Properties

Label 690.2.m.c.31.2
Level $690$
Weight $2$
Character 690.31
Analytic conductor $5.510$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \( x^{20} - 4 x^{19} - 3 x^{18} + 66 x^{17} - 163 x^{16} - 52 x^{15} + 1567 x^{14} - 6182 x^{13} + 17043 x^{12} - 35832 x^{11} + 60906 x^{10} - 87666 x^{9} + 106197 x^{8} - 102542 x^{7} + \cdots + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 31.2
Root \(-0.248715 + 1.72985i\) of defining polynomial
Character \(\chi\) \(=\) 690.31
Dual form 690.2.m.c.601.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.142315 + 0.989821i) q^{2} +(-0.415415 - 0.909632i) q^{3} +(-0.959493 - 0.281733i) q^{4} +(-0.654861 - 0.755750i) q^{5} +(0.959493 - 0.281733i) q^{6} +(1.99973 + 1.28515i) q^{7} +(0.415415 - 0.909632i) q^{8} +(-0.654861 + 0.755750i) q^{9} +O(q^{10})\) \(q+(-0.142315 + 0.989821i) q^{2} +(-0.415415 - 0.909632i) q^{3} +(-0.959493 - 0.281733i) q^{4} +(-0.654861 - 0.755750i) q^{5} +(0.959493 - 0.281733i) q^{6} +(1.99973 + 1.28515i) q^{7} +(0.415415 - 0.909632i) q^{8} +(-0.654861 + 0.755750i) q^{9} +(0.841254 - 0.540641i) q^{10} +(-0.0482085 - 0.335298i) q^{11} +(0.142315 + 0.989821i) q^{12} +(-3.00886 + 1.93368i) q^{13} +(-1.55666 + 1.79648i) q^{14} +(-0.415415 + 0.909632i) q^{15} +(0.841254 + 0.540641i) q^{16} +(5.91702 - 1.73739i) q^{17} +(-0.654861 - 0.755750i) q^{18} +(3.66689 + 1.07670i) q^{19} +(0.415415 + 0.909632i) q^{20} +(0.338294 - 2.35288i) q^{21} +0.338745 q^{22} +(-0.240622 - 4.78979i) q^{23} -1.00000 q^{24} +(-0.142315 + 0.989821i) q^{25} +(-1.48579 - 3.25342i) q^{26} +(0.959493 + 0.281733i) q^{27} +(-1.55666 - 1.79648i) q^{28} +(8.33098 - 2.44620i) q^{29} +(-0.841254 - 0.540641i) q^{30} +(2.08334 - 4.56187i) q^{31} +(-0.654861 + 0.755750i) q^{32} +(-0.284971 + 0.183140i) q^{33} +(0.877630 + 6.10405i) q^{34} +(-0.338294 - 2.35288i) q^{35} +(0.841254 - 0.540641i) q^{36} +(-0.647773 + 0.747570i) q^{37} +(-1.58759 + 3.47634i) q^{38} +(3.00886 + 1.93368i) q^{39} +(-0.959493 + 0.281733i) q^{40} +(0.803707 + 0.927527i) q^{41} +(2.28079 + 0.669701i) q^{42} +(2.71815 + 5.95192i) q^{43} +(-0.0482085 + 0.335298i) q^{44} +1.00000 q^{45} +(4.77528 + 0.443486i) q^{46} +9.10661 q^{47} +(0.142315 - 0.989821i) q^{48} +(-0.560599 - 1.22754i) q^{49} +(-0.959493 - 0.281733i) q^{50} +(-4.03841 - 4.66057i) q^{51} +(3.43176 - 1.00766i) q^{52} +(5.84714 + 3.75773i) q^{53} +(-0.415415 + 0.909632i) q^{54} +(-0.221831 + 0.256007i) q^{55} +(1.99973 - 1.28515i) q^{56} +(-0.543884 - 3.78279i) q^{57} +(1.23568 + 8.59432i) q^{58} +(1.65530 - 1.06380i) q^{59} +(0.654861 - 0.755750i) q^{60} +(0.831520 - 1.82078i) q^{61} +(4.21895 + 2.71135i) q^{62} +(-2.28079 + 0.669701i) q^{63} +(-0.654861 - 0.755750i) q^{64} +(3.43176 + 1.00766i) q^{65} +(-0.140720 - 0.308134i) q^{66} +(-1.28144 + 8.91260i) q^{67} -6.16682 q^{68} +(-4.25699 + 2.20863i) q^{69} +2.37708 q^{70} +(0.857788 - 5.96605i) q^{71} +(0.415415 + 0.909632i) q^{72} +(-4.05924 - 1.19190i) q^{73} +(-0.647773 - 0.747570i) q^{74} +(0.959493 - 0.281733i) q^{75} +(-3.21501 - 2.06616i) q^{76} +(0.334503 - 0.732458i) q^{77} +(-2.34220 + 2.70304i) q^{78} +(-6.04715 + 3.88627i) q^{79} +(-0.142315 - 0.989821i) q^{80} +(-0.142315 - 0.989821i) q^{81} +(-1.03247 + 0.663526i) q^{82} +(-3.14370 + 3.62802i) q^{83} +(-0.987475 + 2.16227i) q^{84} +(-5.18786 - 3.33403i) q^{85} +(-6.27817 + 1.84344i) q^{86} +(-5.68595 - 6.56194i) q^{87} +(-0.325024 - 0.0954356i) q^{88} +(-5.32572 - 11.6617i) q^{89} +(-0.142315 + 0.989821i) q^{90} -8.50195 q^{91} +(-1.11857 + 4.66356i) q^{92} -5.01508 q^{93} +(-1.29601 + 9.01391i) q^{94} +(-1.58759 - 3.47634i) q^{95} +(0.959493 + 0.281733i) q^{96} +(2.50300 + 2.88861i) q^{97} +(1.29483 - 0.380196i) q^{98} +(0.284971 + 0.183140i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9} - 2 q^{10} - 24 q^{11} + 2 q^{12} - 4 q^{13} + 2 q^{14} + 2 q^{15} - 2 q^{16} + 16 q^{17} - 2 q^{18} + 14 q^{19} - 2 q^{20} - 13 q^{21} - 2 q^{22} - 2 q^{23} - 20 q^{24} - 2 q^{25} + 7 q^{26} + 2 q^{27} + 2 q^{28} + 18 q^{29} + 2 q^{30} + 22 q^{31} - 2 q^{32} + 2 q^{33} - 17 q^{34} + 13 q^{35} - 2 q^{36} - 16 q^{37} + 3 q^{38} + 4 q^{39} - 2 q^{40} + 29 q^{41} + 9 q^{42} - 22 q^{43} - 24 q^{44} + 20 q^{45} - 2 q^{46} - 94 q^{47} + 2 q^{48} - 22 q^{49} - 2 q^{50} - 5 q^{51} - 4 q^{52} + 58 q^{53} + 2 q^{54} + 9 q^{55} + 2 q^{56} - 25 q^{57} - 4 q^{58} + 45 q^{59} + 2 q^{60} + q^{61} - 9 q^{63} - 2 q^{64} - 4 q^{65} - 9 q^{66} + 16 q^{67} - 6 q^{68} + 24 q^{69} + 2 q^{70} + 59 q^{71} - 2 q^{72} + 3 q^{73} - 16 q^{74} + 2 q^{75} - 8 q^{76} - 19 q^{77} - 18 q^{78} - 20 q^{79} - 2 q^{80} - 2 q^{81} - 37 q^{82} + 13 q^{83} + 9 q^{84} + 5 q^{85} - 22 q^{86} + 4 q^{87} + 9 q^{88} - 97 q^{89} - 2 q^{90} - 18 q^{91} + 9 q^{92} + 22 q^{93} + 27 q^{94} + 3 q^{95} + 2 q^{96} - 17 q^{97} - 11 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.142315 + 0.989821i −0.100632 + 0.699909i
\(3\) −0.415415 0.909632i −0.239840 0.525176i
\(4\) −0.959493 0.281733i −0.479746 0.140866i
\(5\) −0.654861 0.755750i −0.292863 0.337981i
\(6\) 0.959493 0.281733i 0.391711 0.115017i
\(7\) 1.99973 + 1.28515i 0.755826 + 0.485740i 0.860931 0.508721i \(-0.169882\pi\)
−0.105106 + 0.994461i \(0.533518\pi\)
\(8\) 0.415415 0.909632i 0.146871 0.321603i
\(9\) −0.654861 + 0.755750i −0.218287 + 0.251917i
\(10\) 0.841254 0.540641i 0.266028 0.170966i
\(11\) −0.0482085 0.335298i −0.0145354 0.101096i 0.981262 0.192677i \(-0.0617170\pi\)
−0.995798 + 0.0915811i \(0.970808\pi\)
\(12\) 0.142315 + 0.989821i 0.0410828 + 0.285737i
\(13\) −3.00886 + 1.93368i −0.834507 + 0.536305i −0.886707 0.462331i \(-0.847013\pi\)
0.0521998 + 0.998637i \(0.483377\pi\)
\(14\) −1.55666 + 1.79648i −0.416034 + 0.480129i
\(15\) −0.415415 + 0.909632i −0.107260 + 0.234866i
\(16\) 0.841254 + 0.540641i 0.210313 + 0.135160i
\(17\) 5.91702 1.73739i 1.43509 0.421380i 0.530506 0.847681i \(-0.322002\pi\)
0.904581 + 0.426301i \(0.140184\pi\)
\(18\) −0.654861 0.755750i −0.154352 0.178132i
\(19\) 3.66689 + 1.07670i 0.841242 + 0.247011i 0.673840 0.738878i \(-0.264644\pi\)
0.167402 + 0.985889i \(0.446462\pi\)
\(20\) 0.415415 + 0.909632i 0.0928896 + 0.203400i
\(21\) 0.338294 2.35288i 0.0738217 0.513441i
\(22\) 0.338745 0.0722208
\(23\) −0.240622 4.78979i −0.0501731 0.998741i
\(24\) −1.00000 −0.204124
\(25\) −0.142315 + 0.989821i −0.0284630 + 0.197964i
\(26\) −1.48579 3.25342i −0.291387 0.638049i
\(27\) 0.959493 + 0.281733i 0.184655 + 0.0542195i
\(28\) −1.55666 1.79648i −0.294180 0.339502i
\(29\) 8.33098 2.44620i 1.54702 0.454247i 0.606815 0.794843i \(-0.292447\pi\)
0.940210 + 0.340596i \(0.110629\pi\)
\(30\) −0.841254 0.540641i −0.153591 0.0987071i
\(31\) 2.08334 4.56187i 0.374178 0.819337i −0.625070 0.780569i \(-0.714930\pi\)
0.999248 0.0387677i \(-0.0123432\pi\)
\(32\) −0.654861 + 0.755750i −0.115764 + 0.133599i
\(33\) −0.284971 + 0.183140i −0.0496071 + 0.0318805i
\(34\) 0.877630 + 6.10405i 0.150512 + 1.04684i
\(35\) −0.338294 2.35288i −0.0571821 0.397710i
\(36\) 0.841254 0.540641i 0.140209 0.0901068i
\(37\) −0.647773 + 0.747570i −0.106493 + 0.122900i −0.806494 0.591243i \(-0.798638\pi\)
0.700001 + 0.714142i \(0.253183\pi\)
\(38\) −1.58759 + 3.47634i −0.257541 + 0.563936i
\(39\) 3.00886 + 1.93368i 0.481803 + 0.309636i
\(40\) −0.959493 + 0.281733i −0.151709 + 0.0445458i
\(41\) 0.803707 + 0.927527i 0.125518 + 0.144855i 0.815030 0.579419i \(-0.196720\pi\)
−0.689512 + 0.724274i \(0.742175\pi\)
\(42\) 2.28079 + 0.669701i 0.351934 + 0.103337i
\(43\) 2.71815 + 5.95192i 0.414514 + 0.907659i 0.995590 + 0.0938098i \(0.0299046\pi\)
−0.581076 + 0.813849i \(0.697368\pi\)
\(44\) −0.0482085 + 0.335298i −0.00726771 + 0.0505480i
\(45\) 1.00000 0.149071
\(46\) 4.77528 + 0.443486i 0.704077 + 0.0653884i
\(47\) 9.10661 1.32834 0.664168 0.747584i \(-0.268786\pi\)
0.664168 + 0.747584i \(0.268786\pi\)
\(48\) 0.142315 0.989821i 0.0205414 0.142868i
\(49\) −0.560599 1.22754i −0.0800856 0.175363i
\(50\) −0.959493 0.281733i −0.135693 0.0398430i
\(51\) −4.03841 4.66057i −0.565490 0.652610i
\(52\) 3.43176 1.00766i 0.475899 0.139737i
\(53\) 5.84714 + 3.75773i 0.803166 + 0.516164i 0.876648 0.481133i \(-0.159775\pi\)
−0.0734815 + 0.997297i \(0.523411\pi\)
\(54\) −0.415415 + 0.909632i −0.0565308 + 0.123785i
\(55\) −0.221831 + 0.256007i −0.0299117 + 0.0345199i
\(56\) 1.99973 1.28515i 0.267225 0.171735i
\(57\) −0.543884 3.78279i −0.0720392 0.501043i
\(58\) 1.23568 + 8.59432i 0.162252 + 1.12849i
\(59\) 1.65530 1.06380i 0.215502 0.138495i −0.428437 0.903572i \(-0.640935\pi\)
0.643939 + 0.765077i \(0.277299\pi\)
\(60\) 0.654861 0.755750i 0.0845422 0.0975669i
\(61\) 0.831520 1.82078i 0.106465 0.233126i −0.848900 0.528553i \(-0.822735\pi\)
0.955365 + 0.295427i \(0.0954619\pi\)
\(62\) 4.21895 + 2.71135i 0.535807 + 0.344342i
\(63\) −2.28079 + 0.669701i −0.287353 + 0.0843744i
\(64\) −0.654861 0.755750i −0.0818576 0.0944687i
\(65\) 3.43176 + 1.00766i 0.425657 + 0.124984i
\(66\) −0.140720 0.308134i −0.0173214 0.0379286i
\(67\) −1.28144 + 8.91260i −0.156553 + 1.08885i 0.748373 + 0.663278i \(0.230835\pi\)
−0.904926 + 0.425569i \(0.860074\pi\)
\(68\) −6.16682 −0.747836
\(69\) −4.25699 + 2.20863i −0.512481 + 0.265888i
\(70\) 2.37708 0.284115
\(71\) 0.857788 5.96605i 0.101801 0.708039i −0.873446 0.486921i \(-0.838120\pi\)
0.975247 0.221119i \(-0.0709708\pi\)
\(72\) 0.415415 + 0.909632i 0.0489571 + 0.107201i
\(73\) −4.05924 1.19190i −0.475098 0.139501i 0.0354127 0.999373i \(-0.488725\pi\)
−0.510511 + 0.859871i \(0.670544\pi\)
\(74\) −0.647773 0.747570i −0.0753021 0.0869033i
\(75\) 0.959493 0.281733i 0.110793 0.0325317i
\(76\) −3.21501 2.06616i −0.368787 0.237005i
\(77\) 0.334503 0.732458i 0.0381201 0.0834714i
\(78\) −2.34220 + 2.70304i −0.265202 + 0.306059i
\(79\) −6.04715 + 3.88627i −0.680357 + 0.437239i −0.834646 0.550787i \(-0.814328\pi\)
0.154289 + 0.988026i \(0.450691\pi\)
\(80\) −0.142315 0.989821i −0.0159113 0.110665i
\(81\) −0.142315 0.989821i −0.0158128 0.109980i
\(82\) −1.03247 + 0.663526i −0.114017 + 0.0732741i
\(83\) −3.14370 + 3.62802i −0.345066 + 0.398227i −0.901581 0.432610i \(-0.857593\pi\)
0.556515 + 0.830837i \(0.312138\pi\)
\(84\) −0.987475 + 2.16227i −0.107742 + 0.235923i
\(85\) −5.18786 3.33403i −0.562702 0.361627i
\(86\) −6.27817 + 1.84344i −0.676992 + 0.198783i
\(87\) −5.68595 6.56194i −0.609598 0.703514i
\(88\) −0.325024 0.0954356i −0.0346477 0.0101735i
\(89\) −5.32572 11.6617i −0.564526 1.23614i −0.949661 0.313279i \(-0.898573\pi\)
0.385136 0.922860i \(-0.374155\pi\)
\(90\) −0.142315 + 0.989821i −0.0150013 + 0.104336i
\(91\) −8.50195 −0.891247
\(92\) −1.11857 + 4.66356i −0.116618 + 0.486210i
\(93\) −5.01508 −0.520039
\(94\) −1.29601 + 9.01391i −0.133673 + 0.929714i
\(95\) −1.58759 3.47634i −0.162883 0.356664i
\(96\) 0.959493 + 0.281733i 0.0979278 + 0.0287542i
\(97\) 2.50300 + 2.88861i 0.254141 + 0.293294i 0.868456 0.495767i \(-0.165113\pi\)
−0.614315 + 0.789061i \(0.710568\pi\)
\(98\) 1.29483 0.380196i 0.130797 0.0384056i
\(99\) 0.284971 + 0.183140i 0.0286406 + 0.0184062i
\(100\) 0.415415 0.909632i 0.0415415 0.0909632i
\(101\) −0.783869 + 0.904633i −0.0779979 + 0.0900144i −0.793407 0.608691i \(-0.791695\pi\)
0.715409 + 0.698706i \(0.246240\pi\)
\(102\) 5.18786 3.33403i 0.513674 0.330118i
\(103\) 0.618961 + 4.30497i 0.0609881 + 0.424181i 0.997326 + 0.0730812i \(0.0232832\pi\)
−0.936338 + 0.351100i \(0.885808\pi\)
\(104\) 0.509009 + 3.54023i 0.0499124 + 0.347148i
\(105\) −1.99973 + 1.28515i −0.195153 + 0.125417i
\(106\) −4.55161 + 5.25284i −0.442092 + 0.510201i
\(107\) −7.74108 + 16.9506i −0.748359 + 1.63868i 0.0209343 + 0.999781i \(0.493336\pi\)
−0.769293 + 0.638896i \(0.779391\pi\)
\(108\) −0.841254 0.540641i −0.0809497 0.0520232i
\(109\) 3.65017 1.07179i 0.349622 0.102658i −0.102206 0.994763i \(-0.532590\pi\)
0.451828 + 0.892105i \(0.350772\pi\)
\(110\) −0.221831 0.256007i −0.0211508 0.0244093i
\(111\) 0.949109 + 0.278683i 0.0900854 + 0.0264515i
\(112\) 0.987475 + 2.16227i 0.0933076 + 0.204315i
\(113\) 2.54546 17.7041i 0.239457 1.66546i −0.415347 0.909663i \(-0.636340\pi\)
0.654804 0.755798i \(-0.272751\pi\)
\(114\) 3.82169 0.357934
\(115\) −3.46231 + 3.31850i −0.322862 + 0.309451i
\(116\) −8.68269 −0.806168
\(117\) 0.509009 3.54023i 0.0470579 0.327295i
\(118\) 0.817397 + 1.78985i 0.0752475 + 0.164769i
\(119\) 14.0652 + 4.12992i 1.28936 + 0.378589i
\(120\) 0.654861 + 0.755750i 0.0597803 + 0.0689902i
\(121\) 10.4443 3.06673i 0.949484 0.278794i
\(122\) 1.68390 + 1.08218i 0.152454 + 0.0979760i
\(123\) 0.509837 1.11639i 0.0459704 0.100661i
\(124\) −3.28418 + 3.79014i −0.294928 + 0.340365i
\(125\) 0.841254 0.540641i 0.0752440 0.0483564i
\(126\) −0.338294 2.35288i −0.0301376 0.209612i
\(127\) 0.606695 + 4.21966i 0.0538355 + 0.374434i 0.998873 + 0.0474711i \(0.0151162\pi\)
−0.945037 + 0.326963i \(0.893975\pi\)
\(128\) 0.841254 0.540641i 0.0743570 0.0477863i
\(129\) 4.28489 4.94503i 0.377264 0.435386i
\(130\) −1.48579 + 3.25342i −0.130312 + 0.285344i
\(131\) −14.7633 9.48781i −1.28988 0.828954i −0.297805 0.954627i \(-0.596255\pi\)
−0.992072 + 0.125673i \(0.959891\pi\)
\(132\) 0.325024 0.0954356i 0.0282897 0.00830660i
\(133\) 5.94906 + 6.86559i 0.515849 + 0.595322i
\(134\) −8.63951 2.53679i −0.746340 0.219145i
\(135\) −0.415415 0.909632i −0.0357532 0.0782887i
\(136\) 0.877630 6.10405i 0.0752561 0.523418i
\(137\) −15.9474 −1.36248 −0.681238 0.732062i \(-0.738558\pi\)
−0.681238 + 0.732062i \(0.738558\pi\)
\(138\) −1.58031 4.52798i −0.134525 0.385447i
\(139\) −16.2181 −1.37560 −0.687800 0.725900i \(-0.741423\pi\)
−0.687800 + 0.725900i \(0.741423\pi\)
\(140\) −0.338294 + 2.35288i −0.0285910 + 0.198855i
\(141\) −3.78302 8.28366i −0.318588 0.697610i
\(142\) 5.78324 + 1.69811i 0.485319 + 0.142503i
\(143\) 0.793410 + 0.915643i 0.0663482 + 0.0765700i
\(144\) −0.959493 + 0.281733i −0.0799577 + 0.0234777i
\(145\) −7.30435 4.69422i −0.606593 0.389834i
\(146\) 1.75746 3.84830i 0.145448 0.318487i
\(147\) −0.883729 + 1.01988i −0.0728888 + 0.0841181i
\(148\) 0.832149 0.534790i 0.0684022 0.0439594i
\(149\) −2.21343 15.3948i −0.181332 1.26119i −0.853619 0.520899i \(-0.825597\pi\)
0.672287 0.740291i \(-0.265312\pi\)
\(150\) 0.142315 + 0.989821i 0.0116200 + 0.0808186i
\(151\) 5.68150 3.65128i 0.462354 0.297137i −0.288650 0.957435i \(-0.593206\pi\)
0.751004 + 0.660298i \(0.229570\pi\)
\(152\) 2.50268 2.88824i 0.202994 0.234267i
\(153\) −2.56179 + 5.60953i −0.207108 + 0.453504i
\(154\) 0.677398 + 0.435337i 0.0545863 + 0.0350805i
\(155\) −4.81193 + 1.41291i −0.386503 + 0.113488i
\(156\) −2.34220 2.70304i −0.187526 0.216417i
\(157\) 20.8784 + 6.13046i 1.66628 + 0.489264i 0.972884 0.231292i \(-0.0742954\pi\)
0.693396 + 0.720556i \(0.256114\pi\)
\(158\) −2.98611 6.53867i −0.237562 0.520189i
\(159\) 0.989160 6.87976i 0.0784455 0.545600i
\(160\) 1.00000 0.0790569
\(161\) 5.67441 9.88751i 0.447206 0.779245i
\(162\) 1.00000 0.0785674
\(163\) −1.55033 + 10.7828i −0.121431 + 0.844573i 0.834505 + 0.551000i \(0.185753\pi\)
−0.955937 + 0.293573i \(0.905156\pi\)
\(164\) −0.509837 1.11639i −0.0398115 0.0871751i
\(165\) 0.325024 + 0.0954356i 0.0253031 + 0.00742965i
\(166\) −3.14370 3.62802i −0.243998 0.281589i
\(167\) −19.2199 + 5.64348i −1.48728 + 0.436706i −0.921673 0.387967i \(-0.873177\pi\)
−0.565610 + 0.824673i \(0.691359\pi\)
\(168\) −1.99973 1.28515i −0.154282 0.0991512i
\(169\) −0.0862646 + 0.188893i −0.00663574 + 0.0145302i
\(170\) 4.03841 4.66057i 0.309732 0.357449i
\(171\) −3.21501 + 2.06616i −0.245858 + 0.158003i
\(172\) −0.931197 6.47662i −0.0710031 0.493837i
\(173\) 0.801682 + 5.57582i 0.0609508 + 0.423922i 0.997336 + 0.0729474i \(0.0232405\pi\)
−0.936385 + 0.350975i \(0.885850\pi\)
\(174\) 7.30435 4.69422i 0.553741 0.355868i
\(175\) −1.55666 + 1.79648i −0.117672 + 0.135801i
\(176\) 0.140720 0.308134i 0.0106072 0.0232265i
\(177\) −1.65530 1.06380i −0.124420 0.0799600i
\(178\) 12.3009 3.61188i 0.921994 0.270722i
\(179\) 12.0352 + 13.8894i 0.899557 + 1.03814i 0.999070 + 0.0431076i \(0.0137258\pi\)
−0.0995137 + 0.995036i \(0.531729\pi\)
\(180\) −0.959493 0.281733i −0.0715164 0.0209991i
\(181\) −1.62721 3.56310i −0.120950 0.264843i 0.839467 0.543411i \(-0.182867\pi\)
−0.960416 + 0.278568i \(0.910140\pi\)
\(182\) 1.20995 8.41542i 0.0896878 0.623792i
\(183\) −2.00166 −0.147967
\(184\) −4.45691 1.77087i −0.328567 0.130551i
\(185\) 0.989177 0.0727258
\(186\) 0.713720 4.96403i 0.0523325 0.363980i
\(187\) −0.867794 1.90020i −0.0634594 0.138957i
\(188\) −8.73773 2.56563i −0.637264 0.187118i
\(189\) 1.55666 + 1.79648i 0.113230 + 0.130674i
\(190\) 3.66689 1.07670i 0.266024 0.0781117i
\(191\) 4.83636 + 3.10814i 0.349947 + 0.224897i 0.703791 0.710407i \(-0.251489\pi\)
−0.353844 + 0.935304i \(0.615126\pi\)
\(192\) −0.415415 + 0.909632i −0.0299800 + 0.0656470i
\(193\) −2.00093 + 2.30919i −0.144030 + 0.166219i −0.823181 0.567779i \(-0.807803\pi\)
0.679151 + 0.733999i \(0.262348\pi\)
\(194\) −3.21542 + 2.06643i −0.230854 + 0.148361i
\(195\) −0.509009 3.54023i −0.0364509 0.253521i
\(196\) 0.192053 + 1.33576i 0.0137181 + 0.0954111i
\(197\) −11.8181 + 7.59506i −0.842008 + 0.541126i −0.889073 0.457766i \(-0.848650\pi\)
0.0470646 + 0.998892i \(0.485013\pi\)
\(198\) −0.221831 + 0.256007i −0.0157648 + 0.0181936i
\(199\) −0.893491 + 1.95647i −0.0633379 + 0.138691i −0.938654 0.344861i \(-0.887926\pi\)
0.875316 + 0.483551i \(0.160653\pi\)
\(200\) 0.841254 + 0.540641i 0.0594856 + 0.0382291i
\(201\) 8.63951 2.53679i 0.609384 0.178931i
\(202\) −0.783869 0.904633i −0.0551528 0.0636498i
\(203\) 19.8034 + 5.81481i 1.38993 + 0.408119i
\(204\) 2.56179 + 5.60953i 0.179361 + 0.392746i
\(205\) 0.174662 1.21480i 0.0121989 0.0848455i
\(206\) −4.34924 −0.303026
\(207\) 3.77746 + 2.95480i 0.262551 + 0.205373i
\(208\) −3.57664 −0.247995
\(209\) 0.184238 1.28140i 0.0127440 0.0886366i
\(210\) −0.987475 2.16227i −0.0681422 0.149211i
\(211\) −15.6640 4.59938i −1.07836 0.316634i −0.306136 0.951988i \(-0.599036\pi\)
−0.772221 + 0.635353i \(0.780854\pi\)
\(212\) −4.55161 5.25284i −0.312606 0.360767i
\(213\) −5.78324 + 1.69811i −0.396261 + 0.116353i
\(214\) −15.6764 10.0746i −1.07162 0.688686i
\(215\) 2.71815 5.95192i 0.185376 0.405917i
\(216\) 0.654861 0.755750i 0.0445576 0.0514222i
\(217\) 10.0288 6.44511i 0.680798 0.437522i
\(218\) 0.541403 + 3.76554i 0.0366685 + 0.255035i
\(219\) 0.602078 + 4.18755i 0.0406847 + 0.282968i
\(220\) 0.284971 0.183140i 0.0192127 0.0123473i
\(221\) −14.4439 + 16.6692i −0.971603 + 1.12129i
\(222\) −0.410919 + 0.899787i −0.0275791 + 0.0603898i
\(223\) −8.19870 5.26898i −0.549025 0.352837i 0.236534 0.971623i \(-0.423988\pi\)
−0.785560 + 0.618786i \(0.787625\pi\)
\(224\) −2.28079 + 0.669701i −0.152392 + 0.0447463i
\(225\) −0.654861 0.755750i −0.0436574 0.0503833i
\(226\) 17.1616 + 5.03911i 1.14158 + 0.335197i
\(227\) 1.19892 + 2.62526i 0.0795749 + 0.174245i 0.945238 0.326383i \(-0.105830\pi\)
−0.865663 + 0.500628i \(0.833103\pi\)
\(228\) −0.543884 + 3.78279i −0.0360196 + 0.250522i
\(229\) 15.4090 1.01826 0.509129 0.860690i \(-0.329968\pi\)
0.509129 + 0.860690i \(0.329968\pi\)
\(230\) −2.79198 3.89934i −0.184098 0.257115i
\(231\) −0.805225 −0.0529799
\(232\) 1.23568 8.59432i 0.0811261 0.564244i
\(233\) −11.8953 26.0470i −0.779284 1.70639i −0.705055 0.709152i \(-0.749078\pi\)
−0.0742285 0.997241i \(-0.523649\pi\)
\(234\) 3.43176 + 1.00766i 0.224341 + 0.0658725i
\(235\) −5.96356 6.88231i −0.389020 0.448953i
\(236\) −1.88796 + 0.554355i −0.122896 + 0.0360854i
\(237\) 6.04715 + 3.88627i 0.392805 + 0.252440i
\(238\) −6.08958 + 13.3343i −0.394729 + 0.864335i
\(239\) −12.0102 + 13.8605i −0.776877 + 0.896564i −0.996880 0.0789356i \(-0.974848\pi\)
0.220003 + 0.975499i \(0.429393\pi\)
\(240\) −0.841254 + 0.540641i −0.0543027 + 0.0348982i
\(241\) −3.75426 26.1115i −0.241833 1.68199i −0.642910 0.765942i \(-0.722273\pi\)
0.401077 0.916045i \(-0.368636\pi\)
\(242\) 1.54913 + 10.7745i 0.0995820 + 0.692608i
\(243\) −0.841254 + 0.540641i −0.0539664 + 0.0346821i
\(244\) −1.31081 + 1.51275i −0.0839160 + 0.0968442i
\(245\) −0.560599 + 1.22754i −0.0358154 + 0.0784247i
\(246\) 1.03247 + 0.663526i 0.0658276 + 0.0423048i
\(247\) −13.1151 + 3.85095i −0.834496 + 0.245030i
\(248\) −3.28418 3.79014i −0.208545 0.240674i
\(249\) 4.60611 + 1.35247i 0.291900 + 0.0857096i
\(250\) 0.415415 + 0.909632i 0.0262732 + 0.0575302i
\(251\) 1.36530 9.49588i 0.0861771 0.599375i −0.900275 0.435323i \(-0.856634\pi\)
0.986452 0.164052i \(-0.0524566\pi\)
\(252\) 2.37708 0.149742
\(253\) −1.59441 + 0.311589i −0.100239 + 0.0195894i
\(254\) −4.26305 −0.267488
\(255\) −0.877630 + 6.10405i −0.0549593 + 0.382250i
\(256\) 0.415415 + 0.909632i 0.0259634 + 0.0568520i
\(257\) 12.6338 + 3.70961i 0.788072 + 0.231399i 0.650915 0.759151i \(-0.274385\pi\)
0.137157 + 0.990549i \(0.456204\pi\)
\(258\) 4.28489 + 4.94503i 0.266766 + 0.307864i
\(259\) −2.25611 + 0.662453i −0.140188 + 0.0411628i
\(260\) −3.00886 1.93368i −0.186602 0.119922i
\(261\) −3.60692 + 7.89806i −0.223263 + 0.488877i
\(262\) 11.4923 13.2628i 0.709995 0.819378i
\(263\) 13.4416 8.63842i 0.828847 0.532668i −0.0560643 0.998427i \(-0.517855\pi\)
0.884911 + 0.465759i \(0.154219\pi\)
\(264\) 0.0482085 + 0.335298i 0.00296703 + 0.0206361i
\(265\) −0.989160 6.87976i −0.0607636 0.422620i
\(266\) −7.64234 + 4.91144i −0.468582 + 0.301139i
\(267\) −8.39548 + 9.68890i −0.513795 + 0.592951i
\(268\) 3.74050 8.19055i 0.228487 0.500318i
\(269\) 6.80184 + 4.37128i 0.414716 + 0.266522i 0.731318 0.682037i \(-0.238906\pi\)
−0.316602 + 0.948558i \(0.602542\pi\)
\(270\) 0.959493 0.281733i 0.0583929 0.0171457i
\(271\) 7.80061 + 9.00239i 0.473853 + 0.546856i 0.941479 0.337070i \(-0.109436\pi\)
−0.467626 + 0.883926i \(0.654891\pi\)
\(272\) 5.91702 + 1.73739i 0.358772 + 0.105345i
\(273\) 3.53184 + 7.73365i 0.213757 + 0.468062i
\(274\) 2.26955 15.7850i 0.137108 0.953609i
\(275\) 0.338745 0.0204271
\(276\) 4.70679 0.919831i 0.283316 0.0553673i
\(277\) −27.2008 −1.63434 −0.817170 0.576397i \(-0.804458\pi\)
−0.817170 + 0.576397i \(0.804458\pi\)
\(278\) 2.30807 16.0530i 0.138429 0.962795i
\(279\) 2.08334 + 4.56187i 0.124726 + 0.273112i
\(280\) −2.28079 0.669701i −0.136303 0.0400223i
\(281\) −5.53712 6.39017i −0.330317 0.381206i 0.566161 0.824295i \(-0.308428\pi\)
−0.896478 + 0.443089i \(0.853883\pi\)
\(282\) 8.73773 2.56563i 0.520324 0.152781i
\(283\) 18.4878 + 11.8814i 1.09899 + 0.706276i 0.958866 0.283858i \(-0.0916146\pi\)
0.140121 + 0.990134i \(0.455251\pi\)
\(284\) −2.50387 + 5.48271i −0.148577 + 0.325339i
\(285\) −2.50268 + 2.88824i −0.148246 + 0.171085i
\(286\) −1.01924 + 0.655024i −0.0602688 + 0.0387324i
\(287\) 0.415186 + 2.88768i 0.0245077 + 0.170454i
\(288\) −0.142315 0.989821i −0.00838598 0.0583258i
\(289\) 17.6913 11.3695i 1.04066 0.668793i
\(290\) 5.68595 6.56194i 0.333891 0.385330i
\(291\) 1.58779 3.47678i 0.0930780 0.203812i
\(292\) 3.55901 + 2.28724i 0.208276 + 0.133851i
\(293\) 3.41227 1.00193i 0.199347 0.0585336i −0.180535 0.983569i \(-0.557783\pi\)
0.379882 + 0.925035i \(0.375965\pi\)
\(294\) −0.883729 1.01988i −0.0515401 0.0594805i
\(295\) −1.88796 0.554355i −0.109921 0.0322758i
\(296\) 0.410919 + 0.899787i 0.0238842 + 0.0522991i
\(297\) 0.0482085 0.335298i 0.00279734 0.0194559i
\(298\) 15.5531 0.900966
\(299\) 9.98590 + 13.9465i 0.577500 + 0.806548i
\(300\) −1.00000 −0.0577350
\(301\) −2.21353 + 15.3954i −0.127586 + 0.887378i
\(302\) 2.80555 + 6.14330i 0.161441 + 0.353507i
\(303\) 1.14851 + 0.337234i 0.0659804 + 0.0193736i
\(304\) 2.50268 + 2.88824i 0.143538 + 0.165652i
\(305\) −1.92058 + 0.563933i −0.109972 + 0.0322907i
\(306\) −5.18786 3.33403i −0.296570 0.190594i
\(307\) −10.4699 + 22.9260i −0.597551 + 1.30845i 0.333219 + 0.942850i \(0.391865\pi\)
−0.930770 + 0.365605i \(0.880862\pi\)
\(308\) −0.527310 + 0.608548i −0.0300463 + 0.0346753i
\(309\) 3.65881 2.35138i 0.208143 0.133765i
\(310\) −0.713720 4.96403i −0.0405365 0.281938i
\(311\) 4.82310 + 33.5454i 0.273493 + 1.90218i 0.410920 + 0.911671i \(0.365207\pi\)
−0.137428 + 0.990512i \(0.543883\pi\)
\(312\) 3.00886 1.93368i 0.170343 0.109473i
\(313\) −6.62545 + 7.64617i −0.374492 + 0.432187i −0.911443 0.411426i \(-0.865031\pi\)
0.536951 + 0.843614i \(0.319576\pi\)
\(314\) −9.03937 + 19.7935i −0.510121 + 1.11701i
\(315\) 1.99973 + 1.28515i 0.112672 + 0.0724098i
\(316\) 6.89709 2.02517i 0.387991 0.113925i
\(317\) 12.5630 + 14.4985i 0.705608 + 0.814315i 0.989499 0.144542i \(-0.0461707\pi\)
−0.283891 + 0.958857i \(0.591625\pi\)
\(318\) 6.66896 + 1.95818i 0.373977 + 0.109809i
\(319\) −1.22183 2.67543i −0.0684092 0.149795i
\(320\) −0.142315 + 0.989821i −0.00795564 + 0.0553327i
\(321\) 18.6346 1.04008
\(322\) 8.97932 + 7.02379i 0.500398 + 0.391420i
\(323\) 23.5677 1.31134
\(324\) −0.142315 + 0.989821i −0.00790638 + 0.0549901i
\(325\) −1.48579 3.25342i −0.0824168 0.180468i
\(326\) −10.4524 3.06910i −0.578905 0.169982i
\(327\) −2.49126 2.87507i −0.137767 0.158992i
\(328\) 1.17758 0.345769i 0.0650210 0.0190919i
\(329\) 18.2107 + 11.7033i 1.00399 + 0.645225i
\(330\) −0.140720 + 0.308134i −0.00774638 + 0.0169622i
\(331\) 2.36796 2.73277i 0.130155 0.150207i −0.686931 0.726722i \(-0.741043\pi\)
0.817086 + 0.576516i \(0.195588\pi\)
\(332\) 4.03849 2.59538i 0.221641 0.142440i
\(333\) −0.140775 0.979109i −0.00771440 0.0536548i
\(334\) −2.85076 19.8274i −0.155986 1.08491i
\(335\) 7.57485 4.86806i 0.413859 0.265971i
\(336\) 1.55666 1.79648i 0.0849226 0.0980059i
\(337\) −8.81317 + 19.2981i −0.480084 + 1.05124i 0.502356 + 0.864661i \(0.332467\pi\)
−0.982440 + 0.186577i \(0.940261\pi\)
\(338\) −0.174694 0.112269i −0.00950208 0.00610662i
\(339\) −17.1616 + 5.03911i −0.932092 + 0.273687i
\(340\) 4.03841 + 4.66057i 0.219013 + 0.252755i
\(341\) −1.63002 0.478617i −0.0882705 0.0259186i
\(342\) −1.58759 3.47634i −0.0858470 0.187979i
\(343\) 2.82458 19.6454i 0.152513 1.06075i
\(344\) 6.54322 0.352787
\(345\) 4.45691 + 1.77087i 0.239952 + 0.0953407i
\(346\) −5.63316 −0.302841
\(347\) 0.326582 2.27143i 0.0175318 0.121937i −0.979176 0.203013i \(-0.934927\pi\)
0.996708 + 0.0810763i \(0.0258357\pi\)
\(348\) 3.60692 + 7.89806i 0.193351 + 0.423380i
\(349\) 21.7899 + 6.39810i 1.16639 + 0.342482i 0.806912 0.590672i \(-0.201137\pi\)
0.359476 + 0.933154i \(0.382955\pi\)
\(350\) −1.55666 1.79648i −0.0832068 0.0960257i
\(351\) −3.43176 + 1.00766i −0.183174 + 0.0537847i
\(352\) 0.284971 + 0.183140i 0.0151890 + 0.00976137i
\(353\) 0.419536 0.918656i 0.0223297 0.0488951i −0.898139 0.439713i \(-0.855080\pi\)
0.920468 + 0.390817i \(0.127808\pi\)
\(354\) 1.28855 1.48706i 0.0684854 0.0790364i
\(355\) −5.07057 + 3.25866i −0.269118 + 0.172952i
\(356\) 1.82451 + 12.6898i 0.0966989 + 0.672556i
\(357\) −2.08620 14.5098i −0.110413 0.767940i
\(358\) −15.4608 + 9.93608i −0.817131 + 0.525138i
\(359\) −7.77255 + 8.97000i −0.410220 + 0.473419i −0.922833 0.385201i \(-0.874132\pi\)
0.512613 + 0.858620i \(0.328678\pi\)
\(360\) 0.415415 0.909632i 0.0218943 0.0479418i
\(361\) −3.69702 2.37593i −0.194580 0.125049i
\(362\) 3.75841 1.10357i 0.197537 0.0580022i
\(363\) −7.12832 8.22652i −0.374140 0.431781i
\(364\) 8.15757 + 2.39528i 0.427573 + 0.125547i
\(365\) 1.75746 + 3.84830i 0.0919896 + 0.201429i
\(366\) 0.284866 1.98129i 0.0148902 0.103564i
\(367\) 1.10887 0.0578826 0.0289413 0.999581i \(-0.490786\pi\)
0.0289413 + 0.999581i \(0.490786\pi\)
\(368\) 2.38713 4.15952i 0.124438 0.216830i
\(369\) −1.22729 −0.0638904
\(370\) −0.140775 + 0.979109i −0.00731852 + 0.0509014i
\(371\) 6.86345 + 15.0289i 0.356332 + 0.780259i
\(372\) 4.81193 + 1.41291i 0.249487 + 0.0732560i
\(373\) −10.0709 11.6225i −0.521454 0.601789i 0.432541 0.901614i \(-0.357617\pi\)
−0.953994 + 0.299825i \(0.903072\pi\)
\(374\) 2.00436 0.588534i 0.103643 0.0304324i
\(375\) −0.841254 0.540641i −0.0434421 0.0279186i
\(376\) 3.78302 8.28366i 0.195094 0.427197i
\(377\) −20.3366 + 23.4697i −1.04739 + 1.20875i
\(378\) −1.99973 + 1.28515i −0.102855 + 0.0661008i
\(379\) −3.48556 24.2426i −0.179041 1.24526i −0.858988 0.511996i \(-0.828906\pi\)
0.679947 0.733261i \(-0.262003\pi\)
\(380\) 0.543884 + 3.78279i 0.0279006 + 0.194053i
\(381\) 3.58631 2.30478i 0.183732 0.118077i
\(382\) −3.76479 + 4.34480i −0.192623 + 0.222299i
\(383\) 7.56292 16.5605i 0.386447 0.846201i −0.612020 0.790843i \(-0.709643\pi\)
0.998467 0.0553582i \(-0.0176301\pi\)
\(384\) −0.841254 0.540641i −0.0429300 0.0275895i
\(385\) −0.772608 + 0.226858i −0.0393757 + 0.0115618i
\(386\) −2.00093 2.30919i −0.101845 0.117535i
\(387\) −6.27817 1.84344i −0.319137 0.0937072i
\(388\) −1.58779 3.47678i −0.0806079 0.176507i
\(389\) −0.911898 + 6.34239i −0.0462351 + 0.321572i 0.953558 + 0.301211i \(0.0973908\pi\)
−0.999793 + 0.0203613i \(0.993518\pi\)
\(390\) 3.57664 0.181110
\(391\) −9.74551 27.9232i −0.492852 1.41214i
\(392\) −1.34949 −0.0681596
\(393\) −2.49751 + 17.3706i −0.125983 + 0.876229i
\(394\) −5.83586 12.7787i −0.294006 0.643784i
\(395\) 6.89709 + 2.02517i 0.347030 + 0.101897i
\(396\) −0.221831 0.256007i −0.0111474 0.0128648i
\(397\) 16.1056 4.72902i 0.808315 0.237343i 0.148638 0.988892i \(-0.452511\pi\)
0.659677 + 0.751549i \(0.270693\pi\)
\(398\) −1.80940 1.16283i −0.0906971 0.0582875i
\(399\) 3.77383 8.26353i 0.188928 0.413694i
\(400\) −0.654861 + 0.755750i −0.0327430 + 0.0377875i
\(401\) −8.36334 + 5.37480i −0.417646 + 0.268404i −0.732542 0.680721i \(-0.761666\pi\)
0.314897 + 0.949126i \(0.398030\pi\)
\(402\) 1.28144 + 8.91260i 0.0639123 + 0.444520i
\(403\) 2.55272 + 17.7545i 0.127160 + 0.884416i
\(404\) 1.00698 0.647148i 0.0500992 0.0321968i
\(405\) −0.654861 + 0.755750i −0.0325403 + 0.0375535i
\(406\) −8.57394 + 18.7743i −0.425517 + 0.931753i
\(407\) 0.281887 + 0.181158i 0.0139726 + 0.00897965i
\(408\) −5.91702 + 1.73739i −0.292936 + 0.0860138i
\(409\) 21.3270 + 24.6127i 1.05455 + 1.21702i 0.975466 + 0.220151i \(0.0706549\pi\)
0.0790867 + 0.996868i \(0.474800\pi\)
\(410\) 1.17758 + 0.345769i 0.0581566 + 0.0170763i
\(411\) 6.62477 + 14.5062i 0.326776 + 0.715540i
\(412\) 0.618961 4.30497i 0.0304940 0.212091i
\(413\) 4.67729 0.230155
\(414\) −3.46231 + 3.31850i −0.170163 + 0.163095i
\(415\) 4.80056 0.235650
\(416\) 0.509009 3.54023i 0.0249562 0.173574i
\(417\) 6.73724 + 14.7525i 0.329924 + 0.722433i
\(418\) 1.24214 + 0.364726i 0.0607551 + 0.0178393i
\(419\) −3.00235 3.46490i −0.146674 0.169271i 0.677658 0.735377i \(-0.262995\pi\)
−0.824333 + 0.566106i \(0.808449\pi\)
\(420\) 2.28079 0.669701i 0.111291 0.0326781i
\(421\) 2.99584 + 1.92531i 0.146008 + 0.0938337i 0.611605 0.791163i \(-0.290524\pi\)
−0.465597 + 0.884997i \(0.654160\pi\)
\(422\) 6.78179 14.8500i 0.330132 0.722889i
\(423\) −5.96356 + 6.88231i −0.289958 + 0.334630i
\(424\) 5.84714 3.75773i 0.283962 0.182491i
\(425\) 0.877630 + 6.10405i 0.0425713 + 0.296090i
\(426\) −0.857788 5.96605i −0.0415600 0.289056i
\(427\) 4.00278 2.57243i 0.193708 0.124489i
\(428\) 12.2031 14.0831i 0.589857 0.680731i
\(429\) 0.503304 1.10208i 0.0242998 0.0532091i
\(430\) 5.50450 + 3.53753i 0.265451 + 0.170595i
\(431\) −32.4670 + 9.53318i −1.56388 + 0.459197i −0.945213 0.326454i \(-0.894146\pi\)
−0.618669 + 0.785652i \(0.712328\pi\)
\(432\) 0.654861 + 0.755750i 0.0315070 + 0.0363610i
\(433\) 20.9832 + 6.16123i 1.00839 + 0.296090i 0.743894 0.668297i \(-0.232977\pi\)
0.264495 + 0.964387i \(0.414795\pi\)
\(434\) 4.95226 + 10.8439i 0.237716 + 0.520526i
\(435\) −1.23568 + 8.59432i −0.0592461 + 0.412066i
\(436\) −3.80426 −0.182191
\(437\) 4.27481 17.8227i 0.204492 0.852576i
\(438\) −4.23061 −0.202146
\(439\) 0.979191 6.81042i 0.0467342 0.325044i −0.953021 0.302905i \(-0.902043\pi\)
0.999755 0.0221385i \(-0.00704750\pi\)
\(440\) 0.140720 + 0.308134i 0.00670856 + 0.0146897i
\(441\) 1.29483 + 0.380196i 0.0616585 + 0.0181046i
\(442\) −14.4439 16.6692i −0.687027 0.792872i
\(443\) 35.7986 10.5114i 1.70084 0.499413i 0.719961 0.694015i \(-0.244160\pi\)
0.980882 + 0.194602i \(0.0623415\pi\)
\(444\) −0.832149 0.534790i −0.0394920 0.0253800i
\(445\) −5.32572 + 11.6617i −0.252464 + 0.552818i
\(446\) 6.38215 7.36539i 0.302203 0.348761i
\(447\) −13.0841 + 8.40863i −0.618856 + 0.397715i
\(448\) −0.338294 2.35288i −0.0159829 0.111163i
\(449\) −1.90025 13.2166i −0.0896785 0.623728i −0.984247 0.176797i \(-0.943426\pi\)
0.894569 0.446930i \(-0.147483\pi\)
\(450\) 0.841254 0.540641i 0.0396571 0.0254861i
\(451\) 0.272252 0.314196i 0.0128199 0.0147949i
\(452\) −7.43018 + 16.2698i −0.349486 + 0.765268i
\(453\) −5.68150 3.65128i −0.266940 0.171552i
\(454\) −2.76916 + 0.813100i −0.129963 + 0.0381607i
\(455\) 5.56760 + 6.42535i 0.261013 + 0.301225i
\(456\) −3.66689 1.07670i −0.171718 0.0504209i
\(457\) −17.0715 37.3813i −0.798569 1.74862i −0.650303 0.759675i \(-0.725358\pi\)
−0.148266 0.988948i \(-0.547369\pi\)
\(458\) −2.19293 + 15.2522i −0.102469 + 0.712688i
\(459\) 6.16682 0.287842
\(460\) 4.25699 2.20863i 0.198483 0.102978i
\(461\) 17.2886 0.805212 0.402606 0.915373i \(-0.368104\pi\)
0.402606 + 0.915373i \(0.368104\pi\)
\(462\) 0.114595 0.797029i 0.00533146 0.0370811i
\(463\) 3.81097 + 8.34486i 0.177111 + 0.387819i 0.977279 0.211957i \(-0.0679837\pi\)
−0.800168 + 0.599776i \(0.795256\pi\)
\(464\) 8.33098 + 2.44620i 0.386756 + 0.113562i
\(465\) 3.28418 + 3.79014i 0.152300 + 0.175764i
\(466\) 27.4747 8.06730i 1.27274 0.373711i
\(467\) −30.3754 19.5211i −1.40561 0.903328i −0.405663 0.914023i \(-0.632959\pi\)
−0.999943 + 0.0106952i \(0.996596\pi\)
\(468\) −1.48579 + 3.25342i −0.0686806 + 0.150390i
\(469\) −14.0165 + 16.1759i −0.647223 + 0.746935i
\(470\) 7.66097 4.92340i 0.353374 0.227100i
\(471\) −3.09675 21.5384i −0.142691 0.992436i
\(472\) −0.280028 1.94764i −0.0128893 0.0896472i
\(473\) 1.86463 1.19832i 0.0857356 0.0550989i
\(474\) −4.70731 + 5.43252i −0.216214 + 0.249524i
\(475\) −1.58759 + 3.47634i −0.0728436 + 0.159505i
\(476\) −12.3319 7.92526i −0.565234 0.363254i
\(477\) −6.66896 + 1.95818i −0.305351 + 0.0896591i
\(478\) −12.0102 13.8605i −0.549335 0.633966i
\(479\) 1.53187 + 0.449796i 0.0699928 + 0.0205517i 0.316541 0.948579i \(-0.397478\pi\)
−0.246549 + 0.969130i \(0.579297\pi\)
\(480\) −0.415415 0.909632i −0.0189610 0.0415188i
\(481\) 0.503500 3.50192i 0.0229576 0.159674i
\(482\) 26.3800 1.20157
\(483\) −11.3512 1.05420i −0.516499 0.0479678i
\(484\) −10.8853 −0.494784
\(485\) 0.543953 3.78328i 0.0246996 0.171790i
\(486\) −0.415415 0.909632i −0.0188436 0.0412617i
\(487\) 18.0563 + 5.30181i 0.818210 + 0.240248i 0.663945 0.747781i \(-0.268881\pi\)
0.154265 + 0.988030i \(0.450699\pi\)
\(488\) −1.31081 1.51275i −0.0593376 0.0684792i
\(489\) 10.4524 3.06910i 0.472674 0.138790i
\(490\) −1.13526 0.729590i −0.0512860 0.0329595i
\(491\) −4.35731 + 9.54117i −0.196643 + 0.430587i −0.982108 0.188318i \(-0.939696\pi\)
0.785466 + 0.618905i \(0.212424\pi\)
\(492\) −0.803707 + 0.927527i −0.0362339 + 0.0418162i
\(493\) 45.0446 28.9484i 2.02871 1.30377i
\(494\) −1.94528 13.5297i −0.0875221 0.608729i
\(495\) −0.0482085 0.335298i −0.00216681 0.0150705i
\(496\) 4.21895 2.71135i 0.189436 0.121743i
\(497\) 9.38258 10.8281i 0.420866 0.485706i
\(498\) −1.99423 + 4.36674i −0.0893634 + 0.195679i
\(499\) −30.6977 19.7282i −1.37422 0.883156i −0.375177 0.926953i \(-0.622418\pi\)
−0.999040 + 0.0437974i \(0.986054\pi\)
\(500\) −0.959493 + 0.281733i −0.0429098 + 0.0125995i
\(501\) 13.1177 + 15.1387i 0.586057 + 0.676346i
\(502\) 9.20493 + 2.70281i 0.410836 + 0.120632i
\(503\) −6.67557 14.6175i −0.297649 0.651760i 0.700430 0.713721i \(-0.252992\pi\)
−0.998079 + 0.0619614i \(0.980264\pi\)
\(504\) −0.338294 + 2.35288i −0.0150688 + 0.104806i
\(505\) 1.19700 0.0532659
\(506\) −0.0815095 1.62252i −0.00362354 0.0721298i
\(507\) 0.207659 0.00922245
\(508\) 0.606695 4.21966i 0.0269178 0.187217i
\(509\) −8.11017 17.7588i −0.359477 0.787145i −0.999818 0.0190543i \(-0.993934\pi\)
0.640342 0.768090i \(-0.278793\pi\)
\(510\) −5.91702 1.73739i −0.262010 0.0769331i
\(511\) −6.58560 7.60019i −0.291330 0.336213i
\(512\) −0.959493 + 0.281733i −0.0424040 + 0.0124509i
\(513\) 3.21501 + 2.06616i 0.141946 + 0.0912234i
\(514\) −5.46982 + 11.9772i −0.241263 + 0.528293i
\(515\) 2.84815 3.28694i 0.125504 0.144840i
\(516\) −5.50450 + 3.53753i −0.242322 + 0.155731i
\(517\) −0.439016 3.05342i −0.0193079 0.134289i
\(518\) −0.334632 2.32742i −0.0147029 0.102261i
\(519\) 4.73892 3.04552i 0.208015 0.133683i
\(520\) 2.34220 2.70304i 0.102712 0.118536i
\(521\) −12.6135 + 27.6198i −0.552608 + 1.21004i 0.402945 + 0.915224i \(0.367987\pi\)
−0.955553 + 0.294819i \(0.904741\pi\)
\(522\) −7.30435 4.69422i −0.319703 0.205460i
\(523\) −30.4956 + 8.95432i −1.33348 + 0.391545i −0.869339 0.494217i \(-0.835455\pi\)
−0.464141 + 0.885761i \(0.653637\pi\)
\(524\) 11.4923 + 13.2628i 0.502042 + 0.579388i
\(525\) 2.28079 + 0.669701i 0.0995419 + 0.0292281i
\(526\) 6.63755 + 14.5342i 0.289411 + 0.633721i
\(527\) 4.40138 30.6123i 0.191727 1.33349i
\(528\) −0.338745 −0.0147420
\(529\) −22.8842 + 2.30506i −0.994965 + 0.100220i
\(530\) 6.95051 0.301911
\(531\) −0.280028 + 1.94764i −0.0121522 + 0.0845202i
\(532\) −3.77383 8.26353i −0.163616 0.358269i
\(533\) −4.21178 1.23669i −0.182432 0.0535670i
\(534\) −8.39548 9.68890i −0.363308 0.419280i
\(535\) 17.8797 5.24997i 0.773009 0.226976i
\(536\) 7.57485 + 4.86806i 0.327184 + 0.210268i
\(537\) 7.63464 16.7175i 0.329459 0.721414i
\(538\) −5.29479 + 6.11051i −0.228275 + 0.263443i
\(539\) −0.384566 + 0.247145i −0.0165644 + 0.0106453i
\(540\) 0.142315 + 0.989821i 0.00612426 + 0.0425951i
\(541\) −4.13093 28.7313i −0.177603 1.23525i −0.862289 0.506416i \(-0.830970\pi\)
0.684687 0.728837i \(-0.259939\pi\)
\(542\) −10.0209 + 6.44004i −0.430434 + 0.276623i
\(543\) −2.56514 + 2.96033i −0.110081 + 0.127040i
\(544\) −2.56179 + 5.60953i −0.109836 + 0.240507i
\(545\) −3.20035 2.05674i −0.137088 0.0881011i
\(546\) −8.15757 + 2.39528i −0.349112 + 0.102508i
\(547\) −2.61840 3.02179i −0.111955 0.129202i 0.697006 0.717065i \(-0.254515\pi\)
−0.808961 + 0.587863i \(0.799970\pi\)
\(548\) 15.3014 + 4.49289i 0.653643 + 0.191927i
\(549\) 0.831520 + 1.82078i 0.0354884 + 0.0777088i
\(550\) −0.0482085 + 0.335298i −0.00205562 + 0.0142971i
\(551\) 33.1826 1.41363
\(552\) 0.240622 + 4.78979i 0.0102415 + 0.203867i
\(553\) −17.0871 −0.726616
\(554\) 3.87108 26.9240i 0.164466 1.14389i
\(555\) −0.410919 0.899787i −0.0174425 0.0381938i
\(556\) 15.5611 + 4.56916i 0.659939 + 0.193776i
\(557\) −7.96532 9.19247i −0.337501 0.389497i 0.561476 0.827493i \(-0.310234\pi\)
−0.898977 + 0.437996i \(0.855688\pi\)
\(558\) −4.81193 + 1.41291i −0.203705 + 0.0598132i
\(559\) −19.6876 12.6525i −0.832697 0.535142i
\(560\) 0.987475 2.16227i 0.0417284 0.0913725i
\(561\) −1.36799 + 1.57875i −0.0577567 + 0.0666547i
\(562\) 7.11314 4.57134i 0.300050 0.192830i
\(563\) 0.436521 + 3.03607i 0.0183972 + 0.127955i 0.996950 0.0780398i \(-0.0248661\pi\)
−0.978553 + 0.205995i \(0.933957\pi\)
\(564\) 1.29601 + 9.01391i 0.0545717 + 0.379554i
\(565\) −15.0468 + 9.66998i −0.633023 + 0.406819i
\(566\) −14.3916 + 16.6087i −0.604922 + 0.698117i
\(567\) 0.987475 2.16227i 0.0414700 0.0908067i
\(568\) −5.07057 3.25866i −0.212756 0.136730i
\(569\) 5.29119 1.55363i 0.221818 0.0651316i −0.168935 0.985627i \(-0.554033\pi\)
0.390753 + 0.920496i \(0.372215\pi\)
\(570\) −2.50268 2.88824i −0.104826 0.120975i
\(571\) −30.9417 9.08531i −1.29487 0.380208i −0.439509 0.898238i \(-0.644847\pi\)
−0.855362 + 0.518030i \(0.826666\pi\)
\(572\) −0.503304 1.10208i −0.0210442 0.0460804i
\(573\) 0.818167 5.69048i 0.0341794 0.237723i
\(574\) −2.91738 −0.121769
\(575\) 4.77528 + 0.443486i 0.199143 + 0.0184946i
\(576\) 1.00000 0.0416667
\(577\) 3.27571 22.7830i 0.136369 0.948470i −0.800635 0.599153i \(-0.795504\pi\)
0.937004 0.349318i \(-0.113587\pi\)
\(578\) 8.73602 + 19.1292i 0.363371 + 0.795671i
\(579\) 2.93173 + 0.860835i 0.121839 + 0.0357751i
\(580\) 5.68595 + 6.56194i 0.236096 + 0.272470i
\(581\) −10.9491 + 3.21494i −0.454244 + 0.133378i
\(582\) 3.21542 + 2.06643i 0.133284 + 0.0856562i
\(583\) 0.978075 2.14169i 0.0405077 0.0886995i
\(584\) −2.77046 + 3.19728i −0.114642 + 0.132304i
\(585\) −3.00886 + 1.93368i −0.124401 + 0.0799477i
\(586\) 0.506118 + 3.52013i 0.0209075 + 0.145415i
\(587\) 3.90147 + 27.1353i 0.161031 + 1.12000i 0.896695 + 0.442649i \(0.145961\pi\)
−0.735664 + 0.677347i \(0.763130\pi\)
\(588\) 1.13526 0.729590i 0.0468175 0.0300878i
\(589\) 12.5511 14.4848i 0.517160 0.596834i
\(590\) 0.817397 1.78985i 0.0336517 0.0736869i
\(591\) 11.8181 + 7.59506i 0.486134 + 0.312419i
\(592\) −0.949109 + 0.278683i −0.0390081 + 0.0114538i
\(593\) −20.7985 24.0028i −0.854093 0.985675i 0.145901 0.989299i \(-0.453392\pi\)
−0.999993 + 0.00362387i \(0.998846\pi\)
\(594\) 0.325024 + 0.0954356i 0.0133359 + 0.00391577i
\(595\) −6.08958 13.3343i −0.249648 0.546653i
\(596\) −2.21343 + 15.3948i −0.0906658 + 0.630595i
\(597\) 2.15084 0.0880280
\(598\) −15.2257 + 7.89946i −0.622626 + 0.323033i
\(599\) 5.01613 0.204953 0.102477 0.994735i \(-0.467323\pi\)
0.102477 + 0.994735i \(0.467323\pi\)
\(600\) 0.142315 0.989821i 0.00580998 0.0404093i
\(601\) 18.9402 + 41.4733i 0.772587 + 1.69173i 0.720873 + 0.693067i \(0.243741\pi\)
0.0517142 + 0.998662i \(0.483532\pi\)
\(602\) −14.9237 4.38200i −0.608245 0.178597i
\(603\) −5.89653 6.80496i −0.240125 0.277119i
\(604\) −6.48004 + 1.90271i −0.263669 + 0.0774202i
\(605\) −9.15726 5.88501i −0.372295 0.239260i
\(606\) −0.497252 + 1.08883i −0.0201995 + 0.0442307i
\(607\) 4.42738 5.10947i 0.179702 0.207387i −0.658751 0.752361i \(-0.728915\pi\)
0.838453 + 0.544974i \(0.183460\pi\)
\(608\) −3.21501 + 2.06616i −0.130386 + 0.0837940i
\(609\) −2.93730 20.4294i −0.119025 0.827840i
\(610\) −0.284866 1.98129i −0.0115339 0.0802200i
\(611\) −27.4005 + 17.6092i −1.10851 + 0.712393i
\(612\) 4.03841 4.66057i 0.163243 0.188392i
\(613\) 4.25996 9.32802i 0.172058 0.376755i −0.803883 0.594787i \(-0.797236\pi\)
0.975942 + 0.218032i \(0.0699636\pi\)
\(614\) −21.2026 13.6261i −0.855667 0.549904i
\(615\) −1.17758 + 0.345769i −0.0474846 + 0.0139427i
\(616\) −0.527310 0.608548i −0.0212459 0.0245191i
\(617\) −15.2621 4.48135i −0.614428 0.180412i −0.0403129 0.999187i \(-0.512835\pi\)
−0.574115 + 0.818775i \(0.694654\pi\)
\(618\) 1.80674 + 3.95621i 0.0726777 + 0.159142i
\(619\) −0.708506 + 4.92777i −0.0284773 + 0.198064i −0.999094 0.0425689i \(-0.986446\pi\)
0.970616 + 0.240633i \(0.0773549\pi\)
\(620\) 5.01508 0.201410
\(621\) 1.11857 4.66356i 0.0448865 0.187142i
\(622\) −33.8903 −1.35888
\(623\) 4.33701 30.1646i 0.173759 1.20852i
\(624\) 1.48579 + 3.25342i 0.0594792 + 0.130241i
\(625\) −0.959493 0.281733i −0.0383797 0.0112693i
\(626\) −6.62545 7.64617i −0.264806 0.305603i
\(627\) −1.24214 + 0.364726i −0.0496064 + 0.0145657i
\(628\) −18.3056 11.7643i −0.730471 0.469446i
\(629\) −2.53406 + 5.54882i −0.101040 + 0.221246i
\(630\) −1.55666 + 1.79648i −0.0620187 + 0.0715734i
\(631\) 18.1965 11.6942i 0.724391 0.465538i −0.125771 0.992059i \(-0.540140\pi\)
0.850162 + 0.526522i \(0.176504\pi\)
\(632\) 1.02300 + 7.11509i 0.0406926 + 0.283023i
\(633\) 2.32334 + 16.1592i 0.0923444 + 0.642269i
\(634\) −16.1388 + 10.3718i −0.640953 + 0.411916i
\(635\) 2.79170 3.22180i 0.110785 0.127853i
\(636\) −2.88734 + 6.32240i −0.114491 + 0.250700i
\(637\) 4.06043 + 2.60948i 0.160880 + 0.103391i
\(638\) 2.82208 0.828638i 0.111727 0.0328061i
\(639\) 3.94711 + 4.55520i 0.156145 + 0.180201i
\(640\) −0.959493 0.281733i −0.0379273 0.0111365i
\(641\) 14.8879 + 32.5999i 0.588036 + 1.28762i 0.936621 + 0.350343i \(0.113935\pi\)
−0.348585 + 0.937277i \(0.613338\pi\)
\(642\) −2.65198 + 18.4449i −0.104665 + 0.727962i
\(643\) 28.4779 1.12306 0.561529 0.827457i \(-0.310213\pi\)
0.561529 + 0.827457i \(0.310213\pi\)
\(644\) −8.23018 + 7.88833i −0.324315 + 0.310844i
\(645\) −6.54322 −0.257639
\(646\) −3.35403 + 23.3278i −0.131963 + 0.917820i
\(647\) −0.461866 1.01135i −0.0181578 0.0397601i 0.900336 0.435196i \(-0.143321\pi\)
−0.918494 + 0.395436i \(0.870594\pi\)
\(648\) −0.959493 0.281733i −0.0376924 0.0110675i
\(649\) −0.436489 0.503735i −0.0171337 0.0197733i
\(650\) 3.43176 1.00766i 0.134605 0.0395235i
\(651\) −10.0288 6.44511i −0.393059 0.252604i
\(652\) 4.52539 9.90923i 0.177228 0.388075i
\(653\) −17.3170 + 19.9849i −0.677668 + 0.782070i −0.985556 0.169352i \(-0.945832\pi\)
0.307888 + 0.951423i \(0.400378\pi\)
\(654\) 3.20035 2.05674i 0.125144 0.0804249i
\(655\) 2.49751 + 17.3706i 0.0975858 + 0.678724i
\(656\) 0.174662 + 1.21480i 0.00681941 + 0.0474301i
\(657\) 3.55901 2.28724i 0.138850 0.0892337i
\(658\) −14.1759 + 16.3598i −0.552632 + 0.637772i
\(659\) −1.88494 + 4.12745i −0.0734269 + 0.160783i −0.942786 0.333398i \(-0.891805\pi\)
0.869359 + 0.494181i \(0.164532\pi\)
\(660\) −0.284971 0.183140i −0.0110925 0.00712870i
\(661\) 2.14378 0.629471i 0.0833834 0.0244836i −0.239775 0.970829i \(-0.577074\pi\)
0.323158 + 0.946345i \(0.395255\pi\)
\(662\) 2.36796 + 2.73277i 0.0920333 + 0.106212i
\(663\) 21.1630 + 6.21403i 0.821904 + 0.241333i
\(664\) 1.99423 + 4.36674i 0.0773910 + 0.169463i
\(665\) 1.29286 8.99200i 0.0501348 0.348695i
\(666\) 0.989177 0.0383298
\(667\) −13.7214 39.3151i −0.531294 1.52229i
\(668\) 20.0313 0.775036
\(669\) −1.38697 + 9.64661i −0.0536235 + 0.372959i
\(670\) 3.74050 + 8.19055i 0.144508 + 0.316429i
\(671\) −0.650588 0.191030i −0.0251157 0.00737462i
\(672\) 1.55666 + 1.79648i 0.0600493 + 0.0693006i
\(673\) −38.3470 + 11.2597i −1.47817 + 0.434029i −0.918744 0.394854i \(-0.870795\pi\)
−0.559423 + 0.828882i \(0.688977\pi\)
\(674\) −17.8475 11.4699i −0.687459 0.441803i
\(675\) −0.415415 + 0.909632i −0.0159893 + 0.0350118i
\(676\) 0.135988 0.156938i 0.00523029 0.00603608i
\(677\) 23.8771 15.3449i 0.917672 0.589752i 0.00569075 0.999984i \(-0.498189\pi\)
0.911981 + 0.410232i \(0.134552\pi\)
\(678\) −2.54546 17.7041i −0.0977580 0.679922i
\(679\) 1.29302 + 8.99315i 0.0496216 + 0.345125i
\(680\) −5.18786 + 3.33403i −0.198945 + 0.127854i
\(681\) 1.88997 2.18115i 0.0724240 0.0835817i
\(682\) 0.705721 1.54531i 0.0270235 0.0591731i
\(683\) −36.0791 23.1866i −1.38053 0.887211i −0.381222 0.924484i \(-0.624497\pi\)
−0.999305 + 0.0372728i \(0.988133\pi\)
\(684\) 3.66689 1.07670i 0.140207 0.0411685i
\(685\) 10.4433 + 12.0522i 0.399018 + 0.460491i
\(686\) 19.0434 + 5.59166i 0.727082 + 0.213491i
\(687\) −6.40114 14.0165i −0.244219 0.534765i
\(688\) −0.931197 + 6.47662i −0.0355015 + 0.246919i
\(689\) −24.8594 −0.947069
\(690\) −2.38713 + 4.15952i −0.0908766 + 0.158350i
\(691\) −2.44328 −0.0929468 −0.0464734 0.998920i \(-0.514798\pi\)
−0.0464734 + 0.998920i \(0.514798\pi\)
\(692\) 0.801682 5.57582i 0.0304754 0.211961i
\(693\) 0.334503 + 0.732458i 0.0127067 + 0.0278238i
\(694\) 2.20183 + 0.646516i 0.0835803 + 0.0245414i
\(695\) 10.6206 + 12.2568i 0.402862 + 0.464927i
\(696\) −8.33098 + 2.44620i −0.315785 + 0.0927229i
\(697\) 6.36703 + 4.09184i 0.241168 + 0.154990i
\(698\) −9.43401 + 20.6576i −0.357082 + 0.781901i
\(699\) −18.7517 + 21.6406i −0.709254 + 0.818523i
\(700\) 1.99973 1.28515i 0.0755826 0.0485740i
\(701\) 2.25087 + 15.6551i 0.0850142 + 0.591287i 0.987145 + 0.159825i \(0.0510930\pi\)
−0.902131 + 0.431462i \(0.857998\pi\)
\(702\) −0.509009 3.54023i −0.0192113 0.133617i
\(703\) −3.18022 + 2.04380i −0.119944 + 0.0770835i
\(704\) −0.221831 + 0.256007i −0.00836057 + 0.00964862i
\(705\) −3.78302 + 8.28366i −0.142477 + 0.311981i
\(706\) 0.849600 + 0.546004i 0.0319751 + 0.0205492i
\(707\) −2.73011 + 0.801633i −0.102676 + 0.0301485i
\(708\) 1.28855 + 1.48706i 0.0484265 + 0.0558872i
\(709\) −25.1308 7.37907i −0.943808 0.277127i −0.226601 0.973988i \(-0.572761\pi\)
−0.717206 + 0.696861i \(0.754580\pi\)
\(710\) −2.50387 5.48271i −0.0939686 0.205763i
\(711\) 1.02300 7.11509i 0.0383654 0.266837i
\(712\) −12.8202 −0.480459
\(713\) −22.3517 8.88107i −0.837078 0.332599i
\(714\) 14.6590 0.548600
\(715\) 0.172424 1.19924i 0.00644831 0.0448490i
\(716\) −7.63464 16.7175i −0.285320 0.624763i
\(717\) 17.5972 + 5.16701i 0.657180 + 0.192965i
\(718\) −7.77255 8.97000i −0.290069 0.334757i
\(719\) 31.8728 9.35870i 1.18865 0.349021i 0.373150 0.927771i \(-0.378278\pi\)
0.815505 + 0.578750i \(0.196459\pi\)
\(720\) 0.841254 + 0.540641i 0.0313517 + 0.0201485i
\(721\) −4.29476 + 9.40422i −0.159945 + 0.350231i
\(722\) 2.87789 3.32126i 0.107104 0.123604i
\(723\) −22.1922 + 14.2621i −0.825338 + 0.530413i
\(724\) 0.557458 + 3.87721i 0.0207178 + 0.144095i
\(725\) 1.23568 + 8.59432i 0.0458919 + 0.319185i
\(726\) 9.15726 5.88501i 0.339858 0.218413i
\(727\) −11.5252 + 13.3007i −0.427444 + 0.493297i −0.928090 0.372355i \(-0.878550\pi\)
0.500646 + 0.865652i \(0.333096\pi\)
\(728\) −3.53184 + 7.73365i −0.130899 + 0.286628i
\(729\) 0.841254 + 0.540641i 0.0311575 + 0.0200237i
\(730\) −4.05924 + 1.19190i −0.150239 + 0.0441142i
\(731\) 26.4242 + 30.4951i 0.977333 + 1.12790i
\(732\) 1.92058 + 0.563933i 0.0709867 + 0.0208436i
\(733\) −21.4036 46.8675i −0.790562 1.73109i −0.675036 0.737784i \(-0.735872\pi\)
−0.115525 0.993305i \(-0.536855\pi\)
\(734\) −0.157809 + 1.09758i −0.00582483 + 0.0405126i
\(735\) 1.34949 0.0497768
\(736\) 3.77746 + 2.95480i 0.139239 + 0.108915i
\(737\) 3.05015 0.112354
\(738\) 0.174662 1.21480i 0.00642941 0.0447175i
\(739\) 9.85253 + 21.5740i 0.362431 + 0.793614i 0.999735 + 0.0230014i \(0.00732222\pi\)
−0.637304 + 0.770612i \(0.719951\pi\)
\(740\) −0.949109 0.278683i −0.0348899 0.0102446i
\(741\) 8.95117 + 10.3302i 0.328830 + 0.379489i
\(742\) −15.8527 + 4.65476i −0.581969 + 0.170882i
\(743\) 15.8498 + 10.1860i 0.581473 + 0.373690i 0.798064 0.602572i \(-0.205858\pi\)
−0.216591 + 0.976262i \(0.569494\pi\)
\(744\) −2.08334 + 4.56187i −0.0763789 + 0.167246i
\(745\) −10.1851 + 11.7542i −0.373153 + 0.430642i
\(746\) 12.9374 8.31438i 0.473673 0.304411i
\(747\) −0.683191 4.75170i −0.0249967 0.173856i
\(748\) 0.297293 + 2.06772i 0.0108701 + 0.0756033i
\(749\) −37.2641 + 23.9482i −1.36160 + 0.875047i
\(750\) 0.654861 0.755750i 0.0239121 0.0275961i
\(751\) −0.802276 + 1.75674i −0.0292755 + 0.0641043i −0.923705 0.383105i \(-0.874855\pi\)
0.894429 + 0.447209i \(0.147582\pi\)
\(752\) 7.66097 + 4.92340i 0.279367 + 0.179538i
\(753\) −9.20493 + 2.70281i −0.335446 + 0.0984959i
\(754\) −20.3366 23.4697i −0.740615 0.854716i
\(755\) −6.48004 1.90271i −0.235833 0.0692468i
\(756\) −0.987475 2.16227i −0.0359141 0.0786409i
\(757\) 3.78042 26.2934i 0.137402 0.955650i −0.798150 0.602459i \(-0.794188\pi\)
0.935551 0.353191i \(-0.114903\pi\)
\(758\) 24.4919 0.889585
\(759\) 0.945771 + 1.32088i 0.0343293 + 0.0479450i
\(760\) −3.82169 −0.138627
\(761\) 2.79486 19.4387i 0.101314 0.704653i −0.874336 0.485320i \(-0.838703\pi\)
0.975650 0.219332i \(-0.0703879\pi\)
\(762\) 1.77094 + 3.87781i 0.0641542 + 0.140478i
\(763\) 8.67673 + 2.54772i 0.314119 + 0.0922336i
\(764\) −3.76479 4.34480i −0.136205 0.157189i
\(765\) 5.91702 1.73739i 0.213930 0.0628156i
\(766\) 15.3156 + 9.84274i 0.553375 + 0.355633i
\(767\) −2.92353 + 6.40164i −0.105563 + 0.231150i
\(768\) 0.654861 0.755750i 0.0236303 0.0272708i
\(769\) 28.5439