Properties

Label 690.2.m.g.151.1
Level $690$
Weight $2$
Character 690.151
Analytic conductor $5.510$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 151.1
Character \(\chi\) \(=\) 690.151
Dual form 690.2.m.g.361.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.654861 - 0.755750i) q^{2} +(0.841254 + 0.540641i) q^{3} +(-0.142315 + 0.989821i) q^{4} +(0.415415 - 0.909632i) q^{5} +(-0.142315 - 0.989821i) q^{6} +(-2.83591 - 0.832699i) q^{7} +(0.841254 - 0.540641i) q^{8} +(0.415415 + 0.909632i) q^{9} +O(q^{10})\) \(q+(-0.654861 - 0.755750i) q^{2} +(0.841254 + 0.540641i) q^{3} +(-0.142315 + 0.989821i) q^{4} +(0.415415 - 0.909632i) q^{5} +(-0.142315 - 0.989821i) q^{6} +(-2.83591 - 0.832699i) q^{7} +(0.841254 - 0.540641i) q^{8} +(0.415415 + 0.909632i) q^{9} +(-0.959493 + 0.281733i) q^{10} +(-1.08040 + 1.24684i) q^{11} +(-0.654861 + 0.755750i) q^{12} +(6.41701 - 1.88420i) q^{13} +(1.22782 + 2.68854i) q^{14} +(0.841254 - 0.540641i) q^{15} +(-0.959493 - 0.281733i) q^{16} +(-1.04227 - 7.24915i) q^{17} +(0.415415 - 0.909632i) q^{18} +(0.0331744 - 0.230733i) q^{19} +(0.841254 + 0.540641i) q^{20} +(-1.93553 - 2.23372i) q^{21} +1.64981 q^{22} +(4.77970 + 0.393012i) q^{23} +1.00000 q^{24} +(-0.654861 - 0.755750i) q^{25} +(-5.62623 - 3.61576i) q^{26} +(-0.142315 + 0.989821i) q^{27} +(1.22782 - 2.68854i) q^{28} +(-1.22302 - 8.50631i) q^{29} +(-0.959493 - 0.281733i) q^{30} +(0.547910 - 0.352120i) q^{31} +(0.415415 + 0.909632i) q^{32} +(-1.58298 + 0.464805i) q^{33} +(-4.79600 + 5.53488i) q^{34} +(-1.93553 + 2.23372i) q^{35} +(-0.959493 + 0.281733i) q^{36} +(2.22961 + 4.88215i) q^{37} +(-0.196101 + 0.126026i) q^{38} +(6.41701 + 1.88420i) q^{39} +(-0.142315 - 0.989821i) q^{40} +(3.35643 - 7.34956i) q^{41} +(-0.420631 + 2.92555i) q^{42} +(2.11612 + 1.35995i) q^{43} +(-1.08040 - 1.24684i) q^{44} +1.00000 q^{45} +(-2.83302 - 3.86962i) q^{46} +3.80565 q^{47} +(-0.654861 - 0.755750i) q^{48} +(1.46023 + 0.938434i) q^{49} +(-0.142315 + 0.989821i) q^{50} +(3.04237 - 6.66187i) q^{51} +(0.951790 + 6.61984i) q^{52} +(-0.0131435 - 0.00385927i) q^{53} +(0.841254 - 0.540641i) q^{54} +(0.685355 + 1.50072i) q^{55} +(-2.83591 + 0.832699i) q^{56} +(0.152652 - 0.176170i) q^{57} +(-5.62773 + 6.49475i) q^{58} +(6.55130 - 1.92363i) q^{59} +(0.415415 + 0.909632i) q^{60} +(-9.37563 + 6.02535i) q^{61} +(-0.624919 - 0.183493i) q^{62} +(-0.420631 - 2.92555i) q^{63} +(0.415415 - 0.909632i) q^{64} +(0.951790 - 6.61984i) q^{65} +(1.38791 + 0.891954i) q^{66} +(0.687452 + 0.793361i) q^{67} +7.32370 q^{68} +(3.80846 + 2.91472i) q^{69} +2.95564 q^{70} +(1.76802 + 2.04040i) q^{71} +(0.841254 + 0.540641i) q^{72} +(1.13271 - 7.87819i) q^{73} +(2.22961 - 4.88215i) q^{74} +(-0.142315 - 0.989821i) q^{75} +(0.223663 + 0.0656735i) q^{76} +(4.10215 - 2.63629i) q^{77} +(-2.77826 - 6.08354i) q^{78} +(-6.77960 + 1.99067i) q^{79} +(-0.654861 + 0.755750i) q^{80} +(-0.654861 + 0.755750i) q^{81} +(-7.75242 + 2.27632i) q^{82} +(-1.45295 - 3.18151i) q^{83} +(2.48644 - 1.59794i) q^{84} +(-7.02704 - 2.06332i) q^{85} +(-0.357984 - 2.48983i) q^{86} +(3.56999 - 7.81718i) q^{87} +(-0.234792 + 1.63302i) q^{88} +(-5.25139 - 3.37487i) q^{89} +(-0.654861 - 0.755750i) q^{90} -19.7670 q^{91} +(-1.06923 + 4.67512i) q^{92} +0.651301 q^{93} +(-2.49217 - 2.87612i) q^{94} +(-0.196101 - 0.126026i) q^{95} +(-0.142315 + 0.989821i) q^{96} +(-2.63137 + 5.76190i) q^{97} +(-0.247027 - 1.71811i) q^{98} +(-1.58298 - 0.464805i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30q - 3q^{2} - 3q^{3} - 3q^{4} - 3q^{5} - 3q^{6} - 8q^{7} - 3q^{8} - 3q^{9} + O(q^{10}) \) \( 30q - 3q^{2} - 3q^{3} - 3q^{4} - 3q^{5} - 3q^{6} - 8q^{7} - 3q^{8} - 3q^{9} - 3q^{10} + 8q^{11} - 3q^{12} - 5q^{13} - 8q^{14} - 3q^{15} - 3q^{16} + 4q^{17} - 3q^{18} + 6q^{19} - 3q^{20} + 3q^{21} + 8q^{22} + q^{23} + 30q^{24} - 3q^{25} - 5q^{26} - 3q^{27} - 8q^{28} - 10q^{29} - 3q^{30} - 10q^{31} - 3q^{32} - 14q^{33} - 7q^{34} + 3q^{35} - 3q^{36} - 12q^{37} - 5q^{38} - 5q^{39} - 3q^{40} + 5q^{41} + 3q^{42} + 2q^{43} + 8q^{44} + 30q^{45} - 21q^{46} + 96q^{47} - 3q^{48} - 43q^{49} - 3q^{50} + 15q^{51} - 16q^{52} + 12q^{53} - 3q^{54} + 8q^{55} - 8q^{56} + 17q^{57} + q^{58} - 9q^{59} - 3q^{60} + q^{61} - 32q^{62} + 3q^{63} - 3q^{64} - 16q^{65} - 3q^{66} - 28q^{67} + 4q^{68} + 23q^{69} + 14q^{70} + 3q^{71} - 3q^{72} - 27q^{73} - 12q^{74} - 3q^{75} - 16q^{76} + 47q^{77} + 6q^{78} + 2q^{79} - 3q^{80} - 3q^{81} + 27q^{82} + 11q^{83} + 3q^{84} - 7q^{85} + 2q^{86} - 32q^{87} - 3q^{88} + 25q^{89} - 3q^{90} - 90q^{91} - 10q^{92} + 56q^{93} - 25q^{94} - 5q^{95} - 3q^{96} - 7q^{97} - 32q^{98} - 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{7}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.654861 0.755750i −0.463056 0.534396i
\(3\) 0.841254 + 0.540641i 0.485698 + 0.312139i
\(4\) −0.142315 + 0.989821i −0.0711574 + 0.494911i
\(5\) 0.415415 0.909632i 0.185779 0.406800i
\(6\) −0.142315 0.989821i −0.0580998 0.404093i
\(7\) −2.83591 0.832699i −1.07187 0.314731i −0.302250 0.953229i \(-0.597738\pi\)
−0.769623 + 0.638498i \(0.779556\pi\)
\(8\) 0.841254 0.540641i 0.297428 0.191145i
\(9\) 0.415415 + 0.909632i 0.138472 + 0.303211i
\(10\) −0.959493 + 0.281733i −0.303418 + 0.0890917i
\(11\) −1.08040 + 1.24684i −0.325751 + 0.375937i −0.894877 0.446314i \(-0.852737\pi\)
0.569125 + 0.822251i \(0.307282\pi\)
\(12\) −0.654861 + 0.755750i −0.189042 + 0.218166i
\(13\) 6.41701 1.88420i 1.77976 0.522584i 0.784524 0.620098i \(-0.212907\pi\)
0.995234 + 0.0975138i \(0.0310890\pi\)
\(14\) 1.22782 + 2.68854i 0.328147 + 0.718543i
\(15\) 0.841254 0.540641i 0.217211 0.139593i
\(16\) −0.959493 0.281733i −0.239873 0.0704331i
\(17\) −1.04227 7.24915i −0.252788 1.75818i −0.581310 0.813682i \(-0.697460\pi\)
0.328523 0.944496i \(-0.393449\pi\)
\(18\) 0.415415 0.909632i 0.0979143 0.214402i
\(19\) 0.0331744 0.230733i 0.00761073 0.0529338i −0.985662 0.168731i \(-0.946033\pi\)
0.993273 + 0.115797i \(0.0369422\pi\)
\(20\) 0.841254 + 0.540641i 0.188110 + 0.120891i
\(21\) −1.93553 2.23372i −0.422367 0.487438i
\(22\) 1.64981 0.351740
\(23\) 4.77970 + 0.393012i 0.996637 + 0.0819486i
\(24\) 1.00000 0.204124
\(25\) −0.654861 0.755750i −0.130972 0.151150i
\(26\) −5.62623 3.61576i −1.10340 0.709109i
\(27\) −0.142315 + 0.989821i −0.0273885 + 0.190491i
\(28\) 1.22782 2.68854i 0.232035 0.508086i
\(29\) −1.22302 8.50631i −0.227110 1.57958i −0.710192 0.704008i \(-0.751392\pi\)
0.483083 0.875575i \(-0.339517\pi\)
\(30\) −0.959493 0.281733i −0.175179 0.0514371i
\(31\) 0.547910 0.352120i 0.0984075 0.0632426i −0.490512 0.871435i \(-0.663190\pi\)
0.588919 + 0.808192i \(0.299554\pi\)
\(32\) 0.415415 + 0.909632i 0.0734357 + 0.160802i
\(33\) −1.58298 + 0.464805i −0.275561 + 0.0809121i
\(34\) −4.79600 + 5.53488i −0.822508 + 0.949224i
\(35\) −1.93553 + 2.23372i −0.327164 + 0.377568i
\(36\) −0.959493 + 0.281733i −0.159915 + 0.0469554i
\(37\) 2.22961 + 4.88215i 0.366545 + 0.802621i 0.999594 + 0.0285092i \(0.00907600\pi\)
−0.633049 + 0.774112i \(0.718197\pi\)
\(38\) −0.196101 + 0.126026i −0.0318118 + 0.0204442i
\(39\) 6.41701 + 1.88420i 1.02754 + 0.301714i
\(40\) −0.142315 0.989821i −0.0225020 0.156505i
\(41\) 3.35643 7.34956i 0.524187 1.14781i −0.443643 0.896203i \(-0.646314\pi\)
0.967830 0.251605i \(-0.0809584\pi\)
\(42\) −0.420631 + 2.92555i −0.0649047 + 0.451422i
\(43\) 2.11612 + 1.35995i 0.322705 + 0.207390i 0.691956 0.721940i \(-0.256749\pi\)
−0.369251 + 0.929330i \(0.620386\pi\)
\(44\) −1.08040 1.24684i −0.162876 0.187969i
\(45\) 1.00000 0.149071
\(46\) −2.83302 3.86962i −0.417706 0.570545i
\(47\) 3.80565 0.555111 0.277555 0.960710i \(-0.410476\pi\)
0.277555 + 0.960710i \(0.410476\pi\)
\(48\) −0.654861 0.755750i −0.0945210 0.109083i
\(49\) 1.46023 + 0.938434i 0.208605 + 0.134062i
\(50\) −0.142315 + 0.989821i −0.0201264 + 0.139982i
\(51\) 3.04237 6.66187i 0.426018 0.932848i
\(52\) 0.951790 + 6.61984i 0.131990 + 0.918007i
\(53\) −0.0131435 0.00385927i −0.00180540 0.000530112i 0.280830 0.959758i \(-0.409390\pi\)
−0.282635 + 0.959227i \(0.591209\pi\)
\(54\) 0.841254 0.540641i 0.114480 0.0735719i
\(55\) 0.685355 + 1.50072i 0.0924133 + 0.202357i
\(56\) −2.83591 + 0.832699i −0.378965 + 0.111274i
\(57\) 0.152652 0.176170i 0.0202192 0.0233342i
\(58\) −5.62773 + 6.49475i −0.738957 + 0.852802i
\(59\) 6.55130 1.92363i 0.852906 0.250436i 0.174077 0.984732i \(-0.444306\pi\)
0.678829 + 0.734296i \(0.262488\pi\)
\(60\) 0.415415 + 0.909632i 0.0536298 + 0.117433i
\(61\) −9.37563 + 6.02535i −1.20043 + 0.771467i −0.979030 0.203717i \(-0.934698\pi\)
−0.221396 + 0.975184i \(0.571061\pi\)
\(62\) −0.624919 0.183493i −0.0793648 0.0233036i
\(63\) −0.420631 2.92555i −0.0529945 0.368585i
\(64\) 0.415415 0.909632i 0.0519269 0.113704i
\(65\) 0.951790 6.61984i 0.118055 0.821091i
\(66\) 1.38791 + 0.891954i 0.170840 + 0.109792i
\(67\) 0.687452 + 0.793361i 0.0839856 + 0.0969245i 0.796187 0.605051i \(-0.206847\pi\)
−0.712201 + 0.701975i \(0.752302\pi\)
\(68\) 7.32370 0.888129
\(69\) 3.80846 + 2.91472i 0.458485 + 0.350892i
\(70\) 2.95564 0.353266
\(71\) 1.76802 + 2.04040i 0.209825 + 0.242151i 0.850901 0.525327i \(-0.176057\pi\)
−0.641075 + 0.767478i \(0.721511\pi\)
\(72\) 0.841254 + 0.540641i 0.0991427 + 0.0637151i
\(73\) 1.13271 7.87819i 0.132574 0.922072i −0.809608 0.586971i \(-0.800320\pi\)
0.942182 0.335101i \(-0.108771\pi\)
\(74\) 2.22961 4.88215i 0.259186 0.567539i
\(75\) −0.142315 0.989821i −0.0164331 0.114295i
\(76\) 0.223663 + 0.0656735i 0.0256559 + 0.00753326i
\(77\) 4.10215 2.63629i 0.467483 0.300433i
\(78\) −2.77826 6.08354i −0.314576 0.688826i
\(79\) −6.77960 + 1.99067i −0.762764 + 0.223968i −0.639903 0.768456i \(-0.721025\pi\)
−0.122862 + 0.992424i \(0.539207\pi\)
\(80\) −0.654861 + 0.755750i −0.0732157 + 0.0844954i
\(81\) −0.654861 + 0.755750i −0.0727623 + 0.0839722i
\(82\) −7.75242 + 2.27632i −0.856112 + 0.251377i
\(83\) −1.45295 3.18151i −0.159482 0.349216i 0.812976 0.582298i \(-0.197846\pi\)
−0.972457 + 0.233082i \(0.925119\pi\)
\(84\) 2.48644 1.59794i 0.271293 0.174349i
\(85\) −7.02704 2.06332i −0.762189 0.223799i
\(86\) −0.357984 2.48983i −0.0386024 0.268485i
\(87\) 3.56999 7.81718i 0.382743 0.838090i
\(88\) −0.234792 + 1.63302i −0.0250289 + 0.174080i
\(89\) −5.25139 3.37487i −0.556647 0.357735i 0.231872 0.972746i \(-0.425515\pi\)
−0.788518 + 0.615011i \(0.789151\pi\)
\(90\) −0.654861 0.755750i −0.0690284 0.0796630i
\(91\) −19.7670 −2.07215
\(92\) −1.06923 + 4.67512i −0.111475 + 0.487415i
\(93\) 0.651301 0.0675368
\(94\) −2.49217 2.87612i −0.257048 0.296649i
\(95\) −0.196101 0.126026i −0.0201195 0.0129300i
\(96\) −0.142315 + 0.989821i −0.0145249 + 0.101023i
\(97\) −2.63137 + 5.76190i −0.267175 + 0.585032i −0.994903 0.100834i \(-0.967849\pi\)
0.727728 + 0.685866i \(0.240576\pi\)
\(98\) −0.247027 1.71811i −0.0249535 0.173556i
\(99\) −1.58298 0.464805i −0.159095 0.0467146i
\(100\) 0.841254 0.540641i 0.0841254 0.0540641i
\(101\) −3.50145 7.66710i −0.348407 0.762905i −0.999991 0.00432828i \(-0.998622\pi\)
0.651584 0.758577i \(-0.274105\pi\)
\(102\) −7.02704 + 2.06332i −0.695780 + 0.204300i
\(103\) 0.629476 0.726454i 0.0620241 0.0715796i −0.723890 0.689916i \(-0.757648\pi\)
0.785914 + 0.618336i \(0.212193\pi\)
\(104\) 4.37966 5.05439i 0.429461 0.495624i
\(105\) −2.83591 + 0.832699i −0.276757 + 0.0812631i
\(106\) 0.00569050 + 0.0124605i 0.000552711 + 0.00121027i
\(107\) −9.12882 + 5.86674i −0.882517 + 0.567159i −0.901557 0.432660i \(-0.857575\pi\)
0.0190407 + 0.999819i \(0.493939\pi\)
\(108\) −0.959493 0.281733i −0.0923273 0.0271097i
\(109\) 1.60511 + 11.1638i 0.153742 + 1.06930i 0.909876 + 0.414881i \(0.136177\pi\)
−0.756134 + 0.654417i \(0.772914\pi\)
\(110\) 0.685355 1.50072i 0.0653461 0.143088i
\(111\) −0.763829 + 5.31255i −0.0724994 + 0.504244i
\(112\) 2.48644 + 1.59794i 0.234946 + 0.150991i
\(113\) 9.61853 + 11.1004i 0.904835 + 1.04424i 0.998815 + 0.0486611i \(0.0154954\pi\)
−0.0939804 + 0.995574i \(0.529959\pi\)
\(114\) −0.233106 −0.0218323
\(115\) 2.34306 4.18451i 0.218491 0.390207i
\(116\) 8.59378 0.797913
\(117\) 4.37966 + 5.05439i 0.404899 + 0.467279i
\(118\) −5.74397 3.69143i −0.528776 0.339823i
\(119\) −3.08057 + 21.4259i −0.282396 + 1.96410i
\(120\) 0.415415 0.909632i 0.0379220 0.0830377i
\(121\) 1.17810 + 8.19387i 0.107100 + 0.744897i
\(122\) 10.6934 + 3.13986i 0.968134 + 0.284270i
\(123\) 6.79708 4.36822i 0.612872 0.393869i
\(124\) 0.270560 + 0.592445i 0.0242970 + 0.0532031i
\(125\) −0.959493 + 0.281733i −0.0858197 + 0.0251989i
\(126\) −1.93553 + 2.23372i −0.172431 + 0.198996i
\(127\) 3.05101 3.52105i 0.270733 0.312443i −0.604060 0.796938i \(-0.706451\pi\)
0.874794 + 0.484496i \(0.160997\pi\)
\(128\) −0.959493 + 0.281733i −0.0848080 + 0.0249019i
\(129\) 1.04495 + 2.28812i 0.0920027 + 0.201458i
\(130\) −5.62623 + 3.61576i −0.493453 + 0.317123i
\(131\) −19.2773 5.66031i −1.68426 0.494544i −0.707113 0.707100i \(-0.750003\pi\)
−0.977149 + 0.212556i \(0.931821\pi\)
\(132\) −0.234792 1.63302i −0.0204360 0.142136i
\(133\) −0.286211 + 0.626714i −0.0248176 + 0.0543430i
\(134\) 0.149398 1.03908i 0.0129060 0.0897631i
\(135\) 0.841254 + 0.540641i 0.0724036 + 0.0465310i
\(136\) −4.79600 5.53488i −0.411254 0.474612i
\(137\) 18.6726 1.59531 0.797654 0.603115i \(-0.206074\pi\)
0.797654 + 0.603115i \(0.206074\pi\)
\(138\) −0.291211 4.78698i −0.0247895 0.407495i
\(139\) 13.3244 1.13016 0.565080 0.825036i \(-0.308845\pi\)
0.565080 + 0.825036i \(0.308845\pi\)
\(140\) −1.93553 2.23372i −0.163582 0.188784i
\(141\) 3.20152 + 2.05749i 0.269616 + 0.173272i
\(142\) 0.384227 2.67236i 0.0322436 0.224259i
\(143\) −4.58360 + 10.0367i −0.383300 + 0.839310i
\(144\) −0.142315 0.989821i −0.0118596 0.0824851i
\(145\) −8.24567 2.42115i −0.684766 0.201065i
\(146\) −6.69571 + 4.30307i −0.554141 + 0.356125i
\(147\) 0.721069 + 1.57892i 0.0594728 + 0.130227i
\(148\) −5.14977 + 1.51211i −0.423308 + 0.124295i
\(149\) −11.6603 + 13.4567i −0.955252 + 1.10242i 0.0394088 + 0.999223i \(0.487453\pi\)
−0.994661 + 0.103197i \(0.967093\pi\)
\(150\) −0.654861 + 0.755750i −0.0534692 + 0.0617067i
\(151\) 6.36320 1.86840i 0.517830 0.152049i −0.0123665 0.999924i \(-0.503936\pi\)
0.530196 + 0.847875i \(0.322118\pi\)
\(152\) −0.0968356 0.212040i −0.00785440 0.0171987i
\(153\) 6.16109 3.95949i 0.498094 0.320106i
\(154\) −4.67871 1.37379i −0.377021 0.110703i
\(155\) −0.0926899 0.644672i −0.00744503 0.0517813i
\(156\) −2.77826 + 6.08354i −0.222439 + 0.487073i
\(157\) −0.358502 + 2.49343i −0.0286115 + 0.198998i −0.999114 0.0420952i \(-0.986597\pi\)
0.970502 + 0.241093i \(0.0775058\pi\)
\(158\) 5.94414 + 3.82007i 0.472890 + 0.303908i
\(159\) −0.00897052 0.0103525i −0.000711408 0.000821009i
\(160\) 1.00000 0.0790569
\(161\) −13.2275 5.09460i −1.04248 0.401511i
\(162\) 1.00000 0.0785674
\(163\) 15.2960 + 17.6525i 1.19808 + 1.38265i 0.904365 + 0.426760i \(0.140345\pi\)
0.293712 + 0.955894i \(0.405109\pi\)
\(164\) 6.79708 + 4.36822i 0.530763 + 0.341101i
\(165\) −0.234792 + 1.63302i −0.0182786 + 0.127130i
\(166\) −1.45295 + 3.18151i −0.112771 + 0.246933i
\(167\) −2.13301 14.8354i −0.165057 1.14800i −0.888923 0.458056i \(-0.848546\pi\)
0.723866 0.689940i \(-0.242363\pi\)
\(168\) −2.83591 0.832699i −0.218795 0.0642441i
\(169\) 26.6915 17.1536i 2.05319 1.31951i
\(170\) 3.04237 + 6.66187i 0.233339 + 0.510942i
\(171\) 0.223663 0.0656735i 0.0171040 0.00502218i
\(172\) −1.64726 + 1.90104i −0.125602 + 0.144953i
\(173\) −11.2582 + 12.9927i −0.855945 + 0.987813i −0.999998 0.00175677i \(-0.999441\pi\)
0.144054 + 0.989570i \(0.453986\pi\)
\(174\) −8.24567 + 2.42115i −0.625103 + 0.183547i
\(175\) 1.22782 + 2.68854i 0.0928141 + 0.203235i
\(176\) 1.38791 0.891954i 0.104617 0.0672336i
\(177\) 6.55130 + 1.92363i 0.492426 + 0.144589i
\(178\) 0.888378 + 6.17880i 0.0665867 + 0.463121i
\(179\) −0.177830 + 0.389394i −0.0132917 + 0.0291047i −0.916161 0.400810i \(-0.868729\pi\)
0.902870 + 0.429914i \(0.141456\pi\)
\(180\) −0.142315 + 0.989821i −0.0106075 + 0.0737769i
\(181\) 13.4236 + 8.62682i 0.997767 + 0.641226i 0.934199 0.356751i \(-0.116116\pi\)
0.0635680 + 0.997978i \(0.479752\pi\)
\(182\) 12.9447 + 14.9389i 0.959522 + 1.10735i
\(183\) −11.1448 −0.823850
\(184\) 4.23342 2.25348i 0.312092 0.166129i
\(185\) 5.36718 0.394603
\(186\) −0.426512 0.492221i −0.0312734 0.0360914i
\(187\) 10.1646 + 6.53240i 0.743310 + 0.477697i
\(188\) −0.541600 + 3.76691i −0.0395003 + 0.274730i
\(189\) 1.22782 2.68854i 0.0893104 0.195563i
\(190\) 0.0331744 + 0.230733i 0.00240672 + 0.0167391i
\(191\) 8.45427 + 2.48240i 0.611730 + 0.179620i 0.572899 0.819626i \(-0.305819\pi\)
0.0388304 + 0.999246i \(0.487637\pi\)
\(192\) 0.841254 0.540641i 0.0607122 0.0390174i
\(193\) −2.05626 4.50258i −0.148013 0.324103i 0.821074 0.570821i \(-0.193375\pi\)
−0.969087 + 0.246718i \(0.920648\pi\)
\(194\) 6.07774 1.78458i 0.436356 0.128126i
\(195\) 4.37966 5.05439i 0.313634 0.361952i
\(196\) −1.13669 + 1.31182i −0.0811925 + 0.0937011i
\(197\) −10.2033 + 2.99597i −0.726958 + 0.213454i −0.624214 0.781254i \(-0.714581\pi\)
−0.102744 + 0.994708i \(0.532762\pi\)
\(198\) 0.685355 + 1.50072i 0.0487061 + 0.106651i
\(199\) −22.3584 + 14.3688i −1.58494 + 1.01858i −0.611044 + 0.791597i \(0.709250\pi\)
−0.973899 + 0.226984i \(0.927114\pi\)
\(200\) −0.959493 0.281733i −0.0678464 0.0199215i
\(201\) 0.149398 + 1.03908i 0.0105377 + 0.0732912i
\(202\) −3.50145 + 7.66710i −0.246361 + 0.539455i
\(203\) −3.61481 + 25.1416i −0.253710 + 1.76459i
\(204\) 6.16109 + 3.95949i 0.431362 + 0.277220i
\(205\) −5.29108 6.10623i −0.369545 0.426478i
\(206\) −0.961236 −0.0669725
\(207\) 1.62806 + 4.51103i 0.113158 + 0.313538i
\(208\) −6.68792 −0.463724
\(209\) 0.251846 + 0.290646i 0.0174206 + 0.0201044i
\(210\) 2.48644 + 1.59794i 0.171581 + 0.110268i
\(211\) −3.18286 + 22.1373i −0.219117 + 1.52399i 0.522191 + 0.852828i \(0.325115\pi\)
−0.741309 + 0.671164i \(0.765794\pi\)
\(212\) 0.00569050 0.0124605i 0.000390825 0.000855788i
\(213\) 0.384227 + 2.67236i 0.0263268 + 0.183107i
\(214\) 10.4119 + 3.05721i 0.711742 + 0.208986i
\(215\) 2.11612 1.35995i 0.144318 0.0927476i
\(216\) 0.415415 + 0.909632i 0.0282654 + 0.0618926i
\(217\) −1.84703 + 0.542338i −0.125385 + 0.0368163i
\(218\) 7.38592 8.52380i 0.500237 0.577305i
\(219\) 5.21217 6.01516i 0.352206 0.406467i
\(220\) −1.58298 + 0.464805i −0.106724 + 0.0313371i
\(221\) −20.3472 44.5540i −1.36870 2.99703i
\(222\) 4.51516 2.90171i 0.303037 0.194750i
\(223\) −12.9498 3.80240i −0.867183 0.254628i −0.182266 0.983249i \(-0.558343\pi\)
−0.684917 + 0.728621i \(0.740161\pi\)
\(224\) −0.420631 2.92555i −0.0281046 0.195472i
\(225\) 0.415415 0.909632i 0.0276943 0.0606421i
\(226\) 2.09031 14.5384i 0.139045 0.967080i
\(227\) 15.9410 + 10.2446i 1.05804 + 0.679961i 0.949384 0.314119i \(-0.101709\pi\)
0.108656 + 0.994079i \(0.465345\pi\)
\(228\) 0.152652 + 0.176170i 0.0101096 + 0.0116671i
\(229\) −21.2220 −1.40239 −0.701195 0.712969i \(-0.747350\pi\)
−0.701195 + 0.712969i \(0.747350\pi\)
\(230\) −4.69681 + 0.969505i −0.309699 + 0.0639273i
\(231\) 4.87623 0.320833
\(232\) −5.62773 6.49475i −0.369479 0.426401i
\(233\) 4.74290 + 3.04808i 0.310718 + 0.199686i 0.686701 0.726940i \(-0.259058\pi\)
−0.375983 + 0.926627i \(0.622695\pi\)
\(234\) 0.951790 6.61984i 0.0622205 0.432753i
\(235\) 1.58092 3.46174i 0.103128 0.225819i
\(236\) 0.971708 + 6.75838i 0.0632528 + 0.439933i
\(237\) −6.77960 1.99067i −0.440382 0.129308i
\(238\) 18.2099 11.7028i 1.18037 0.758580i
\(239\) 7.90267 + 17.3044i 0.511181 + 1.11933i 0.972672 + 0.232186i \(0.0745877\pi\)
−0.461490 + 0.887145i \(0.652685\pi\)
\(240\) −0.959493 + 0.281733i −0.0619350 + 0.0181858i
\(241\) 7.80766 9.01052i 0.502935 0.580418i −0.446340 0.894863i \(-0.647273\pi\)
0.949276 + 0.314445i \(0.101818\pi\)
\(242\) 5.42102 6.25619i 0.348477 0.402163i
\(243\) −0.959493 + 0.281733i −0.0615515 + 0.0180732i
\(244\) −4.62973 10.1377i −0.296388 0.648999i
\(245\) 1.46023 0.938434i 0.0932908 0.0599543i
\(246\) −7.75242 2.27632i −0.494276 0.145133i
\(247\) −0.221868 1.54312i −0.0141171 0.0981866i
\(248\) 0.270560 0.592445i 0.0171806 0.0376203i
\(249\) 0.497757 3.46198i 0.0315441 0.219394i
\(250\) 0.841254 + 0.540641i 0.0532055 + 0.0341931i
\(251\) −13.3841 15.4461i −0.844799 0.974950i 0.155118 0.987896i \(-0.450424\pi\)
−0.999916 + 0.0129465i \(0.995879\pi\)
\(252\) 2.95564 0.186188
\(253\) −5.65399 + 5.53493i −0.355463 + 0.347978i
\(254\) −4.65902 −0.292333
\(255\) −4.79600 5.53488i −0.300337 0.346608i
\(256\) 0.841254 + 0.540641i 0.0525783 + 0.0337901i
\(257\) 0.134123 0.932843i 0.00836634 0.0581892i −0.985211 0.171348i \(-0.945188\pi\)
0.993577 + 0.113159i \(0.0360969\pi\)
\(258\) 1.04495 2.28812i 0.0650557 0.142452i
\(259\) −2.25760 15.7019i −0.140280 0.975671i
\(260\) 6.41701 + 1.88420i 0.397966 + 0.116853i
\(261\) 7.22955 4.64615i 0.447498 0.287589i
\(262\) 8.34614 + 18.2755i 0.515626 + 1.12906i
\(263\) 3.18758 0.935958i 0.196555 0.0577136i −0.181974 0.983303i \(-0.558249\pi\)
0.378528 + 0.925590i \(0.376430\pi\)
\(264\) −1.08040 + 1.24684i −0.0664937 + 0.0767378i
\(265\) −0.00897052 + 0.0103525i −0.000551054 + 0.000635951i
\(266\) 0.661067 0.194107i 0.0405326 0.0119015i
\(267\) −2.59316 5.67823i −0.158699 0.347502i
\(268\) −0.883121 + 0.567547i −0.0539452 + 0.0346685i
\(269\) −0.524005 0.153862i −0.0319491 0.00938111i 0.265719 0.964051i \(-0.414391\pi\)
−0.297668 + 0.954669i \(0.596209\pi\)
\(270\) −0.142315 0.989821i −0.00866101 0.0602386i
\(271\) −7.88564 + 17.2671i −0.479019 + 1.04890i 0.503714 + 0.863871i \(0.331967\pi\)
−0.982732 + 0.185034i \(0.940761\pi\)
\(272\) −1.04227 + 7.24915i −0.0631970 + 0.439545i
\(273\) −16.6291 10.6869i −1.00644 0.646799i
\(274\) −12.2280 14.1118i −0.738718 0.852526i
\(275\) 1.64981 0.0994872
\(276\) −3.42706 + 3.35489i −0.206285 + 0.201941i
\(277\) 4.15170 0.249451 0.124726 0.992191i \(-0.460195\pi\)
0.124726 + 0.992191i \(0.460195\pi\)
\(278\) −8.72562 10.0699i −0.523328 0.603952i
\(279\) 0.547910 + 0.352120i 0.0328025 + 0.0210809i
\(280\) −0.420631 + 2.92555i −0.0251375 + 0.174835i
\(281\) 0.821390 1.79859i 0.0490000 0.107295i −0.883549 0.468339i \(-0.844852\pi\)
0.932549 + 0.361044i \(0.117580\pi\)
\(282\) −0.541600 3.76691i −0.0322518 0.224316i
\(283\) 13.9758 + 4.10365i 0.830773 + 0.243937i 0.669349 0.742948i \(-0.266573\pi\)
0.161424 + 0.986885i \(0.448391\pi\)
\(284\) −2.27125 + 1.45964i −0.134774 + 0.0866139i
\(285\) −0.0968356 0.212040i −0.00573605 0.0125602i
\(286\) 10.5868 3.10858i 0.626013 0.183814i
\(287\) −15.6385 + 18.0478i −0.923112 + 1.06533i
\(288\) −0.654861 + 0.755750i −0.0385880 + 0.0445330i
\(289\) −35.1525 + 10.3217i −2.06780 + 0.607160i
\(290\) 3.56999 + 7.81718i 0.209637 + 0.459041i
\(291\) −5.32877 + 3.42459i −0.312378 + 0.200753i
\(292\) 7.63680 + 2.24237i 0.446910 + 0.131225i
\(293\) −1.50731 10.4836i −0.0880582 0.612458i −0.985289 0.170896i \(-0.945334\pi\)
0.897231 0.441562i \(-0.145575\pi\)
\(294\) 0.721069 1.57892i 0.0420536 0.0920846i
\(295\) 0.971708 6.75838i 0.0565750 0.393488i
\(296\) 4.51516 + 2.90171i 0.262438 + 0.168659i
\(297\) −1.08040 1.24684i −0.0626909 0.0723491i
\(298\) 17.8058 1.03146
\(299\) 31.4119 6.48397i 1.81660 0.374978i
\(300\) 1.00000 0.0577350
\(301\) −4.86870 5.61878i −0.280627 0.323861i
\(302\) −5.57905 3.58544i −0.321038 0.206319i
\(303\) 1.19954 8.34300i 0.0689119 0.479293i
\(304\) −0.0968356 + 0.212040i −0.00555390 + 0.0121614i
\(305\) 1.58607 + 11.0314i 0.0908184 + 0.631656i
\(306\) −7.02704 2.06332i −0.401709 0.117952i
\(307\) 27.1876 17.4724i 1.55168 0.997202i 0.566817 0.823844i \(-0.308175\pi\)
0.984859 0.173358i \(-0.0554617\pi\)
\(308\) 2.02566 + 4.43558i 0.115423 + 0.252741i
\(309\) 0.922299 0.270811i 0.0524678 0.0154059i
\(310\) −0.426512 + 0.492221i −0.0242242 + 0.0279563i
\(311\) −12.2669 + 14.1567i −0.695590 + 0.802754i −0.988150 0.153494i \(-0.950948\pi\)
0.292560 + 0.956247i \(0.405493\pi\)
\(312\) 6.41701 1.88420i 0.363292 0.106672i
\(313\) −9.46193 20.7187i −0.534820 1.17109i −0.963518 0.267644i \(-0.913755\pi\)
0.428698 0.903448i \(-0.358972\pi\)
\(314\) 2.11918 1.36191i 0.119592 0.0768572i
\(315\) −2.83591 0.832699i −0.159786 0.0469173i
\(316\) −1.00557 6.99389i −0.0565677 0.393437i
\(317\) 0.256202 0.561004i 0.0143897 0.0315091i −0.902301 0.431107i \(-0.858123\pi\)
0.916690 + 0.399598i \(0.130850\pi\)
\(318\) −0.00194948 + 0.0135589i −0.000109321 + 0.000760347i
\(319\) 11.9274 + 7.66526i 0.667805 + 0.429172i
\(320\) −0.654861 0.755750i −0.0366078 0.0422477i
\(321\) −10.8515 −0.605669
\(322\) 4.81196 + 13.3330i 0.268160 + 0.743017i
\(323\) −1.70720 −0.0949909
\(324\) −0.654861 0.755750i −0.0363812 0.0419861i
\(325\) −5.62623 3.61576i −0.312087 0.200566i
\(326\) 3.32414 23.1199i 0.184107 1.28049i
\(327\) −4.68530 + 10.2594i −0.259098 + 0.567345i
\(328\) −1.14986 7.99747i −0.0634905 0.441586i
\(329\) −10.7925 3.16896i −0.595009 0.174710i
\(330\) 1.38791 0.891954i 0.0764018 0.0491005i
\(331\) −14.6668 32.1159i −0.806162 1.76525i −0.623091 0.782149i \(-0.714124\pi\)
−0.183071 0.983100i \(-0.558604\pi\)
\(332\) 3.35590 0.985382i 0.184179 0.0540798i
\(333\) −3.51475 + 4.05624i −0.192607 + 0.222281i
\(334\) −9.81501 + 11.3271i −0.537053 + 0.619793i
\(335\) 1.00724 0.295754i 0.0550317 0.0161588i
\(336\) 1.22782 + 2.68854i 0.0669828 + 0.146672i
\(337\) 20.0876 12.9095i 1.09424 0.703226i 0.136437 0.990649i \(-0.456435\pi\)
0.957804 + 0.287423i \(0.0927985\pi\)
\(338\) −30.4430 8.93888i −1.65588 0.486211i
\(339\) 2.09031 + 14.5384i 0.113530 + 0.789617i
\(340\) 3.04237 6.66187i 0.164996 0.361291i
\(341\) −0.152921 + 1.06359i −0.00828111 + 0.0575964i
\(342\) −0.196101 0.126026i −0.0106039 0.00681473i
\(343\) 10.1891 + 11.7588i 0.550157 + 0.634915i
\(344\) 2.51544 0.135623
\(345\) 4.23342 2.25348i 0.227920 0.121323i
\(346\) 17.1917 0.924234
\(347\) −10.8750 12.5504i −0.583799 0.673740i 0.384618 0.923076i \(-0.374333\pi\)
−0.968417 + 0.249336i \(0.919788\pi\)
\(348\) 7.22955 + 4.64615i 0.387545 + 0.249060i
\(349\) 0.566452 3.93976i 0.0303215 0.210891i −0.969028 0.246950i \(-0.920572\pi\)
0.999350 + 0.0360597i \(0.0114806\pi\)
\(350\) 1.22782 2.68854i 0.0656295 0.143709i
\(351\) 0.951790 + 6.61984i 0.0508028 + 0.353341i
\(352\) −1.58298 0.464805i −0.0843731 0.0247742i
\(353\) −18.7243 + 12.0334i −0.996594 + 0.640472i −0.933890 0.357560i \(-0.883609\pi\)
−0.0627038 + 0.998032i \(0.519972\pi\)
\(354\) −2.83640 6.21085i −0.150753 0.330103i
\(355\) 2.59048 0.760632i 0.137488 0.0403702i
\(356\) 4.08787 4.71765i 0.216656 0.250035i
\(357\) −14.1752 + 16.3591i −0.750233 + 0.865815i
\(358\) 0.410738 0.120604i 0.0217082 0.00637410i
\(359\) −8.50807 18.6301i −0.449039 0.983257i −0.989850 0.142114i \(-0.954610\pi\)
0.540812 0.841144i \(-0.318117\pi\)
\(360\) 0.841254 0.540641i 0.0443380 0.0284943i
\(361\) 18.1782 + 5.33761i 0.956749 + 0.280927i
\(362\) −2.27087 15.7942i −0.119354 0.830126i
\(363\) −3.43886 + 7.53005i −0.180493 + 0.395225i
\(364\) 2.81314 19.5658i 0.147449 1.02553i
\(365\) −6.69571 4.30307i −0.350469 0.225233i
\(366\) 7.29831 + 8.42270i 0.381489 + 0.440262i
\(367\) −0.851290 −0.0444370 −0.0222185 0.999753i \(-0.507073\pi\)
−0.0222185 + 0.999753i \(0.507073\pi\)
\(368\) −4.47537 1.72369i −0.233295 0.0898535i
\(369\) 8.07971 0.420613
\(370\) −3.51475 4.05624i −0.182723 0.210874i
\(371\) 0.0340601 + 0.0218891i 0.00176831 + 0.00113643i
\(372\) −0.0926899 + 0.644672i −0.00480574 + 0.0334247i
\(373\) 8.08300 17.6993i 0.418522 0.916435i −0.576530 0.817076i \(-0.695593\pi\)
0.995052 0.0993592i \(-0.0316793\pi\)
\(374\) −1.71955 11.9597i −0.0889157 0.618422i
\(375\) −0.959493 0.281733i −0.0495480 0.0145486i
\(376\) 3.20152 2.05749i 0.165106 0.106107i
\(377\) −23.8758 52.2807i −1.22967 2.69259i
\(378\) −2.83591 + 0.832699i −0.145864 + 0.0428294i
\(379\) 0.510397 0.589030i 0.0262174 0.0302564i −0.742489 0.669858i \(-0.766355\pi\)
0.768707 + 0.639601i \(0.220901\pi\)
\(380\) 0.152652 0.176170i 0.00783087 0.00903731i
\(381\) 4.47029 1.31260i 0.229020 0.0672464i
\(382\) −3.66030 8.01494i −0.187277 0.410080i
\(383\) 9.92301 6.37713i 0.507042 0.325856i −0.261985 0.965072i \(-0.584377\pi\)
0.769028 + 0.639216i \(0.220741\pi\)
\(384\) −0.959493 0.281733i −0.0489639 0.0143771i
\(385\) −0.693960 4.82660i −0.0353675 0.245986i
\(386\) −2.05626 + 4.50258i −0.104661 + 0.229175i
\(387\) −0.357984 + 2.48983i −0.0181973 + 0.126565i
\(388\) −5.32877 3.42459i −0.270527 0.173857i
\(389\) 21.2935 + 24.5740i 1.07962 + 1.24595i 0.967665 + 0.252238i \(0.0811667\pi\)
0.111958 + 0.993713i \(0.464288\pi\)
\(390\) −6.68792 −0.338656
\(391\) −2.13274 35.0584i −0.107857 1.77298i
\(392\) 1.73578 0.0876702
\(393\) −13.1569 15.1838i −0.663676 0.765923i
\(394\) 8.94597 + 5.74923i 0.450692 + 0.289642i
\(395\) −1.00557 + 6.99389i −0.0505957 + 0.351901i
\(396\) 0.685355 1.50072i 0.0344404 0.0754140i
\(397\) −4.42000 30.7418i −0.221833 1.54288i −0.731097 0.682274i \(-0.760991\pi\)
0.509263 0.860611i \(-0.329918\pi\)
\(398\) 25.5009 + 7.48773i 1.27824 + 0.375326i
\(399\) −0.579603 + 0.372488i −0.0290164 + 0.0186477i
\(400\) 0.415415 + 0.909632i 0.0207708 + 0.0454816i
\(401\) 22.2668 6.53812i 1.11195 0.326498i 0.326360 0.945245i \(-0.394178\pi\)
0.785590 + 0.618747i \(0.212359\pi\)
\(402\) 0.687452 0.793361i 0.0342870 0.0395693i
\(403\) 2.85248 3.29193i 0.142092 0.163983i
\(404\) 8.08737 2.37467i 0.402362 0.118144i
\(405\) 0.415415 + 0.909632i 0.0206421 + 0.0452000i
\(406\) 21.3679 13.7323i 1.06047 0.681524i
\(407\) −8.49613 2.49469i −0.421138 0.123657i
\(408\) −1.04227 7.24915i −0.0516001 0.358887i
\(409\) −2.73022 + 5.97836i −0.135001 + 0.295611i −0.965044 0.262089i \(-0.915589\pi\)
0.830043 + 0.557700i \(0.188316\pi\)
\(410\) −1.14986 + 7.99747i −0.0567876 + 0.394967i
\(411\) 15.7084 + 10.0952i 0.774838 + 0.497958i
\(412\) 0.629476 + 0.726454i 0.0310120 + 0.0357898i
\(413\) −20.1807 −0.993028
\(414\) 2.34306 4.18451i 0.115155 0.205657i
\(415\) −3.49758 −0.171689
\(416\) 4.37966 + 5.05439i 0.214730 + 0.247812i
\(417\) 11.2092 + 7.20371i 0.548916 + 0.352767i
\(418\) 0.0547314 0.380665i 0.00267700 0.0186190i
\(419\) 12.7252 27.8643i 0.621667 1.36126i −0.292633 0.956225i \(-0.594532\pi\)
0.914301 0.405036i \(-0.132741\pi\)
\(420\) −0.420631 2.92555i −0.0205247 0.142752i
\(421\) 27.3653 + 8.03518i 1.33370 + 0.391611i 0.869419 0.494075i \(-0.164493\pi\)
0.464285 + 0.885686i \(0.346311\pi\)
\(422\) 18.8146 12.0914i 0.915879 0.588599i
\(423\) 1.58092 + 3.46174i 0.0768671 + 0.168316i
\(424\) −0.0131435 + 0.00385927i −0.000638304 + 0.000187423i
\(425\) −4.79600 + 5.53488i −0.232640 + 0.268481i
\(426\) 1.76802 2.04040i 0.0856608 0.0988578i
\(427\) 31.6057 9.28029i 1.52951 0.449104i
\(428\) −4.50786 9.87083i −0.217895 0.477124i
\(429\) −9.28221 + 5.96532i −0.448149 + 0.288008i
\(430\) −2.41354 0.708680i −0.116391 0.0341756i
\(431\) 1.15571 + 8.03815i 0.0556687 + 0.387184i 0.998540 + 0.0540257i \(0.0172053\pi\)
−0.942871 + 0.333158i \(0.891886\pi\)
\(432\) 0.415415 0.909632i 0.0199867 0.0437647i
\(433\) 0.241134 1.67712i 0.0115882 0.0805974i −0.983207 0.182496i \(-0.941582\pi\)
0.994795 + 0.101898i \(0.0324916\pi\)
\(434\) 1.61942 + 1.04074i 0.0777347 + 0.0499571i
\(435\) −5.62773 6.49475i −0.269829 0.311399i
\(436\) −11.2786 −0.540147
\(437\) 0.249245 1.08980i 0.0119230 0.0521321i
\(438\) −7.95920 −0.380305
\(439\) −4.91735 5.67493i −0.234692 0.270849i 0.626171 0.779686i \(-0.284621\pi\)
−0.860863 + 0.508836i \(0.830076\pi\)
\(440\) 1.38791 + 0.891954i 0.0661659 + 0.0425222i
\(441\) −0.247027 + 1.71811i −0.0117632 + 0.0818149i
\(442\) −20.3472 + 44.5540i −0.967815 + 2.11922i
\(443\) 5.94970 + 41.3810i 0.282679 + 1.96607i 0.257038 + 0.966401i \(0.417253\pi\)
0.0256402 + 0.999671i \(0.491838\pi\)
\(444\) −5.14977 1.51211i −0.244397 0.0717615i
\(445\) −5.25139 + 3.37487i −0.248940 + 0.159984i
\(446\) 5.60665 + 12.2769i 0.265483 + 0.581326i
\(447\) −17.0846 + 5.01648i −0.808072 + 0.237271i
\(448\) −1.93553 + 2.23372i −0.0914452 + 0.105533i
\(449\) −19.2190 + 22.1799i −0.907000 + 1.04673i 0.0917017 + 0.995787i \(0.470769\pi\)
−0.998701 + 0.0509469i \(0.983776\pi\)
\(450\) −0.959493 + 0.281733i −0.0452309 + 0.0132810i
\(451\) 5.53747 + 12.1254i 0.260749 + 0.570961i
\(452\) −12.3562 + 7.94088i −0.581189 + 0.373507i
\(453\) 6.36320 + 1.86840i 0.298969 + 0.0877852i
\(454\) −2.69673 18.7562i −0.126564 0.880272i
\(455\) −8.21153 + 17.9807i −0.384962 + 0.842950i
\(456\) 0.0331744 0.230733i 0.00155353 0.0108051i
\(457\) −12.9653 8.33231i −0.606492 0.389769i 0.201048 0.979581i \(-0.435565\pi\)
−0.807540 + 0.589812i \(0.799202\pi\)
\(458\) 13.8975 + 16.0385i 0.649386 + 0.749432i
\(459\) 7.32370 0.341841
\(460\) 3.80846 + 2.91472i 0.177570 + 0.135900i
\(461\) 33.7344 1.57117 0.785585 0.618754i \(-0.212362\pi\)
0.785585 + 0.618754i \(0.212362\pi\)
\(462\) −3.19325 3.68521i −0.148564 0.171452i
\(463\) −3.96382 2.54739i −0.184215 0.118387i 0.445283 0.895390i \(-0.353103\pi\)
−0.629498 + 0.777002i \(0.716739\pi\)
\(464\) −1.22302 + 8.50631i −0.0567774 + 0.394896i
\(465\) 0.270560 0.592445i 0.0125469 0.0274740i
\(466\) −0.802357 5.58052i −0.0371685 0.258512i
\(467\) 15.0653 + 4.42358i 0.697141 + 0.204699i 0.611054 0.791589i \(-0.290746\pi\)
0.0860866 + 0.996288i \(0.472564\pi\)
\(468\) −5.62623 + 3.61576i −0.260073 + 0.167139i
\(469\) −1.28892 2.82234i −0.0595168 0.130324i
\(470\) −3.65149 + 1.07218i −0.168431 + 0.0494557i
\(471\) −1.64964 + 1.90379i −0.0760115 + 0.0877219i
\(472\) 4.47131 5.16016i 0.205809 0.237516i
\(473\) −3.98188 + 1.16919i −0.183087 + 0.0537593i
\(474\) 2.93524 + 6.42729i 0.134820 + 0.295215i
\(475\) −0.196101 + 0.126026i −0.00899773 + 0.00578249i
\(476\) −20.7694 6.09843i −0.951962 0.279521i
\(477\) −0.00194948 0.0135589i −8.92605e−5 0.000620821i
\(478\) 7.90267 17.3044i 0.361460 0.791486i
\(479\) −5.24382 + 36.4716i −0.239596 + 1.66643i 0.414524 + 0.910038i \(0.363948\pi\)
−0.654121 + 0.756390i \(0.726961\pi\)
\(480\) 0.841254 + 0.540641i 0.0383978 + 0.0246768i
\(481\) 23.5064 + 27.1278i 1.07180 + 1.23692i
\(482\) −11.9226 −0.543061
\(483\) −8.37337 11.4372i −0.381002 0.520411i
\(484\) −8.27813 −0.376279
\(485\) 4.14810 + 4.78716i 0.188355 + 0.217374i
\(486\) 0.841254 + 0.540641i 0.0381600 + 0.0245240i
\(487\) 2.32553 16.1744i 0.105380 0.732932i −0.866793 0.498668i \(-0.833823\pi\)
0.972173 0.234264i \(-0.0752682\pi\)
\(488\) −4.62973 + 10.1377i −0.209578 + 0.458912i
\(489\) 3.32414 + 23.1199i 0.150323 + 1.04552i
\(490\) −1.66547 0.489026i −0.0752382 0.0220919i
\(491\) −17.6675 + 11.3542i −0.797322 + 0.512408i −0.874741 0.484591i \(-0.838968\pi\)
0.0774190 + 0.996999i \(0.475332\pi\)
\(492\) 3.35643 + 7.34956i 0.151320 + 0.331344i
\(493\) −60.3888 + 17.7318i −2.71978 + 0.798598i
\(494\) −1.02092 + 1.17821i −0.0459335 + 0.0530101i
\(495\) −1.08040 + 1.24684i −0.0485601 + 0.0560414i
\(496\) −0.624919 + 0.183493i −0.0280597 + 0.00823907i
\(497\) −3.31490 7.25862i −0.148694 0.325594i
\(498\) −2.94235 + 1.89093i −0.131850 + 0.0847348i
\(499\) 19.6796 + 5.77846i 0.880981 + 0.258679i 0.690779 0.723066i \(-0.257268\pi\)
0.190202 + 0.981745i \(0.439086\pi\)
\(500\) −0.142315 0.989821i −0.00636451 0.0442662i
\(501\) 6.22621 13.6335i 0.278167 0.609100i
\(502\) −2.90865 + 20.2301i −0.129819 + 0.902913i
\(503\) −4.09119 2.62925i −0.182417 0.117232i 0.446245 0.894911i \(-0.352761\pi\)
−0.628662 + 0.777678i \(0.716397\pi\)
\(504\) −1.93553 2.23372i −0.0862153 0.0994978i
\(505\) −8.42880 −0.375076
\(506\) 7.88559 + 0.648394i 0.350557 + 0.0288246i
\(507\) 31.7282 1.40910
\(508\) 3.05101 + 3.52105i 0.135367 + 0.156221i
\(509\) −0.440429 0.283047i −0.0195217 0.0125458i 0.530844 0.847470i \(-0.321875\pi\)
−0.550365 + 0.834924i \(0.685512\pi\)
\(510\) −1.04227 + 7.24915i −0.0461525 + 0.320998i
\(511\) −9.77243 + 21.3986i −0.432307 + 0.946620i
\(512\) −0.142315 0.989821i −0.00628949 0.0437443i
\(513\) 0.223663 + 0.0656735i 0.00987498 + 0.00289955i
\(514\) −0.792828 + 0.509519i −0.0349701 + 0.0224739i
\(515\) −0.399312 0.874371i −0.0175958 0.0385294i
\(516\) −2.41354 + 0.708680i −0.106250 + 0.0311979i
\(517\) −4.11160 + 4.74504i −0.180828 + 0.208687i
\(518\) −10.3883 + 11.9888i −0.456437 + 0.526756i
\(519\) −16.4954 + 4.84347i −0.724066 + 0.212605i
\(520\) −2.77826 6.08354i −0.121835 0.266781i
\(521\) 12.1195 7.78875i 0.530967 0.341232i −0.247530 0.968880i \(-0.579619\pi\)
0.778497 + 0.627649i \(0.215983\pi\)
\(522\) −8.24567 2.42115i −0.360903 0.105971i
\(523\) −5.76917 40.1255i −0.252268 1.75456i −0.584525 0.811376i \(-0.698719\pi\)
0.332257 0.943189i \(-0.392190\pi\)
\(524\) 8.34614 18.2755i 0.364603 0.798369i
\(525\) −0.420631 + 2.92555i −0.0183578 + 0.127682i
\(526\) −2.79477 1.79609i −0.121858 0.0783132i
\(527\) −3.12364 3.60488i −0.136068 0.157031i
\(528\) 1.64981 0.0717987
\(529\) 22.6911 + 3.75696i 0.986569 + 0.163346i
\(530\) 0.0136984 0.000595019
\(531\) 4.47131 + 5.16016i 0.194038 + 0.223932i
\(532\) −0.579603 0.372488i −0.0251290 0.0161494i
\(533\) 7.69018 53.4864i 0.333099 2.31675i
\(534\) −2.59316 + 5.67823i −0.112217 + 0.245721i
\(535\) 1.54432 + 10.7410i 0.0667669 + 0.464374i
\(536\) 1.00724 + 0.295754i 0.0435063 + 0.0127746i
\(537\) −0.360123 + 0.231437i −0.0155404 + 0.00998723i
\(538\) 0.226869 + 0.496774i 0.00978103 + 0.0214175i
\(539\) −2.74771 + 0.806799i −0.118352 + 0.0347513i
\(540\) −0.654861 + 0.755750i −0.0281807 + 0.0325223i
\(541\) −4.64461 + 5.36016i −0.199687 + 0.230451i −0.846758 0.531979i \(-0.821449\pi\)
0.647070 + 0.762430i \(0.275994\pi\)
\(542\) 18.2136 5.34801i 0.782343 0.229717i
\(543\) 6.62863 + 14.5147i 0.284462 + 0.622884i
\(544\) 6.16109 3.95949i 0.264154 0.169762i
\(545\) 10.8217 + 3.17755i 0.463553 + 0.136111i
\(546\) 2.81314 + 19.5658i 0.120391 + 0.837341i
\(547\) −13.9912 + 30.6366i −0.598223 + 1.30992i 0.332121 + 0.943237i \(0.392236\pi\)
−0.930344 + 0.366688i \(0.880492\pi\)
\(548\) −2.65739 + 18.4826i −0.113518 + 0.789535i
\(549\) −9.37563 6.02535i −0.400142 0.257156i
\(550\) −1.08040 1.24684i −0.0460682 0.0531655i
\(551\) −2.00326 −0.0853417
\(552\) 4.77970 + 0.393012i 0.203438 + 0.0167277i
\(553\) 20.8840 0.888077
\(554\) −2.71878 3.13764i −0.115510 0.133306i
\(555\) 4.51516 + 2.90171i 0.191658 + 0.123171i
\(556\) −1.89626 + 13.1888i −0.0804192 + 0.559328i
\(557\) −0.864454 + 1.89289i −0.0366281 + 0.0802043i −0.927062 0.374909i \(-0.877674\pi\)
0.890434 + 0.455113i \(0.150401\pi\)
\(558\) −0.0926899 0.644672i −0.00392387 0.0272911i
\(559\) 16.1416 + 4.73959i 0.682716 + 0.200463i
\(560\) 2.48644 1.59794i 0.105071 0.0675252i
\(561\) 5.01934 + 10.9908i 0.211917 + 0.464033i
\(562\) −1.89718 + 0.557063i −0.0800278 + 0.0234983i
\(563\) 12.4860 14.4096i 0.526220 0.607290i −0.428957 0.903325i \(-0.641119\pi\)
0.955177 + 0.296034i \(0.0956643\pi\)
\(564\) −2.49217 + 2.87612i −0.104939 + 0.121106i
\(565\) 14.0929 4.13806i 0.592894 0.174089i
\(566\) −6.05084 13.2495i −0.254336 0.556918i
\(567\) 2.48644 1.59794i 0.104421 0.0671071i
\(568\) 2.59048 + 0.760632i 0.108694 + 0.0319154i
\(569\) −6.21587 43.2323i −0.260583 1.81239i −0.528480 0.848946i \(-0.677238\pi\)
0.267897 0.963447i \(-0.413671\pi\)
\(570\) −0.0968356 + 0.212040i −0.00405600 + 0.00888140i
\(571\) −6.09172 + 42.3688i −0.254931 + 1.77308i 0.312753 + 0.949834i \(0.398749\pi\)
−0.567684 + 0.823247i \(0.692160\pi\)
\(572\) −9.28221 5.96532i −0.388109 0.249422i
\(573\) 5.77010 + 6.65905i 0.241049 + 0.278186i
\(574\) 23.8807 0.996760
\(575\) −2.83302 3.86962i −0.118145 0.161375i
\(576\) 1.00000 0.0416667
\(577\) −4.46207 5.14951i −0.185759 0.214377i 0.655230 0.755429i \(-0.272572\pi\)
−0.840989 + 0.541052i \(0.818026\pi\)
\(578\) 30.8206 + 19.8072i 1.28197 + 0.823872i
\(579\) 0.704443 4.89951i 0.0292756 0.203617i
\(580\) 3.56999 7.81718i 0.148236 0.324591i
\(581\) 1.47119 + 10.2323i 0.0610352 + 0.424509i
\(582\) 6.07774 + 1.78458i 0.251930 + 0.0739734i
\(583\) 0.0190121 0.0122183i 0.000787399 0.000506030i
\(584\) −3.30637 7.23994i −0.136819 0.299591i
\(585\) 6.41701 1.88420i 0.265311 0.0779023i
\(586\) −6.93589 + 8.00445i −0.286519 + 0.330661i
\(587\) −27.3739 + 31.5911i −1.12984 + 1.30391i −0.182671 + 0.983174i \(0.558474\pi\)
−0.947170 + 0.320732i \(0.896071\pi\)
\(588\) −1.66547 + 0.489026i −0.0686828 + 0.0201671i
\(589\) −0.0630692 0.138102i −0.00259872 0.00569040i
\(590\) −5.74397 + 3.69143i −0.236476 + 0.151974i
\(591\) −10.2033 2.99597i −0.419709 0.123238i
\(592\) −0.763829 5.31255i −0.0313932 0.218344i
\(593\) −11.5354 + 25.2591i −0.473704 + 1.03727i 0.510443 + 0.859912i \(0.329481\pi\)
−0.984147 + 0.177355i \(0.943246\pi\)
\(594\) −0.234792 + 1.63302i −0.00963364 + 0.0670035i
\(595\) 18.2099 + 11.7028i 0.746534 + 0.479768i
\(596\) −11.6603 13.4567i −0.477626 0.551210i
\(597\) −26.5774 −1.08774
\(598\) −25.4707 19.4934i −1.04157 0.797146i
\(599\) −25.8304 −1.05540 −0.527701 0.849430i \(-0.676946\pi\)
−0.527701 + 0.849430i \(0.676946\pi\)
\(600\) −0.654861 0.755750i −0.0267346 0.0308533i
\(601\) 23.9714 + 15.4055i 0.977812 + 0.628402i 0.928872 0.370400i \(-0.120779\pi\)
0.0489397 + 0.998802i \(0.484416\pi\)
\(602\) −1.05807 + 7.35904i −0.0431237 + 0.299932i
\(603\) −0.436089 + 0.954902i −0.0177589 + 0.0388866i
\(604\) 0.943808 + 6.56433i 0.0384030 + 0.267099i
\(605\) 7.94281 + 2.33222i 0.322921 + 0.0948182i
\(606\) −7.09075 + 4.55695i −0.288042 + 0.185113i
\(607\) −6.53336 14.3061i −0.265181 0.580665i 0.729464 0.684019i \(-0.239770\pi\)
−0.994645 + 0.103354i \(0.967042\pi\)
\(608\) 0.223663 0.0656735i 0.00907074 0.00266341i
\(609\) −16.6335 + 19.1961i −0.674024 + 0.777865i
\(610\) 7.29831 8.42270i 0.295500 0.341025i
\(611\) 24.4209 7.17062i 0.987963 0.290092i
\(612\) 3.04237 + 6.66187i 0.122981 + 0.269290i
\(613\) 16.2031 10.4131i 0.654438 0.420582i −0.170847 0.985298i \(-0.554651\pi\)
0.825286 + 0.564716i \(0.191014\pi\)
\(614\) −31.0088 9.10501i −1.25141 0.367448i
\(615\) −1.14986 7.99747i −0.0463669 0.322489i
\(616\) 2.02566 4.43558i 0.0816162 0.178715i
\(617\) 2.83713 19.7327i 0.114219 0.794409i −0.849519 0.527558i \(-0.823108\pi\)
0.963738 0.266851i \(-0.0859831\pi\)
\(618\) −0.808643 0.519683i −0.0325284 0.0209047i
\(619\) 4.16549 + 4.80723i 0.167425 + 0.193219i 0.833262 0.552879i \(-0.186471\pi\)
−0.665837 + 0.746098i \(0.731925\pi\)
\(620\) 0.651301 0.0261569
\(621\) −1.06923 + 4.67512i −0.0429069 + 0.187606i
\(622\) 18.7320 0.751085
\(623\) 12.0822 + 13.9436i 0.484065 + 0.558640i
\(624\) −5.62623 3.61576i −0.225230 0.144746i
\(625\) −0.142315 + 0.989821i −0.00569259 + 0.0395929i
\(626\) −9.46193 + 20.7187i −0.378175 + 0.828087i
\(627\) 0.0547314 + 0.380665i 0.00218576 + 0.0152023i
\(628\) −2.41703 0.709705i −0.0964501 0.0283203i
\(629\) 33.0676 21.2513i 1.31849 0.847344i
\(630\) 1.22782 + 2.68854i 0.0489173 + 0.107114i
\(631\) −12.6522 + 3.71501i −0.503675 + 0.147892i −0.523692 0.851907i \(-0.675446\pi\)
0.0200178 + 0.999800i \(0.493628\pi\)
\(632\) −4.62712 + 5.33998i −0.184057 + 0.212413i
\(633\) −14.6459 + 16.9023i −0.582122 + 0.671805i
\(634\) −0.591755 + 0.173755i −0.0235016 + 0.00690069i
\(635\) −1.93543 4.23799i −0.0768050 0.168180i
\(636\) 0.0115238 0.00740589i 0.000456948 0.000293663i
\(637\) 11.1385 + 3.27057i 0.441324 + 0.129585i
\(638\) −2.01775 14.0338i −0.0798836 0.555603i
\(639\) −1.12155 + 2.45586i −0.0443680 + 0.0971523i
\(640\) −0.142315 + 0.989821i −0.00562549 + 0.0391261i
\(641\) −19.9430 12.8166i −0.787701 0.506225i 0.0838803 0.996476i \(-0.473269\pi\)
−0.871581 + 0.490251i \(0.836905\pi\)
\(642\) 7.10619 + 8.20098i 0.280459 + 0.323667i
\(643\) −1.53887 −0.0606871 −0.0303436 0.999540i \(-0.509660\pi\)
−0.0303436 + 0.999540i \(0.509660\pi\)
\(644\) 6.92522 12.3679i 0.272892 0.487363i
\(645\) 2.51544 0.0990452
\(646\) 1.11798 + 1.29021i 0.0439862 + 0.0507627i
\(647\) −25.8876 16.6370i −1.01775 0.654066i −0.0783602 0.996925i \(-0.524968\pi\)
−0.939387 + 0.342859i \(0.888605\pi\)
\(648\) −0.142315 + 0.989821i −0.00559065 + 0.0388839i
\(649\) −4.67952 + 10.2467i −0.183687 + 0.402219i
\(650\) 0.951790 + 6.61984i 0.0373323 + 0.259652i
\(651\) −1.84703 0.542338i −0.0723909 0.0212559i
\(652\) −19.6497 + 12.6281i −0.769543 + 0.494555i
\(653\) 16.2720 + 35.6307i 0.636773 + 1.39434i 0.902668 + 0.430337i \(0.141605\pi\)
−0.265895 + 0.964002i \(0.585668\pi\)
\(654\) 10.8217 3.17755i 0.423164 0.124252i
\(655\) −13.1569 + 15.1838i −0.514081 + 0.593281i
\(656\) −5.29108 + 6.10623i −0.206582 + 0.238408i
\(657\) 7.63680 2.24237i 0.297940 0.0874830i
\(658\) 4.67263 + 10.2316i 0.182158 + 0.398871i
\(659\) −31.4252 + 20.1958i −1.22415 + 0.786716i −0.982970 0.183764i \(-0.941172\pi\)
−0.241183 + 0.970480i \(0.577535\pi\)
\(660\) −1.58298 0.464805i −0.0616174 0.0180925i
\(661\) −0.448287 3.11791i −0.0174364 0.121272i 0.979244 0.202684i \(-0.0649664\pi\)
−0.996681 + 0.0814113i \(0.974057\pi\)
\(662\) −14.6668 + 32.1159i −0.570043 + 1.24822i
\(663\) 6.97062 48.4817i 0.270717 1.88288i
\(664\) −2.94235 1.89093i −0.114185 0.0733825i
\(665\) 0.451183 + 0.520693i 0.0174961 + 0.0201916i
\(666\) 5.36718 0.207974
\(667\) −2.50260 41.1383i −0.0969012 1.59288i
\(668\) 14.9879 0.579901
\(669\) −8.83833 10.2000i −0.341710 0.394354i
\(670\) −0.883121 0.567547i −0.0341179 0.0219263i
\(671\) 2.61672 18.1997i 0.101017 0.702591i
\(672\) 1.22782 2.68854i 0.0473640 0.103713i
\(673\) −0.222339 1.54640i −0.00857055 0.0596095i 0.985087 0.172055i \(-0.0550407\pi\)
−0.993658 + 0.112446i \(0.964132\pi\)
\(674\) −22.9109 6.72726i −0.882496 0.259124i
\(675\) 0.841254 0.540641i 0.0323799 0.0208093i
\(676\) 13.1804 + 28.8610i 0.506938 + 1.11004i
\(677\) −8.99713 + 2.64180i −0.345788 + 0.101532i −0.450015 0.893021i \(-0.648581\pi\)
0.104227 + 0.994554i \(0.466763\pi\)
\(678\) 9.61853 11.1004i 0.369397 0.426307i
\(679\) 12.2603 14.1491i 0.470506 0.542993i
\(680\) −7.02704 + 2.06332i −0.269475 + 0.0791249i
\(681\) 7.87173 + 17.2367i 0.301645 + 0.660511i
\(682\) 0.903946 0.580931i 0.0346139 0.0222450i
\(683\) 26.6419 + 7.82275i 1.01942 + 0.299329i 0.748403 0.663245i \(-0.230821\pi\)
0.271019 + 0.962574i \(0.412639\pi\)
\(684\) 0.0331744 + 0.230733i 0.00126845 + 0.00882230i
\(685\) 7.75688 16.9852i 0.296375 0.648971i
\(686\) 2.21429 15.4007i 0.0845421 0.588003i
\(687\) −17.8531 11.4735i −0.681138 0.437741i
\(688\) −1.64726 1.90104i −0.0628012 0.0724764i
\(689\) −0.0916135 −0.00349020
\(690\) −4.47537 1.72369i −0.170374 0.0656197i
\(691\) 27.5794 1.04917 0.524584 0.851359i \(-0.324221\pi\)
0.524584 + 0.851359i \(0.324221\pi\)
\(692\) −11.2582 12.9927i −0.427972 0.493907i
\(693\) 4.10215 + 2.63629i 0.155828 + 0.100144i
\(694\) −2.36336 + 16.4375i −0.0897118 + 0.623959i
\(695\) 5.53515 12.1203i 0.209960 0.459749i
\(696\) −1.22302 8.50631i −0.0463586 0.322431i
\(697\) −56.7764 16.6711i −2.15056 0.631461i
\(698\) −3.34842 + 2.15190i −0.126740 + 0.0814506i
\(699\) 2.34207 + 5.12842i 0.0885852 + 0.193974i
\(700\) −2.83591 + 0.832699i −0.107187 + 0.0314731i
\(701\) 9.06539 10.4620i 0.342395 0.395145i −0.558270 0.829659i \(-0.688535\pi\)
0.900665 + 0.434515i \(0.143080\pi\)
\(702\) 4.37966 5.05439i 0.165299 0.190766i
\(703\) 1.20044 0.352481i 0.0452755 0.0132941i
\(704\) 0.685355 + 1.50072i 0.0258303 + 0.0565605i
\(705\) 3.20152 2.05749i 0.120576 0.0774895i
\(706\) 21.3560 + 6.27070i 0.803745 + 0.236001i
\(707\) 3.54541 + 24.6589i 0.133339 + 0.927392i
\(708\) −2.83640 + 6.21085i −0.106598 + 0.233418i
\(709\) 0.0154681 0.107583i 0.000580916 0.00404036i −0.989529 0.144335i \(-0.953896\pi\)
0.990110 + 0.140294i \(0.0448049\pi\)
\(710\) −2.27125 1.45964i −0.0852384 0.0547794i
\(711\) −4.62712 5.33998i −0.173531 0.200265i
\(712\) −6.24234 −0.233942
\(713\) 2.75723 1.46769i 0.103259 0.0549656i
\(714\) 21.6462 0.810088
\(715\) 7.22559 + 8.33878i 0.270222 + 0.311853i
\(716\) −0.360123 0.231437i −0.0134584 0.00864919i
\(717\) −2.70733 + 18.8299i −0.101107 + 0.703216i
\(718\) −8.50807 + 18.6301i −0.317518 + 0.695268i
\(719\) 6.17165 + 42.9248i 0.230164 + 1.60082i 0.697393 + 0.716689i \(0.254343\pi\)
−0.467230 + 0.884136i \(0.654748\pi\)
\(720\) −0.959493 0.281733i −0.0357582 0.0104996i
\(721\) −2.39005 + 1.53599i −0.0890103 + 0.0572034i
\(722\) −7.87031 17.2336i −0.292903 0.641367i
\(723\) 11.4397 3.35899i 0.425446 0.124922i
\(724\) −10.4494 + 12.0592i −0.388348 + 0.448178i
\(725\) −5.62773 + 6.49475i −0.209009 + 0.241209i
\(726\) 7.94281 2.33222i 0.294785 0.0865568i
\(727\) −9.91690 21.7150i −0.367797 0.805364i −0.999544 0.0301892i \(-0.990389\pi\)
0.631747 0.775175i \(-0.282338\pi\)
\(728\) −16.6291 + 10.6869i −0.616315 + 0.396082i
\(729\) −0.959493 0.281733i −0.0355368 0.0104345i
\(730\) 1.13271 + 7.87819i 0.0419236 + 0.291585i
\(731\) 7.65290 16.7575i 0.283053 0.619799i
\(732\) 1.58607 11.0314i 0.0586230 0.407732i
\(733\) 39.2620 + 25.2321i 1.45017 + 0.931970i 0.999223 + 0.0394214i \(0.0125515\pi\)
0.450951 + 0.892549i \(0.351085\pi\)
\(734\) 0.557476 + 0.643362i 0.0205768 + 0.0237469i
\(735\) 1.73578 0.0640252
\(736\) 1.62806 + 4.51103i 0.0600112 + 0.166279i
\(737\) −1.73192 −0.0637959
\(738\) −5.29108 6.10623i −0.194767 0.224774i
\(739\) −25.8218 16.5947i −0.949871 0.610445i −0.0286939 0.999588i \(-0.509135\pi\)
−0.921177 + 0.389143i \(0.872771\pi\)
\(740\) −0.763829 + 5.31255i −0.0280789 + 0.195293i
\(741\) 0.647629 1.41811i 0.0237912 0.0520955i
\(742\) −0.00576195 0.0400752i −0.000211528 0.00147121i
\(743\) 24.6126 + 7.22691i 0.902948 + 0.265129i 0.700070 0.714075i \(-0.253152\pi\)
0.202878 + 0.979204i \(0.434970\pi\)
\(744\) 0.547910 0.352120i 0.0200873 0.0129093i
\(745\) 7.39681 + 16.1968i 0.270998 + 0.593403i
\(746\) −18.6695 + 5.48186i −0.683538 + 0.200705i
\(747\) 2.29043 2.64329i 0.0838023 0.0967130i
\(748\) −7.91249 + 9.13150i −0.289309 + 0.333881i
\(749\) 30.7738 9.03599i 1.12445 0.330168i
\(750\) 0.415415 + 0.909632i 0.0151688 + 0.0332151i
\(751\) −27.1561 + 17.4522i −0.990941 + 0.636839i −0.932393 0.361446i \(-0.882283\pi\)
−0.0585475 + 0.998285i \(0.518647\pi\)
\(752\) −3.65149 1.07218i −0.133156 0.0390982i
\(753\) −2.90865 20.2301i −0.105997 0.737226i
\(754\) −23.8758 + 52.2807i −0.869505 + 1.90395i
\(755\) 0.943808 6.56433i 0.0343487 0.238900i
\(756\) 2.48644 + 1.59794i 0.0904309 + 0.0581164i
\(757\) −12.4854 14.4089i −0.453789 0.523701i 0.482042 0.876148i \(-0.339895\pi\)
−0.935832 + 0.352447i \(0.885350\pi\)
\(758\) −0.779398 −0.0283090
\(759\) −7.74885 + 1.59950i −0.281265 + 0.0580581i
\(760\) −0.233106 −0.00845563
\(761\) 20.1923 + 23.3031i 0.731969 + 0.844737i 0.992692 0.120676i \(-0.0385064\pi\)
−0.260723 + 0.965414i \(0.583961\pi\)
\(762\) −3.91941 2.51885i −0.141985 0.0912485i
\(763\) 4.74413 32.9961i 0.171749 1.19454i
\(764\) −3.66030 + 8.01494i −0.132425 + 0.289970i
\(765\) −1.04227 7.24915i −0.0376834 0.262094i
\(766\) −11.3177 3.32318i −0.408925 0.120071i
\(767\) 38.4152 24.6880i 1.38709 0.891431i
\(768\) 0.415415 + 0.909632i 0.0149900 + 0.0328235i
\(769\) 45.4308 13.3397i 1.63828 0.481041i 0.672430 0.740160i \(-0.265250\pi\)
0.965845 + 0.259119i \(0.0834322\pi\)
\(770\) −3.19325 + 3.68521i −0.115077 + 0.132806i
\(771\) 0.617164 0.712246i 0.0222266 0.0256509i
\(772\) 4.74938 1.39455i 0.170934 0.0501908i
\(773\) 4.65862 + 10.2010i 0.167559 + 0.366903i