Properties

Label 690.2.m.c.601.1
Level $690$
Weight $2$
Character 690.601
Analytic conductor $5.510$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \( x^{20} - 4 x^{19} - 3 x^{18} + 66 x^{17} - 163 x^{16} - 52 x^{15} + 1567 x^{14} - 6182 x^{13} + 17043 x^{12} - 35832 x^{11} + 60906 x^{10} - 87666 x^{9} + 106197 x^{8} - 102542 x^{7} + \cdots + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 601.1
Root \(0.180562 + 1.25584i\) of defining polynomial
Character \(\chi\) \(=\) 690.601
Dual form 690.2.m.c.31.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.142315 - 0.989821i) q^{2} +(-0.415415 + 0.909632i) q^{3} +(-0.959493 + 0.281733i) q^{4} +(-0.654861 + 0.755750i) q^{5} +(0.959493 + 0.281733i) q^{6} +(-1.32376 + 0.850727i) q^{7} +(0.415415 + 0.909632i) q^{8} +(-0.654861 - 0.755750i) q^{9} +O(q^{10})\) \(q+(-0.142315 - 0.989821i) q^{2} +(-0.415415 + 0.909632i) q^{3} +(-0.959493 + 0.281733i) q^{4} +(-0.654861 + 0.755750i) q^{5} +(0.959493 + 0.281733i) q^{6} +(-1.32376 + 0.850727i) q^{7} +(0.415415 + 0.909632i) q^{8} +(-0.654861 - 0.755750i) q^{9} +(0.841254 + 0.540641i) q^{10} +(0.308448 - 2.14530i) q^{11} +(0.142315 - 0.989821i) q^{12} +(-0.178324 - 0.114602i) q^{13} +(1.03046 + 1.18921i) q^{14} +(-0.415415 - 0.909632i) q^{15} +(0.841254 - 0.540641i) q^{16} +(-2.86530 - 0.841327i) q^{17} +(-0.654861 + 0.755750i) q^{18} +(0.700061 - 0.205556i) q^{19} +(0.415415 - 0.909632i) q^{20} +(-0.223940 - 1.55754i) q^{21} -2.16736 q^{22} +(-2.44401 - 4.12636i) q^{23} -1.00000 q^{24} +(-0.142315 - 0.989821i) q^{25} +(-0.0880575 + 0.192819i) q^{26} +(0.959493 - 0.281733i) q^{27} +(1.03046 - 1.18921i) q^{28} +(-5.97820 - 1.75536i) q^{29} +(-0.841254 + 0.540641i) q^{30} +(-1.76017 - 3.85423i) q^{31} +(-0.654861 - 0.755750i) q^{32} +(1.82330 + 1.17177i) q^{33} +(-0.424989 + 2.95586i) q^{34} +(0.223940 - 1.55754i) q^{35} +(0.841254 + 0.540641i) q^{36} +(-6.99603 - 8.07385i) q^{37} +(-0.303093 - 0.663682i) q^{38} +(0.178324 - 0.114602i) q^{39} +(-0.959493 - 0.281733i) q^{40} +(6.89281 - 7.95473i) q^{41} +(-1.50981 + 0.443321i) q^{42} +(-3.95589 + 8.66219i) q^{43} +(0.308448 + 2.14530i) q^{44} +1.00000 q^{45} +(-3.73654 + 3.00637i) q^{46} -5.12157 q^{47} +(0.142315 + 0.989821i) q^{48} +(-1.87931 + 4.11511i) q^{49} +(-0.959493 + 0.281733i) q^{50} +(1.95558 - 2.25686i) q^{51} +(0.203388 + 0.0597202i) q^{52} +(6.72208 - 4.32002i) q^{53} +(-0.415415 - 0.909632i) q^{54} +(1.41932 + 1.63798i) q^{55} +(-1.32376 - 0.850727i) q^{56} +(-0.103835 + 0.722189i) q^{57} +(-0.886704 + 6.16716i) q^{58} +(-6.90331 - 4.43649i) q^{59} +(0.654861 + 0.755750i) q^{60} +(-2.36875 - 5.18683i) q^{61} +(-3.56450 + 2.29077i) q^{62} +(1.50981 + 0.443321i) q^{63} +(-0.654861 + 0.755750i) q^{64} +(0.203388 - 0.0597202i) q^{65} +(0.900355 - 1.97150i) q^{66} +(2.17625 + 15.1361i) q^{67} +2.98626 q^{68} +(4.76874 - 0.508997i) q^{69} -1.57355 q^{70} +(0.286605 + 1.99338i) q^{71} +(0.415415 - 0.909632i) q^{72} +(-1.77683 + 0.521724i) q^{73} +(-6.99603 + 8.07385i) q^{74} +(0.959493 + 0.281733i) q^{75} +(-0.613792 + 0.394460i) q^{76} +(1.41676 + 3.10227i) q^{77} +(-0.138814 - 0.160200i) q^{78} +(2.50585 + 1.61041i) q^{79} +(-0.142315 + 0.989821i) q^{80} +(-0.142315 + 0.989821i) q^{81} +(-8.85471 - 5.69058i) q^{82} +(-3.99455 - 4.60995i) q^{83} +(0.653678 + 1.43135i) q^{84} +(2.51220 - 1.61449i) q^{85} +(9.13700 + 2.68287i) q^{86} +(4.08016 - 4.70876i) q^{87} +(2.07957 - 0.610617i) q^{88} +(5.73900 - 12.5667i) q^{89} +(-0.142315 - 0.989821i) q^{90} +0.333553 q^{91} +(3.50754 + 3.27065i) q^{92} +4.23713 q^{93} +(0.728876 + 5.06944i) q^{94} +(-0.303093 + 0.663682i) q^{95} +(0.959493 - 0.281733i) q^{96} +(-5.45096 + 6.29074i) q^{97} +(4.34068 + 1.27454i) q^{98} +(-1.82330 + 1.17177i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9} - 2 q^{10} - 24 q^{11} + 2 q^{12} - 4 q^{13} + 2 q^{14} + 2 q^{15} - 2 q^{16} + 16 q^{17} - 2 q^{18} + 14 q^{19} - 2 q^{20} - 13 q^{21} - 2 q^{22} - 2 q^{23} - 20 q^{24} - 2 q^{25} + 7 q^{26} + 2 q^{27} + 2 q^{28} + 18 q^{29} + 2 q^{30} + 22 q^{31} - 2 q^{32} + 2 q^{33} - 17 q^{34} + 13 q^{35} - 2 q^{36} - 16 q^{37} + 3 q^{38} + 4 q^{39} - 2 q^{40} + 29 q^{41} + 9 q^{42} - 22 q^{43} - 24 q^{44} + 20 q^{45} - 2 q^{46} - 94 q^{47} + 2 q^{48} - 22 q^{49} - 2 q^{50} - 5 q^{51} - 4 q^{52} + 58 q^{53} + 2 q^{54} + 9 q^{55} + 2 q^{56} - 25 q^{57} - 4 q^{58} + 45 q^{59} + 2 q^{60} + q^{61} - 9 q^{63} - 2 q^{64} - 4 q^{65} - 9 q^{66} + 16 q^{67} - 6 q^{68} + 24 q^{69} + 2 q^{70} + 59 q^{71} - 2 q^{72} + 3 q^{73} - 16 q^{74} + 2 q^{75} - 8 q^{76} - 19 q^{77} - 18 q^{78} - 20 q^{79} - 2 q^{80} - 2 q^{81} - 37 q^{82} + 13 q^{83} + 9 q^{84} + 5 q^{85} - 22 q^{86} + 4 q^{87} + 9 q^{88} - 97 q^{89} - 2 q^{90} - 18 q^{91} + 9 q^{92} + 22 q^{93} + 27 q^{94} + 3 q^{95} + 2 q^{96} - 17 q^{97} - 11 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{8}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.142315 0.989821i −0.100632 0.699909i
\(3\) −0.415415 + 0.909632i −0.239840 + 0.525176i
\(4\) −0.959493 + 0.281733i −0.479746 + 0.140866i
\(5\) −0.654861 + 0.755750i −0.292863 + 0.337981i
\(6\) 0.959493 + 0.281733i 0.391711 + 0.115017i
\(7\) −1.32376 + 0.850727i −0.500333 + 0.321545i −0.766350 0.642424i \(-0.777929\pi\)
0.266016 + 0.963969i \(0.414293\pi\)
\(8\) 0.415415 + 0.909632i 0.146871 + 0.321603i
\(9\) −0.654861 0.755750i −0.218287 0.251917i
\(10\) 0.841254 + 0.540641i 0.266028 + 0.170966i
\(11\) 0.308448 2.14530i 0.0930006 0.646833i −0.888993 0.457920i \(-0.848595\pi\)
0.981994 0.188913i \(-0.0604964\pi\)
\(12\) 0.142315 0.989821i 0.0410828 0.285737i
\(13\) −0.178324 0.114602i −0.0494583 0.0317849i 0.515678 0.856782i \(-0.327540\pi\)
−0.565136 + 0.824998i \(0.691176\pi\)
\(14\) 1.03046 + 1.18921i 0.275402 + 0.317830i
\(15\) −0.415415 0.909632i −0.107260 0.234866i
\(16\) 0.841254 0.540641i 0.210313 0.135160i
\(17\) −2.86530 0.841327i −0.694936 0.204052i −0.0848583 0.996393i \(-0.527044\pi\)
−0.610078 + 0.792341i \(0.708862\pi\)
\(18\) −0.654861 + 0.755750i −0.154352 + 0.178132i
\(19\) 0.700061 0.205556i 0.160605 0.0471579i −0.200442 0.979706i \(-0.564238\pi\)
0.361047 + 0.932548i \(0.382420\pi\)
\(20\) 0.415415 0.909632i 0.0928896 0.203400i
\(21\) −0.223940 1.55754i −0.0488677 0.339882i
\(22\) −2.16736 −0.462083
\(23\) −2.44401 4.12636i −0.509611 0.860405i
\(24\) −1.00000 −0.204124
\(25\) −0.142315 0.989821i −0.0284630 0.197964i
\(26\) −0.0880575 + 0.192819i −0.0172695 + 0.0378149i
\(27\) 0.959493 0.281733i 0.184655 0.0542195i
\(28\) 1.03046 1.18921i 0.194738 0.224740i
\(29\) −5.97820 1.75536i −1.11012 0.325962i −0.325257 0.945626i \(-0.605451\pi\)
−0.784867 + 0.619664i \(0.787269\pi\)
\(30\) −0.841254 + 0.540641i −0.153591 + 0.0987071i
\(31\) −1.76017 3.85423i −0.316135 0.692240i 0.683141 0.730287i \(-0.260614\pi\)
−0.999276 + 0.0380469i \(0.987886\pi\)
\(32\) −0.654861 0.755750i −0.115764 0.133599i
\(33\) 1.82330 + 1.17177i 0.317396 + 0.203978i
\(34\) −0.424989 + 2.95586i −0.0728850 + 0.506927i
\(35\) 0.223940 1.55754i 0.0378528 0.263272i
\(36\) 0.841254 + 0.540641i 0.140209 + 0.0901068i
\(37\) −6.99603 8.07385i −1.15014 1.32733i −0.936600 0.350399i \(-0.886046\pi\)
−0.213540 0.976934i \(-0.568500\pi\)
\(38\) −0.303093 0.663682i −0.0491682 0.107663i
\(39\) 0.178324 0.114602i 0.0285548 0.0183510i
\(40\) −0.959493 0.281733i −0.151709 0.0445458i
\(41\) 6.89281 7.95473i 1.07648 1.24232i 0.107753 0.994178i \(-0.465635\pi\)
0.968724 0.248142i \(-0.0798200\pi\)
\(42\) −1.50981 + 0.443321i −0.232969 + 0.0684060i
\(43\) −3.95589 + 8.66219i −0.603268 + 1.32097i 0.323817 + 0.946120i \(0.395034\pi\)
−0.927085 + 0.374852i \(0.877693\pi\)
\(44\) 0.308448 + 2.14530i 0.0465003 + 0.323417i
\(45\) 1.00000 0.149071
\(46\) −3.73654 + 3.00637i −0.550923 + 0.443266i
\(47\) −5.12157 −0.747058 −0.373529 0.927619i \(-0.621852\pi\)
−0.373529 + 0.927619i \(0.621852\pi\)
\(48\) 0.142315 + 0.989821i 0.0205414 + 0.142868i
\(49\) −1.87931 + 4.11511i −0.268473 + 0.587873i
\(50\) −0.959493 + 0.281733i −0.135693 + 0.0398430i
\(51\) 1.95558 2.25686i 0.273837 0.316024i
\(52\) 0.203388 + 0.0597202i 0.0282049 + 0.00828170i
\(53\) 6.72208 4.32002i 0.923348 0.593400i 0.00972097 0.999953i \(-0.496906\pi\)
0.913627 + 0.406553i \(0.133269\pi\)
\(54\) −0.415415 0.909632i −0.0565308 0.123785i
\(55\) 1.41932 + 1.63798i 0.191381 + 0.220866i
\(56\) −1.32376 0.850727i −0.176895 0.113683i
\(57\) −0.103835 + 0.722189i −0.0137533 + 0.0956563i
\(58\) −0.886704 + 6.16716i −0.116430 + 0.809788i
\(59\) −6.90331 4.43649i −0.898734 0.577582i 0.00768030 0.999971i \(-0.497555\pi\)
−0.906415 + 0.422389i \(0.861192\pi\)
\(60\) 0.654861 + 0.755750i 0.0845422 + 0.0975669i
\(61\) −2.36875 5.18683i −0.303287 0.664105i 0.695216 0.718801i \(-0.255309\pi\)
−0.998503 + 0.0546951i \(0.982581\pi\)
\(62\) −3.56450 + 2.29077i −0.452692 + 0.290928i
\(63\) 1.50981 + 0.443321i 0.190219 + 0.0558532i
\(64\) −0.654861 + 0.755750i −0.0818576 + 0.0944687i
\(65\) 0.203388 0.0597202i 0.0252272 0.00740737i
\(66\) 0.900355 1.97150i 0.110826 0.242675i
\(67\) 2.17625 + 15.1361i 0.265871 + 1.84917i 0.486329 + 0.873776i \(0.338336\pi\)
−0.220458 + 0.975396i \(0.570755\pi\)
\(68\) 2.98626 0.362137
\(69\) 4.76874 0.508997i 0.574089 0.0612760i
\(70\) −1.57355 −0.188076
\(71\) 0.286605 + 1.99338i 0.0340138 + 0.236571i 0.999735 0.0230096i \(-0.00732481\pi\)
−0.965721 + 0.259580i \(0.916416\pi\)
\(72\) 0.415415 0.909632i 0.0489571 0.107201i
\(73\) −1.77683 + 0.521724i −0.207962 + 0.0610632i −0.384054 0.923310i \(-0.625472\pi\)
0.176092 + 0.984374i \(0.443654\pi\)
\(74\) −6.99603 + 8.07385i −0.813272 + 0.938566i
\(75\) 0.959493 + 0.281733i 0.110793 + 0.0325317i
\(76\) −0.613792 + 0.394460i −0.0704067 + 0.0452477i
\(77\) 1.41676 + 3.10227i 0.161454 + 0.353536i
\(78\) −0.138814 0.160200i −0.0157176 0.0181390i
\(79\) 2.50585 + 1.61041i 0.281930 + 0.181186i 0.673962 0.738766i \(-0.264591\pi\)
−0.392032 + 0.919952i \(0.628228\pi\)
\(80\) −0.142315 + 0.989821i −0.0159113 + 0.110665i
\(81\) −0.142315 + 0.989821i −0.0158128 + 0.109980i
\(82\) −8.85471 5.69058i −0.977839 0.628419i
\(83\) −3.99455 4.60995i −0.438459 0.506008i 0.492913 0.870079i \(-0.335932\pi\)
−0.931371 + 0.364070i \(0.881387\pi\)
\(84\) 0.653678 + 1.43135i 0.0713221 + 0.156174i
\(85\) 2.51220 1.61449i 0.272487 0.175116i
\(86\) 9.13700 + 2.68287i 0.985269 + 0.289301i
\(87\) 4.08016 4.70876i 0.437439 0.504832i
\(88\) 2.07957 0.610617i 0.221683 0.0650920i
\(89\) 5.73900 12.5667i 0.608333 1.33206i −0.315376 0.948967i \(-0.602131\pi\)
0.923709 0.383096i \(-0.125142\pi\)
\(90\) −0.142315 0.989821i −0.0150013 0.104336i
\(91\) 0.333553 0.0349659
\(92\) 3.50754 + 3.27065i 0.365686 + 0.340989i
\(93\) 4.23713 0.439370
\(94\) 0.728876 + 5.06944i 0.0751778 + 0.522873i
\(95\) −0.303093 + 0.663682i −0.0310967 + 0.0680923i
\(96\) 0.959493 0.281733i 0.0979278 0.0287542i
\(97\) −5.45096 + 6.29074i −0.553461 + 0.638728i −0.961686 0.274153i \(-0.911602\pi\)
0.408225 + 0.912881i \(0.366148\pi\)
\(98\) 4.34068 + 1.27454i 0.438475 + 0.128748i
\(99\) −1.82330 + 1.17177i −0.183249 + 0.117767i
\(100\) 0.415415 + 0.909632i 0.0415415 + 0.0909632i
\(101\) −2.14739 2.47822i −0.213673 0.246592i 0.638788 0.769383i \(-0.279436\pi\)
−0.852461 + 0.522791i \(0.824891\pi\)
\(102\) −2.51220 1.61449i −0.248745 0.159859i
\(103\) −1.82014 + 12.6594i −0.179344 + 1.24736i 0.678942 + 0.734191i \(0.262439\pi\)
−0.858286 + 0.513171i \(0.828471\pi\)
\(104\) 0.0301671 0.209817i 0.00295813 0.0205743i
\(105\) 1.32376 + 0.850727i 0.129185 + 0.0830225i
\(106\) −5.23270 6.03885i −0.508244 0.586545i
\(107\) −0.258616 0.566291i −0.0250014 0.0547454i 0.896719 0.442600i \(-0.145944\pi\)
−0.921721 + 0.387854i \(0.873216\pi\)
\(108\) −0.841254 + 0.540641i −0.0809497 + 0.0520232i
\(109\) 5.63387 + 1.65425i 0.539627 + 0.158449i 0.540177 0.841551i \(-0.318357\pi\)
−0.000550814 1.00000i \(0.500175\pi\)
\(110\) 1.41932 1.63798i 0.135327 0.156176i
\(111\) 10.2505 3.00982i 0.972934 0.285679i
\(112\) −0.653678 + 1.43135i −0.0617667 + 0.135250i
\(113\) 1.01353 + 7.04928i 0.0953451 + 0.663140i 0.980307 + 0.197477i \(0.0632749\pi\)
−0.884962 + 0.465663i \(0.845816\pi\)
\(114\) 0.729615 0.0683347
\(115\) 4.71898 + 0.855132i 0.440047 + 0.0797414i
\(116\) 6.23058 0.578495
\(117\) 0.0301671 + 0.209817i 0.00278895 + 0.0193976i
\(118\) −3.40889 + 7.46442i −0.313814 + 0.687156i
\(119\) 4.50870 1.32387i 0.413312 0.121359i
\(120\) 0.654861 0.755750i 0.0597803 0.0689902i
\(121\) 6.04724 + 1.77563i 0.549749 + 0.161421i
\(122\) −4.79693 + 3.08280i −0.434293 + 0.279103i
\(123\) 4.37250 + 9.57443i 0.394255 + 0.863298i
\(124\) 2.77473 + 3.20221i 0.249178 + 0.287567i
\(125\) 0.841254 + 0.540641i 0.0752440 + 0.0483564i
\(126\) 0.223940 1.55754i 0.0199502 0.138756i
\(127\) −0.0743873 + 0.517375i −0.00660080 + 0.0459096i −0.992856 0.119322i \(-0.961928\pi\)
0.986255 + 0.165231i \(0.0528371\pi\)
\(128\) 0.841254 + 0.540641i 0.0743570 + 0.0477863i
\(129\) −6.23607 7.19681i −0.549055 0.633644i
\(130\) −0.0880575 0.192819i −0.00772315 0.0169113i
\(131\) 1.35345 0.869809i 0.118251 0.0759956i −0.480178 0.877171i \(-0.659428\pi\)
0.598430 + 0.801175i \(0.295792\pi\)
\(132\) −2.07957 0.610617i −0.181003 0.0531474i
\(133\) −0.751838 + 0.867668i −0.0651927 + 0.0752363i
\(134\) 14.6723 4.30819i 1.26750 0.372171i
\(135\) −0.415415 + 0.909632i −0.0357532 + 0.0782887i
\(136\) −0.424989 2.95586i −0.0364425 0.253463i
\(137\) −7.50760 −0.641418 −0.320709 0.947178i \(-0.603921\pi\)
−0.320709 + 0.947178i \(0.603921\pi\)
\(138\) −1.18248 4.64777i −0.100659 0.395644i
\(139\) −8.39251 −0.711843 −0.355922 0.934516i \(-0.615833\pi\)
−0.355922 + 0.934516i \(0.615833\pi\)
\(140\) 0.223940 + 1.55754i 0.0189264 + 0.131636i
\(141\) 2.12758 4.65874i 0.179174 0.392337i
\(142\) 1.93230 0.567376i 0.162155 0.0476131i
\(143\) −0.300860 + 0.347211i −0.0251592 + 0.0290353i
\(144\) −0.959493 0.281733i −0.0799577 0.0234777i
\(145\) 5.24150 3.36851i 0.435283 0.279739i
\(146\) 0.769283 + 1.68450i 0.0636663 + 0.139410i
\(147\) −2.96254 3.41896i −0.244346 0.281991i
\(148\) 8.98731 + 5.77580i 0.738753 + 0.474767i
\(149\) −0.834859 + 5.80657i −0.0683943 + 0.475693i 0.926623 + 0.375992i \(0.122698\pi\)
−0.995017 + 0.0997014i \(0.968211\pi\)
\(150\) 0.142315 0.989821i 0.0116200 0.0808186i
\(151\) 8.78863 + 5.64811i 0.715209 + 0.459637i 0.846967 0.531645i \(-0.178426\pi\)
−0.131758 + 0.991282i \(0.542062\pi\)
\(152\) 0.477796 + 0.551407i 0.0387544 + 0.0447250i
\(153\) 1.24054 + 2.71640i 0.100292 + 0.219608i
\(154\) 2.86906 1.84384i 0.231196 0.148580i
\(155\) 4.06550 + 1.19374i 0.326549 + 0.0958833i
\(156\) −0.138814 + 0.160200i −0.0111140 + 0.0128262i
\(157\) 2.48623 0.730022i 0.198423 0.0582621i −0.181011 0.983481i \(-0.557937\pi\)
0.379434 + 0.925219i \(0.376119\pi\)
\(158\) 1.23740 2.70953i 0.0984424 0.215559i
\(159\) 1.13717 + 7.90922i 0.0901837 + 0.627242i
\(160\) 1.00000 0.0790569
\(161\) 6.74568 + 3.38311i 0.531634 + 0.266627i
\(162\) 1.00000 0.0785674
\(163\) −0.379070 2.63649i −0.0296911 0.206506i 0.969576 0.244791i \(-0.0787195\pi\)
−0.999267 + 0.0382854i \(0.987810\pi\)
\(164\) −4.37250 + 9.57443i −0.341435 + 0.747638i
\(165\) −2.07957 + 0.610617i −0.161894 + 0.0475365i
\(166\) −3.99455 + 4.60995i −0.310037 + 0.357802i
\(167\) 5.13997 + 1.50923i 0.397743 + 0.116788i 0.474486 0.880263i \(-0.342634\pi\)
−0.0767430 + 0.997051i \(0.524452\pi\)
\(168\) 1.32376 0.850727i 0.102130 0.0656350i
\(169\) −5.38173 11.7843i −0.413979 0.906488i
\(170\) −1.95558 2.25686i −0.149986 0.173094i
\(171\) −0.613792 0.394460i −0.0469378 0.0301651i
\(172\) 1.35523 9.42582i 0.103335 0.718712i
\(173\) 3.23370 22.4909i 0.245854 1.70995i −0.375835 0.926687i \(-0.622644\pi\)
0.621689 0.783264i \(-0.286447\pi\)
\(174\) −5.24150 3.36851i −0.397357 0.255366i
\(175\) 1.03046 + 1.18921i 0.0778953 + 0.0898960i
\(176\) −0.900355 1.97150i −0.0678668 0.148608i
\(177\) 6.90331 4.43649i 0.518885 0.333467i
\(178\) −13.2555 3.89216i −0.993541 0.291730i
\(179\) −5.61516 + 6.48024i −0.419697 + 0.484356i −0.925744 0.378150i \(-0.876560\pi\)
0.506048 + 0.862505i \(0.331106\pi\)
\(180\) −0.959493 + 0.281733i −0.0715164 + 0.0209991i
\(181\) 2.45971 5.38602i 0.182829 0.400340i −0.795920 0.605402i \(-0.793012\pi\)
0.978749 + 0.205062i \(0.0657396\pi\)
\(182\) −0.0474696 0.330158i −0.00351868 0.0244730i
\(183\) 5.70212 0.421513
\(184\) 2.73819 3.93730i 0.201862 0.290261i
\(185\) 10.6832 0.785447
\(186\) −0.603007 4.19400i −0.0442146 0.307519i
\(187\) −2.68870 + 5.88742i −0.196617 + 0.430531i
\(188\) 4.91411 1.44291i 0.358398 0.105235i
\(189\) −1.03046 + 1.18921i −0.0749548 + 0.0865025i
\(190\) 0.700061 + 0.205556i 0.0507878 + 0.0149126i
\(191\) 1.80760 1.16167i 0.130793 0.0840557i −0.473608 0.880736i \(-0.657049\pi\)
0.604401 + 0.796680i \(0.293412\pi\)
\(192\) −0.415415 0.909632i −0.0299800 0.0656470i
\(193\) −9.51150 10.9769i −0.684653 0.790131i 0.301941 0.953327i \(-0.402365\pi\)
−0.986594 + 0.163195i \(0.947820\pi\)
\(194\) 7.00246 + 4.50021i 0.502748 + 0.323096i
\(195\) −0.0301671 + 0.209817i −0.00216031 + 0.0150253i
\(196\) 0.643822 4.47788i 0.0459873 0.319849i
\(197\) 14.3473 + 9.22045i 1.02220 + 0.656930i 0.940524 0.339729i \(-0.110335\pi\)
0.0816797 + 0.996659i \(0.473972\pi\)
\(198\) 1.41932 + 1.63798i 0.100867 + 0.116406i
\(199\) −2.65786 5.81990i −0.188411 0.412562i 0.791728 0.610873i \(-0.209182\pi\)
−0.980139 + 0.198311i \(0.936454\pi\)
\(200\) 0.841254 0.540641i 0.0594856 0.0382291i
\(201\) −14.6723 4.30819i −1.03491 0.303876i
\(202\) −2.14739 + 2.47822i −0.151090 + 0.174367i
\(203\) 9.40702 2.76215i 0.660243 0.193865i
\(204\) −1.24054 + 2.71640i −0.0868550 + 0.190186i
\(205\) 1.49795 + 10.4185i 0.104621 + 0.727658i
\(206\) 12.7895 0.891089
\(207\) −1.51801 + 4.54925i −0.105509 + 0.316195i
\(208\) −0.211975 −0.0146978
\(209\) −0.225048 1.56525i −0.0155669 0.108270i
\(210\) 0.653678 1.43135i 0.0451080 0.0987729i
\(211\) 13.0873 3.84277i 0.900965 0.264547i 0.201732 0.979441i \(-0.435343\pi\)
0.699233 + 0.714893i \(0.253525\pi\)
\(212\) −5.23270 + 6.03885i −0.359383 + 0.414750i
\(213\) −1.93230 0.567376i −0.132399 0.0388759i
\(214\) −0.523722 + 0.336576i −0.0358009 + 0.0230078i
\(215\) −3.95589 8.66219i −0.269789 0.590757i
\(216\) 0.654861 + 0.755750i 0.0445576 + 0.0514222i
\(217\) 5.60893 + 3.60464i 0.380759 + 0.244699i
\(218\) 0.835632 5.81195i 0.0565961 0.393635i
\(219\) 0.263545 1.83299i 0.0178087 0.123862i
\(220\) −1.82330 1.17177i −0.122927 0.0790004i
\(221\) 0.414534 + 0.478398i 0.0278846 + 0.0321805i
\(222\) −4.43798 9.71782i −0.297858 0.652217i
\(223\) −12.6168 + 8.10833i −0.844884 + 0.542974i −0.889975 0.456009i \(-0.849278\pi\)
0.0450914 + 0.998983i \(0.485642\pi\)
\(224\) 1.50981 + 0.443321i 0.100879 + 0.0296206i
\(225\) −0.654861 + 0.755750i −0.0436574 + 0.0503833i
\(226\) 6.83328 2.00643i 0.454543 0.133466i
\(227\) −10.9363 + 23.9472i −0.725870 + 1.58943i 0.0796200 + 0.996825i \(0.474629\pi\)
−0.805490 + 0.592609i \(0.798098\pi\)
\(228\) −0.103835 0.722189i −0.00687665 0.0478281i
\(229\) 8.48699 0.560836 0.280418 0.959878i \(-0.409527\pi\)
0.280418 + 0.959878i \(0.409527\pi\)
\(230\) 0.174847 4.79264i 0.0115291 0.316018i
\(231\) −3.41046 −0.224392
\(232\) −0.886704 6.16716i −0.0582150 0.404894i
\(233\) −1.55914 + 3.41405i −0.102143 + 0.223662i −0.953803 0.300433i \(-0.902869\pi\)
0.851660 + 0.524095i \(0.175596\pi\)
\(234\) 0.203388 0.0597202i 0.0132959 0.00390403i
\(235\) 3.35392 3.87063i 0.218785 0.252492i
\(236\) 7.87358 + 2.31189i 0.512526 + 0.150491i
\(237\) −2.50585 + 1.61041i −0.162773 + 0.104608i
\(238\) −1.95205 4.27440i −0.126533 0.277068i
\(239\) −12.5834 14.5221i −0.813955 0.939354i 0.185104 0.982719i \(-0.440738\pi\)
−0.999059 + 0.0433647i \(0.986192\pi\)
\(240\) −0.841254 0.540641i −0.0543027 0.0348982i
\(241\) 1.01041 7.02757i 0.0650864 0.452686i −0.931052 0.364887i \(-0.881108\pi\)
0.996138 0.0877988i \(-0.0279833\pi\)
\(242\) 0.896944 6.23838i 0.0576578 0.401019i
\(243\) −0.841254 0.540641i −0.0539664 0.0346821i
\(244\) 3.73409 + 4.30937i 0.239051 + 0.275879i
\(245\) −1.87931 4.11511i −0.120065 0.262905i
\(246\) 8.85471 5.69058i 0.564556 0.362818i
\(247\) −0.148395 0.0435728i −0.00944216 0.00277247i
\(248\) 2.77473 3.20221i 0.176196 0.203341i
\(249\) 5.85276 1.71852i 0.370903 0.108907i
\(250\) 0.415415 0.909632i 0.0262732 0.0575302i
\(251\) 3.76561 + 26.1904i 0.237683 + 1.65312i 0.663399 + 0.748266i \(0.269113\pi\)
−0.425716 + 0.904857i \(0.639978\pi\)
\(252\) −1.57355 −0.0991246
\(253\) −9.60614 + 3.97037i −0.603933 + 0.249615i
\(254\) 0.522695 0.0327968
\(255\) 0.424989 + 2.95586i 0.0266139 + 0.185103i
\(256\) 0.415415 0.909632i 0.0259634 0.0568520i
\(257\) 6.12308 1.79790i 0.381947 0.112150i −0.0851221 0.996371i \(-0.527128\pi\)
0.467069 + 0.884221i \(0.345310\pi\)
\(258\) −6.23607 + 7.19681i −0.388241 + 0.448054i
\(259\) 16.1297 + 4.73611i 1.00225 + 0.294287i
\(260\) −0.178324 + 0.114602i −0.0110592 + 0.00710732i
\(261\) 2.58828 + 5.66754i 0.160210 + 0.350812i
\(262\) −1.05357 1.21589i −0.0650899 0.0751177i
\(263\) −12.4799 8.02037i −0.769546 0.494557i 0.0960034 0.995381i \(-0.469394\pi\)
−0.865549 + 0.500824i \(0.833030\pi\)
\(264\) −0.308448 + 2.14530i −0.0189837 + 0.132034i
\(265\) −1.13717 + 7.90922i −0.0698560 + 0.485859i
\(266\) 0.965834 + 0.620704i 0.0592191 + 0.0380578i
\(267\) 9.04696 + 10.4408i 0.553665 + 0.638964i
\(268\) −6.35243 13.9099i −0.388037 0.849682i
\(269\) −16.3597 + 10.5138i −0.997470 + 0.641035i −0.934121 0.356956i \(-0.883815\pi\)
−0.0633491 + 0.997991i \(0.520178\pi\)
\(270\) 0.959493 + 0.281733i 0.0583929 + 0.0171457i
\(271\) 16.9935 19.6116i 1.03228 1.19132i 0.0510090 0.998698i \(-0.483756\pi\)
0.981274 0.192619i \(-0.0616983\pi\)
\(272\) −2.86530 + 0.841327i −0.173734 + 0.0510129i
\(273\) −0.138563 + 0.303411i −0.00838622 + 0.0183633i
\(274\) 1.06844 + 7.43118i 0.0645470 + 0.448934i
\(275\) −2.16736 −0.130697
\(276\) −4.43218 + 1.83189i −0.266786 + 0.110267i
\(277\) −15.3274 −0.920933 −0.460467 0.887677i \(-0.652318\pi\)
−0.460467 + 0.887677i \(0.652318\pi\)
\(278\) 1.19438 + 8.30708i 0.0716340 + 0.498226i
\(279\) −1.76017 + 3.85423i −0.105378 + 0.230747i
\(280\) 1.50981 0.443321i 0.0902286 0.0264935i
\(281\) −13.5955 + 15.6901i −0.811042 + 0.935992i −0.998932 0.0461978i \(-0.985290\pi\)
0.187890 + 0.982190i \(0.439835\pi\)
\(282\) −4.91411 1.44291i −0.292631 0.0859242i
\(283\) −18.6624 + 11.9936i −1.10936 + 0.712945i −0.961154 0.276011i \(-0.910987\pi\)
−0.148209 + 0.988956i \(0.547351\pi\)
\(284\) −0.836596 1.83189i −0.0496428 0.108703i
\(285\) −0.477796 0.551407i −0.0283022 0.0326625i
\(286\) 0.386494 + 0.248385i 0.0228539 + 0.0146873i
\(287\) −2.35711 + 16.3940i −0.139136 + 0.967709i
\(288\) −0.142315 + 0.989821i −0.00838598 + 0.0583258i
\(289\) −6.79922 4.36959i −0.399954 0.257035i
\(290\) −4.08016 4.70876i −0.239595 0.276508i
\(291\) −3.45785 7.57164i −0.202703 0.443857i
\(292\) 1.55787 1.00118i 0.0911674 0.0585897i
\(293\) −13.2236 3.88279i −0.772529 0.226835i −0.128370 0.991726i \(-0.540974\pi\)
−0.644159 + 0.764891i \(0.722793\pi\)
\(294\) −2.96254 + 3.41896i −0.172779 + 0.199398i
\(295\) 7.87358 2.31189i 0.458418 0.134604i
\(296\) 4.43798 9.71782i 0.257952 0.564837i
\(297\) −0.308448 2.14530i −0.0178980 0.124483i
\(298\) 5.86628 0.339825
\(299\) −0.0370632 + 1.01592i −0.00214342 + 0.0587521i
\(300\) −1.00000 −0.0577350
\(301\) −2.13252 14.8320i −0.122917 0.854904i
\(302\) 4.33987 9.50299i 0.249731 0.546836i
\(303\) 3.14632 0.923844i 0.180752 0.0530734i
\(304\) 0.477796 0.551407i 0.0274035 0.0316253i
\(305\) 5.47114 + 1.60647i 0.313277 + 0.0919863i
\(306\) 2.51220 1.61449i 0.143613 0.0922945i
\(307\) 6.23946 + 13.6625i 0.356105 + 0.779761i 0.999894 + 0.0145582i \(0.00463420\pi\)
−0.643789 + 0.765203i \(0.722639\pi\)
\(308\) −2.23338 2.57746i −0.127259 0.146864i
\(309\) −10.7592 6.91454i −0.612072 0.393355i
\(310\) 0.603007 4.19400i 0.0342485 0.238203i
\(311\) −0.400583 + 2.78612i −0.0227150 + 0.157986i −0.998022 0.0628678i \(-0.979975\pi\)
0.975307 + 0.220854i \(0.0708844\pi\)
\(312\) 0.178324 + 0.114602i 0.0100956 + 0.00648807i
\(313\) 2.29458 + 2.64808i 0.129697 + 0.149678i 0.816883 0.576803i \(-0.195700\pi\)
−0.687186 + 0.726481i \(0.741154\pi\)
\(314\) −1.07642 2.35703i −0.0607458 0.133015i
\(315\) −1.32376 + 0.850727i −0.0745853 + 0.0479331i
\(316\) −2.85805 0.839200i −0.160778 0.0472087i
\(317\) 3.09921 3.57668i 0.174069 0.200887i −0.662011 0.749495i \(-0.730297\pi\)
0.836080 + 0.548608i \(0.184842\pi\)
\(318\) 7.66687 2.25120i 0.429937 0.126241i
\(319\) −5.60974 + 12.2836i −0.314085 + 0.687750i
\(320\) −0.142315 0.989821i −0.00795564 0.0553327i
\(321\) 0.622550 0.0347473
\(322\) 2.38867 7.15848i 0.133115 0.398927i
\(323\) −2.17882 −0.121233
\(324\) −0.142315 0.989821i −0.00790638 0.0549901i
\(325\) −0.0880575 + 0.192819i −0.00488455 + 0.0106957i
\(326\) −2.55571 + 0.750424i −0.141548 + 0.0415621i
\(327\) −3.84515 + 4.43754i −0.212637 + 0.245397i
\(328\) 10.0993 + 2.96541i 0.557638 + 0.163737i
\(329\) 6.77972 4.35706i 0.373778 0.240213i
\(330\) 0.900355 + 1.97150i 0.0495629 + 0.108528i
\(331\) 12.6958 + 14.6517i 0.697825 + 0.805332i 0.988457 0.151502i \(-0.0484111\pi\)
−0.290632 + 0.956835i \(0.593866\pi\)
\(332\) 5.13152 + 3.29782i 0.281629 + 0.180992i
\(333\) −1.52038 + 10.5745i −0.0833165 + 0.579479i
\(334\) 0.762376 5.30244i 0.0417154 0.290137i
\(335\) −12.8643 8.26736i −0.702850 0.451694i
\(336\) −1.03046 1.18921i −0.0562161 0.0648769i
\(337\) −7.10835 15.5651i −0.387216 0.847885i −0.998408 0.0564028i \(-0.982037\pi\)
0.611192 0.791482i \(-0.290690\pi\)
\(338\) −10.8985 + 7.00404i −0.592800 + 0.380969i
\(339\) −6.83328 2.00643i −0.371133 0.108974i
\(340\) −1.95558 + 2.25686i −0.106056 + 0.122396i
\(341\) −8.81141 + 2.58726i −0.477165 + 0.140108i
\(342\) −0.303093 + 0.663682i −0.0163894 + 0.0358878i
\(343\) −2.58067 17.9489i −0.139343 0.969152i
\(344\) −9.52274 −0.513432
\(345\) −2.73819 + 3.93730i −0.147419 + 0.211977i
\(346\) −22.7222 −1.22155
\(347\) 4.12557 + 28.6940i 0.221472 + 1.54037i 0.732475 + 0.680794i \(0.238365\pi\)
−0.511002 + 0.859579i \(0.670726\pi\)
\(348\) −2.58828 + 5.66754i −0.138746 + 0.303812i
\(349\) −18.6674 + 5.48124i −0.999242 + 0.293404i −0.740145 0.672447i \(-0.765243\pi\)
−0.259097 + 0.965851i \(0.583425\pi\)
\(350\) 1.03046 1.18921i 0.0550803 0.0635661i
\(351\) −0.203388 0.0597202i −0.0108561 0.00318763i
\(352\) −1.82330 + 1.17177i −0.0971823 + 0.0624553i
\(353\) −10.5894 23.1876i −0.563619 1.23415i −0.950126 0.311867i \(-0.899046\pi\)
0.386506 0.922287i \(-0.373682\pi\)
\(354\) −5.37377 6.20167i −0.285613 0.329615i
\(355\) −1.69418 1.08879i −0.0899179 0.0577868i
\(356\) −1.96609 + 13.6745i −0.104203 + 0.724746i
\(357\) −0.668743 + 4.65121i −0.0353936 + 0.246168i
\(358\) 7.21340 + 4.63577i 0.381240 + 0.245008i
\(359\) −13.6098 15.7066i −0.718300 0.828963i 0.272801 0.962070i \(-0.412050\pi\)
−0.991102 + 0.133108i \(0.957504\pi\)
\(360\) 0.415415 + 0.909632i 0.0218943 + 0.0479418i
\(361\) −15.5360 + 9.98437i −0.817683 + 0.525493i
\(362\) −5.68125 1.66817i −0.298600 0.0876769i
\(363\) −4.12728 + 4.76314i −0.216626 + 0.250000i
\(364\) −0.320042 + 0.0939729i −0.0167748 + 0.00492552i
\(365\) 0.769283 1.68450i 0.0402661 0.0881705i
\(366\) −0.811496 5.64408i −0.0424176 0.295021i
\(367\) −9.83949 −0.513617 −0.256809 0.966462i \(-0.582671\pi\)
−0.256809 + 0.966462i \(0.582671\pi\)
\(368\) −4.28691 2.14998i −0.223470 0.112076i
\(369\) −10.5256 −0.547942
\(370\) −1.52038 10.5745i −0.0790410 0.549742i
\(371\) −5.22324 + 11.4373i −0.271177 + 0.593795i
\(372\) −4.06550 + 1.19374i −0.210786 + 0.0618924i
\(373\) 7.12236 8.21964i 0.368782 0.425597i −0.540781 0.841163i \(-0.681871\pi\)
0.909563 + 0.415567i \(0.136417\pi\)
\(374\) 6.21014 + 1.82346i 0.321119 + 0.0942889i
\(375\) −0.841254 + 0.540641i −0.0434421 + 0.0279186i
\(376\) −2.12758 4.65874i −0.109721 0.240256i
\(377\) 0.864891 + 0.998138i 0.0445442 + 0.0514067i
\(378\) 1.32376 + 0.850727i 0.0680867 + 0.0437567i
\(379\) −3.50519 + 24.3792i −0.180050 + 1.25227i 0.676591 + 0.736359i \(0.263457\pi\)
−0.856641 + 0.515914i \(0.827452\pi\)
\(380\) 0.103835 0.722189i 0.00532663 0.0370475i
\(381\) −0.439719 0.282590i −0.0225275 0.0144775i
\(382\) −1.40710 1.62388i −0.0719934 0.0830848i
\(383\) −11.5087 25.2006i −0.588068 1.28769i −0.936603 0.350393i \(-0.886048\pi\)
0.348535 0.937296i \(-0.386679\pi\)
\(384\) −0.841254 + 0.540641i −0.0429300 + 0.0275895i
\(385\) −3.27231 0.960838i −0.166773 0.0489689i
\(386\) −9.51150 + 10.9769i −0.484123 + 0.558707i
\(387\) 9.13700 2.68287i 0.464460 0.136378i
\(388\) 3.45785 7.57164i 0.175546 0.384392i
\(389\) 2.21897 + 15.4333i 0.112506 + 0.782499i 0.965467 + 0.260524i \(0.0838954\pi\)
−0.852961 + 0.521975i \(0.825195\pi\)
\(390\) 0.211975 0.0107338
\(391\) 3.53119 + 13.8794i 0.178580 + 0.701914i
\(392\) −4.52393 −0.228493
\(393\) 0.228963 + 1.59247i 0.0115497 + 0.0803297i
\(394\) 7.08477 15.5135i 0.356925 0.781558i
\(395\) −2.85805 + 0.839200i −0.143804 + 0.0422247i
\(396\) 1.41932 1.63798i 0.0713236 0.0823118i
\(397\) −0.00241068 0.000707840i −0.000120989 3.55255e-5i 0.281672 0.959511i \(-0.409111\pi\)
−0.281793 + 0.959475i \(0.590929\pi\)
\(398\) −5.38241 + 3.45907i −0.269796 + 0.173387i
\(399\) −0.476933 1.04434i −0.0238765 0.0522823i
\(400\) −0.654861 0.755750i −0.0327430 0.0377875i
\(401\) 14.2313 + 9.14592i 0.710679 + 0.456725i 0.845383 0.534160i \(-0.179372\pi\)
−0.134705 + 0.990886i \(0.543009\pi\)
\(402\) −2.17625 + 15.1361i −0.108541 + 0.754921i
\(403\) −0.127822 + 0.889022i −0.00636727 + 0.0442854i
\(404\) 2.75860 + 1.77284i 0.137245 + 0.0882022i
\(405\) −0.654861 0.755750i −0.0325403 0.0375535i
\(406\) −4.07279 8.91817i −0.202129 0.442602i
\(407\) −19.4788 + 12.5182i −0.965527 + 0.620507i
\(408\) 2.86530 + 0.841327i 0.141853 + 0.0416519i
\(409\) 21.7941 25.1518i 1.07765 1.24367i 0.109319 0.994007i \(-0.465133\pi\)
0.968332 0.249668i \(-0.0803214\pi\)
\(410\) 10.0993 2.96541i 0.498767 0.146451i
\(411\) 3.11877 6.82915i 0.153838 0.336857i
\(412\) −1.82014 12.6594i −0.0896719 0.623681i
\(413\) 12.9125 0.635385
\(414\) 4.71898 + 0.855132i 0.231925 + 0.0420274i
\(415\) 6.09984 0.299430
\(416\) 0.0301671 + 0.209817i 0.00147907 + 0.0102871i
\(417\) 3.48637 7.63409i 0.170728 0.373843i
\(418\) −1.51729 + 0.445515i −0.0742129 + 0.0217909i
\(419\) −14.4029 + 16.6218i −0.703626 + 0.812028i −0.989238 0.146318i \(-0.953258\pi\)
0.285612 + 0.958345i \(0.407803\pi\)
\(420\) −1.50981 0.443321i −0.0736714 0.0216319i
\(421\) 13.8880 8.92529i 0.676861 0.434992i −0.156532 0.987673i \(-0.550032\pi\)
0.833393 + 0.552681i \(0.186395\pi\)
\(422\) −5.66617 12.4072i −0.275825 0.603972i
\(423\) 3.35392 + 3.87063i 0.163073 + 0.188196i
\(424\) 6.72208 + 4.32002i 0.326453 + 0.209799i
\(425\) −0.424989 + 2.95586i −0.0206150 + 0.143380i
\(426\) −0.286605 + 1.99338i −0.0138861 + 0.0965797i
\(427\) 7.54822 + 4.85095i 0.365284 + 0.234754i
\(428\) 0.407683 + 0.470492i 0.0197061 + 0.0227421i
\(429\) −0.190853 0.417909i −0.00921445 0.0201768i
\(430\) −8.01104 + 5.14838i −0.386327 + 0.248277i
\(431\) 3.12324 + 0.917067i 0.150441 + 0.0441736i 0.356086 0.934453i \(-0.384111\pi\)
−0.205645 + 0.978627i \(0.565929\pi\)
\(432\) 0.654861 0.755750i 0.0315070 0.0363610i
\(433\) 33.5771 9.85913i 1.61361 0.473800i 0.654321 0.756217i \(-0.272954\pi\)
0.959292 + 0.282417i \(0.0911362\pi\)
\(434\) 2.76972 6.06484i 0.132951 0.291121i
\(435\) 0.886704 + 6.16716i 0.0425142 + 0.295693i
\(436\) −5.87171 −0.281204
\(437\) −2.55915 2.38632i −0.122421 0.114153i
\(438\) −1.85184 −0.0884844
\(439\) −3.06140 21.2925i −0.146112 1.01623i −0.922505 0.385985i \(-0.873862\pi\)
0.776393 0.630250i \(-0.217047\pi\)
\(440\) −0.900355 + 1.97150i −0.0429228 + 0.0939877i
\(441\) 4.34068 1.27454i 0.206699 0.0606923i
\(442\) 0.414534 0.478398i 0.0197174 0.0227551i
\(443\) −5.24561 1.54025i −0.249227 0.0731795i 0.154733 0.987956i \(-0.450548\pi\)
−0.403960 + 0.914777i \(0.632366\pi\)
\(444\) −8.98731 + 5.77580i −0.426519 + 0.274107i
\(445\) 5.73900 + 12.5667i 0.272055 + 0.595717i
\(446\) 9.82135 + 11.3344i 0.465055 + 0.536702i
\(447\) −4.93503 3.17155i −0.233419 0.150009i
\(448\) 0.223940 1.55754i 0.0105802 0.0735867i
\(449\) 2.97157 20.6677i 0.140237 0.975371i −0.791223 0.611528i \(-0.790555\pi\)
0.931460 0.363843i \(-0.118536\pi\)
\(450\) 0.841254 + 0.540641i 0.0396571 + 0.0254861i
\(451\) −14.9392 17.2408i −0.703461 0.811837i
\(452\) −2.95849 6.47819i −0.139156 0.304708i
\(453\) −8.78863 + 5.64811i −0.412926 + 0.265371i
\(454\) 25.2599 + 7.41697i 1.18551 + 0.348096i
\(455\) −0.218431 + 0.252083i −0.0102402 + 0.0118178i
\(456\) −0.700061 + 0.205556i −0.0327834 + 0.00962606i
\(457\) −7.70442 + 16.8703i −0.360397 + 0.789160i 0.639397 + 0.768877i \(0.279184\pi\)
−0.999794 + 0.0202834i \(0.993543\pi\)
\(458\) −1.20782 8.40061i −0.0564379 0.392534i
\(459\) −2.98626 −0.139387
\(460\) −4.76874 + 0.508997i −0.222344 + 0.0237321i
\(461\) −37.2038 −1.73275 −0.866376 0.499393i \(-0.833557\pi\)
−0.866376 + 0.499393i \(0.833557\pi\)
\(462\) 0.485359 + 3.37575i 0.0225810 + 0.157054i
\(463\) 6.84882 14.9968i 0.318292 0.696962i −0.681087 0.732202i \(-0.738493\pi\)
0.999379 + 0.0352407i \(0.0112198\pi\)
\(464\) −5.97820 + 1.75536i −0.277531 + 0.0814904i
\(465\) −2.77473 + 3.20221i −0.128675 + 0.148499i
\(466\) 3.60119 + 1.05740i 0.166822 + 0.0489833i
\(467\) 30.6845 19.7197i 1.41991 0.912520i 0.419920 0.907561i \(-0.362058\pi\)
0.999988 0.00495867i \(-0.00157840\pi\)
\(468\) −0.0880575 0.192819i −0.00407046 0.00891306i
\(469\) −15.7575 18.1852i −0.727615 0.839713i
\(470\) −4.30854 2.76893i −0.198738 0.127721i
\(471\) −0.368765 + 2.56481i −0.0169918 + 0.118180i
\(472\) 1.16783 8.12245i 0.0537539 0.373866i
\(473\) 17.3628 + 11.1584i 0.798344 + 0.513065i
\(474\) 1.95064 + 2.25116i 0.0895959 + 0.103399i
\(475\) −0.303093 0.663682i −0.0139069 0.0304518i
\(476\) −3.95308 + 2.54049i −0.181189 + 0.116443i
\(477\) −7.66687 2.25120i −0.351042 0.103075i
\(478\) −12.5834 + 14.5221i −0.575553 + 0.664224i
\(479\) −15.6755 + 4.60275i −0.716234 + 0.210305i −0.619490 0.785004i \(-0.712661\pi\)
−0.0967432 + 0.995309i \(0.530843\pi\)
\(480\) −0.415415 + 0.909632i −0.0189610 + 0.0415188i
\(481\) 0.322283 + 2.24153i 0.0146948 + 0.102205i
\(482\) −7.09984 −0.323389
\(483\) −5.87964 + 4.73069i −0.267533 + 0.215254i
\(484\) −6.30254 −0.286479
\(485\) −1.18461 8.23912i −0.0537902 0.374119i
\(486\) −0.415415 + 0.909632i −0.0188436 + 0.0412617i
\(487\) 33.1026 9.71979i 1.50002 0.440446i 0.574297 0.818647i \(-0.305276\pi\)
0.925723 + 0.378202i \(0.123457\pi\)
\(488\) 3.73409 4.30937i 0.169034 0.195076i
\(489\) 2.55571 + 0.750424i 0.115573 + 0.0339353i
\(490\) −3.80577 + 2.44582i −0.171927 + 0.110491i
\(491\) 5.98515 + 13.1057i 0.270106 + 0.591450i 0.995272 0.0971240i \(-0.0309643\pi\)
−0.725166 + 0.688574i \(0.758237\pi\)
\(492\) −6.89281 7.95473i −0.310752 0.358627i
\(493\) 15.6525 + 10.0592i 0.704952 + 0.453045i
\(494\) −0.0220104 + 0.153086i −0.000990295 + 0.00688765i
\(495\) 0.308448 2.14530i 0.0138637 0.0964242i
\(496\) −3.56450 2.29077i −0.160051 0.102858i
\(497\) −2.07522 2.39493i −0.0930863 0.107427i
\(498\) −2.53397 5.54861i −0.113550 0.248639i
\(499\) 28.2070 18.1276i 1.26272 0.811501i 0.274066 0.961711i \(-0.411631\pi\)
0.988654 + 0.150210i \(0.0479950\pi\)
\(500\) −0.959493 0.281733i −0.0429098 0.0125995i
\(501\) −3.50807 + 4.04853i −0.156729 + 0.180875i
\(502\) 25.3879 7.45456i 1.13312 0.332713i
\(503\) 9.52974 20.8672i 0.424910 0.930423i −0.569215 0.822188i \(-0.692753\pi\)
0.994125 0.108235i \(-0.0345198\pi\)
\(504\) 0.223940 + 1.55754i 0.00997508 + 0.0693782i
\(505\) 3.27915 0.145920
\(506\) 5.29705 + 8.94332i 0.235483 + 0.397579i
\(507\) 12.9551 0.575355
\(508\) −0.0743873 0.517375i −0.00330040 0.0229548i
\(509\) 1.25324 2.74421i 0.0555489 0.121635i −0.879822 0.475303i \(-0.842338\pi\)
0.935371 + 0.353668i \(0.115066\pi\)
\(510\) 2.86530 0.841327i 0.126877 0.0372546i
\(511\) 1.90825 2.20223i 0.0844159 0.0974211i
\(512\) −0.959493 0.281733i −0.0424040 0.0124509i
\(513\) 0.613792 0.394460i 0.0270996 0.0174158i
\(514\) −2.65100 5.80489i −0.116931 0.256043i
\(515\) −8.37536 9.66568i −0.369062 0.425921i
\(516\) 8.01104 + 5.14838i 0.352666 + 0.226645i
\(517\) −1.57974 + 10.9873i −0.0694768 + 0.483222i
\(518\) 2.39240 16.6395i 0.105116 0.731099i
\(519\) 19.1151 + 12.2845i 0.839060 + 0.539231i
\(520\) 0.138814 + 0.160200i 0.00608739 + 0.00702522i
\(521\) −7.56431 16.5635i −0.331399 0.725662i 0.668437 0.743768i \(-0.266963\pi\)
−0.999836 + 0.0181066i \(0.994236\pi\)
\(522\) 5.24150 3.36851i 0.229414 0.147436i
\(523\) −6.04591 1.77524i −0.264369 0.0776257i 0.146862 0.989157i \(-0.453083\pi\)
−0.411231 + 0.911531i \(0.634901\pi\)
\(524\) −1.05357 + 1.21589i −0.0460255 + 0.0531163i
\(525\) −1.50981 + 0.443321i −0.0658937 + 0.0193481i
\(526\) −6.16265 + 13.4943i −0.268704 + 0.588381i
\(527\) 1.80073 + 12.5244i 0.0784412 + 0.545571i
\(528\) 2.16736 0.0943224
\(529\) −11.0537 + 20.1697i −0.480594 + 0.876943i
\(530\) 7.99055 0.347087
\(531\) 1.16783 + 8.12245i 0.0506796 + 0.352485i
\(532\) 0.476933 1.04434i 0.0206777 0.0452778i
\(533\) −2.14079 + 0.628591i −0.0927277 + 0.0272273i
\(534\) 9.04696 10.4408i 0.391500 0.451816i
\(535\) 0.597332 + 0.175392i 0.0258249 + 0.00758288i
\(536\) −12.8643 + 8.26736i −0.555651 + 0.357095i
\(537\) −3.56201 7.79971i −0.153712 0.336582i
\(538\) 12.7350 + 14.6969i 0.549044 + 0.633630i
\(539\) 8.24849 + 5.30098i 0.355288 + 0.228329i
\(540\) 0.142315 0.989821i 0.00612426 0.0425951i
\(541\) 1.01424 7.05422i 0.0436057 0.303285i −0.956334 0.292277i \(-0.905587\pi\)
0.999939 0.0110075i \(-0.00350386\pi\)
\(542\) −21.8304 14.0295i −0.937695 0.602620i
\(543\) 3.87750 + 4.47487i 0.166399 + 0.192035i
\(544\) 1.24054 + 2.71640i 0.0531876 + 0.116465i
\(545\) −4.93960 + 3.17449i −0.211589 + 0.135980i
\(546\) 0.320042 + 0.0939729i 0.0136965 + 0.00402167i
\(547\) 18.1803 20.9812i 0.777335 0.897092i −0.219579 0.975595i \(-0.570468\pi\)
0.996914 + 0.0785028i \(0.0250139\pi\)
\(548\) 7.20349 2.11514i 0.307718 0.0903541i
\(549\) −2.36875 + 5.18683i −0.101096 + 0.221368i
\(550\) 0.308448 + 2.14530i 0.0131523 + 0.0914760i
\(551\) −4.54593 −0.193663
\(552\) 2.44401 + 4.12636i 0.104024 + 0.175629i
\(553\) −4.68716 −0.199318
\(554\) 2.18131 + 15.1714i 0.0926751 + 0.644570i
\(555\) −4.43798 + 9.71782i −0.188382 + 0.412498i
\(556\) 8.05255 2.36444i 0.341504 0.100275i
\(557\) 9.12359 10.5292i 0.386579 0.446136i −0.528789 0.848753i \(-0.677354\pi\)
0.915369 + 0.402617i \(0.131899\pi\)
\(558\) 4.06550 + 1.19374i 0.172106 + 0.0505349i
\(559\) 1.69814 1.09133i 0.0718236 0.0461582i
\(560\) −0.653678 1.43135i −0.0276229 0.0604858i
\(561\) −4.23846 4.89145i −0.178948 0.206517i
\(562\) 17.4652 + 11.2242i 0.736726 + 0.473465i
\(563\) 4.26600 29.6707i 0.179791 1.25047i −0.677456 0.735564i \(-0.736917\pi\)
0.857246 0.514907i \(-0.172174\pi\)
\(564\) −0.728876 + 5.06944i −0.0306912 + 0.213462i
\(565\) −5.99121 3.85032i −0.252052 0.161984i
\(566\) 14.5274 + 16.7656i 0.610634 + 0.704709i
\(567\) −0.653678 1.43135i −0.0274519 0.0601112i
\(568\) −1.69418 + 1.08879i −0.0710864 + 0.0456844i
\(569\) 18.9571 + 5.56632i 0.794724 + 0.233352i 0.653799 0.756668i \(-0.273174\pi\)
0.140925 + 0.990020i \(0.454992\pi\)
\(570\) −0.477796 + 0.551407i −0.0200127 + 0.0230959i
\(571\) −16.2296 + 4.76543i −0.679186 + 0.199427i −0.603090 0.797673i \(-0.706064\pi\)
−0.0760964 + 0.997100i \(0.524246\pi\)
\(572\) 0.190853 0.417909i 0.00797994 0.0174736i
\(573\) 0.305791 + 2.12683i 0.0127746 + 0.0888494i
\(574\) 16.5626 0.691310
\(575\) −3.73654 + 3.00637i −0.155824 + 0.125374i
\(576\) 1.00000 0.0416667
\(577\) −3.69235 25.6809i −0.153715 1.06911i −0.909923 0.414778i \(-0.863859\pi\)
0.756208 0.654331i \(-0.227050\pi\)
\(578\) −3.35749 + 7.35187i −0.139653 + 0.305798i
\(579\) 13.9361 4.09201i 0.579165 0.170058i
\(580\) −4.08016 + 4.70876i −0.169420 + 0.195521i
\(581\) 9.20963 + 2.70419i 0.382080 + 0.112189i
\(582\) −7.00246 + 4.50021i −0.290262 + 0.186540i
\(583\) −7.19433 15.7534i −0.297959 0.652439i
\(584\) −1.21270 1.39953i −0.0501818 0.0579129i
\(585\) −0.178324 0.114602i −0.00737281 0.00473822i
\(586\) −1.96136 + 13.6415i −0.0810230 + 0.563527i
\(587\) 4.95472 34.4609i 0.204503 1.42235i −0.586207 0.810161i \(-0.699379\pi\)
0.790710 0.612191i \(-0.209711\pi\)
\(588\) 3.80577 + 2.44582i 0.156947 + 0.100864i
\(589\) −2.02449 2.33638i −0.0834175 0.0962689i
\(590\) −3.40889 7.46442i −0.140342 0.307305i
\(591\) −14.3473 + 9.22045i −0.590169 + 0.379279i
\(592\) −10.2505 3.00982i −0.421293 0.123703i
\(593\) 11.2510 12.9843i 0.462022 0.533201i −0.476154 0.879362i \(-0.657969\pi\)
0.938175 + 0.346161i \(0.112515\pi\)
\(594\) −2.07957 + 0.610617i −0.0853258 + 0.0250539i
\(595\) −1.95205 + 4.27440i −0.0800263 + 0.175233i
\(596\) −0.834859 5.80657i −0.0341972 0.237846i
\(597\) 6.39809 0.261856
\(598\) 1.01085 0.107894i 0.0413368 0.00441213i
\(599\) 16.5166 0.674848 0.337424 0.941353i \(-0.390444\pi\)
0.337424 + 0.941353i \(0.390444\pi\)
\(600\) 0.142315 + 0.989821i 0.00580998 + 0.0404093i
\(601\) 5.74327 12.5760i 0.234273 0.512986i −0.755584 0.655051i \(-0.772647\pi\)
0.989857 + 0.142065i \(0.0453743\pi\)
\(602\) −14.3776 + 4.22163i −0.585986 + 0.172061i
\(603\) 10.0140 11.5568i 0.407801 0.470627i
\(604\) −10.0239 2.94328i −0.407866 0.119760i
\(605\) −5.30203 + 3.40741i −0.215558 + 0.138531i
\(606\) −1.36221 2.98282i −0.0553360 0.121169i
\(607\) −11.9103 13.7452i −0.483425 0.557902i 0.460672 0.887570i \(-0.347608\pi\)
−0.944097 + 0.329669i \(0.893063\pi\)
\(608\) −0.613792 0.394460i −0.0248925 0.0159975i
\(609\) −1.39528 + 9.70436i −0.0565395 + 0.393241i
\(610\) 0.811496 5.64408i 0.0328565 0.228522i
\(611\) 0.913301 + 0.586943i 0.0369482 + 0.0237452i
\(612\) −1.95558 2.25686i −0.0790498 0.0912284i
\(613\) 13.0064 + 28.4800i 0.525323 + 1.15030i 0.967385 + 0.253312i \(0.0815198\pi\)
−0.442062 + 0.896984i \(0.645753\pi\)
\(614\) 12.6355 8.12034i 0.509927 0.327710i
\(615\) −10.0993 2.96541i −0.407241 0.119577i
\(616\) −2.23338 + 2.57746i −0.0899854 + 0.103849i
\(617\) 31.5185 9.25465i 1.26889 0.372578i 0.423091 0.906087i \(-0.360945\pi\)
0.845794 + 0.533509i \(0.179127\pi\)
\(618\) −5.31296 + 11.6338i −0.213719 + 0.467979i
\(619\) 3.73050 + 25.9462i 0.149941 + 1.04286i 0.916312 + 0.400466i \(0.131152\pi\)
−0.766370 + 0.642399i \(0.777939\pi\)
\(620\) −4.23713 −0.170167
\(621\) −3.50754 3.27065i −0.140753 0.131247i
\(622\) 2.81477 0.112862
\(623\) 3.09375 + 21.5175i 0.123949 + 0.862081i
\(624\) 0.0880575 0.192819i 0.00352512 0.00771893i
\(625\) −0.959493 + 0.281733i −0.0383797 + 0.0112693i
\(626\) 2.29458 2.64808i 0.0917097 0.105839i
\(627\) 1.51729 + 0.445515i 0.0605946 + 0.0177922i
\(628\) −2.17985 + 1.40090i −0.0869854 + 0.0559021i
\(629\) 13.2530 + 29.0199i 0.528430 + 1.15710i
\(630\) 1.03046 + 1.18921i 0.0410544 + 0.0473794i
\(631\) 15.9385 + 10.2430i 0.634500 + 0.407769i 0.817973 0.575256i \(-0.195098\pi\)
−0.183473 + 0.983025i \(0.558734\pi\)
\(632\) −0.423915 + 2.94839i −0.0168624 + 0.117281i
\(633\) −1.94114 + 13.5010i −0.0771535 + 0.536615i
\(634\) −3.98134 2.55865i −0.158119 0.101617i
\(635\) −0.342293 0.395027i −0.0135835 0.0156762i
\(636\) −3.31939 7.26846i −0.131623 0.288213i
\(637\) 0.806727 0.518452i 0.0319637 0.0205418i
\(638\) 12.9569 + 3.80450i 0.512970 + 0.150622i
\(639\) 1.31881 1.52199i 0.0521714 0.0602090i
\(640\) −0.959493 + 0.281733i −0.0379273 + 0.0111365i
\(641\) −2.63936 + 5.77939i −0.104248 + 0.228272i −0.954567 0.297996i \(-0.903682\pi\)
0.850319 + 0.526268i \(0.176409\pi\)
\(642\) −0.0885980 0.616213i −0.00349669 0.0243200i
\(643\) 20.4018 0.804568 0.402284 0.915515i \(-0.368217\pi\)
0.402284 + 0.915515i \(0.368217\pi\)
\(644\) −7.42556 1.34560i −0.292608 0.0530239i
\(645\) 9.52274 0.374958
\(646\) 0.310079 + 2.15664i 0.0121999 + 0.0848520i
\(647\) 1.07443 2.35268i 0.0422404 0.0924935i −0.887335 0.461125i \(-0.847446\pi\)
0.929576 + 0.368631i \(0.120173\pi\)
\(648\) −0.959493 + 0.281733i −0.0376924 + 0.0110675i
\(649\) −11.6469 + 13.4413i −0.457182 + 0.527616i
\(650\) 0.203388 + 0.0597202i 0.00797754 + 0.00234242i
\(651\) −5.60893 + 3.60464i −0.219831 + 0.141277i
\(652\) 1.10650 + 2.42290i 0.0433339 + 0.0948880i
\(653\) −28.7076 33.1303i −1.12342 1.29649i −0.950212 0.311604i \(-0.899134\pi\)
−0.173203 0.984886i \(-0.555412\pi\)
\(654\) 4.93960 + 3.17449i 0.193154 + 0.124132i
\(655\) −0.228963 + 1.59247i −0.00894633 + 0.0622231i
\(656\) 1.49795 10.4185i 0.0584852 0.406773i
\(657\) 1.55787 + 1.00118i 0.0607783 + 0.0390598i
\(658\) −5.27757 6.09064i −0.205741 0.237438i
\(659\) 2.20816 + 4.83520i 0.0860177 + 0.188353i 0.947753 0.319006i \(-0.103349\pi\)
−0.861735 + 0.507359i \(0.830622\pi\)
\(660\) 1.82330 1.17177i 0.0709719 0.0456109i
\(661\) −17.0979 5.02038i −0.665030 0.195270i −0.0682411 0.997669i \(-0.521739\pi\)
−0.596789 + 0.802399i \(0.703557\pi\)
\(662\) 12.6958 14.6517i 0.493436 0.569456i
\(663\) −0.607370 + 0.178340i −0.0235883 + 0.00692615i
\(664\) 2.53397 5.54861i 0.0983370 0.215328i
\(665\) −0.163390 1.13640i −0.00633600 0.0440678i
\(666\) 10.6832 0.413967
\(667\) 7.36753 + 28.9583i 0.285272 + 1.12127i
\(668\) −5.35697 −0.207267
\(669\) −2.13438 14.8450i −0.0825201 0.573940i
\(670\) −6.35243 + 13.9099i −0.245416 + 0.537386i
\(671\) −11.8580 + 3.48181i −0.457771 + 0.134414i
\(672\) −1.03046 + 1.18921i −0.0397508 + 0.0458749i
\(673\) 34.9140 + 10.2517i 1.34584 + 0.395173i 0.873748 0.486378i \(-0.161682\pi\)
0.472088 + 0.881551i \(0.343500\pi\)
\(674\) −14.3951 + 9.25114i −0.554477 + 0.356341i
\(675\) −0.415415 0.909632i −0.0159893 0.0350118i
\(676\) 8.48376 + 9.79079i 0.326299 + 0.376569i
\(677\) 21.4069 + 13.7574i 0.822735 + 0.528740i 0.882962 0.469445i \(-0.155546\pi\)
−0.0602267 + 0.998185i \(0.519182\pi\)
\(678\) −1.01353 + 7.04928i −0.0389245 + 0.270726i
\(679\) 1.86404 12.9647i 0.0715354 0.497539i
\(680\) 2.51220 + 1.61449i 0.0963386 + 0.0619130i
\(681\) −17.2401 19.8961i −0.660640 0.762420i
\(682\) 3.81492 + 8.35352i 0.146081 + 0.319873i
\(683\) −33.2503 + 21.3686i −1.27229 + 0.817649i −0.989916 0.141657i \(-0.954757\pi\)
−0.282370 + 0.959306i \(0.591121\pi\)
\(684\) 0.700061 + 0.205556i 0.0267675 + 0.00785965i
\(685\) 4.91643 5.67387i 0.187847 0.216787i
\(686\) −17.3990 + 5.10880i −0.664296 + 0.195055i
\(687\) −3.52562 + 7.72004i −0.134511 + 0.294538i
\(688\) 1.35523 + 9.42582i 0.0516676 + 0.359356i
\(689\) −1.69379 −0.0645284
\(690\) 4.28691 + 2.14998i 0.163200 + 0.0818484i
\(691\) 6.48084 0.246543 0.123271 0.992373i \(-0.460661\pi\)
0.123271 + 0.992373i \(0.460661\pi\)
\(692\) 3.23370 + 22.4909i 0.122927 + 0.854975i
\(693\) 1.41676 3.10227i 0.0538182 0.117845i
\(694\) 27.8148 8.16716i 1.05583 0.310021i
\(695\) 5.49592 6.34263i 0.208472 0.240590i
\(696\) 5.97820 + 1.75536i 0.226603 + 0.0665367i
\(697\) −26.4425 + 16.9935i −1.00158 + 0.643676i
\(698\) 8.08209 + 17.6973i 0.305912 + 0.669853i
\(699\) −2.45784 2.83649i −0.0929639 0.107286i
\(700\) −1.32376 0.850727i −0.0500333 0.0321545i
\(701\) −6.16570 + 42.8834i −0.232875 + 1.61968i 0.452688 + 0.891669i \(0.350465\pi\)
−0.685563 + 0.728013i \(0.740444\pi\)
\(702\) −0.0301671 + 0.209817i −0.00113859 + 0.00791903i
\(703\) −6.55728 4.21411i −0.247313 0.158938i
\(704\) 1.41932 + 1.63798i 0.0534927 + 0.0617338i
\(705\) 2.12758 + 4.65874i 0.0801292 + 0.175458i
\(706\) −21.4446 + 13.7816i −0.807078 + 0.518678i
\(707\) 4.95091 + 1.45372i 0.186198 + 0.0546727i
\(708\) −5.37377 + 6.20167i −0.201959 + 0.233073i
\(709\) 38.7329 11.3730i 1.45464 0.427122i 0.543570 0.839364i \(-0.317072\pi\)
0.911075 + 0.412242i \(0.135254\pi\)
\(710\) −0.836596 + 1.83189i −0.0313969 + 0.0687496i
\(711\) −0.423915 2.94839i −0.0158980 0.110573i
\(712\) 13.8151 0.517743
\(713\) −11.6021 + 16.6828i −0.434501 + 0.624778i
\(714\) 4.69904 0.175857
\(715\) −0.0653832 0.454750i −0.00244519 0.0170067i
\(716\) 3.56201 7.79971i 0.133119 0.291489i
\(717\) 18.4371 5.41362i 0.688545 0.202175i
\(718\) −13.6098 + 15.7066i −0.507915 + 0.586165i
\(719\) 17.4442 + 5.12207i 0.650557 + 0.191021i 0.590328 0.807164i \(-0.298999\pi\)
0.0602295 + 0.998185i \(0.480817\pi\)
\(720\) 0.841254 0.540641i 0.0313517 0.0201485i
\(721\) −8.36023 18.3064i −0.311351 0.681764i
\(722\) 12.0937 + 13.9569i 0.450083 + 0.519423i
\(723\) 5.97276 + 3.83846i 0.222129 + 0.142754i
\(724\) −0.842660 + 5.86083i −0.0313172 + 0.217816i
\(725\) −0.886704 + 6.16716i −0.0329314 + 0.229043i
\(726\) 5.30203 + 3.40741i 0.196777 + 0.126461i
\(727\) 2.51415 + 2.90148i 0.0932445 + 0.107610i 0.800454 0.599394i \(-0.204592\pi\)
−0.707210 + 0.707004i \(0.750046\pi\)
\(728\) 0.138563 + 0.303411i 0.00513549 + 0.0112452i
\(729\) 0.841254 0.540641i 0.0311575 0.0200237i
\(730\) −1.77683 0.521724i −0.0657634 0.0193099i
\(731\) 18.6225 21.4915i 0.688779 0.794893i
\(732\) −5.47114 + 1.60647i −0.202219 + 0.0593769i
\(733\) −17.2848 + 37.8485i −0.638429 + 1.39796i 0.262897 + 0.964824i \(0.415322\pi\)
−0.901326 + 0.433141i \(0.857405\pi\)
\(734\) 1.40031 + 9.73934i 0.0516862 + 0.359486i
\(735\) 4.52393 0.166868
\(736\) −1.51801 + 4.54925i −0.0559545 + 0.167687i
\(737\) 33.1428 1.22083
\(738\) 1.49795 + 10.4185i 0.0551403 + 0.383509i
\(739\) 6.09060 13.3365i 0.224046 0.490593i −0.763911 0.645322i \(-0.776723\pi\)
0.987957 + 0.154729i \(0.0494505\pi\)
\(740\) −10.2505 + 3.00982i −0.376816 + 0.110643i
\(741\) 0.101281 0.116884i 0.00372064 0.00429385i
\(742\) 12.0642 + 3.54238i 0.442892 + 0.130045i
\(743\) 19.4748 12.5157i 0.714460 0.459155i −0.132246 0.991217i \(-0.542219\pi\)
0.846706 + 0.532061i \(0.178582\pi\)
\(744\) 1.76017 + 3.85423i 0.0645309 + 0.141303i
\(745\) −3.84160 4.43344i −0.140745 0.162429i
\(746\) −9.14959 5.88009i −0.334990 0.215285i
\(747\) −0.868098 + 6.03776i −0.0317621 + 0.220910i
\(748\) 0.921106 6.40643i 0.0336790 0.234242i
\(749\) 0.824105 + 0.529620i 0.0301121 + 0.0193519i
\(750\) 0.654861 + 0.755750i 0.0239121 + 0.0275961i
\(751\) −5.98831 13.1126i −0.218517 0.478484i 0.768348 0.640032i \(-0.221079\pi\)
−0.986865 + 0.161547i \(0.948352\pi\)
\(752\) −4.30854 + 2.76893i −0.157116 + 0.100973i
\(753\) −25.3879 7.45456i −0.925187 0.271659i
\(754\) 0.864891 0.998138i 0.0314975 0.0363500i
\(755\) −10.0239 + 2.94328i −0.364807 + 0.107117i
\(756\) 0.653678 1.43135i 0.0237740 0.0520579i
\(757\) −7.18900 50.0006i −0.261288 1.81730i −0.523201 0.852210i \(-0.675262\pi\)
0.261912 0.965092i \(-0.415647\pi\)
\(758\) 24.6298 0.894596
\(759\) 0.378957 10.3874i 0.0137553 0.377039i
\(760\) −0.729615 −0.0264659
\(761\) 5.82441 + 40.5097i 0.211135 + 1.46848i 0.769376 + 0.638796i \(0.220567\pi\)
−0.558241 + 0.829679i \(0.688524\pi\)
\(762\) −0.217135 + 0.475460i −0.00786599 + 0.0172241i
\(763\) −8.86519 + 2.60305i −0.320941 + 0.0942369i
\(764\) −1.40710 + 1.62388i −0.0509070 + 0.0587498i
\(765\) −2.86530 0.841327i −0.103595 0.0304182i
\(766\) −23.3062 + 14.9780i −0.842087 + 0.541177i
\(767\) 0.722598 + 1.58227i 0.0260915 + 0.0571324i
\(768\) 0.654861 + 0.755750i 0.0236303 + 0.0272708i