −0.0486065 + 0.338066i
\(106\) 3.38852 2.17767i 0.329122 0.211514i
\(107\) −14.7565 4.33290i −1.42656 0.418877i −0.524844 0.851198i \(-0.675876\pi\)
−0.901720 + 0.432321i \(0.857695\pi\)
\(108\) −0.142315 0.989821i −0.0136943 0.0952456i
\(109\) 2.85960 + 3.30015i 0.273900 + 0.316097i 0.875988 0.482332i \(-0.160210\pi\)
−0.602089 + 0.798429i \(0.705665\pi\)
\(110\) 2.62873 + 1.68938i 0.250640 + 0.161076i
\(111\) 0.746119 0.861067i 0.0708185 0.0817289i
\(112\) −3.35800 + 0.985998i −0.317301 + 0.0931680i
\(113\) −4.98183 10.9087i −0.468652 1.02620i −0.985430 0.170084i \(-0.945596\pi\)
0.516778 0.856119i \(-0.327131\pi\)
\(114\) −1.88897 −0.176919
\(115\) 4.69572 0.974770i 0.437879 0.0908978i
\(116\) 0.695688 0.0645930
\(117\) 0.390668 + 0.855443i 0.0361172 + 0.0790857i
\(118\) −12.3164 + 3.61643i −1.13382 + 0.332920i
\(119\) −16.8654 + 19.4637i −1.54605 + 1.78423i
\(120\) 0.841254 + 0.540641i 0.0767956 + 0.0493535i
\(121\) 0.809248 + 0.933921i 0.0735680 + 0.0849020i
\(122\) −0.431776 3.00307i −0.0390911 0.271885i
\(123\) −1.98372 0.582473i −0.178866 0.0525198i
\(124\) −4.37371 + 2.81081i −0.392771 + 0.252418i
\(125\) −0.142315 + 0.989821i −0.0127290 + 0.0885323i
\(126\) 1.45385 3.18350i 0.129520 0.283608i
\(127\) −0.674358 + 1.47664i −0.0598396 + 0.131030i −0.937189 0.348821i \(-0.886582\pi\)
0.877350 + 0.479851i \(0.159309\pi\)
\(128\) −0.142315 + 0.989821i −0.0125790 + 0.0874887i
\(129\) −8.37361 + 5.38139i −0.737255 + 0.473805i
\(130\) −0.902333 0.264949i −0.0791399 0.0232376i
\(131\) 1.86094 + 12.9431i 0.162591 + 1.13085i 0.893726 + 0.448613i \(0.148082\pi\)
−0.731135 + 0.682232i \(0.761009\pi\)
\(132\) −2.04630 2.36155i −0.178107 0.205547i
\(133\) −5.56150 3.57416i −0.482243 0.309919i
\(134\) −2.41485 + 2.78689i −0.208612 + 0.240751i
\(135\) −0.959493 + 0.281733i −0.0825800 + 0.0242477i
\(136\) 3.05697 + 6.69383i 0.262133 + 0.573991i
\(137\) −18.5033 −1.58084 −0.790420 0.612565i \(-0.790138\pi\)
−0.790420 + 0.612565i \(0.790138\pi\)
\(138\) −4.78014 0.387653i −0.406912 0.0329992i
\(139\) 18.6522 1.58206 0.791028 0.611780i \(-0.209546\pi\)
0.791028 + 0.611780i \(0.209546\pi\)
\(140\) 1.45385 + 3.18350i 0.122873 + 0.269055i
\(141\) 3.30060 0.969143i 0.277960 0.0816165i
\(142\) 3.02762 3.49406i 0.254072 0.293215i
\(143\) 2.47213 + 1.58874i 0.206730 + 0.132857i
\(144\) −0.654861 0.755750i −0.0545717 0.0629791i
\(145\) −0.0990067 0.688607i −0.00822206 0.0571857i
\(146\) −1.36508 0.400825i −0.112975 0.0331725i
\(147\) 4.41519 2.83747i 0.364159 0.234031i
\(148\) 0.162147 1.12776i 0.0133284 0.0927011i
\(149\) −2.39180 + 5.23731i −0.195944 + 0.429057i −0.981945 0.189168i \(-0.939421\pi\)
0.786001 + 0.618225i \(0.212148\pi\)
\(150\) 0.415415 0.909632i 0.0339185 0.0742711i
\(151\) −2.92385 + 20.3358i −0.237940 + 1.65491i 0.424232 + 0.905554i \(0.360544\pi\)
−0.662171 + 0.749353i \(0.730365\pi\)
\(152\) −1.58911 + 1.02126i −0.128894 + 0.0828349i
\(153\) −7.06075 2.07322i −0.570827 0.167610i
\(154\) −1.55635 10.8247i −0.125415 0.872277i
\(155\) 3.40465 + 3.92917i 0.273468 + 0.315599i
\(156\) 0.791138 + 0.508433i 0.0633417 + 0.0407072i
\(157\) 5.29029 6.10532i 0.422211 0.487258i −0.504298 0.863530i \(-0.668249\pi\)
0.926509 + 0.376272i \(0.122794\pi\)
\(158\) 16.2091 4.75942i 1.28953 0.378639i
\(159\) 1.67327 + 3.66394i 0.132699 + 0.290570i
\(160\) 1.00000 0.0790569
\(161\) −13.3401 10.1859i −1.05135 0.802761i
\(162\) 1.00000 0.0785674
\(163\) 0.691790 + 1.51481i 0.0541852 + 0.118649i 0.934788 0.355206i \(-0.115589\pi\)
−0.880603 + 0.473855i \(0.842862\pi\)
\(164\) −1.98372 + 0.582473i −0.154903 + 0.0454835i
\(165\) −2.04630 + 2.36155i −0.159304 + 0.183846i
\(166\) 5.18106 + 3.32966i 0.402128 + 0.258432i
\(167\) −8.77331 10.1249i −0.678899 0.783491i 0.306842 0.951760i \(-0.400728\pi\)
−0.985741 + 0.168269i \(0.946182\pi\)
\(168\) −0.498068 3.46414i −0.0384268 0.267264i
\(169\) 11.6248 + 3.41336i 0.894218 + 0.262566i
\(170\) 6.19064 3.97848i 0.474801 0.305136i
\(171\) 0.268829 1.86975i 0.0205579 0.142983i
\(172\) −4.13493 + 9.05423i −0.315285 + 0.690379i
\(173\) −0.769891 + 1.68583i −0.0585337 + 0.128171i −0.936639 0.350297i \(-0.886081\pi\)
0.878105 + 0.478468i \(0.158808\pi\)
\(174\) −0.0990067 + 0.688607i −0.00750568 + 0.0522031i
\(175\) 2.94419 1.89212i 0.222560 0.143030i
\(176\) −2.99820 0.880352i −0.225998 0.0663590i
\(177\) −1.82681 12.7058i −0.137312 0.955023i
\(178\) −2.27777 2.62869i −0.170726 0.197029i
\(179\) −9.04079 5.81016i −0.675740 0.434272i 0.157250 0.987559i \(-0.449737\pi\)
−0.832991 + 0.553287i \(0.813373\pi\)
\(180\) −0.654861 + 0.755750i −0.0488104 + 0.0563302i
\(181\) 17.5956 5.16653i 1.30787 0.384025i 0.447769 0.894149i \(-0.352219\pi\)
0.860101 + 0.510124i \(0.170400\pi\)
\(182\) 1.36724 + 2.99385i 0.101347 + 0.221919i
\(183\) 3.03395 0.224276
\(184\) −4.23089 + 2.25822i −0.311905 + 0.166478i
\(185\) −1.13935 −0.0837670
\(186\) −2.15976 4.72921i −0.158361 0.346763i
\(187\) −22.0633 + 6.47836i −1.61343 + 0.473745i
\(188\) 2.25268 2.59973i 0.164294 0.189605i
\(189\) 2.94419 + 1.89212i 0.214158 + 0.137631i
\(190\) 1.23702 + 1.42759i 0.0897425 + 0.103568i
\(191\) 2.40718 + 16.7423i 0.174178 + 1.21143i 0.869939 + 0.493159i \(0.164158\pi\)
−0.695762 + 0.718273i \(0.744933\pi\)
\(192\) −0.959493 0.281733i −0.0692454 0.0203323i
\(193\) −4.59154 + 2.95081i −0.330507 + 0.212404i −0.695361 0.718661i \(-0.744755\pi\)
0.364854 + 0.931065i \(0.381119\pi\)
\(194\) 0.720411 5.01057i 0.0517225 0.359738i
\(195\) 0.390668 0.855443i 0.0279763 0.0612595i
\(196\) 2.18024 4.77407i 0.155732 0.341005i
\(197\) −2.72360 + 18.9430i −0.194048 + 1.34964i 0.627108 + 0.778933i \(0.284239\pi\)
−0.821156 + 0.570704i \(0.806671\pi\)
\(198\) 2.62873 1.68938i 0.186816 0.120059i
\(199\) −9.50118 2.78980i −0.673521 0.197763i −0.0729505 0.997336i \(-0.523241\pi\)
−0.600570 + 0.799572i \(0.705060\pi\)
\(200\) −0.142315 0.989821i −0.0100632 0.0699909i
\(201\) −2.41485 2.78689i −0.170331 0.196572i
\(202\) −1.58475 1.01846i −0.111503 0.0716585i
\(203\) −1.59442 + 1.84006i −0.111906 + 0.129147i
\(204\) −7.06075 + 2.07322i −0.494351 + 0.145155i
\(205\) 0.858858 + 1.88064i 0.0599852 + 0.131349i
\(206\) −0.874336 −0.0609178
\(207\) 1.06399 4.67631i 0.0739526 0.325026i
\(208\) 0.940427 0.0652069
\(209\) −2.45204 5.36922i −0.169611 0.371397i
\(210\) −3.35800 + 0.985998i −0.231724 + 0.0680403i
\(211\) 12.2086 14.0895i 0.840476 0.969961i −0.159375 0.987218i \(-0.550948\pi\)
0.999851 + 0.0172569i \(0.00549331\pi\)
\(212\) 3.38852 + 2.17767i 0.232724 + 0.149563i
\(213\) 3.02762 + 3.49406i 0.207449 + 0.239409i
\(214\) −2.18873 15.2229i −0.149618 1.04062i
\(215\) 9.55053 + 2.80429i 0.651341 + 0.191251i
\(216\) 0.841254 0.540641i 0.0572401 0.0367859i
\(217\) 2.58948 18.0102i 0.175785 1.22261i
\(218\) −1.81400 + 3.97211i −0.122860 + 0.269025i
\(219\) 0.591017 1.29415i 0.0399372 0.0874503i
\(220\) −0.444702 + 3.09297i −0.0299818 + 0.208528i
\(221\) 5.82185 3.74147i 0.391620 0.251679i
\(222\) 1.09320 + 0.320993i 0.0733710 + 0.0215437i
\(223\) 0.835709 + 5.81248i 0.0559632 + 0.389233i 0.998482 + 0.0550794i \(0.0175412\pi\)
−0.942519 + 0.334153i \(0.891550\pi\)
\(224\) −2.29186 2.64495i −0.153131 0.176723i
\(225\) 0.841254 + 0.540641i 0.0560836 + 0.0360427i
\(226\) 7.85337 9.06327i 0.522398 0.602880i
\(227\) 20.9634 6.15541i 1.39139 0.408549i 0.501671 0.865059i \(-0.332719\pi\)
0.889718 + 0.456510i \(0.150901\pi\)
\(228\) −0.784708 1.71827i −0.0519686 0.113795i
\(229\) −16.9273 −1.11859 −0.559294 0.828969i \(-0.688928\pi\)
−0.559294 + 0.828969i \(0.688928\pi\)
\(230\) 2.83736 + 3.86645i 0.187090 + 0.254946i
\(231\) 10.9360 0.719535
\(232\) 0.288999 + 0.632820i 0.0189737 + 0.0415467i
\(233\) 14.5077 4.25984i 0.950429 0.279071i 0.230464 0.973081i \(-0.425976\pi\)
0.719966 + 0.694010i \(0.244158\pi\)
\(234\) −0.615849 + 0.710727i −0.0402593 + 0.0464617i
\(235\) −2.89386 1.85977i −0.188775 0.121318i
\(236\) −8.40606 9.70111i −0.547188 0.631488i
\(237\) 2.40418 + 16.7215i 0.156168 + 1.08618i
\(238\) −24.7109 7.25579i −1.60177 0.470323i
\(239\) 24.6441 15.8378i 1.59410 1.02446i 0.624099 0.781345i \(-0.285466\pi\)
0.969997 0.243118i \(-0.0781702\pi\)
\(240\) −0.142315 + 0.989821i −0.00918638 + 0.0638927i
\(241\) −5.33912 + 11.6910i −0.343923 + 0.753086i −0.999999 0.00160918i \(-0.999488\pi\)
0.656076 + 0.754695i \(0.272215\pi\)
\(242\) −0.513351 + 1.12408i −0.0329995 + 0.0722588i
\(243\) −0.142315 + 0.989821i −0.00912950 + 0.0634971i
\(244\) 2.55232 1.64028i 0.163395 0.105008i
\(245\) −5.03575 1.47863i −0.321723 0.0944663i
\(246\) −0.294231 2.04642i −0.0187595 0.130475i
\(247\) 1.16332 + 1.34255i 0.0740205 + 0.0854242i
\(248\) −4.37371 2.81081i −0.277731 0.178487i
\(249\) −4.03311 + 4.65446i −0.255588 + 0.294965i
\(250\) −0.959493 + 0.281733i −0.0606837 + 0.0178183i
\(251\) −9.94980 21.7870i −0.628026 1.37519i −0.909535 0.415627i \(-0.863562\pi\)
0.281509 0.959559i \(-0.409165\pi\)
\(252\) 3.49976 0.220464
\(253\) −5.10314 14.0903i −0.320832 0.885847i
\(254\) −1.62333 −0.101857
\(255\) 3.05697 + 6.69383i 0.191435 + 0.419184i
\(256\) −0.959493 + 0.281733i −0.0599683 + 0.0176083i
\(257\) 10.5751 12.2044i 0.659659 0.761287i −0.323063 0.946378i \(-0.604712\pi\)
0.982721 + 0.185091i \(0.0592579\pi\)
\(258\) −8.37361 5.38139i −0.521318 0.335031i
\(259\) 2.61124 + 3.01353i 0.162255 + 0.187252i
\(260\) −0.133837 0.930855i −0.00830020 0.0577292i
\(261\) −0.667507 0.195998i −0.0413177 0.0121320i
\(262\) −11.0004 + 7.06953i −0.679608 + 0.436757i
\(263\) −4.05577 + 28.2085i −0.250089 + 1.73941i 0.347565 + 0.937656i \(0.387009\pi\)
−0.597654 + 0.801754i \(0.703900\pi\)
\(264\) 1.29808 2.84240i 0.0798913 0.174938i
\(265\) 1.67327 3.66394i 0.102788 0.225074i
\(266\) 0.940839 6.54368i 0.0576865 0.401219i
\(267\) 2.92610 1.88049i 0.179074 0.115084i
\(268\) −3.53821 1.03891i −0.216131 0.0634617i
\(269\) 0.719583 + 5.00481i 0.0438738 + 0.305149i 0.999928 + 0.0119605i \(0.00380722\pi\)
−0.956055 + 0.293188i \(0.905284\pi\)
\(270\) −0.654861 0.755750i −0.0398536 0.0459935i
\(271\) 6.71140 + 4.31316i 0.407689 + 0.262006i 0.728373 0.685180i \(-0.240277\pi\)
−0.320685 + 0.947186i \(0.603913\pi\)
\(272\) −4.81901 + 5.56143i −0.292195 + 0.337211i
\(273\) −3.15795 + 0.927259i −0.191128 + 0.0561203i
\(274\) −7.68654 16.8312i −0.464361 1.01681i
\(275\) 3.12478 0.188431
\(276\) −1.63312 4.50920i −0.0983023 0.271422i
\(277\) 4.81668 0.289406 0.144703 0.989475i \(-0.453777\pi\)
0.144703 + 0.989475i \(0.453777\pi\)
\(278\) 7.74839 + 16.9666i 0.464718 + 1.01759i
\(279\) 4.98844 1.46474i 0.298650 0.0876916i
\(280\) −2.29186 + 2.64495i −0.136965 + 0.158066i
\(281\) 21.8433 + 14.0378i 1.30306 + 0.837428i 0.993542 0.113465i \(-0.0361949\pi\)
0.309521 + 0.950893i \(0.399831\pi\)
\(282\) 2.25268 + 2.59973i 0.134145 + 0.154812i
\(283\) 2.96169 + 20.5990i 0.176054 + 1.22448i 0.865784 + 0.500418i \(0.166820\pi\)
−0.689730 + 0.724067i \(0.742271\pi\)
\(284\) 4.43603 + 1.30253i 0.263230 + 0.0772912i
\(285\) −1.58911 + 1.02126i −0.0941306 + 0.0604940i
\(286\) −0.418210 + 2.90872i −0.0247293 + 0.171996i
\(287\) 3.00580 6.58178i 0.177427 0.388510i
\(288\) 0.415415 0.909632i 0.0244786 0.0536006i
\(289\) −5.28733 + 36.7742i −0.311020 + 2.16319i
\(290\) 0.585250 0.376117i 0.0343670 0.0220864i
\(291\) 4.85704 + 1.42616i 0.284725 + 0.0836028i
\(292\) −0.202473 1.40823i −0.0118489 0.0824106i
\(293\) 17.0111 + 19.6319i 0.993801 + 1.14691i 0.989149 + 0.146918i \(0.0469353\pi\)
0.00465191 + 0.999989i \(0.498519\pi\)
\(294\) 4.41519 + 2.83747i 0.257499 + 0.165485i
\(295\) −8.40606 + 9.70111i −0.489420 + 0.564820i
\(296\) 1.09320 0.320993i 0.0635411 0.0186574i
\(297\) 1.29808 + 2.84240i 0.0753223 + 0.164933i
\(298\) −5.75761 −0.333529
\(299\) 2.66833 + 3.63611i 0.154313 + 0.210282i
\(300\) 1.00000 0.0577350
\(301\) −14.4713 31.6877i −0.834110 1.82645i
\(302\) −19.7127 + 5.78818i −1.13434 + 0.333072i
\(303\) 1.23363 1.42368i 0.0708699 0.0817883i
\(304\) −1.58911 1.02126i −0.0911415 0.0585731i
\(305\) −1.98681 2.29290i −0.113765 0.131291i
\(306\) −1.04727 7.28393i −0.0598685 0.416394i
\(307\) 13.2473 + 3.88975i 0.756063 + 0.222000i 0.636976 0.770884i \(-0.280185\pi\)
0.119087 + 0.992884i \(0.462003\pi\)
\(308\) 9.19994 5.91244i 0.524215 0.336893i
\(309\) 0.124431 0.865436i 0.00707863 0.0492329i
\(310\) −2.15976 + 4.72921i −0.122666 + 0.268601i
\(311\) −7.33931 + 16.0709i −0.416174 + 0.911295i 0.579197 + 0.815188i \(0.303366\pi\)
−0.995371 + 0.0961068i \(0.969361\pi\)
\(312\) −0.133837 + 0.930855i −0.00757701 + 0.0526993i
\(313\) −20.3440 + 13.0743i −1.14991 + 0.739002i −0.969621 0.244612i \(-0.921339\pi\)
−0.180288 + 0.983614i \(0.557703\pi\)
\(314\) 7.75126 + 2.27598i 0.437429 + 0.128441i
\(315\) −0.498068 3.46414i −0.0280630 0.195182i
\(316\) 11.0628 + 12.7672i 0.622333 + 0.718210i
\(317\) 11.3583 + 7.29954i 0.637946 + 0.409983i 0.819244 0.573445i \(-0.194394\pi\)
−0.181298 + 0.983428i \(0.558030\pi\)
\(318\) −2.63774 + 3.04411i −0.147917 + 0.170705i
\(319\) −2.08581 + 0.612450i −0.116783 + 0.0342906i
\(320\) 0.415415 + 0.909632i 0.0232224 + 0.0508500i
\(321\) 15.3795 0.858398
\(322\) 3.72372 16.3660i 0.207515 0.912041i
\(323\) −13.9006 −0.773452
\(324\) 0.415415 + 0.909632i 0.0230786 + 0.0505351i
\(325\) −0.902333 + 0.264949i −0.0500524 + 0.0146967i
\(326\) −1.09054 + 1.25855i −0.0603994 + 0.0697046i
\(327\) −3.67352 2.36083i −0.203146 0.130554i
\(328\) −1.35390 1.56249i −0.0747568 0.0862740i
\(329\) 1.71332 + 11.9164i 0.0944586 + 0.656974i
\(330\) −2.99820 0.880352i −0.165046 0.0484618i
\(331\) 28.4875 18.3078i 1.56581 1.00629i 0.585071 0.810982i \(-0.301067\pi\)
0.980742 0.195305i \(-0.0625698\pi\)
\(332\) −0.876479 + 6.09605i −0.0481031 + 0.334564i
\(333\) −0.473305 + 1.03639i −0.0259370 + 0.0567940i
\(334\) 5.56540 12.1865i 0.304525 0.666818i
\(335\) −0.524798 + 3.65005i −0.0286728 + 0.199424i
\(336\) 2.94419 1.89212i 0.160619 0.103223i
\(337\) 10.3126 + 3.02804i 0.561761 + 0.164948i 0.550271 0.834986i \(-0.314524\pi\)
0.0114901 + 0.999934i \(0.496342\pi\)
\(338\) 1.72423 + 11.9923i 0.0937857 + 0.652294i
\(339\) 7.85337 + 9.06327i 0.426536 + 0.492249i
\(340\) 6.19064 + 3.97848i 0.335735 + 0.215764i
\(341\) 10.6388 12.2778i 0.576122 0.664880i
\(342\) 1.81246 0.532186i 0.0980065 0.0287773i
\(343\) −2.54665 5.57637i −0.137506 0.301096i
\(344\) −9.95373 −0.536669
\(345\) −4.23089 + 2.25822i −0.227783 + 0.121579i
\(346\) −1.85331 −0.0996343
\(347\) −14.4227 31.5814i −0.774253 1.69538i −0.717056 0.697015i \(-0.754511\pi\)
−0.0571971 0.998363i \(-0.518216\pi\)
\(348\) −0.667507 + 0.195998i −0.0357822 + 0.0105066i
\(349\) −18.9599 + 21.8809i −1.01490 + 1.17126i −0.0297509 + 0.999557i \(0.509471\pi\)
−0.985149 + 0.171700i \(0.945074\pi\)
\(350\) 2.94419 + 1.89212i 0.157374 + 0.101138i
\(351\) −0.615849 0.710727i −0.0328716 0.0379358i
\(352\) −0.444702 3.09297i −0.0237027 0.164856i
\(353\) −17.9846 5.28074i −0.957221 0.281065i −0.234431 0.972133i \(-0.575323\pi\)
−0.722790 + 0.691067i \(0.757141\pi\)
\(354\) 10.7987 6.93989i 0.573943 0.368851i
\(355\) 0.657965 4.57624i 0.0349211 0.242882i
\(356\) 1.44492 3.16393i 0.0765806 0.167688i
\(357\) 10.6987 23.4268i 0.566234 1.23988i
\(358\) 1.52943 10.6374i 0.0808329 0.562205i
\(359\) 18.3361 11.7839i 0.967745 0.621932i 0.0416137 0.999134i \(-0.486750\pi\)
0.926131 + 0.377202i \(0.123114\pi\)
\(360\) −0.959493 0.281733i −0.0505697 0.0148486i
\(361\) 2.19617 + 15.2747i 0.115588 + 0.803932i
\(362\) 12.0091 + 13.8593i 0.631185 + 0.728427i
\(363\) −1.03958 0.668100i −0.0545640 0.0350661i
\(364\) −2.15533 + 2.48738i −0.112970 + 0.130374i
\(365\) −1.36508 + 0.400825i −0.0714518 + 0.0209801i
\(366\) 1.26035 + 2.75977i 0.0658794 + 0.144256i
\(367\) 22.9676 1.19890 0.599451 0.800412i \(-0.295386\pi\)
0.599451 + 0.800412i \(0.295386\pi\)
\(368\) −3.81173 2.91045i −0.198700 0.151718i
\(369\) 2.06747 0.107628
\(370\) −0.473305 1.03639i −0.0246060 0.0538795i
\(371\) −13.5258 + 3.97154i −0.702226 + 0.206192i
\(372\) 3.40465 3.92917i 0.176523 0.203718i
\(373\) 20.1745 + 12.9654i 1.04460 + 0.671321i 0.946119 0.323818i \(-0.104966\pi\)
0.0984772 + 0.995139i \(0.468603\pi\)
\(374\) −15.0583 17.3782i −0.778648 0.898608i
\(375\) −0.142315 0.989821i −0.00734911 0.0511142i
\(376\) 3.30060 + 0.969143i 0.170215 + 0.0499797i
\(377\) 0.550385 0.353711i 0.0283463 0.0182170i
\(378\) −0.498068 + 3.46414i −0.0256179 + 0.178176i
\(379\) 13.3948 29.3306i 0.688046 1.50661i −0.165841 0.986152i \(-0.553034\pi\)
0.853887 0.520458i \(-0.174239\pi\)
\(380\) −0.784708 + 1.71827i −0.0402547 + 0.0881455i
\(381\) 0.231025 1.60681i 0.0118357 0.0823194i
\(382\) −14.2294 + 9.14466i −0.728038 + 0.467882i
\(383\) 20.6659 + 6.06805i 1.05598 + 0.310063i 0.763230 0.646127i \(-0.223612\pi\)
0.292748 + 0.956190i \(0.405430\pi\)
\(384\) −0.142315 0.989821i −0.00726247 0.0505116i
\(385\) −7.16155 8.26487i −0.364986 0.421217i
\(386\) −4.59154 2.95081i −0.233703 0.150192i
\(387\) 6.51831 7.52253i 0.331344 0.382392i
\(388\) 4.85704 1.42616i 0.246579 0.0724022i
\(389\) −12.5386 27.4558i −0.635734 1.39206i −0.903504 0.428580i \(-0.859014\pi\)
0.267770 0.963483i \(-0.413713\pi\)
\(390\) 0.940427 0.0476204
\(391\) −35.1762 2.85267i −1.77894 0.144266i
\(392\) 5.24835 0.265082
\(393\) −5.43205 11.8945i −0.274011 0.600000i
\(394\) −18.3626 + 5.39175i −0.925096 + 0.271633i
\(395\) 11.0628 12.7672i 0.556631 0.642387i
\(396\) 2.62873 + 1.68938i 0.132099 + 0.0848947i
\(397\) 12.0498 + 13.9062i 0.604764 + 0.697934i 0.972739 0.231901i \(-0.0744945\pi\)
−0.367976 + 0.929835i \(0.619949\pi\)
\(398\) −1.40924 9.80150i −0.0706390 0.491305i
\(399\) 6.34318 + 1.86252i 0.317556 + 0.0932428i
\(400\) 0.841254 0.540641i 0.0420627 0.0270320i
\(401\) −4.60231 + 32.0098i −0.229828 + 1.59849i 0.468998 + 0.883199i \(0.344615\pi\)
−0.698826 + 0.715291i \(0.746294\pi\)
\(402\) 1.53188 3.35435i 0.0764031 0.167300i
\(403\) −2.03110 + 4.44748i −0.101176 + 0.221545i
\(404\) 0.268092 1.86462i 0.0133381 0.0927685i
\(405\) 0.841254 0.540641i 0.0418022 0.0268647i
\(406\) −2.33612 0.685946i −0.115940 0.0340429i
\(407\) 0.506674 + 3.52399i 0.0251149 + 0.174678i
\(408\) −4.81901 5.56143i −0.238576 0.275332i
\(409\) 14.6515 + 9.41594i 0.724469 + 0.465588i 0.850189 0.526478i \(-0.176488\pi\)
−0.125720 + 0.992066i \(0.540124\pi\)
\(410\) −1.35390 + 1.56249i −0.0668646 + 0.0771658i
\(411\) 17.7538 5.21297i 0.875728 0.257137i
\(412\) −0.363212 0.795324i −0.0178942 0.0391828i
\(413\) 44.9244 2.21059
\(414\) 4.69572 0.974770i 0.230782 0.0479073i
\(415\) 6.15874 0.302320
\(416\) 0.390668 + 0.855443i 0.0191541 + 0.0419415i
\(417\) −17.8966 + 5.25492i −0.876401 + 0.257335i
\(418\) 3.86540 4.46091i 0.189063 0.218190i
\(419\) −15.3270 9.85004i −0.748771 0.481206i 0.109766 0.993957i \(-0.464990\pi\)
−0.858537 + 0.512751i \(0.828626\pi\)
\(420\) −2.29186 2.64495i −0.111831 0.129060i
\(421\) 0.963535 + 6.70153i 0.0469598 + 0.326613i 0.999737 + 0.0229417i \(0.00730322\pi\)
−0.952777 + 0.303671i \(0.901788\pi\)
\(422\) 17.8879 + 5.25236i 0.870770 + 0.255681i
\(423\) −2.89386 + 1.85977i −0.140704 + 0.0904252i
\(424\) −0.573236 + 3.98694i −0.0278388 + 0.193623i
\(425\) 3.05697 6.69383i 0.148285 0.324698i
\(426\) −1.92059 + 4.20550i −0.0930529 + 0.203757i
\(427\) −1.51111 + 10.5100i −0.0731279 + 0.508616i
\(428\) 12.9380 8.31477i 0.625383 0.401909i
\(429\) −2.81959 0.827907i −0.136131 0.0399717i
\(430\) 1.41656 + 9.85242i 0.0683128 + 0.475126i
\(431\) −7.81480 9.01876i −0.376426 0.434418i 0.535650 0.844440i \(-0.320067\pi\)
−0.912076 + 0.410022i \(0.865521\pi\)
\(432\) 0.841254 + 0.540641i 0.0404748 + 0.0260116i
\(433\) −18.0283 + 20.8057i −0.866383 + 0.999860i 0.133578 + 0.991038i \(0.457353\pi\)
−0.999961 + 0.00882128i \(0.997192\pi\)
\(434\) 17.4584 5.12624i 0.838029 0.246067i
\(435\) 0.288999 + 0.632820i 0.0138564 + 0.0303414i
\(436\) −4.36672 −0.209128
\(437\) −0.560227 9.04187i −0.0267993 0.432531i
\(438\) 1.42271 0.0679799
\(439\) 2.05164 + 4.49246i 0.0979193 + 0.214413i 0.952252 0.305313i \(-0.0987611\pi\)
−0.854333 + 0.519727i \(0.826034\pi\)
\(440\) −2.99820 + 0.880352i −0.142934 + 0.0419691i
\(441\) −3.43694 + 3.96644i −0.163664 + 0.188878i
\(442\) 5.82185 + 3.74147i 0.276917 + 0.177964i
\(443\) −1.61866 1.86803i −0.0769047 0.0887527i 0.715993 0.698107i \(-0.245974\pi\)
−0.792898 + 0.609354i \(0.791429\pi\)
\(444\) 0.162147 + 1.12776i 0.00769516 + 0.0535210i
\(445\) −3.33736 0.979938i −0.158206 0.0464535i
\(446\) −4.94005 + 3.17478i −0.233918 + 0.150330i
\(447\) 0.819393 5.69901i 0.0387560 0.269554i
\(448\) 1.45385 3.18350i 0.0686882 0.150406i
\(449\) 11.6403 25.4888i 0.549342 1.20289i −0.407747 0.913095i \(-0.633685\pi\)
0.957088 0.289796i \(-0.0935874\pi\)
\(450\) −0.142315 + 0.989821i −0.00670879 + 0.0466606i
\(451\) 5.43482 3.49275i 0.255916 0.164467i
\(452\) 11.5066 + 3.37866i 0.541227 + 0.158919i
\(453\) −2.92385 20.3358i −0.137374 0.955461i
\(454\) 14.3077 + 16.5119i 0.671492 + 0.774943i
\(455\) 2.76879 + 1.77940i 0.129803 + 0.0834194i
\(456\) 1.23702 1.42759i 0.0579286 0.0668531i
\(457\) −17.7754 + 5.21932i −0.831497 + 0.244150i −0.669660 0.742668i \(-0.733560\pi\)
−0.161837 + 0.986817i \(0.551742\pi\)
\(458\) −7.03186 15.3976i −0.328577 0.719484i
\(459\) 7.35883 0.343481
\(460\) −2.33836 + 4.18713i −0.109027 + 0.195226i
\(461\) −16.4972 −0.768352 −0.384176 0.923260i \(-0.625514\pi\)
−0.384176 + 0.923260i \(0.625514\pi\)
\(462\) 4.54297 + 9.94773i 0.211358 + 0.462810i
\(463\) −18.9504 + 5.56434i −0.880700 + 0.258597i −0.690660 0.723180i \(-0.742680\pi\)
−0.190040 + 0.981776i \(0.560862\pi\)
\(464\) −0.455579 + 0.525766i −0.0211497 + 0.0244081i
\(465\) −4.37371 2.81081i −0.202826 0.130348i
\(466\) 9.90159 + 11.4270i 0.458682 + 0.529348i
\(467\) −0.288536 2.00681i −0.0133518 0.0928641i 0.982056 0.188590i \(-0.0603918\pi\)
−0.995408 + 0.0957261i \(0.969483\pi\)
\(468\) −0.902333 0.264949i −0.0417104 0.0122473i
\(469\) 10.8569 6.97734i 0.501327 0.322184i
\(470\) 0.489554 3.40492i 0.0225815 0.157057i
\(471\) −3.35593 + 7.34846i −0.154633 + 0.338599i
\(472\) 5.33244 11.6764i 0.245445 0.537450i
\(473\) 4.42645 30.7866i 0.203528 1.41557i
\(474\) −14.2116 + 9.13326i −0.652762 + 0.419505i
\(475\) 1.81246 + 0.532186i 0.0831613 + 0.0244184i
\(476\) −3.66520 25.4920i −0.167994 1.16843i
\(477\) −2.63774 3.04411i −0.120774 0.139380i
\(478\) 24.6441 + 15.8378i 1.12720 + 0.724405i
\(479\) −28.3123 + 32.6742i −1.29362 + 1.49292i −0.528687 + 0.848817i \(0.677315\pi\)
−0.764937 + 0.644105i \(0.777230\pi\)
\(480\) −0.959493 + 0.281733i −0.0437947 + 0.0128593i
\(481\) −0.445109 0.974653i −0.0202952 0.0444403i
\(482\) −12.8525 −0.585415
\(483\) 15.6695 + 6.01494i 0.712986 + 0.273689i
\(484\) −1.23576 −0.0561707
\(485\) −2.10287 4.60464i −0.0954864 0.209086i
\(486\) −0.959493 + 0.281733i −0.0435235 + 0.0127796i
\(487\) −8.19025 + 9.45205i −0.371135 + 0.428313i −0.910340 0.413862i \(-0.864180\pi\)
0.539204 + 0.842175i \(0.318725\pi\)
\(488\) 2.55232 + 1.64028i 0.115538 + 0.0742518i
\(489\) −1.09054 1.25855i −0.0493159 0.0569135i
\(490\) −0.746918 5.19493i −0.0337423 0.234683i
\(491\) −16.1593 4.74480i −0.729259 0.214130i −0.104033 0.994574i \(-0.533175\pi\)
−0.625225 + 0.780444i \(0.714993\pi\)
\(492\) 1.73927 1.11776i 0.0784121 0.0503924i
\(493\) −0.728573 + 5.06734i −0.0328133 + 0.228221i
\(494\) −0.737961 + 1.61591i −0.0332024 + 0.0727032i
\(495\) 1.29808 2.84240i 0.0583444 0.127756i
\(496\) 0.739901 5.14612i 0.0332225 0.231068i
\(497\) −13.6119 + 8.74782i −0.610576 + 0.392393i
\(498\) −5.90926 1.73512i −0.264800 0.0777524i
\(499\) −1.18334 8.23033i −0.0529737 0.368440i −0.999014 0.0443917i \(-0.985865\pi\)
0.946041 0.324048i \(-0.105044\pi\)
\(500\) −0.654861 0.755750i −0.0292863 0.0337981i
\(501\) 11.2705 + 7.24308i 0.503527 + 0.323597i
\(502\) 15.6849 18.1013i 0.700051 0.807902i
\(503\) 36.0087 10.5731i 1.60555 0.471431i 0.648464 0.761245i \(-0.275412\pi\)
0.957083 + 0.289814i \(0.0935935\pi\)
\(504\) 1.45385 + 3.18350i 0.0647598 + 0.141804i
\(505\) −1.88380 −0.0838279
\(506\) 10.6970 10.4953i 0.475541 0.466572i
\(507\) −12.1156 −0.538073
\(508\) −0.674358 1.47664i −0.0299198 0.0655152i
\(509\) 10.0351 2.94658i 0.444800 0.130605i −0.0516601 0.998665i \(-0.516451\pi\)
0.496460 + 0.868060i \(0.334633\pi\)
\(510\) −4.81901 + 5.56143i −0.213389 + 0.246264i
\(511\) 4.18874 + 2.69194i 0.185299 + 0.119084i
\(512\) −0.654861 0.755750i −0.0289410 0.0333997i
\(513\) 0.268829 + 1.86975i 0.0118691 + 0.0825514i
\(514\) 15.4945 + 4.54961i 0.683435 + 0.200675i
\(515\) −0.735538 + 0.472702i −0.0324117 + 0.0208297i
\(516\) 1.41656 9.85242i 0.0623607 0.433728i
\(517\) −4.46532 + 9.77768i −0.196384 + 0.430022i
\(518\) −1.65646 + 3.62713i −0.0727805 + 0.159367i
\(519\) 0.263753 1.83444i 0.0115775 0.0805230i
\(520\) 0.791138 0.508433i 0.0346937 0.0222963i
\(521\) 14.7293 + 4.32491i 0.645302 + 0.189478i 0.587977 0.808878i \(-0.299925\pi\)
0.0573251 + 0.998356i \(0.481743\pi\)
\(522\) −0.0990067 0.688607i −0.00433340 0.0301395i
\(523\) 26.3320 + 30.3888i 1.15142 + 1.32881i 0.935882 + 0.352314i \(0.114605\pi\)
0.215538 + 0.976495i \(0.430850\pi\)
\(524\) −11.0004 7.06953i −0.480555 0.308834i
\(525\) −2.29186 + 2.64495i −0.100025 + 0.115435i
\(526\) −27.3442 + 8.02897i −1.19226 + 0.350080i
\(527\) −15.8933 34.8015i −0.692323 1.51598i
\(528\) 3.12478 0.135989
\(529\) 0.437880 22.9958i 0.0190383 0.999819i
\(530\) 4.02794 0.174963
\(531\) 5.33244 + 11.6764i 0.231408 + 0.506713i
\(532\) 6.34318 1.86252i 0.275012 0.0807507i
\(533\) −1.27325 + 1.46941i −0.0551505 + 0.0636471i
\(534\) 2.92610 + 1.88049i 0.126625 + 0.0813767i
\(535\) −10.0714 11.6230i −0.435425 0.502507i
\(536\) −0.524798 3.65005i −0.0226678 0.157658i
\(537\) 10.3115 + 3.02773i 0.444973 + 0.130656i
\(538\) −4.25361 + 2.73363i −0.183386 + 0.117855i
\(539\) −2.33395 + 16.2330i −0.100531 + 0.699205i
\(540\) 0.415415 0.909632i 0.0178766 0.0391443i
\(541\) 1.90026 4.16098i 0.0816984 0.178895i −0.864374 0.502849i \(-0.832285\pi\)
0.946073 + 0.323954i \(0.105012\pi\)
\(542\) −1.13537 + 7.89666i −0.0487682 + 0.339190i
\(543\) −15.4273 + 9.91450i −0.662047 + 0.425472i
\(544\) −7.06075 2.07322i −0.302727 0.0888887i
\(545\) 0.621450 + 4.32228i 0.0266200 + 0.185146i
\(546\) −2.15533 2.48738i −0.0922394 0.106450i
\(547\) −31.0863 19.9779i −1.32915 0.854195i −0.333095 0.942893i \(-0.608093\pi\)
−0.996059 + 0.0886986i \(0.971729\pi\)
\(548\) 12.1171 13.9838i 0.517615 0.597360i
\(549\) −2.91105 + 0.854761i −0.124241 + 0.0364803i
\(550\) 1.29808 + 2.84240i 0.0553503 + 0.121200i
\(551\) −1.31414 −0.0559841
\(552\) 3.42329 3.35873i 0.145705 0.142957i
\(553\) −59.1229 −2.51416
\(554\) 2.00092 + 4.38141i 0.0850110 + 0.186148i
\(555\) 1.09320 0.320993i 0.0464039 0.0136254i
\(556\) −12.2146 + 14.0964i −0.518013 + 0.597819i
\(557\) 16.5519 + 10.6372i 0.701326 + 0.450715i 0.842096 0.539328i \(-0.181322\pi\)
−0.140770 + 0.990042i \(0.544958\pi\)
\(558\) 3.40465 + 3.92917i 0.144130 + 0.166335i
\(559\) 1.33217 + 9.26548i 0.0563450 + 0.391888i
\(560\) −3.35800 0.985998i −0.141901 0.0416660i
\(561\) 19.3444 12.4319i 0.816721 0.524875i
\(562\) −3.69523 + 25.7009i −0.155874 + 1.08413i
\(563\) 6.63943 14.5383i 0.279818 0.612717i −0.716581 0.697504i \(-0.754294\pi\)
0.996399 + 0.0847873i \(0.0270211\pi\)
\(564\) −1.42900 + 3.12908i −0.0601718 + 0.131758i
\(565\) 1.70670 11.8704i 0.0718014 0.499390i
\(566\) −17.5072 + 11.2512i −0.735882 + 0.472923i
\(567\) −3.35800 0.985998i −0.141023 0.0414080i
\(568\) 0.657965 + 4.57624i 0.0276076 + 0.192015i
\(569\) 3.74578 + 4.32286i 0.157031 + 0.181224i 0.828814 0.559525i \(-0.189016\pi\)
−0.671782 + 0.740749i \(0.734471\pi\)
\(570\) −1.58911 1.02126i −0.0665604 0.0427757i
\(571\) 11.0655 12.7703i 0.463078 0.534420i −0.475396 0.879772i \(-0.657695\pi\)
0.938473 + 0.345352i \(0.112240\pi\)
\(572\) −2.81959 + 0.827907i −0.117893 + 0.0346165i
\(573\) −7.02653 15.3860i −0.293538 0.642758i
\(574\) 7.23565 0.302010
\(575\) 4.47729 + 1.71867i 0.186716 + 0.0716735i
\(576\) 1.00000 0.0416667
\(577\) −0.922595 2.02020i −0.0384081 0.0841020i 0.889455 0.457022i \(-0.151084\pi\)
−0.927864 + 0.372920i \(0.878357\pi\)
\(578\) −35.6474 + 10.4670i −1.48274 + 0.435371i
\(579\) 3.57422 4.12487i 0.148539 0.171424i
\(580\) 0.585250 + 0.376117i 0.0243012 + 0.0156174i
\(581\) −14.1149 16.2895i −0.585587 0.675803i
\(582\) 0.720411 + 5.01057i 0.0298620 + 0.207695i
\(583\) −12.0766 3.54601i −0.500161 0.146861i
\(584\) 1.19686 0.769178i 0.0495266 0.0318288i
\(585\) −0.133837 + 0.930855i −0.00553347 + 0.0384861i
\(586\) −10.7911 + 23.6292i −0.445777 + 0.976115i
\(587\) −10.0691 + 22.0484i −0.415598 + 0.910033i 0.579850 + 0.814724i \(0.303111\pi\)
−0.995448 + 0.0953094i \(0.969616\pi\)
\(588\) −0.746918 + 5.19493i −0.0308024 + 0.214235i
\(589\) 8.26183 5.30956i 0.340423 0.218776i
\(590\) −12.3164 3.61643i −0.507060 0.148886i
\(591\) −2.72360 18.9430i −0.112034 0.779213i
\(592\) 0.746119 + 0.861067i 0.0306653 + 0.0353896i
\(593\) 9.64933 + 6.20125i 0.396251 + 0.254655i 0.723559 0.690263i \(-0.242505\pi\)
−0.327308 + 0.944918i \(0.606141\pi\)
\(594\) −2.04630 + 2.36155i −0.0839605 + 0.0968956i
\(595\) −24.7109 + 7.25579i −1.01305 + 0.297458i
\(596\) −2.39180 5.23731i −0.0979718 0.214528i
\(597\) 9.90229 0.405274
\(598\) −2.19906 + 3.93769i −0.0899262 + 0.161024i
\(599\) −22.1621 −0.905517 −0.452759 0.891633i \(-0.649560\pi\)
−0.452759 + 0.891633i \(0.649560\pi\)
\(600\) 0.415415 + 0.909632i 0.0169592 + 0.0371356i
\(601\) −23.2472 + 6.82600i −0.948274 + 0.278438i −0.719068 0.694940i \(-0.755431\pi\)
−0.229206 + 0.973378i \(0.573613\pi\)
\(602\) 22.8125 26.3271i 0.929770 1.07301i
\(603\) 3.10219 + 1.99366i 0.126331 + 0.0811881i
\(604\) −13.4541 15.5268i −0.547439 0.631778i
\(605\) 0.175866 + 1.22318i 0.00714998 + 0.0497292i
\(606\) 1.80749 + 0.530727i 0.0734243 + 0.0215593i
\(607\) 25.1456 16.1601i 1.02063 0.655918i 0.0805060 0.996754i \(-0.474346\pi\)
0.940123 + 0.340836i \(0.110710\pi\)
\(608\) 0.268829 1.86975i 0.0109025 0.0758283i
\(609\) 1.01143 2.21472i 0.0409852 0.0897450i
\(610\) 1.26035 2.75977i 0.0510300 0.111740i
\(611\) 0.460390 3.20208i 0.0186254 0.129542i
\(612\) 6.19064 3.97848i 0.250242 0.160821i
\(613\) −39.6205 11.6336i −1.60026 0.469878i −0.644638 0.764488i \(-0.722992\pi\)
−0.955618 + 0.294610i \(0.904810\pi\)
\(614\) 1.96488 + 13.6660i 0.0792960 + 0.551516i
\(615\) −1.35390 1.56249i −0.0545947 0.0630056i
\(616\) 9.19994 + 5.91244i 0.370676 + 0.238219i
\(617\) 9.24573 10.6701i 0.372219 0.429564i −0.538477 0.842640i \(-0.681000\pi\)
0.910696 + 0.413076i \(0.135546\pi\)
\(618\) 0.838919 0.246329i 0.0337463 0.00990880i
\(619\) −5.87007 12.8537i −0.235938 0.516632i 0.754214 0.656629i \(-0.228018\pi\)
−0.990152 + 0.139996i \(0.955291\pi\)
\(620\) −5.19904 −0.208798
\(621\) 0.296577 + 4.78665i 0.0119012 + 0.192082i
\(622\) −17.6674 −0.708399
\(623\) 5.05688 + 11.0730i 0.202600 + 0.443631i
\(624\) −0.902333 + 0.264949i −0.0361222 + 0.0106064i
\(625\) −0.654861 + 0.755750i −0.0261944 + 0.0302300i
\(626\) −20.3440 13.0743i −0.813109 0.522553i
\(627\) 3.86540 + 4.46091i 0.154369 + 0.178152i
\(628\) 1.14969 + 7.99627i 0.0458776 + 0.319086i
\(629\) 8.04470 + 2.36214i 0.320763 + 0.0941845i
\(630\) 2.94419 1.89212i 0.117299 0.0753837i
\(631\) 1.98725 13.8216i 0.0791112 0.550230i −0.911264 0.411822i \(-0.864892\pi\)
0.990375 0.138408i \(-0.0441985\pi\)
\(632\) −7.01777 + 15.3668i −0.279152 + 0.611258i
\(633\) −7.74462 + 16.9583i −0.307821 + 0.674034i
\(634\) −1.92148 + 13.3642i −0.0763119 + 0.530761i
\(635\) −1.36564 + 0.877641i −0.0541936 + 0.0348281i
\(636\) −3.86478 1.13480i −0.153249 0.0449978i
\(637\) −0.702422 4.88545i −0.0278310 0.193569i
\(638\) −1.42358 1.64290i −0.0563602 0.0650431i
\(639\) −3.88937 2.49955i −0.153861 0.0988805i
\(640\) −0.654861 + 0.755750i −0.0258856 + 0.0298736i
\(641\) −18.6972 + 5.48998i −0.738493 + 0.216841i −0.629282 0.777177i \(-0.716651\pi\)
−0.109212 + 0.994019i \(0.534833\pi\)
\(642\) 6.38886 + 13.9897i 0.252148 + 0.552128i
\(643\) 34.3041 1.35282 0.676412 0.736524i \(-0.263534\pi\)
0.676412 + 0.736524i \(0.263534\pi\)
\(644\) 16.4339 3.41147i 0.647587 0.134431i
\(645\) −9.95373 −0.391928
\(646\) −5.77454 12.6445i −0.227196 0.497490i
\(647\) −34.8960 + 10.2464i −1.37190 + 0.402828i −0.882944 0.469478i \(-0.844442\pi\)
−0.488961 + 0.872306i \(0.662624\pi\)
\(648\) −0.654861 + 0.755750i −0.0257254 + 0.0296886i
\(649\) 33.7435 + 21.6856i 1.32455 + 0.851235i
\(650\) −0.615849 0.710727i −0.0241556 0.0278770i
\(651\) 2.58948 + 18.0102i 0.101490 + 0.705876i
\(652\) −1.59784 0.469169i −0.0625763 0.0183741i
\(653\) −3.71540 + 2.38774i −0.145395 + 0.0934395i −0.611316 0.791387i \(-0.709359\pi\)
0.465921 + 0.884826i \(0.345723\pi\)
\(654\) 0.621450 4.32228i 0.0243006 0.169014i
\(655\) −5.43205 + 11.8945i −0.212248 + 0.464758i
\(656\) 0.858858 1.88064i 0.0335328 0.0734265i
\(657\) −0.202473 + 1.40823i −0.00789924 + 0.0549404i
\(658\) −10.1278 + 6.50876i −0.394824 + 0.253738i
\(659\) 35.5989 + 10.4528i 1.38674 + 0.407183i 0.888109 0.459633i \(-0.152019\pi\)
0.498629 + 0.866816i \(0.333837\pi\)
\(660\) −0.444702 3.09297i −0.0173100 0.120394i
\(661\) −6.65094 7.67559i −0.258691 0.298546i 0.611515 0.791233i \(-0.290560\pi\)
−0.870207 + 0.492687i \(0.836015\pi\)
\(662\) 28.4875 + 18.3078i 1.10720 + 0.711553i
\(663\) −4.53193 + 5.23012i −0.176005 + 0.203121i
\(664\) −5.90926 + 1.73512i −0.229324 + 0.0673356i
\(665\) −2.74629 6.01355i −0.106497 0.233195i
\(666\) −1.13935 −0.0441491
\(667\) −3.32548 0.269685i −0.128763 0.0104423i
\(668\) 13.3972 0.518354
\(669\) −2.43942 5.34159i −0.0943135 0.206518i
\(670\) −3.53821 + 1.03891i −0.136693 + 0.0401367i
\(671\) −6.20835 + 7.16482i −0.239671 + 0.276595i
\(672\) 2.94419 + 1.89212i 0.113575 + 0.0729899i
\(673\) 12.4364 + 14.3524i 0.479387 + 0.553243i 0.942999 0.332796i \(-0.107992\pi\)
−0.463611 + 0.886039i \(0.653447\pi\)
\(674\) 1.52959 + 10.6385i 0.0589176 + 0.409781i
\(675\) −0.959493 0.281733i −0.0369309 0.0108439i
\(676\) −10.1923 + 6.55019i −0.392011 + 0.251930i
\(677\) 0.512273 3.56293i 0.0196882 0.136935i −0.977606 0.210441i \(-0.932510\pi\)
0.997295 + 0.0735066i \(0.0234190\pi\)
\(678\) −4.98183 + 10.9087i −0.191326 + 0.418946i
\(679\) −7.35955 + 16.1152i −0.282434 + 0.618443i
\(680\) −1.04727 + 7.28393i −0.0401610 + 0.279326i
\(681\) −18.3800 + 11.8121i −0.704325 + 0.452642i
\(682\) 15.5878 + 4.57699i 0.596887 + 0.175262i
\(683\) −2.06134 14.3369i −0.0788750 0.548588i −0.990494 0.137552i \(-0.956076\pi\)
0.911619 0.411035i \(-0.134833\pi\)
\(684\) 1.23702 + 1.42759i 0.0472985 + 0.0545853i
\(685\) −15.5659 10.0036i −0.594744 0.382219i
\(686\) 4.01453 4.63302i 0.153276 0.176890i
\(687\) 16.2416 4.76898i 0.619657 0.181948i
\(688\) −4.13493 9.05423i −0.157643 0.345189i
\(689\) 3.78798 0.144311
\(690\) −3.81173 2.91045i −0.145110 0.110799i
\(691\) −7.77848 −0.295907 −0.147954 0.988994i \(-0.547269\pi\)
−0.147954 + 0.988994i \(0.547269\pi\)
\(692\) −0.769891 1.68583i −0.0292669 0.0640855i
\(693\) −10.4930 + 3.08102i −0.398596 + 0.117038i
\(694\) 22.7360 26.2388i 0.863048 0.996010i
\(695\) 15.6912 + 10.0841i 0.595201 + 0.382513i
\(696\) −0.455579 0.525766i −0.0172687 0.0199291i
\(697\) −2.16520 15.0593i −0.0820128 0.570411i
\(698\) −27.7798 8.15688i −1.05148 0.308743i
\(699\) −12.7199 + 8.17457i −0.481110 + 0.309191i
\(700\) −0.498068 + 3.46414i −0.0188252 + 0.130932i
\(701\) −4.74403 + 10.3880i −0.179180 + 0.392349i −0.977816 0.209465i \(-0.932828\pi\)
0.798636 + 0.601814i \(0.205555\pi\)
\(702\) 0.390668 0.855443i 0.0147448 0.0322866i
\(703\) −0.306292 + 2.13031i −0.0115520 + 0.0803460i
\(704\) 2.62873 1.68938i 0.0990740 0.0636710i
\(705\) 3.30060 + 0.969143i 0.124308 + 0.0365000i
\(706\) −2.66752 18.5530i −0.100394 0.698252i
\(707\) 4.31740 + 4.98254i 0.162373 + 0.187388i
\(708\) 10.7987 + 6.93989i 0.405839 + 0.260817i
\(709\) −12.7841 + 14.7537i −0.480118 + 0.554086i −0.943198 0.332230i \(-0.892199\pi\)
0.463080 + 0.886317i \(0.346744\pi\)
\(710\) 4.43603 1.30253i 0.166481 0.0488833i
\(711\) −7.01777 15.3668i −0.263187 0.576299i
\(712\) 3.47826 0.130353
\(713\) 21.9966 11.7406i 0.823778 0.439689i
\(714\) 25.7542 0.963826
\(715\) 1.22075 + 2.67307i 0.0456534 + 0.0999671i
\(716\) 10.3115 3.02773i 0.385358 0.113151i
\(717\) −19.1838 + 22.1393i −0.716433 + 0.826808i
\(718\) 18.3361 + 11.7839i 0.684299 + 0.439772i
\(719\) −14.3614 16.5740i −0.535590 0.618104i 0.421874 0.906654i \(-0.361372\pi\)
−0.957465 + 0.288550i \(0.906827\pi\)
\(720\) −0.142315 0.989821i −0.00530376 0.0368885i
\(721\) 2.93602 + 0.862093i 0.109343 + 0.0321060i
\(722\) −12.9820 + 8.34305i −0.483141 + 0.310496i
\(723\) 1.82910 12.7217i 0.0680249 0.473124i
\(724\) −7.61806 + 16.6812i −0.283123 + 0.619953i
\(725\) 0.288999 0.632820i 0.0107332 0.0235023i
\(726\) 0.175866 1.22318i 0.00652701 0.0453964i
\(727\) −21.1928 + 13.6198i −0.785997 + 0.505130i −0.871019 0.491249i \(-0.836540\pi\)
0.0850218 + 0.996379i \(0.472904\pi\)
\(728\) −3.15795 0.927259i −0.117042 0.0343665i
\(729\) −0.142315 0.989821i −0.00527092 0.0366601i
\(730\) −0.931680 1.07522i −0.0344830 0.0397955i
\(731\) −61.6200 39.6008i −2.27910 1.46469i
\(732\) −1.98681 + 2.29290i −0.0734347 + 0.0847482i
\(733\) −37.5611 + 11.0289i −1.38735 + 0.407363i −0.888321 0.459223i \(-0.848128\pi\)
−0.499029 + 0.866585i \(0.666310\pi\)
\(734\) 9.54110 + 20.8921i 0.352169 + 0.771142i
\(735\) 5.24835 0.193588
\(736\) 1.06399 4.67631i 0.0392193 0.172371i
\(737\) 11.5229 0.424451
\(738\) 0.858858 + 1.88064i 0.0316150 + 0.0692272i
\(739\) −19.2664 + 5.65713i −0.708727 + 0.208101i −0.616178 0.787607i \(-0.711320\pi\)
−0.0925492 + 0.995708i \(0.529502\pi\)
\(740\) 0.746119 0.861067i 0.0274279 0.0316535i
\(741\) −1.49444 0.960418i −0.0548996 0.0352818i
\(742\) −9.23147 10.6537i −0.338898 0.391109i
\(743\) −0.798127 5.55109i −0.0292804 0.203650i 0.969930 0.243385i \(-0.0782578\pi\)
−0.999210 + 0.0397349i \(0.987349\pi\)
\(744\) 4.98844 + 1.46474i 0.182885 + 0.0536999i
\(745\) −4.84361 + 3.11280i −0.177456 + 0.114044i
\(746\) −3.41292 + 23.7374i −0.124956 + 0.869088i
\(747\) 2.55843 5.60218i 0.0936081 0.204973i
\(748\) 9.55235 20.9167i 0.349269 0.764791i
\(749\) −7.66003 + 53.2767i −0.279891 + 1.94669i
\(750\) 0.841254 0.540641i 0.0307182 0.0197414i
\(751\) −35.6285 10.4615i −1.30010 0.381744i −0.442829 0.896606i \(-0.646025\pi\)
−0.857273 + 0.514862i \(0.827843\pi\)
\(752\) 0.489554 + 3.40492i 0.0178522 + 0.124165i
\(753\) 15.6849 + 18.1013i 0.571589 + 0.659649i
\(754\) 0.550385 + 0.353711i 0.0200438 + 0.0128814i
\(755\) −13.4541 + 15.5268i −0.489644 + 0.565079i
\(756\) −3.35800 + 0.985998i −0.122129 + 0.0358604i
\(757\) 18.3082 + 40.0893i 0.665422 + 1.45707i 0.877382 + 0.479792i \(0.159288\pi\)
−0.211960 + 0.977278i \(0.567985\pi\)
\(758\) 32.2444 1.17117
\(759\) 8.86611 + 12.0818i 0.321819 + 0.438541i
\(760\) −1.88897 −0.0685203
\(761\) 0.707111 + 1.54836i 0.0256328 + 0.0561279i 0.922015 0.387153i \(-0.126542\pi\)
−0.896383 + 0.443281i \(0.853814\pi\)
\(762\) 1.55758 0.457346i 0.0564251 0.0165679i
\(763\) 10.0079 11.5497i 0.362311 0.418129i
\(764\) −14.2294 9.14466i −0.514801 0.330842i
\(765\) −4.81901 5.56143i −0.174232 0.201074i
\(766\) 3.06523 + 21.3191i 0.110751 + 0.770291i
\(767\) −11.5827 3.40099i −0.418228 0.122803i
\(768\) 0.841254 0.540641i 0.0303561 0.0195087i
\(769\) 0.673494 4.68425i 0.0242868 0.168919i −0.974068 0.226255i \(-0.927352\pi\)
0.998355 + 0.0573365i \(0.0182608\pi\)
\(770\) 4.54297 9.94773i 0.163717 0.358491i
\(771\) −6.70840 + 14.6894i −0.241597 + 0.529024i
\(772\) 0.776751 5.40243i 0.0279559 0.194438i
\(773\) −28.7312 + 18.4645i −1.03339 + 0.664120i