Properties

 Label 690.2.m.g.151.3 Level $690$ Weight $2$ Character 690.151 Analytic conductor $5.510$ Analytic rank $0$ Dimension $30$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$690 = 2 \cdot 3 \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 690.m (of order $$11$$, degree $$10$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$5.50967773947$$ Analytic rank: $$0$$ Dimension: $$30$$ Relative dimension: $$3$$ over $$\Q(\zeta_{11})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

 Embedding label 151.3 Character $$\chi$$ $$=$$ 690.151 Dual form 690.2.m.g.361.3

$q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.654861 - 0.755750i) q^{2} +(0.841254 + 0.540641i) q^{3} +(-0.142315 + 0.989821i) q^{4} +(0.415415 - 0.909632i) q^{5} +(-0.142315 - 0.989821i) q^{6} +(2.52297 + 0.740810i) q^{7} +(0.841254 - 0.540641i) q^{8} +(0.415415 + 0.909632i) q^{9} +O(q^{10})$$ $$q+(-0.654861 - 0.755750i) q^{2} +(0.841254 + 0.540641i) q^{3} +(-0.142315 + 0.989821i) q^{4} +(0.415415 - 0.909632i) q^{5} +(-0.142315 - 0.989821i) q^{6} +(2.52297 + 0.740810i) q^{7} +(0.841254 - 0.540641i) q^{8} +(0.415415 + 0.909632i) q^{9} +(-0.959493 + 0.281733i) q^{10} +(3.03251 - 3.49970i) q^{11} +(-0.654861 + 0.755750i) q^{12} +(-2.32534 + 0.682783i) q^{13} +(-1.09233 - 2.39186i) q^{14} +(0.841254 - 0.540641i) q^{15} +(-0.959493 - 0.281733i) q^{16} +(0.246429 + 1.71395i) q^{17} +(0.415415 - 0.909632i) q^{18} +(-0.221233 + 1.53871i) q^{19} +(0.841254 + 0.540641i) q^{20} +(1.72194 + 1.98723i) q^{21} -4.63077 q^{22} +(3.48568 - 3.29394i) q^{23} +1.00000 q^{24} +(-0.654861 - 0.755750i) q^{25} +(2.03879 + 1.31025i) q^{26} +(-0.142315 + 0.989821i) q^{27} +(-1.09233 + 2.39186i) q^{28} +(0.675716 + 4.69971i) q^{29} +(-0.959493 - 0.281733i) q^{30} +(0.508109 - 0.326542i) q^{31} +(0.415415 + 0.909632i) q^{32} +(4.44319 - 1.30464i) q^{33} +(1.13394 - 1.30864i) q^{34} +(1.72194 - 1.98723i) q^{35} +(-0.959493 + 0.281733i) q^{36} +(-0.955451 - 2.09215i) q^{37} +(1.30776 - 0.840445i) q^{38} +(-2.32534 - 0.682783i) q^{39} +(-0.142315 - 0.989821i) q^{40} +(3.21189 - 7.03307i) q^{41} +(0.374214 - 2.60272i) q^{42} +(5.14961 + 3.30945i) q^{43} +(3.03251 + 3.49970i) q^{44} +1.00000 q^{45} +(-4.77203 - 0.477227i) q^{46} +3.51124 q^{47} +(-0.654861 - 0.755750i) q^{48} +(-0.0722037 - 0.0464025i) q^{49} +(-0.142315 + 0.989821i) q^{50} +(-0.719323 + 1.57510i) q^{51} +(-0.344902 - 2.39885i) q^{52} +(7.92060 + 2.32570i) q^{53} +(0.841254 - 0.540641i) q^{54} +(-1.92369 - 4.21230i) q^{55} +(2.52297 - 0.740810i) q^{56} +(-1.01800 + 1.17484i) q^{57} +(3.10930 - 3.58832i) q^{58} +(-3.27844 + 0.962636i) q^{59} +(0.415415 + 0.909632i) q^{60} +(1.54224 - 0.991137i) q^{61} +(-0.579524 - 0.170164i) q^{62} +(0.374214 + 2.60272i) q^{63} +(0.415415 - 0.909632i) q^{64} +(-0.344902 + 2.39885i) q^{65} +(-3.89565 - 2.50358i) q^{66} +(-0.0237093 - 0.0273620i) q^{67} -1.73158 q^{68} +(4.71318 - 0.886540i) q^{69} -2.62948 q^{70} +(-10.3059 - 11.8936i) q^{71} +(0.841254 + 0.540641i) q^{72} +(-1.31721 + 9.16139i) q^{73} +(-0.955451 + 2.09215i) q^{74} +(-0.142315 - 0.989821i) q^{75} +(-1.49156 - 0.437963i) q^{76} +(10.2435 - 6.58313i) q^{77} +(1.00676 + 2.20451i) q^{78} +(-4.05050 + 1.18933i) q^{79} +(-0.654861 + 0.755750i) q^{80} +(-0.654861 + 0.755750i) q^{81} +(-7.41858 + 2.17829i) q^{82} +(3.05120 + 6.68119i) q^{83} +(-2.21206 + 1.42160i) q^{84} +(1.66144 + 0.487842i) q^{85} +(-0.871159 - 6.05905i) q^{86} +(-1.97240 + 4.31896i) q^{87} +(0.659028 - 4.58364i) q^{88} +(6.01448 + 3.86527i) q^{89} +(-0.654861 - 0.755750i) q^{90} -6.37258 q^{91} +(2.76435 + 3.91898i) q^{92} +0.603990 q^{93} +(-2.29937 - 2.65362i) q^{94} +(1.30776 + 0.840445i) q^{95} +(-0.142315 + 0.989821i) q^{96} +(0.932704 - 2.04234i) q^{97} +(0.0122147 + 0.0849551i) q^{98} +(4.44319 + 1.30464i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$30q - 3q^{2} - 3q^{3} - 3q^{4} - 3q^{5} - 3q^{6} - 8q^{7} - 3q^{8} - 3q^{9} + O(q^{10})$$ $$30q - 3q^{2} - 3q^{3} - 3q^{4} - 3q^{5} - 3q^{6} - 8q^{7} - 3q^{8} - 3q^{9} - 3q^{10} + 8q^{11} - 3q^{12} - 5q^{13} - 8q^{14} - 3q^{15} - 3q^{16} + 4q^{17} - 3q^{18} + 6q^{19} - 3q^{20} + 3q^{21} + 8q^{22} + q^{23} + 30q^{24} - 3q^{25} - 5q^{26} - 3q^{27} - 8q^{28} - 10q^{29} - 3q^{30} - 10q^{31} - 3q^{32} - 14q^{33} - 7q^{34} + 3q^{35} - 3q^{36} - 12q^{37} - 5q^{38} - 5q^{39} - 3q^{40} + 5q^{41} + 3q^{42} + 2q^{43} + 8q^{44} + 30q^{45} - 21q^{46} + 96q^{47} - 3q^{48} - 43q^{49} - 3q^{50} + 15q^{51} - 16q^{52} + 12q^{53} - 3q^{54} + 8q^{55} - 8q^{56} + 17q^{57} + q^{58} - 9q^{59} - 3q^{60} + q^{61} - 32q^{62} + 3q^{63} - 3q^{64} - 16q^{65} - 3q^{66} - 28q^{67} + 4q^{68} + 23q^{69} + 14q^{70} + 3q^{71} - 3q^{72} - 27q^{73} - 12q^{74} - 3q^{75} - 16q^{76} + 47q^{77} + 6q^{78} + 2q^{79} - 3q^{80} - 3q^{81} + 27q^{82} + 11q^{83} + 3q^{84} - 7q^{85} + 2q^{86} - 32q^{87} - 3q^{88} + 25q^{89} - 3q^{90} - 90q^{91} - 10q^{92} + 56q^{93} - 25q^{94} - 5q^{95} - 3q^{96} - 7q^{97} - 32q^{98} - 14q^{99} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/690\mathbb{Z}\right)^\times$$.

 $$n$$ $$277$$ $$461$$ $$511$$ $$\chi(n)$$ $$1$$ $$1$$ $$e\left(\frac{7}{11}\right)$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.654861 0.755750i −0.463056 0.534396i
$$3$$ 0.841254 + 0.540641i 0.485698 + 0.312139i
$$4$$ −0.142315 + 0.989821i −0.0711574 + 0.494911i
$$5$$ 0.415415 0.909632i 0.185779 0.406800i
$$6$$ −0.142315 0.989821i −0.0580998 0.404093i
$$7$$ 2.52297 + 0.740810i 0.953593 + 0.280000i 0.721282 0.692642i $$-0.243553\pi$$
0.232311 + 0.972642i $$0.425371\pi$$
$$8$$ 0.841254 0.540641i 0.297428 0.191145i
$$9$$ 0.415415 + 0.909632i 0.138472 + 0.303211i
$$10$$ −0.959493 + 0.281733i −0.303418 + 0.0890917i
$$11$$ 3.03251 3.49970i 0.914336 1.05520i −0.0839376 0.996471i $$-0.526750\pi$$
0.998274 0.0587294i $$-0.0187049\pi$$
$$12$$ −0.654861 + 0.755750i −0.189042 + 0.218166i
$$13$$ −2.32534 + 0.682783i −0.644934 + 0.189370i −0.587812 0.808997i $$-0.700011\pi$$
−0.0571221 + 0.998367i $$0.518192\pi$$
$$14$$ −1.09233 2.39186i −0.291936 0.639252i
$$15$$ 0.841254 0.540641i 0.217211 0.139593i
$$16$$ −0.959493 0.281733i −0.239873 0.0704331i
$$17$$ 0.246429 + 1.71395i 0.0597678 + 0.415694i 0.997637 + 0.0687053i $$0.0218868\pi$$
−0.937869 + 0.346989i $$0.887204\pi$$
$$18$$ 0.415415 0.909632i 0.0979143 0.214402i
$$19$$ −0.221233 + 1.53871i −0.0507544 + 0.353005i 0.948580 + 0.316536i $$0.102520\pi$$
−0.999335 + 0.0364683i $$0.988389\pi$$
$$20$$ 0.841254 + 0.540641i 0.188110 + 0.120891i
$$21$$ 1.72194 + 1.98723i 0.375759 + 0.433649i
$$22$$ −4.63077 −0.987284
$$23$$ 3.48568 3.29394i 0.726814 0.686834i
$$24$$ 1.00000 0.204124
$$25$$ −0.654861 0.755750i −0.130972 0.151150i
$$26$$ 2.03879 + 1.31025i 0.399839 + 0.256961i
$$27$$ −0.142315 + 0.989821i −0.0273885 + 0.190491i
$$28$$ −1.09233 + 2.39186i −0.206430 + 0.452019i
$$29$$ 0.675716 + 4.69971i 0.125477 + 0.872713i 0.951186 + 0.308617i $$0.0998662\pi$$
−0.825709 + 0.564096i $$0.809225\pi$$
$$30$$ −0.959493 0.281733i −0.175179 0.0514371i
$$31$$ 0.508109 0.326542i 0.0912591 0.0586486i −0.494215 0.869339i $$-0.664545\pi$$
0.585474 + 0.810691i $$0.300908\pi$$
$$32$$ 0.415415 + 0.909632i 0.0734357 + 0.160802i
$$33$$ 4.44319 1.30464i 0.773461 0.227109i
$$34$$ 1.13394 1.30864i 0.194469 0.224430i
$$35$$ 1.72194 1.98723i 0.291062 0.335903i
$$36$$ −0.959493 + 0.281733i −0.159915 + 0.0469554i
$$37$$ −0.955451 2.09215i −0.157075 0.343947i 0.814690 0.579897i $$-0.196907\pi$$
−0.971765 + 0.235950i $$0.924180\pi$$
$$38$$ 1.30776 0.840445i 0.212146 0.136338i
$$39$$ −2.32534 0.682783i −0.372353 0.109333i
$$40$$ −0.142315 0.989821i −0.0225020 0.156505i
$$41$$ 3.21189 7.03307i 0.501614 1.09838i −0.474328 0.880348i $$-0.657309\pi$$
0.975942 0.218032i $$-0.0699639\pi$$
$$42$$ 0.374214 2.60272i 0.0577425 0.401608i
$$43$$ 5.14961 + 3.30945i 0.785308 + 0.504687i 0.870791 0.491653i $$-0.163607\pi$$
−0.0854833 + 0.996340i $$0.527243\pi$$
$$44$$ 3.03251 + 3.49970i 0.457168 + 0.527600i
$$45$$ 1.00000 0.149071
$$46$$ −4.77203 0.477227i −0.703597 0.0703633i
$$47$$ 3.51124 0.512167 0.256083 0.966655i $$-0.417568\pi$$
0.256083 + 0.966655i $$0.417568\pi$$
$$48$$ −0.654861 0.755750i −0.0945210 0.109083i
$$49$$ −0.0722037 0.0464025i −0.0103148 0.00662893i
$$50$$ −0.142315 + 0.989821i −0.0201264 + 0.139982i
$$51$$ −0.719323 + 1.57510i −0.100725 + 0.220558i
$$52$$ −0.344902 2.39885i −0.0478293 0.332660i
$$53$$ 7.92060 + 2.32570i 1.08798 + 0.319459i 0.776066 0.630651i $$-0.217212\pi$$
0.311912 + 0.950111i $$0.399030\pi$$
$$54$$ 0.841254 0.540641i 0.114480 0.0735719i
$$55$$ −1.92369 4.21230i −0.259391 0.567986i
$$56$$ 2.52297 0.740810i 0.337146 0.0989950i
$$57$$ −1.01800 + 1.17484i −0.134838 + 0.155611i
$$58$$ 3.10930 3.58832i 0.408271 0.471170i
$$59$$ −3.27844 + 0.962636i −0.426816 + 0.125324i −0.488084 0.872797i $$-0.662304\pi$$
0.0612676 + 0.998121i $$0.480486\pi$$
$$60$$ 0.415415 + 0.909632i 0.0536298 + 0.117433i
$$61$$ 1.54224 0.991137i 0.197463 0.126902i −0.438173 0.898891i $$-0.644374\pi$$
0.635636 + 0.771989i $$0.280738\pi$$
$$62$$ −0.579524 0.170164i −0.0735997 0.0216108i
$$63$$ 0.374214 + 2.60272i 0.0471466 + 0.327912i
$$64$$ 0.415415 0.909632i 0.0519269 0.113704i
$$65$$ −0.344902 + 2.39885i −0.0427798 + 0.297540i
$$66$$ −3.89565 2.50358i −0.479522 0.308170i
$$67$$ −0.0237093 0.0273620i −0.00289655 0.00334280i 0.754299 0.656531i $$-0.227977\pi$$
−0.757196 + 0.653188i $$0.773431\pi$$
$$68$$ −1.73158 −0.209985
$$69$$ 4.71318 0.886540i 0.567400 0.106727i
$$70$$ −2.62948 −0.314283
$$71$$ −10.3059 11.8936i −1.22309 1.41152i −0.881844 0.471541i $$-0.843698\pi$$
−0.341242 0.939976i $$-0.610848\pi$$
$$72$$ 0.841254 + 0.540641i 0.0991427 + 0.0637151i
$$73$$ −1.31721 + 9.16139i −0.154168 + 1.07226i 0.754968 + 0.655761i $$0.227652\pi$$
−0.909136 + 0.416499i $$0.863257\pi$$
$$74$$ −0.955451 + 2.09215i −0.111069 + 0.243207i
$$75$$ −0.142315 0.989821i −0.0164331 0.114295i
$$76$$ −1.49156 0.437963i −0.171094 0.0502378i
$$77$$ 10.2435 6.58313i 1.16736 0.750217i
$$78$$ 1.00676 + 2.20451i 0.113994 + 0.249611i
$$79$$ −4.05050 + 1.18933i −0.455716 + 0.133810i −0.501531 0.865140i $$-0.667230\pi$$
0.0458149 + 0.998950i $$0.485412\pi$$
$$80$$ −0.654861 + 0.755750i −0.0732157 + 0.0844954i
$$81$$ −0.654861 + 0.755750i −0.0727623 + 0.0839722i
$$82$$ −7.41858 + 2.17829i −0.819245 + 0.240552i
$$83$$ 3.05120 + 6.68119i 0.334913 + 0.733356i 0.999909 0.0134903i $$-0.00429423\pi$$
−0.664996 + 0.746847i $$0.731567\pi$$
$$84$$ −2.21206 + 1.42160i −0.241356 + 0.155110i
$$85$$ 1.66144 + 0.487842i 0.180208 + 0.0529139i
$$86$$ −0.871159 6.05905i −0.0939395 0.653364i
$$87$$ −1.97240 + 4.31896i −0.211464 + 0.463041i
$$88$$ 0.659028 4.58364i 0.0702526 0.488617i
$$89$$ 6.01448 + 3.86527i 0.637534 + 0.409718i 0.819092 0.573662i $$-0.194478\pi$$
−0.181558 + 0.983380i $$0.558114\pi$$
$$90$$ −0.654861 0.755750i −0.0690284 0.0796630i
$$91$$ −6.37258 −0.668028
$$92$$ 2.76435 + 3.91898i 0.288203 + 0.408581i
$$93$$ 0.603990 0.0626309
$$94$$ −2.29937 2.65362i −0.237162 0.273700i
$$95$$ 1.30776 + 0.840445i 0.134173 + 0.0862278i
$$96$$ −0.142315 + 0.989821i −0.0145249 + 0.101023i
$$97$$ 0.932704 2.04234i 0.0947017 0.207368i −0.856353 0.516391i $$-0.827275\pi$$
0.951054 + 0.309024i $$0.100002\pi$$
$$98$$ 0.0122147 + 0.0849551i 0.00123387 + 0.00858176i
$$99$$ 4.44319 + 1.30464i 0.446558 + 0.131121i
$$100$$ 0.841254 0.540641i 0.0841254 0.0540641i
$$101$$ −4.49613 9.84516i −0.447382 0.979630i −0.990184 0.139769i $$-0.955364\pi$$
0.542802 0.839861i $$-0.317363\pi$$
$$102$$ 1.66144 0.487842i 0.164507 0.0483035i
$$103$$ −7.13350 + 8.23250i −0.702885 + 0.811172i −0.989139 0.146981i $$-0.953044\pi$$
0.286254 + 0.958154i $$0.407590\pi$$
$$104$$ −1.58706 + 1.83157i −0.155624 + 0.179600i
$$105$$ 2.52297 0.740810i 0.246217 0.0722957i
$$106$$ −3.42925 7.50900i −0.333078 0.729339i
$$107$$ −2.37886 + 1.52880i −0.229973 + 0.147795i −0.650553 0.759461i $$-0.725463\pi$$
0.420580 + 0.907255i $$0.361827\pi$$
$$108$$ −0.959493 0.281733i −0.0923273 0.0271097i
$$109$$ −1.60853 11.1876i −0.154069 1.07158i −0.909308 0.416125i $$-0.863388\pi$$
0.755238 0.655450i $$-0.227521\pi$$
$$110$$ −1.92369 + 4.21230i −0.183417 + 0.401627i
$$111$$ 0.327323 2.27658i 0.0310681 0.216084i
$$112$$ −2.21206 1.42160i −0.209020 0.134329i
$$113$$ −6.05205 6.98443i −0.569329 0.657040i 0.395947 0.918273i $$-0.370416\pi$$
−0.965276 + 0.261233i $$0.915871\pi$$
$$114$$ 1.55453 0.145595
$$115$$ −1.54827 4.53904i −0.144377 0.423267i
$$116$$ −4.74803 −0.440844
$$117$$ −1.58706 1.83157i −0.146724 0.169329i
$$118$$ 2.87443 + 1.84728i 0.264613 + 0.170056i
$$119$$ −0.647981 + 4.50680i −0.0594003 + 0.413138i
$$120$$ 0.415415 0.909632i 0.0379220 0.0830377i
$$121$$ −1.48634 10.3377i −0.135122 0.939795i
$$122$$ −1.75900 0.516490i −0.159253 0.0467608i
$$123$$ 6.50438 4.18011i 0.586480 0.376908i
$$124$$ 0.250907 + 0.549409i 0.0225321 + 0.0493384i
$$125$$ −0.959493 + 0.281733i −0.0858197 + 0.0251989i
$$126$$ 1.72194 1.98723i 0.153403 0.177036i
$$127$$ −8.59219 + 9.91591i −0.762433 + 0.879895i −0.995711 0.0925151i $$-0.970509\pi$$
0.233278 + 0.972410i $$0.425055\pi$$
$$128$$ −0.959493 + 0.281733i −0.0848080 + 0.0249019i
$$129$$ 2.54290 + 5.56818i 0.223890 + 0.490251i
$$130$$ 2.03879 1.31025i 0.178814 0.114917i
$$131$$ 1.18852 + 0.348980i 0.103841 + 0.0304905i 0.333240 0.942842i $$-0.391858\pi$$
−0.229399 + 0.973332i $$0.573676\pi$$
$$132$$ 0.659028 + 4.58364i 0.0573610 + 0.398954i
$$133$$ −1.69806 + 3.71823i −0.147240 + 0.322411i
$$134$$ −0.00515253 + 0.0358366i −0.000445110 + 0.00309581i
$$135$$ 0.841254 + 0.540641i 0.0724036 + 0.0465310i
$$136$$ 1.13394 + 1.30864i 0.0972347 + 0.112215i
$$137$$ −11.0294 −0.942309 −0.471155 0.882051i $$-0.656163\pi$$
−0.471155 + 0.882051i $$0.656163\pi$$
$$138$$ −3.75648 2.98142i −0.319773 0.253796i
$$139$$ 1.80556 0.153146 0.0765730 0.997064i $$-0.475602\pi$$
0.0765730 + 0.997064i $$0.475602\pi$$
$$140$$ 1.72194 + 1.98723i 0.145531 + 0.167952i
$$141$$ 2.95384 + 1.89832i 0.248758 + 0.159867i
$$142$$ −2.23969 + 15.5774i −0.187950 + 1.30722i
$$143$$ −4.66209 + 10.2086i −0.389864 + 0.853683i
$$144$$ −0.142315 0.989821i −0.0118596 0.0824851i
$$145$$ 4.55570 + 1.33768i 0.378331 + 0.111088i
$$146$$ 7.78631 5.00396i 0.644399 0.414130i
$$147$$ −0.0356545 0.0780726i −0.00294074 0.00643932i
$$148$$ 2.20683 0.647983i 0.181400 0.0532639i
$$149$$ 1.27596 1.47253i 0.104530 0.120634i −0.701074 0.713089i $$-0.747296\pi$$
0.805604 + 0.592455i $$0.201841\pi$$
$$150$$ −0.654861 + 0.755750i −0.0534692 + 0.0617067i
$$151$$ −18.7992 + 5.51994i −1.52986 + 0.449206i −0.935007 0.354630i $$-0.884607\pi$$
−0.594850 + 0.803837i $$0.702789\pi$$
$$152$$ 0.645777 + 1.41405i 0.0523794 + 0.114695i
$$153$$ −1.45670 + 0.936161i −0.117767 + 0.0756842i
$$154$$ −11.6833 3.43052i −0.941467 0.276440i
$$155$$ −0.0859568 0.597843i −0.00690421 0.0480199i
$$156$$ 1.00676 2.20451i 0.0806056 0.176502i
$$157$$ −1.58238 + 11.0057i −0.126288 + 0.878352i 0.823913 + 0.566716i $$0.191786\pi$$
−0.950201 + 0.311637i $$0.899123\pi$$
$$158$$ 3.55135 + 2.28231i 0.282530 + 0.181571i
$$159$$ 5.40587 + 6.23870i 0.428713 + 0.494761i
$$160$$ 1.00000 0.0790569
$$161$$ 11.2344 5.72828i 0.885398 0.451452i
$$162$$ 1.00000 0.0785674
$$163$$ −6.78365 7.82875i −0.531337 0.613195i 0.425096 0.905148i $$-0.360240\pi$$
−0.956433 + 0.291953i $$0.905695\pi$$
$$164$$ 6.50438 + 4.18011i 0.507907 + 0.326412i
$$165$$ 0.659028 4.58364i 0.0513052 0.356836i
$$166$$ 3.05120 6.68119i 0.236819 0.518561i
$$167$$ 2.59006 + 18.0143i 0.200425 + 1.39399i 0.803026 + 0.595944i $$0.203222\pi$$
−0.602601 + 0.798043i $$0.705869\pi$$
$$168$$ 2.52297 + 0.740810i 0.194651 + 0.0571548i
$$169$$ −5.99526 + 3.85292i −0.461174 + 0.296379i
$$170$$ −0.719323 1.57510i −0.0551696 0.120804i
$$171$$ −1.49156 + 0.437963i −0.114063 + 0.0334919i
$$172$$ −4.00863 + 4.62621i −0.305655 + 0.352745i
$$173$$ −15.7674 + 18.1965i −1.19877 + 1.38346i −0.294971 + 0.955506i $$0.595310\pi$$
−0.903802 + 0.427951i $$0.859235\pi$$
$$174$$ 4.55570 1.33768i 0.345367 0.101409i
$$175$$ −1.09233 2.39186i −0.0825721 0.180808i
$$176$$ −3.89565 + 2.50358i −0.293646 + 0.188715i
$$177$$ −3.27844 0.962636i −0.246422 0.0723561i
$$178$$ −1.01747 7.07666i −0.0762626 0.530418i
$$179$$ −4.45101 + 9.74635i −0.332684 + 0.728477i −0.999865 0.0164189i $$-0.994773\pi$$
0.667181 + 0.744896i $$0.267501\pi$$
$$180$$ −0.142315 + 0.989821i −0.0106075 + 0.0737769i
$$181$$ −2.49370 1.60260i −0.185355 0.119121i 0.444672 0.895693i $$-0.353320\pi$$
−0.630028 + 0.776573i $$0.716956\pi$$
$$182$$ 4.17315 + 4.81608i 0.309335 + 0.356991i
$$183$$ 1.83326 0.135519
$$184$$ 1.15150 4.65554i 0.0848897 0.343211i
$$185$$ −2.29999 −0.169099
$$186$$ −0.395530 0.456465i −0.0290016 0.0334697i
$$187$$ 6.74562 + 4.33515i 0.493289 + 0.317017i
$$188$$ −0.499701 + 3.47550i −0.0364445 + 0.253477i
$$189$$ −1.09233 + 2.39186i −0.0794550 + 0.173982i
$$190$$ −0.221233 1.53871i −0.0160499 0.111630i
$$191$$ −12.8582 3.77550i −0.930385 0.273186i −0.218787 0.975773i $$-0.570210\pi$$
−0.711598 + 0.702587i $$0.752028\pi$$
$$192$$ 0.841254 0.540641i 0.0607122 0.0390174i
$$193$$ 5.12498 + 11.2221i 0.368904 + 0.807787i 0.999498 + 0.0316743i $$0.0100839\pi$$
−0.630594 + 0.776113i $$0.717189\pi$$
$$194$$ −2.15429 + 0.632555i −0.154669 + 0.0454148i
$$195$$ −1.58706 + 1.83157i −0.113652 + 0.131161i
$$196$$ 0.0562059 0.0648650i 0.00401470 0.00463322i
$$197$$ 13.9884 4.10735i 0.996629 0.292637i 0.257557 0.966263i $$-0.417082\pi$$
0.739072 + 0.673626i $$0.235264\pi$$
$$198$$ −1.92369 4.21230i −0.136711 0.299355i
$$199$$ −14.1739 + 9.10902i −1.00476 + 0.645722i −0.936032 0.351914i $$-0.885531\pi$$
−0.0687300 + 0.997635i $$0.521895\pi$$
$$200$$ −0.959493 0.281733i −0.0678464 0.0199215i
$$201$$ −0.00515253 0.0358366i −0.000363431 0.00252772i
$$202$$ −4.49613 + 9.84516i −0.316347 + 0.692703i
$$203$$ −1.77678 + 12.3578i −0.124706 + 0.867347i
$$204$$ −1.45670 0.936161i −0.101989 0.0655444i
$$205$$ −5.06323 5.84328i −0.353632 0.408113i
$$206$$ 10.8932 0.758962
$$207$$ 4.44428 + 1.80233i 0.308899 + 0.125271i
$$208$$ 2.42351 0.168040
$$209$$ 4.71414 + 5.44041i 0.326084 + 0.376321i
$$210$$ −2.21206 1.42160i −0.152647 0.0981001i
$$211$$ −0.546521 + 3.80113i −0.0376240 + 0.261681i −0.999948 0.0102256i $$-0.996745\pi$$
0.962324 + 0.271906i $$0.0876541\pi$$
$$212$$ −3.42925 + 7.50900i −0.235522 + 0.515720i
$$213$$ −2.23969 15.5774i −0.153461 1.06734i
$$214$$ 2.71322 + 0.796672i 0.185472 + 0.0544594i
$$215$$ 5.14961 3.30945i 0.351200 0.225703i
$$216$$ 0.415415 + 0.909632i 0.0282654 + 0.0618926i
$$217$$ 1.52385 0.447442i 0.103446 0.0303744i
$$218$$ −7.40164 + 8.54195i −0.501302 + 0.578534i
$$219$$ −6.06113 + 6.99492i −0.409573 + 0.472673i
$$220$$ 4.44319 1.30464i 0.299560 0.0879588i
$$221$$ −1.74329 3.81727i −0.117266 0.256777i
$$222$$ −1.93488 + 1.24347i −0.129860 + 0.0834562i
$$223$$ 19.8896 + 5.84013i 1.33191 + 0.391084i 0.868776 0.495205i $$-0.164907\pi$$
0.463133 + 0.886289i $$0.346725\pi$$
$$224$$ 0.374214 + 2.60272i 0.0250032 + 0.173901i
$$225$$ 0.415415 0.909632i 0.0276943 0.0606421i
$$226$$ −1.31524 + 9.14766i −0.0874882 + 0.608494i
$$227$$ −1.49944 0.963629i −0.0995211 0.0639583i 0.489934 0.871760i $$-0.337021\pi$$
−0.589455 + 0.807801i $$0.700657\pi$$
$$228$$ −1.01800 1.17484i −0.0674189 0.0778056i
$$229$$ −2.21141 −0.146134 −0.0730671 0.997327i $$-0.523279\pi$$
−0.0730671 + 0.997327i $$0.523279\pi$$
$$230$$ −2.41647 + 4.14254i −0.159338 + 0.273151i
$$231$$ 12.1765 0.801157
$$232$$ 3.10930 + 3.58832i 0.204136 + 0.235585i
$$233$$ −17.5448 11.2754i −1.14940 0.738674i −0.179880 0.983689i $$-0.557571\pi$$
−0.969519 + 0.245015i $$0.921207\pi$$
$$234$$ −0.344902 + 2.39885i −0.0225469 + 0.156817i
$$235$$ 1.45862 3.19393i 0.0951499 0.208349i
$$236$$ −0.486267 3.38206i −0.0316533 0.220154i
$$237$$ −4.05050 1.18933i −0.263108 0.0772555i
$$238$$ 3.83035 2.46162i 0.248285 0.159563i
$$239$$ −11.8931 26.0422i −0.769300 1.68453i −0.728188 0.685378i $$-0.759637\pi$$
−0.0411123 0.999155i $$-0.513090\pi$$
$$240$$ −0.959493 + 0.281733i −0.0619350 + 0.0181858i
$$241$$ −10.1465 + 11.7097i −0.653594 + 0.754287i −0.981717 0.190348i $$-0.939038\pi$$
0.328123 + 0.944635i $$0.393584\pi$$
$$242$$ −6.83940 + 7.89308i −0.439653 + 0.507387i
$$243$$ −0.959493 + 0.281733i −0.0615515 + 0.0180732i
$$244$$ 0.761565 + 1.66759i 0.0487542 + 0.106757i
$$245$$ −0.0722037 + 0.0464025i −0.00461293 + 0.00296455i
$$246$$ −7.41858 2.17829i −0.472992 0.138883i
$$247$$ −0.536162 3.72909i −0.0341152 0.237276i
$$248$$ 0.250907 0.549409i 0.0159326 0.0348875i
$$249$$ −1.04529 + 7.27018i −0.0662428 + 0.460729i
$$250$$ 0.841254 + 0.540641i 0.0532055 + 0.0341931i
$$251$$ 2.38739 + 2.75519i 0.150691 + 0.173906i 0.826076 0.563559i $$-0.190568\pi$$
−0.675385 + 0.737465i $$0.736023\pi$$
$$252$$ −2.62948 −0.165642
$$253$$ −0.957463 22.1878i −0.0601952 1.39493i
$$254$$ 13.1206 0.823262
$$255$$ 1.13394 + 1.30864i 0.0710102 + 0.0819501i
$$256$$ 0.841254 + 0.540641i 0.0525783 + 0.0337901i
$$257$$ 2.51404 17.4855i 0.156822 1.09072i −0.747622 0.664124i $$-0.768805\pi$$
0.904444 0.426593i $$-0.140286\pi$$
$$258$$ 2.54290 5.56818i 0.158314 0.346660i
$$259$$ −0.860690 5.98623i −0.0534807 0.371966i
$$260$$ −2.32534 0.682783i −0.144212 0.0423444i
$$261$$ −3.99430 + 2.56698i −0.247241 + 0.158892i
$$262$$ −0.514571 1.12675i −0.0317903 0.0696110i
$$263$$ −27.9776 + 8.21496i −1.72517 + 0.506556i −0.985969 0.166927i $$-0.946616\pi$$
−0.739203 + 0.673483i $$0.764797\pi$$
$$264$$ 3.03251 3.49970i 0.186638 0.215392i
$$265$$ 5.40587 6.23870i 0.332080 0.383241i
$$266$$ 3.92204 1.15162i 0.240476 0.0706100i
$$267$$ 2.96998 + 6.50335i 0.181760 + 0.397998i
$$268$$ 0.0304577 0.0195740i 0.00186050 0.00119567i
$$269$$ −29.1567 8.56118i −1.77771 0.521984i −0.782761 0.622322i $$-0.786189\pi$$
−0.994953 + 0.100338i $$0.968008\pi$$
$$270$$ −0.142315 0.989821i −0.00866101 0.0602386i
$$271$$ 4.44397 9.73094i 0.269952 0.591112i −0.725301 0.688432i $$-0.758300\pi$$
0.995253 + 0.0973192i $$0.0310268\pi$$
$$272$$ 0.246429 1.71395i 0.0149420 0.103924i
$$273$$ −5.36096 3.44528i −0.324460 0.208518i
$$274$$ 7.22275 + 8.33550i 0.436342 + 0.503566i
$$275$$ −4.63077 −0.279246
$$276$$ 0.206761 + 4.79137i 0.0124455 + 0.288407i
$$277$$ 31.1418 1.87113 0.935565 0.353153i $$-0.114891\pi$$
0.935565 + 0.353153i $$0.114891\pi$$
$$278$$ −1.18239 1.36455i −0.0709153 0.0818406i
$$279$$ 0.508109 + 0.326542i 0.0304197 + 0.0195495i
$$280$$ 0.374214 2.60272i 0.0223636 0.155542i
$$281$$ 10.6853 23.3975i 0.637429 1.39578i −0.264709 0.964328i $$-0.585276\pi$$
0.902138 0.431447i $$-0.141997\pi$$
$$282$$ −0.499701 3.47550i −0.0297568 0.206963i
$$283$$ 23.8589 + 7.00561i 1.41827 + 0.416440i 0.898916 0.438122i $$-0.144356\pi$$
0.519350 + 0.854562i $$0.326174\pi$$
$$284$$ 13.2393 8.50836i 0.785606 0.504879i
$$285$$ 0.645777 + 1.41405i 0.0382525 + 0.0837613i
$$286$$ 10.7681 3.16181i 0.636733 0.186962i
$$287$$ 13.3137 15.3648i 0.785882 0.906956i
$$288$$ −0.654861 + 0.755750i −0.0385880 + 0.0445330i
$$289$$ 13.4345 3.94472i 0.790263 0.232042i
$$290$$ −1.97240 4.31896i −0.115824 0.253618i
$$291$$ 1.88881 1.21386i 0.110724 0.0711580i
$$292$$ −8.88069 2.60760i −0.519703 0.152599i
$$293$$ −3.41890 23.7790i −0.199734 1.38918i −0.805055 0.593200i $$-0.797864\pi$$
0.605321 0.795981i $$-0.293045\pi$$
$$294$$ −0.0356545 + 0.0780726i −0.00207942 + 0.00455328i
$$295$$ −0.486267 + 3.38206i −0.0283116 + 0.196911i
$$296$$ −1.93488 1.24347i −0.112462 0.0722752i
$$297$$ 3.03251 + 3.49970i 0.175964 + 0.203073i
$$298$$ −1.94844 −0.112870
$$299$$ −5.85635 + 10.0395i −0.338682 + 0.580600i
$$300$$ 1.00000 0.0577350
$$301$$ 10.5406 + 12.1645i 0.607552 + 0.701152i
$$302$$ 16.4825 + 10.5927i 0.948464 + 0.609541i
$$303$$ 1.54031 10.7131i 0.0884883 0.615450i
$$304$$ 0.645777 1.41405i 0.0370378 0.0811016i
$$305$$ −0.260900 1.81460i −0.0149391 0.103904i
$$306$$ 1.66144 + 0.487842i 0.0949780 + 0.0278880i
$$307$$ 28.5463 18.3456i 1.62922 1.04704i 0.679632 0.733553i $$-0.262140\pi$$
0.949593 0.313486i $$-0.101497\pi$$
$$308$$ 5.05831 + 11.0762i 0.288224 + 0.631123i
$$309$$ −10.4519 + 3.06896i −0.594588 + 0.174587i
$$310$$ −0.395530 + 0.456465i −0.0224646 + 0.0259255i
$$311$$ −8.50781 + 9.81853i −0.482433 + 0.556758i −0.943828 0.330437i $$-0.892804\pi$$
0.461395 + 0.887195i $$0.347349\pi$$
$$312$$ −2.32534 + 0.682783i −0.131647 + 0.0386550i
$$313$$ −9.11583 19.9609i −0.515257 1.12826i −0.971204 0.238249i $$-0.923427\pi$$
0.455947 0.890007i $$-0.349301\pi$$
$$314$$ 9.35381 6.01133i 0.527866 0.339239i
$$315$$ 2.52297 + 0.740810i 0.142153 + 0.0417399i
$$316$$ −0.600781 4.17853i −0.0337966 0.235060i
$$317$$ −1.52163 + 3.33191i −0.0854634 + 0.187139i −0.947538 0.319642i $$-0.896437\pi$$
0.862075 + 0.506781i $$0.169165\pi$$
$$318$$ 1.17481 8.17097i 0.0658799 0.458205i
$$319$$ 18.4967 + 11.8871i 1.03562 + 0.665550i
$$320$$ −0.654861 0.755750i −0.0366078 0.0422477i
$$321$$ −2.82776 −0.157830
$$322$$ −11.6861 4.73920i −0.651243 0.264105i
$$323$$ −2.69180 −0.149776
$$324$$ −0.654861 0.755750i −0.0363812 0.0419861i
$$325$$ 2.03879 + 1.31025i 0.113092 + 0.0726796i
$$326$$ −1.47423 + 10.2535i −0.0816499 + 0.567888i
$$327$$ 4.69528 10.2812i 0.259649 0.568553i
$$328$$ −1.10035 7.65307i −0.0607564 0.422570i
$$329$$ 8.85874 + 2.60116i 0.488398 + 0.143407i
$$330$$ −3.89565 + 2.50358i −0.214449 + 0.137818i
$$331$$ 4.54633 + 9.95507i 0.249889 + 0.547180i 0.992457 0.122590i $$-0.0391200\pi$$
−0.742569 + 0.669770i $$0.766393\pi$$
$$332$$ −7.04742 + 2.06931i −0.386777 + 0.113568i
$$333$$ 1.50617 1.73822i 0.0825379 0.0952538i
$$334$$ 11.9182 13.7543i 0.652132 0.752601i
$$335$$ −0.0347386 + 0.0102002i −0.00189797 + 0.000557294i
$$336$$ −1.09233 2.39186i −0.0595913 0.130487i
$$337$$ −21.2544 + 13.6594i −1.15780 + 0.744075i −0.971178 0.238357i $$-0.923391\pi$$
−0.186625 + 0.982431i $$0.559755\pi$$
$$338$$ 6.83791 + 2.00779i 0.371933 + 0.109209i
$$339$$ −1.31524 9.14766i −0.0714338 0.496833i
$$340$$ −0.719323 + 1.57510i −0.0390108 + 0.0854217i
$$341$$ 0.398046 2.76847i 0.0215554 0.149921i
$$342$$ 1.30776 + 0.840445i 0.0707154 + 0.0454460i
$$343$$ −12.2014 14.0812i −0.658814 0.760312i
$$344$$ 6.12135 0.330041
$$345$$ 1.15150 4.65554i 0.0619947 0.250646i
$$346$$ 24.0775 1.29441
$$347$$ 6.24255 + 7.20429i 0.335118 + 0.386747i 0.898151 0.439688i $$-0.144911\pi$$
−0.563033 + 0.826435i $$0.690366\pi$$
$$348$$ −3.99430 2.56698i −0.214117 0.137605i
$$349$$ 2.93421 20.4079i 0.157065 1.09241i −0.746941 0.664890i $$-0.768478\pi$$
0.904006 0.427520i $$-0.140613\pi$$
$$350$$ −1.09233 + 2.39186i −0.0583873 + 0.127850i
$$351$$ −0.344902 2.39885i −0.0184095 0.128041i
$$352$$ 4.44319 + 1.30464i 0.236823 + 0.0695375i
$$353$$ 18.1529 11.6662i 0.966183 0.620928i 0.0404808 0.999180i $$-0.487111\pi$$
0.925703 + 0.378252i $$0.123475\pi$$
$$354$$ 1.41941 + 3.10807i 0.0754407 + 0.165192i
$$355$$ −15.1001 + 4.43378i −0.801429 + 0.235321i
$$356$$ −4.68188 + 5.40318i −0.248139 + 0.286368i
$$357$$ −2.98168 + 3.44104i −0.157807 + 0.182119i
$$358$$ 10.2806 3.01866i 0.543346 0.159541i
$$359$$ −10.2871 22.5257i −0.542935 1.18886i −0.960004 0.279987i $$-0.909670\pi$$
0.417069 0.908875i $$-0.363057\pi$$
$$360$$ 0.841254 0.540641i 0.0443380 0.0284943i
$$361$$ 15.9117 + 4.67209i 0.837457 + 0.245899i
$$362$$ 0.421859 + 2.93409i 0.0221724 + 0.154213i
$$363$$ 4.33861 9.50024i 0.227718 0.498633i
$$364$$ 0.906913 6.30772i 0.0475352 0.330614i
$$365$$ 7.78631 + 5.00396i 0.407554 + 0.261919i
$$366$$ −1.20053 1.38549i −0.0627528 0.0724206i
$$367$$ 0.759831 0.0396629 0.0198314 0.999803i $$-0.493687\pi$$
0.0198314 + 0.999803i $$0.493687\pi$$
$$368$$ −4.27249 + 2.17848i −0.222719 + 0.113561i
$$369$$ 7.73177 0.402500
$$370$$ 1.50617 + 1.73822i 0.0783023 + 0.0903657i
$$371$$ 18.2605 + 11.7353i 0.948040 + 0.609268i
$$372$$ −0.0859568 + 0.597843i −0.00445665 + 0.0309967i
$$373$$ −0.246462 + 0.539677i −0.0127613 + 0.0279434i −0.915905 0.401394i $$-0.868526\pi$$
0.903144 + 0.429338i $$0.141253\pi$$
$$374$$ −1.14116 7.93692i −0.0590078 0.410408i
$$375$$ −0.959493 0.281733i −0.0495480 0.0145486i
$$376$$ 2.95384 1.89832i 0.152333 0.0978983i
$$377$$ −4.78015 10.4671i −0.246190 0.539081i
$$378$$ 2.52297 0.740810i 0.129768 0.0381032i
$$379$$ −12.1411 + 14.0116i −0.623648 + 0.719728i −0.976395 0.215991i $$-0.930702\pi$$
0.352748 + 0.935718i $$0.385247\pi$$
$$380$$ −1.01800 + 1.17484i −0.0522225 + 0.0602679i
$$381$$ −12.5892 + 3.69651i −0.644962 + 0.189378i
$$382$$ 5.56698 + 12.1900i 0.284832 + 0.623694i
$$383$$ −28.4725 + 18.2981i −1.45488 + 0.934991i −0.455886 + 0.890038i $$0.650678\pi$$
−0.998989 + 0.0449533i $$0.985686\pi$$
$$384$$ −0.959493 0.281733i −0.0489639 0.0143771i
$$385$$ −1.73290 12.0526i −0.0883168 0.614257i
$$386$$ 5.12498 11.2221i 0.260854 0.571192i
$$387$$ −0.871159 + 6.05905i −0.0442835 + 0.307999i
$$388$$ 1.88881 + 1.21386i 0.0958898 + 0.0616246i
$$389$$ 13.0053 + 15.0089i 0.659393 + 0.760980i 0.982678 0.185322i $$-0.0593328\pi$$
−0.323285 + 0.946302i $$0.604787\pi$$
$$390$$ 2.42351 0.122719
$$391$$ 6.50463 + 5.16256i 0.328953 + 0.261082i
$$392$$ −0.0858287 −0.00433501
$$393$$ 0.811170 + 0.936140i 0.0409181 + 0.0472220i
$$394$$ −12.2646 7.88195i −0.617880 0.397087i
$$395$$ −0.600781 + 4.17853i −0.0302286 + 0.210244i
$$396$$ −1.92369 + 4.21230i −0.0966692 + 0.211676i
$$397$$ −0.195089 1.35687i −0.00979124 0.0680996i 0.984340 0.176280i $$-0.0564065\pi$$
−0.994131 + 0.108181i $$0.965497\pi$$
$$398$$ 16.1661 + 4.74679i 0.810333 + 0.237935i
$$399$$ −3.43872 + 2.20993i −0.172151 + 0.110635i
$$400$$ 0.415415 + 0.909632i 0.0207708 + 0.0454816i
$$401$$ 15.9769 4.69123i 0.797846 0.234269i 0.142695 0.989767i $$-0.454423\pi$$
0.655151 + 0.755498i $$0.272605\pi$$
$$402$$ −0.0237093 + 0.0273620i −0.00118251 + 0.00136469i
$$403$$ −0.958571 + 1.10625i −0.0477498 + 0.0551062i
$$404$$ 10.3848 3.04926i 0.516664 0.151706i
$$405$$ 0.415415 + 0.909632i 0.0206421 + 0.0452000i
$$406$$ 10.5029 6.74983i 0.521252 0.334988i
$$407$$ −10.2193 3.00066i −0.506552 0.148737i
$$408$$ 0.246429 + 1.71395i 0.0122001 + 0.0848533i
$$409$$ −3.99742 + 8.75313i −0.197660 + 0.432814i −0.982345 0.187081i $$-0.940097\pi$$
0.784685 + 0.619895i $$0.212825\pi$$
$$410$$ −1.10035 + 7.65307i −0.0543422 + 0.377958i
$$411$$ −9.27856 5.96297i −0.457678 0.294132i
$$412$$ −7.13350 8.23250i −0.351442 0.405586i
$$413$$ −8.98452 −0.442099
$$414$$ −1.54827 4.53904i −0.0760934 0.223081i
$$415$$ 7.34494 0.360549
$$416$$ −1.58706 1.83157i −0.0778122 0.0898001i
$$417$$ 1.51894 + 0.976162i 0.0743827 + 0.0478029i
$$418$$ 1.02448 7.12542i 0.0501090 0.348516i
$$419$$ 0.393389 0.861401i 0.0192183 0.0420822i −0.899779 0.436345i $$-0.856273\pi$$
0.918998 + 0.394263i $$0.129000\pi$$
$$420$$ 0.374214 + 2.60272i 0.0182598 + 0.127000i
$$421$$ −6.57274 1.92993i −0.320336 0.0940591i 0.117612 0.993060i $$-0.462476\pi$$
−0.437947 + 0.899001i $$0.644294\pi$$
$$422$$ 3.23060 2.07618i 0.157263 0.101067i
$$423$$ 1.45862 + 3.19393i 0.0709206 + 0.155294i
$$424$$ 7.92060 2.32570i 0.384659 0.112946i
$$425$$ 1.13394 1.30864i 0.0550043 0.0634783i
$$426$$ −10.3059 + 11.8936i −0.499323 + 0.576249i
$$427$$ 4.62526 1.35810i 0.223832 0.0657231i
$$428$$ −1.17469 2.57222i −0.0567810 0.124333i
$$429$$ −9.44117 + 6.06747i −0.455824 + 0.292940i
$$430$$ −5.87339 1.72458i −0.283240 0.0831668i
$$431$$ −5.01418 34.8744i −0.241525 1.67984i −0.644480 0.764621i $$-0.722926\pi$$
0.402955 0.915220i $$-0.367983\pi$$
$$432$$ 0.415415 0.909632i 0.0199867 0.0437647i
$$433$$ 0.469980 3.26878i 0.0225858 0.157088i −0.975407 0.220410i $$-0.929260\pi$$
0.997993 + 0.0633222i $$0.0201696\pi$$
$$434$$ −1.33606 0.858636i −0.0641331 0.0412158i
$$435$$ 3.10930 + 3.58832i 0.149080 + 0.172047i
$$436$$ 11.3026 0.541297
$$437$$ 4.29728 + 6.09218i 0.205567 + 0.291429i
$$438$$ 9.25560 0.442250
$$439$$ 13.9891 + 16.1442i 0.667661 + 0.770522i 0.984009 0.178121i $$-0.0570019\pi$$
−0.316347 + 0.948643i $$0.602456\pi$$
$$440$$ −3.89565 2.50358i −0.185718 0.119354i
$$441$$ 0.0122147 0.0849551i 0.000581652 0.00404548i
$$442$$ −1.74329 + 3.81727i −0.0829198 + 0.181569i
$$443$$ 5.74553 + 39.9611i 0.272978 + 1.89861i 0.416791 + 0.909002i $$0.363155\pi$$
−0.143813 + 0.989605i $$0.545936\pi$$
$$444$$ 2.20683 + 0.647983i 0.104731 + 0.0307519i
$$445$$ 6.01448 3.86527i 0.285114 0.183231i
$$446$$ −8.61127 18.8561i −0.407756 0.892860i
$$447$$ 1.86951 0.548938i 0.0884249 0.0259639i
$$448$$ 1.72194 1.98723i 0.0813542 0.0938878i
$$449$$ 1.00664 1.16173i 0.0475063 0.0548252i −0.731499 0.681842i $$-0.761179\pi$$
0.779005 + 0.627017i $$0.215724\pi$$
$$450$$ −0.959493 + 0.281733i −0.0452309 + 0.0132810i
$$451$$ −14.8736 32.5685i −0.700368 1.53359i
$$452$$ 7.77464 4.99646i 0.365688 0.235014i
$$453$$ −18.7992 5.51994i −0.883263 0.259349i
$$454$$ 0.253660 + 1.76424i 0.0119048 + 0.0827999i
$$455$$ −2.64727 + 5.79671i −0.124106 + 0.271754i
$$456$$ −0.221233 + 1.53871i −0.0103602 + 0.0720567i
$$457$$ 23.3109 + 14.9810i 1.09044 + 0.700782i 0.956945 0.290268i $$-0.0937446\pi$$
0.133492 + 0.991050i $$0.457381\pi$$
$$458$$ 1.44817 + 1.67127i 0.0676683 + 0.0780934i
$$459$$ −1.73158 −0.0808231
$$460$$ 4.71318 0.886540i 0.219753 0.0413351i
$$461$$ 42.7699 1.99199 0.995996 0.0893985i $$-0.0284945\pi$$
0.995996 + 0.0893985i $$0.0284945\pi$$
$$462$$ −7.97393 9.20241i −0.370981 0.428135i
$$463$$ 9.54201 + 6.13228i 0.443455 + 0.284991i 0.743252 0.669012i $$-0.233283\pi$$
−0.299797 + 0.954003i $$0.596919\pi$$
$$464$$ 0.675716 4.69971i 0.0313693 0.218178i
$$465$$ 0.250907 0.549409i 0.0116355 0.0254782i
$$466$$ 2.96806 + 20.6433i 0.137493 + 0.956282i
$$467$$ −33.2956 9.77648i −1.54074 0.452402i −0.602422 0.798178i $$-0.705797\pi$$
−0.938317 + 0.345776i $$0.887616\pi$$
$$468$$ 2.03879 1.31025i 0.0942431 0.0605663i
$$469$$ −0.0395478 0.0865976i −0.00182615 0.00399870i
$$470$$ −3.36901 + 0.989230i −0.155401 + 0.0456298i
$$471$$ −7.28133 + 8.40310i −0.335506 + 0.387194i
$$472$$ −2.23756 + 2.58228i −0.102992 + 0.118859i
$$473$$ 27.1983 7.98616i 1.25058 0.367204i
$$474$$ 1.75367 + 3.84001i 0.0805488 + 0.176377i
$$475$$ 1.30776 0.840445i 0.0600040 0.0385622i
$$476$$ −4.36871 1.28277i −0.200240 0.0587957i
$$477$$ 1.17481 + 8.17097i 0.0537907 + 0.374123i
$$478$$ −11.8931 + 26.0422i −0.543977 + 1.19114i
$$479$$ −4.82203 + 33.5380i −0.220324 + 1.53239i 0.516489 + 0.856294i $$0.327239\pi$$
−0.736814 + 0.676096i $$0.763670\pi$$
$$480$$ 0.841254 + 0.540641i 0.0383978 + 0.0246768i
$$481$$ 3.65023 + 4.21260i 0.166436 + 0.192078i
$$482$$ 15.4941 0.705739
$$483$$ 12.5480 + 1.25486i 0.570952 + 0.0570981i
$$484$$ 10.4440 0.474729
$$485$$ −1.47032 1.69683i −0.0667636 0.0770493i
$$486$$ 0.841254 + 0.540641i 0.0381600 + 0.0245240i
$$487$$ 1.75915 12.2351i 0.0797145 0.554426i −0.910353 0.413833i $$-0.864190\pi$$
0.990067 0.140594i $$-0.0449011\pi$$
$$488$$ 0.761565 1.66759i 0.0344744 0.0754884i
$$489$$ −1.47423 10.2535i −0.0666669 0.463678i
$$490$$ 0.0823521 + 0.0241807i 0.00372029 + 0.00109237i
$$491$$ 1.42822 0.917859i 0.0644545 0.0414224i −0.508017 0.861347i $$-0.669621\pi$$
0.572471 + 0.819925i $$0.305985\pi$$
$$492$$ 3.21189 + 7.03307i 0.144803 + 0.317075i
$$493$$ −7.88855 + 2.31629i −0.355283 + 0.104320i
$$494$$ −2.46714 + 2.84724i −0.111002 + 0.128103i
$$495$$ 3.03251 3.49970i 0.136301 0.157300i
$$496$$ −0.579524 + 0.170164i −0.0260214 + 0.00764058i
$$497$$ −17.1905 37.6420i −0.771101 1.68848i
$$498$$ 6.17896 3.97097i 0.276886 0.177944i
$$499$$ −12.4423 3.65340i −0.556996 0.163549i −0.00889406 0.999960i $$-0.502831\pi$$
−0.548102 + 0.836412i $$0.684649\pi$$
$$500$$ −0.142315 0.989821i −0.00636451 0.0442662i
$$501$$ −7.56036 + 16.5549i −0.337772 + 0.739617i
$$502$$ 0.518829 3.60854i 0.0231565 0.161057i
$$503$$ −5.06142 3.25278i −0.225678 0.145034i 0.422916 0.906169i $$-0.361006\pi$$
−0.648594 + 0.761134i $$0.724643\pi$$
$$504$$ 1.72194 + 1.98723i 0.0767015 + 0.0885182i
$$505$$ −10.8232 −0.481627
$$506$$ −16.1414 + 15.2535i −0.717572 + 0.678100i
$$507$$ −7.12658 −0.316503
$$508$$ −8.59219 9.91591i −0.381217 0.439948i
$$509$$ −7.32733 4.70899i −0.324778 0.208722i 0.368084 0.929793i $$-0.380014\pi$$
−0.692862 + 0.721070i $$0.743650\pi$$
$$510$$ 0.246429 1.71395i 0.0109121 0.0758951i
$$511$$ −10.1101 + 22.1381i −0.447246 + 0.979332i
$$512$$ −0.142315 0.989821i −0.00628949 0.0437443i
$$513$$ −1.49156 0.437963i −0.0658542 0.0193365i
$$514$$ −14.8610 + 9.55060i −0.655492 + 0.421259i
$$515$$ 4.52518 + 9.90877i 0.199403 + 0.436632i
$$516$$ −5.87339 + 1.72458i −0.258562 + 0.0759206i
$$517$$ 10.6479 12.2883i 0.468293 0.540438i
$$518$$ −3.96046 + 4.57061i −0.174013 + 0.200821i
$$519$$ −23.1022 + 6.78341i −1.01407 + 0.297759i
$$520$$ 1.00676 + 2.20451i 0.0441495 + 0.0966740i
$$521$$ 5.98587 3.84688i 0.262246 0.168535i −0.402910 0.915239i $$-0.632001\pi$$
0.665156 + 0.746704i $$0.268365\pi$$
$$522$$ 4.55570 + 1.33768i 0.199398 + 0.0585485i
$$523$$ 1.65098 + 11.4828i 0.0721923 + 0.502108i 0.993550 + 0.113393i $$0.0361719\pi$$
−0.921358 + 0.388715i $$0.872919\pi$$
$$524$$ −0.514571 + 1.12675i −0.0224791 + 0.0492224i
$$525$$ 0.374214 2.60272i 0.0163320 0.113592i
$$526$$ 24.5299 + 15.7644i 1.06955 + 0.687360i
$$527$$ 0.684890 + 0.790405i 0.0298343 + 0.0344306i
$$528$$ −4.63077 −0.201528
$$529$$ 1.29990 22.9632i 0.0565175 0.998402i
$$530$$ −8.25499 −0.358574
$$531$$ −2.23756 2.58228i −0.0971016 0.112061i
$$532$$ −3.43872 2.20993i −0.149088 0.0958127i
$$533$$ −2.66670 + 18.5473i −0.115508 + 0.803374i
$$534$$ 2.96998 6.50335i 0.128524 0.281427i
$$535$$ 0.402432 + 2.79898i 0.0173987 + 0.121010i
$$536$$ −0.0347386 0.0102002i −0.00150048 0.000440580i
$$537$$ −9.01371 + 5.79276i −0.388970 + 0.249976i
$$538$$ 12.6235 + 27.6415i 0.544236 + 1.19171i
$$539$$ −0.381354 + 0.111976i −0.0164261 + 0.00482313i
$$540$$ −0.654861 + 0.755750i −0.0281807 + 0.0325223i
$$541$$ −19.8283 + 22.8830i −0.852484 + 0.983819i −0.999986 0.00524303i $$-0.998331\pi$$
0.147503 + 0.989062i $$0.452877\pi$$
$$542$$ −10.2643 + 3.01388i −0.440891 + 0.129457i
$$543$$ −1.23140 2.69639i −0.0528445 0.115713i
$$544$$ −1.45670 + 0.936161i −0.0624553 + 0.0401376i
$$545$$ −10.8448 3.18432i −0.464539 0.136401i
$$546$$ 0.906913 + 6.30772i 0.0388123 + 0.269945i
$$547$$ 10.6861 23.3993i 0.456904 1.00048i −0.531279 0.847197i $$-0.678288\pi$$
0.988182 0.153283i $$-0.0489845\pi$$
$$548$$ 1.56965 10.9172i 0.0670523 0.466359i
$$549$$ 1.54224 + 0.991137i 0.0658211 + 0.0423007i
$$550$$ 3.03251 + 3.49970i 0.129307 + 0.149228i
$$551$$ −7.38098 −0.314440
$$552$$ 3.48568 3.29394i 0.148360 0.140199i
$$553$$ −11.1003 −0.472035
$$554$$ −20.3936 23.5354i −0.866439 0.999924i
$$555$$ −1.93488 1.24347i −0.0821309 0.0527824i
$$556$$ −0.256959 + 1.78719i −0.0108975 + 0.0757936i
$$557$$ −2.61508 + 5.72623i −0.110805 + 0.242628i −0.956908 0.290390i $$-0.906215\pi$$
0.846104 + 0.533018i $$0.178942\pi$$
$$558$$ −0.0859568 0.597843i −0.00363884 0.0253087i
$$559$$ −14.2342 4.17955i −0.602045 0.176776i
$$560$$ −2.21206 + 1.42160i −0.0934766 + 0.0600738i
$$561$$ 3.33102 + 7.29392i 0.140636 + 0.307950i
$$562$$ −24.6800 + 7.24670i −1.04106 + 0.305683i
$$563$$ −17.6250 + 20.3403i −0.742804 + 0.857242i −0.993850 0.110733i $$-0.964680\pi$$
0.251046 + 0.967975i $$0.419226\pi$$
$$564$$ −2.29937 + 2.65362i −0.0968210 + 0.111737i
$$565$$ −8.86738 + 2.60370i −0.373053 + 0.109538i
$$566$$ −10.3298 22.6191i −0.434193 0.950750i
$$567$$ −2.21206 + 1.42160i −0.0928978 + 0.0597018i
$$568$$ −15.1001 4.43378i −0.633585 0.186037i
$$569$$ 4.85262 + 33.7507i 0.203433 + 1.41490i 0.794001 + 0.607917i $$0.207995\pi$$
−0.590568 + 0.806988i $$0.701096\pi$$
$$570$$ 0.645777 1.41405i 0.0270486 0.0592282i
$$571$$ 0.814216 5.66300i 0.0340739 0.236989i −0.965666 0.259786i $$-0.916348\pi$$
0.999740 + 0.0227968i $$0.00725708\pi$$
$$572$$ −9.44117 6.06747i −0.394755 0.253694i
$$573$$ −8.77580 10.1278i −0.366614 0.423095i
$$574$$ −20.3306 −0.848581
$$575$$ −4.77203 0.477227i −0.199007 0.0199017i
$$576$$ 1.00000 0.0416667
$$577$$ 6.50865 + 7.51138i 0.270959 + 0.312703i 0.874879 0.484342i $$-0.160941\pi$$
−0.603920 + 0.797045i $$0.706395\pi$$
$$578$$ −11.7789 7.56986i −0.489939 0.314865i
$$579$$ −1.75574 + 12.2114i −0.0729660 + 0.507490i
$$580$$ −1.97240 + 4.31896i −0.0818996 + 0.179335i
$$581$$ 2.74858 + 19.1168i 0.114030 + 0.793099i
$$582$$ −2.15429 0.632555i −0.0892980 0.0262203i
$$583$$ 32.1586 20.6671i 1.33187 0.855942i
$$584$$ 3.84492 + 8.41919i 0.159104 + 0.348389i
$$585$$ −2.32534 + 0.682783i −0.0961411 + 0.0282296i
$$586$$ −15.7320 + 18.1557i −0.649884 + 0.750006i
$$587$$ −9.32204 + 10.7582i −0.384762 + 0.444039i −0.914783 0.403946i $$-0.867639\pi$$
0.530021 + 0.847984i $$0.322184\pi$$
$$588$$ 0.0823521 0.0241807i 0.00339614 0.000997197i
$$589$$ 0.390043 + 0.854075i 0.0160714 + 0.0351915i
$$590$$ 2.87443 1.84728i 0.118338 0.0760515i
$$591$$ 13.9884 + 4.10735i 0.575404 + 0.168954i
$$592$$ 0.327323 + 2.27658i 0.0134529 + 0.0935669i
$$593$$ 4.41519 9.66792i 0.181310 0.397014i −0.797053 0.603910i $$-0.793609\pi$$
0.978363 + 0.206896i $$0.0663361\pi$$
$$594$$ 0.659028 4.58364i 0.0270402 0.188069i
$$595$$ 3.83035 + 2.46162i 0.157029 + 0.100917i
$$596$$ 1.27596 + 1.47253i 0.0522652 + 0.0603172i
$$597$$ −16.8486 −0.689566
$$598$$ 11.4224 2.14854i 0.467099 0.0878604i
$$599$$ 14.9745 0.611843 0.305921 0.952057i $$-0.401036\pi$$
0.305921 + 0.952057i $$0.401036\pi$$
$$600$$ −0.654861 0.755750i −0.0267346 0.0308533i
$$601$$ 21.1093 + 13.5661i 0.861065 + 0.553373i 0.895008 0.446051i $$-0.147170\pi$$
−0.0339425 + 0.999424i $$0.510806\pi$$
$$602$$ 2.29070 15.9321i 0.0933618 0.649346i
$$603$$ 0.0150401 0.0329333i 0.000612482 0.00134115i
$$604$$ −2.78835 19.3934i −0.113456 0.789107i
$$605$$ −10.0210 2.94243i −0.407411 0.119627i
$$606$$ −9.10508 + 5.85148i −0.369869 + 0.237700i
$$607$$ −9.49200 20.7846i −0.385268 0.843620i −0.998554 0.0537586i $$-0.982880\pi$$
0.613286 0.789861i $$-0.289847\pi$$
$$608$$ −1.49156 + 0.437963i −0.0604909 + 0.0177617i
$$609$$ −8.17585 + 9.43543i −0.331302 + 0.382343i
$$610$$ −1.20053 + 1.38549i −0.0486081 + 0.0560967i
$$611$$ −8.16483 + 2.39741i −0.330314 + 0.0969889i
$$612$$ −0.719323 1.57510i −0.0290769 0.0636696i
$$613$$ 6.59158 4.23615i 0.266231 0.171096i −0.400714 0.916203i $$-0.631238\pi$$
0.666945 + 0.745107i $$0.267601\pi$$
$$614$$ −32.5586 9.56005i −1.31396 0.385812i
$$615$$ −1.10035 7.65307i −0.0443702 0.308602i
$$616$$ 5.05831 11.0762i 0.203805 0.446271i
$$617$$ 4.24930 29.5545i 0.171070 1.18982i −0.705558 0.708652i $$-0.749304\pi$$
0.876628 0.481168i $$-0.159787\pi$$
$$618$$ 9.16391 + 5.88929i 0.368627 + 0.236902i
$$619$$ 27.3371 + 31.5487i 1.09877 + 1.26805i 0.960688 + 0.277629i $$0.0895486\pi$$
0.138083 + 0.990421i $$0.455906\pi$$
$$620$$ 0.603990 0.0242568
$$621$$ 2.76435 + 3.91898i 0.110930 + 0.157263i
$$622$$ 12.9918 0.520923
$$623$$ 12.3109 + 14.2076i 0.493226 + 0.569213i
$$624$$ 2.03879 + 1.31025i 0.0816169 + 0.0524520i
$$625$$ −0.142315 + 0.989821i −0.00569259 + 0.0395929i
$$626$$ −9.11583 + 19.9609i −0.364342 + 0.797797i
$$627$$ 1.02448 + 7.12542i 0.0409138 + 0.284562i
$$628$$ −10.6685 3.13256i −0.425720 0.125003i
$$629$$ 3.35039 2.15316i 0.133589 0.0858523i
$$630$$ −1.09233 2.39186i −0.0435193 0.0952940i
$$631$$ −30.2231 + 8.87432i −1.20316 + 0.353281i −0.821062 0.570839i $$-0.806618\pi$$
−0.382102 + 0.924120i $$0.624800\pi$$
$$632$$ −2.76449 + 3.19039i −0.109966 + 0.126907i
$$633$$ −2.51481 + 2.90225i −0.0999547 + 0.115354i
$$634$$ 3.51455 1.03196i 0.139580 0.0409845i
$$635$$ 5.45051 + 11.9349i 0.216297 + 0.473624i
$$636$$ −6.94454 + 4.46298i −0.275369 + 0.176969i
$$637$$ 0.199581 + 0.0586024i 0.00790770 + 0.00232191i
$$638$$ −3.12908 21.7633i −0.123882 0.861616i
$$639$$ 6.53762 14.3154i 0.258624 0.566308i
$$640$$ −0.142315 + 0.989821i −0.00562549 + 0.0391261i
$$641$$ 33.6762 + 21.6424i 1.33013 + 0.854823i 0.996142 0.0877545i $$-0.0279691\pi$$
0.333988 + 0.942577i $$0.391605\pi$$
$$642$$ 1.85179 + 2.13708i 0.0730843 + 0.0843438i
$$643$$ 22.3075 0.879724 0.439862 0.898065i $$-0.355027\pi$$
0.439862 + 0.898065i $$0.355027\pi$$
$$644$$ 4.07115 + 11.9353i 0.160426 + 0.470317i
$$645$$ 6.12135 0.241028
$$646$$ 1.76275 + 2.03432i 0.0693545 + 0.0800394i
$$647$$ −16.3984 10.5386i −0.644687 0.414315i 0.177034 0.984205i $$-0.443350\pi$$
−0.821721 + 0.569889i $$0.806986\pi$$
$$648$$ −0.142315 + 0.989821i −0.00559065 + 0.0388839i
$$649$$ −6.57295 + 14.3928i −0.258011 + 0.564965i
$$650$$ −0.344902 2.39885i −0.0135282 0.0940905i
$$651$$ 1.52385 + 0.447442i 0.0597243 + 0.0175366i
$$652$$ 8.71448 5.60046i 0.341285 0.219331i
$$653$$ 7.76331 + 16.9993i 0.303802 + 0.665233i 0.998539 0.0540301i $$-0.0172067\pi$$
−0.694737 + 0.719263i $$0.744479\pi$$
$$654$$ −10.8448 + 3.18432i −0.424065 + 0.124517i
$$655$$ 0.811170 0.936140i 0.0316950 0.0365780i
$$656$$ −5.06323 + 5.84328i −0.197686 + 0.228142i
$$657$$ −8.88069 + 2.60760i −0.346469 + 0.101732i
$$658$$ −3.83542 8.39839i −0.149520 0.327403i
$$659$$ 42.5663 27.3557i 1.65815 1.06563i 0.737407 0.675448i $$-0.236050\pi$$
0.920739 0.390178i $$-0.127587\pi$$
$$660$$ 4.44319 + 1.30464i 0.172951 + 0.0507830i
$$661$$ 6.29657 + 43.7936i 0.244908 + 1.70337i 0.626811 + 0.779171i $$0.284360\pi$$
−0.381903 + 0.924203i $$0.624731\pi$$
$$662$$ 4.54633 9.95507i 0.176698 0.386915i
$$663$$ 0.597224 4.15379i 0.0231943 0.161320i
$$664$$ 6.17896 + 3.97097i 0.239790 + 0.154104i
$$665$$ 2.67682 + 3.08922i 0.103803 + 0.119795i
$$666$$ −2.29999 −0.0891229
$$667$$ 17.8359 + 14.1559i 0.690608 + 0.548118i
$$668$$ −18.1995 −0.704161
$$669$$ 13.5748 + 15.6662i 0.524833 + 0.605690i
$$670$$ 0.0304577 + 0.0195740i 0.00117668 + 0.000756208i
$$671$$ 1.20817 8.40301i 0.0466409 0.324395i
$$672$$ −1.09233 + 2.39186i −0.0421374 + 0.0922680i
$$673$$ −2.46522 17.1460i −0.0950271 0.660928i −0.980541 0.196315i $$-0.937102\pi$$
0.885514 0.464613i $$-0.153807\pi$$
$$674$$ 24.2418 + 7.11803i 0.933758 + 0.274176i
$$675$$ 0.841254 0.540641i 0.0323799 0.0208093i
$$676$$ −2.96049 6.48257i −0.113865 0.249330i
$$677$$ 24.1309 7.08548i 0.927427 0.272317i 0.217068 0.976156i $$-0.430351\pi$$
0.710359 + 0.703839i $$0.248532\pi$$
$$678$$ −6.05205 + 6.98443i −0.232427 + 0.268236i
$$679$$ 3.86617 4.46179i 0.148370 0.171228i
$$680$$ 1.66144 0.487842i 0.0637132 0.0187079i
$$681$$ −0.740429 1.62131i −0.0283733 0.0621288i
$$682$$ −2.35294 + 1.51214i −0.0900986 + 0.0579029i
$$683$$ −6.35447 1.86584i −0.243147 0.0713944i 0.157888 0.987457i $$-0.449531\pi$$
−0.401035 + 0.916063i $$0.631350\pi$$
$$684$$ −0.221233 1.53871i −0.00845906 0.0588341i
$$685$$ −4.58180 + 10.0327i −0.175062 + 0.383331i
$$686$$ −2.65162 + 18.4424i −0.101239 + 0.704134i
$$687$$ −1.86036 1.19558i −0.0709770 0.0456142i
$$688$$ −4.00863 4.62621i −0.152828 0.176373i
$$689$$ −20.0061 −0.762171
$$690$$ −4.27249 + 2.17848i −0.162651 + 0.0829335i
$$691$$ 3.78464 0.143974 0.0719872 0.997406i $$-0.477066\pi$$
0.0719872 + 0.997406i $$0.477066\pi$$
$$692$$ −15.7674 18.1965i −0.599386 0.691729i
$$693$$ 10.2435 + 6.58313i 0.389120 + 0.250072i
$$694$$ 1.35664 9.43562i 0.0514972 0.358171i
$$695$$ 0.750059 1.64240i 0.0284514 0.0622998i
$$696$$ 0.675716 + 4.69971i 0.0256129 + 0.178142i
$$697$$ 12.8458 + 3.77188i 0.486571 + 0.142870i
$$698$$ −17.3448 + 11.1468i −0.656509 + 0.421913i
$$699$$ −8.66371 18.9709i −0.327692 0.717545i
$$700$$ 2.52297 0.740810i 0.0953593 0.0280000i
$$701$$ −9.86836 + 11.3887i −0.372723 + 0.430145i −0.910862 0.412711i $$-0.864582\pi$$
0.538139 + 0.842856i $$0.319127\pi$$
$$702$$ −1.58706 + 1.83157i −0.0598999 + 0.0691281i
$$703$$ 3.43059 1.00731i 0.129387 0.0379915i
$$704$$ −1.92369 4.21230i −0.0725019 0.158757i
$$705$$ 2.95384 1.89832i 0.111248 0.0714948i
$$706$$ −20.7044 6.07935i −0.779219 0.228799i
$$707$$ −4.05021 28.1698i −0.152324 1.05943i
$$708$$ 1.41941 3.10807i 0.0533446 0.116808i
$$709$$ 5.04581 35.0944i 0.189499 1.31800i −0.643808 0.765187i $$-0.722646\pi$$
0.833307 0.552810i $$-0.186445\pi$$
$$710$$ 13.2393 + 8.50836i 0.496861 + 0.319313i
$$711$$ −2.76449 3.19039i −0.103677 0.119649i
$$712$$ 7.14943 0.267936
$$713$$ 0.695495 2.81190i 0.0260465 0.105307i
$$714$$ 4.55315 0.170397
$$715$$ 7.34933 + 8.48158i 0.274849 + 0.317193i
$$716$$ −9.01371 5.79276i −0.336858 0.216485i
$$717$$ 4.07439 28.3380i 0.152161 1.05830i
$$718$$ −10.2871 + 22.5257i −0.383913 + 0.840652i
$$719$$ −0.900112 6.26041i −0.0335685 0.233474i 0.966129 0.258059i $$-0.0830828\pi$$
−0.999698 + 0.0245846i $$0.992174\pi$$
$$720$$ −0.959493 0.281733i −0.0357582 0.0104996i
$$721$$ −24.0963 + 15.4858i −0.897394 + 0.576720i
$$722$$ −6.88900 15.0848i −0.256382 0.561399i
$$723$$ −14.8665 + 4.36520i −0.552892 + 0.162344i
$$724$$ 1.94118 2.24024i 0.0721434 0.0832580i
$$725$$ 3.10930 3.58832i 0.115477 0.133267i
$$726$$ −10.0210 + 2.94243i −0.371914 + 0.109204i
$$727$$ −10.1097 22.1371i −0.374947 0.821019i −0.999208 0.0398026i $$-0.987327\pi$$
0.624261 0.781216i $$-0.285400\pi$$
$$728$$ −5.36096 + 3.44528i −0.198690 + 0.127691i
$$729$$ −0.959493 0.281733i −0.0355368 0.0104345i
$$730$$ −1.31721 9.16139i −0.0487521 0.339078i
$$731$$ −4.40323 + 9.64173i −0.162859 + 0.356612i
$$732$$ −0.260900 + 1.81460i −0.00964316 + 0.0670696i
$$733$$ −21.1151 13.5698i −0.779903 0.501213i 0.0890984 0.996023i $$-0.471601\pi$$
−0.869001 + 0.494810i $$0.835238\pi$$
$$734$$ −0.497584 0.574242i −0.0183661 0.0211957i
$$735$$ −0.0858287 −0.00316584
$$736$$ 4.44428 + 1.80233i 0.163818 + 0.0664348i
$$737$$ −0.167658 −0.00617575
$$738$$ −5.06323 5.84328i −0.186380 0.215094i
$$739$$ 16.6576 + 10.7052i 0.612759 + 0.393796i 0.809891 0.586581i $$-0.199526\pi$$
−0.197132 + 0.980377i $$0.563163\pi$$
$$740$$ 0.327323 2.27658i 0.0120326 0.0836888i
$$741$$ 1.56505 3.42698i 0.0574935 0.125893i
$$742$$ −3.08913 21.4854i −0.113406 0.788754i
$$743$$ −3.57025 1.04832i −0.130980 0.0384591i 0.215586 0.976485i $$-0.430834\pi$$
−0.346565 + 0.938026i $$0.612652\pi$$
$$744$$ 0.508109 0.326542i 0.0186282 0.0119716i
$$745$$ −0.809410 1.77236i −0.0296545 0.0649343i
$$746$$ 0.569260 0.167150i 0.0208421 0.00611978i
$$747$$ −4.80991 + 5.55094i −0.175986 + 0.203098i
$$748$$ −5.25103 + 6.06001i −0.191997 + 0.221576i
$$749$$ −7.13435 + 2.09483i −0.260684 + 0.0765436i
$$750$$ 0.415415 + 0.909632i 0.0151688 + 0.0332151i
$$751$$ −12.6366 + 8.12104i −0.461116 + 0.296341i −0.750498 0.660873i $$-0.770186\pi$$
0.289383 + 0.957214i $$0.406550\pi$$
$$752$$ −3.36901 0.989230i −0.122855 0.0360735i
$$753$$ 0.518829 + 3.60854i 0.0189072 + 0.131502i
$$754$$ −4.78015 + 10.4671i −0.174083 + 0.381188i
$$755$$ −2.78835 + 19.3934i −0.101479 + 0.705799i
$$756$$ −2.21206 1.42160i −0.0804519 0.0517033i
$$757$$ −4.32002 4.98557i −0.157014 0.181204i 0.671792 0.740740i $$-0.265525\pi$$
−0.828806 + 0.559536i $$0.810979\pi$$
$$758$$ 18.5400 0.673404
$$759$$ 11.1901 19.1832i 0.406176 0.696305i
$$760$$ 1.55453 0.0563889
$$761$$ 1.32332 + 1.52719i 0.0479702 + 0.0553606i 0.779228 0.626741i $$-0.215612\pi$$
−0.731257 + 0.682102i $$0.761066\pi$$
$$762$$ 11.0378 + 7.09355i 0.399857 + 0.256972i
$$763$$ 4.22960 29.4175i 0.153122 1.06499i
$$764$$ 5.56698 12.1900i 0.201406 0.441018i
$$765$$ 0.246429 + 1.71395i 0.00890966 + 0.0619681i
$$766$$ 32.4743 + 9.53532i 1.17334 + 0.344525i
$$767$$ 6.96622 4.47692i 0.251536 0.161652i
$$768$$ 0.415415 + 0.909632i 0.0149900 + 0.0328235i
$$769$$ 9.15955 2.68949i 0.330302 0.0969854i −0.112377 0.993666i $$-0.535846\pi$$
0.442679 + 0.896680i $$0.354028\pi$$
$$770$$ −7.97393 + 9.20241i −0.287360 + 0.331632i
$$771$$ 11.5683 13.3506i 0.416624 0.480809i
$$772$$ −11.8373 + 3.47574i −0.426033 + 0.125094i
$$773$$ −17.2728 37.8221i −0.621258 1.36037i