Properties

Label 690.2.m.c.31.1
Level $690$
Weight $2$
Character 690.31
Analytic conductor $5.510$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \( x^{20} - 4 x^{19} - 3 x^{18} + 66 x^{17} - 163 x^{16} - 52 x^{15} + 1567 x^{14} - 6182 x^{13} + 17043 x^{12} - 35832 x^{11} + 60906 x^{10} - 87666 x^{9} + 106197 x^{8} - 102542 x^{7} + \cdots + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 31.1
Root \(0.180562 - 1.25584i\) of defining polynomial
Character \(\chi\) \(=\) 690.31
Dual form 690.2.m.c.601.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.142315 + 0.989821i) q^{2} +(-0.415415 - 0.909632i) q^{3} +(-0.959493 - 0.281733i) q^{4} +(-0.654861 - 0.755750i) q^{5} +(0.959493 - 0.281733i) q^{6} +(-1.32376 - 0.850727i) q^{7} +(0.415415 - 0.909632i) q^{8} +(-0.654861 + 0.755750i) q^{9} +O(q^{10})\) \(q+(-0.142315 + 0.989821i) q^{2} +(-0.415415 - 0.909632i) q^{3} +(-0.959493 - 0.281733i) q^{4} +(-0.654861 - 0.755750i) q^{5} +(0.959493 - 0.281733i) q^{6} +(-1.32376 - 0.850727i) q^{7} +(0.415415 - 0.909632i) q^{8} +(-0.654861 + 0.755750i) q^{9} +(0.841254 - 0.540641i) q^{10} +(0.308448 + 2.14530i) q^{11} +(0.142315 + 0.989821i) q^{12} +(-0.178324 + 0.114602i) q^{13} +(1.03046 - 1.18921i) q^{14} +(-0.415415 + 0.909632i) q^{15} +(0.841254 + 0.540641i) q^{16} +(-2.86530 + 0.841327i) q^{17} +(-0.654861 - 0.755750i) q^{18} +(0.700061 + 0.205556i) q^{19} +(0.415415 + 0.909632i) q^{20} +(-0.223940 + 1.55754i) q^{21} -2.16736 q^{22} +(-2.44401 + 4.12636i) q^{23} -1.00000 q^{24} +(-0.142315 + 0.989821i) q^{25} +(-0.0880575 - 0.192819i) q^{26} +(0.959493 + 0.281733i) q^{27} +(1.03046 + 1.18921i) q^{28} +(-5.97820 + 1.75536i) q^{29} +(-0.841254 - 0.540641i) q^{30} +(-1.76017 + 3.85423i) q^{31} +(-0.654861 + 0.755750i) q^{32} +(1.82330 - 1.17177i) q^{33} +(-0.424989 - 2.95586i) q^{34} +(0.223940 + 1.55754i) q^{35} +(0.841254 - 0.540641i) q^{36} +(-6.99603 + 8.07385i) q^{37} +(-0.303093 + 0.663682i) q^{38} +(0.178324 + 0.114602i) q^{39} +(-0.959493 + 0.281733i) q^{40} +(6.89281 + 7.95473i) q^{41} +(-1.50981 - 0.443321i) q^{42} +(-3.95589 - 8.66219i) q^{43} +(0.308448 - 2.14530i) q^{44} +1.00000 q^{45} +(-3.73654 - 3.00637i) q^{46} -5.12157 q^{47} +(0.142315 - 0.989821i) q^{48} +(-1.87931 - 4.11511i) q^{49} +(-0.959493 - 0.281733i) q^{50} +(1.95558 + 2.25686i) q^{51} +(0.203388 - 0.0597202i) q^{52} +(6.72208 + 4.32002i) q^{53} +(-0.415415 + 0.909632i) q^{54} +(1.41932 - 1.63798i) q^{55} +(-1.32376 + 0.850727i) q^{56} +(-0.103835 - 0.722189i) q^{57} +(-0.886704 - 6.16716i) q^{58} +(-6.90331 + 4.43649i) q^{59} +(0.654861 - 0.755750i) q^{60} +(-2.36875 + 5.18683i) q^{61} +(-3.56450 - 2.29077i) q^{62} +(1.50981 - 0.443321i) q^{63} +(-0.654861 - 0.755750i) q^{64} +(0.203388 + 0.0597202i) q^{65} +(0.900355 + 1.97150i) q^{66} +(2.17625 - 15.1361i) q^{67} +2.98626 q^{68} +(4.76874 + 0.508997i) q^{69} -1.57355 q^{70} +(0.286605 - 1.99338i) q^{71} +(0.415415 + 0.909632i) q^{72} +(-1.77683 - 0.521724i) q^{73} +(-6.99603 - 8.07385i) q^{74} +(0.959493 - 0.281733i) q^{75} +(-0.613792 - 0.394460i) q^{76} +(1.41676 - 3.10227i) q^{77} +(-0.138814 + 0.160200i) q^{78} +(2.50585 - 1.61041i) q^{79} +(-0.142315 - 0.989821i) q^{80} +(-0.142315 - 0.989821i) q^{81} +(-8.85471 + 5.69058i) q^{82} +(-3.99455 + 4.60995i) q^{83} +(0.653678 - 1.43135i) q^{84} +(2.51220 + 1.61449i) q^{85} +(9.13700 - 2.68287i) q^{86} +(4.08016 + 4.70876i) q^{87} +(2.07957 + 0.610617i) q^{88} +(5.73900 + 12.5667i) q^{89} +(-0.142315 + 0.989821i) q^{90} +0.333553 q^{91} +(3.50754 - 3.27065i) q^{92} +4.23713 q^{93} +(0.728876 - 5.06944i) q^{94} +(-0.303093 - 0.663682i) q^{95} +(0.959493 + 0.281733i) q^{96} +(-5.45096 - 6.29074i) q^{97} +(4.34068 - 1.27454i) q^{98} +(-1.82330 - 1.17177i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9} - 2 q^{10} - 24 q^{11} + 2 q^{12} - 4 q^{13} + 2 q^{14} + 2 q^{15} - 2 q^{16} + 16 q^{17} - 2 q^{18} + 14 q^{19} - 2 q^{20} - 13 q^{21} - 2 q^{22} - 2 q^{23} - 20 q^{24} - 2 q^{25} + 7 q^{26} + 2 q^{27} + 2 q^{28} + 18 q^{29} + 2 q^{30} + 22 q^{31} - 2 q^{32} + 2 q^{33} - 17 q^{34} + 13 q^{35} - 2 q^{36} - 16 q^{37} + 3 q^{38} + 4 q^{39} - 2 q^{40} + 29 q^{41} + 9 q^{42} - 22 q^{43} - 24 q^{44} + 20 q^{45} - 2 q^{46} - 94 q^{47} + 2 q^{48} - 22 q^{49} - 2 q^{50} - 5 q^{51} - 4 q^{52} + 58 q^{53} + 2 q^{54} + 9 q^{55} + 2 q^{56} - 25 q^{57} - 4 q^{58} + 45 q^{59} + 2 q^{60} + q^{61} - 9 q^{63} - 2 q^{64} - 4 q^{65} - 9 q^{66} + 16 q^{67} - 6 q^{68} + 24 q^{69} + 2 q^{70} + 59 q^{71} - 2 q^{72} + 3 q^{73} - 16 q^{74} + 2 q^{75} - 8 q^{76} - 19 q^{77} - 18 q^{78} - 20 q^{79} - 2 q^{80} - 2 q^{81} - 37 q^{82} + 13 q^{83} + 9 q^{84} + 5 q^{85} - 22 q^{86} + 4 q^{87} + 9 q^{88} - 97 q^{89} - 2 q^{90} - 18 q^{91} + 9 q^{92} + 22 q^{93} + 27 q^{94} + 3 q^{95} + 2 q^{96} - 17 q^{97} - 11 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.142315 + 0.989821i −0.100632 + 0.699909i
\(3\) −0.415415 0.909632i −0.239840 0.525176i
\(4\) −0.959493 0.281733i −0.479746 0.140866i
\(5\) −0.654861 0.755750i −0.292863 0.337981i
\(6\) 0.959493 0.281733i 0.391711 0.115017i
\(7\) −1.32376 0.850727i −0.500333 0.321545i 0.266016 0.963969i \(-0.414293\pi\)
−0.766350 + 0.642424i \(0.777929\pi\)
\(8\) 0.415415 0.909632i 0.146871 0.321603i
\(9\) −0.654861 + 0.755750i −0.218287 + 0.251917i
\(10\) 0.841254 0.540641i 0.266028 0.170966i
\(11\) 0.308448 + 2.14530i 0.0930006 + 0.646833i 0.981994 + 0.188913i \(0.0604964\pi\)
−0.888993 + 0.457920i \(0.848595\pi\)
\(12\) 0.142315 + 0.989821i 0.0410828 + 0.285737i
\(13\) −0.178324 + 0.114602i −0.0494583 + 0.0317849i −0.565136 0.824998i \(-0.691176\pi\)
0.515678 + 0.856782i \(0.327540\pi\)
\(14\) 1.03046 1.18921i 0.275402 0.317830i
\(15\) −0.415415 + 0.909632i −0.107260 + 0.234866i
\(16\) 0.841254 + 0.540641i 0.210313 + 0.135160i
\(17\) −2.86530 + 0.841327i −0.694936 + 0.204052i −0.610078 0.792341i \(-0.708862\pi\)
−0.0848583 + 0.996393i \(0.527044\pi\)
\(18\) −0.654861 0.755750i −0.154352 0.178132i
\(19\) 0.700061 + 0.205556i 0.160605 + 0.0471579i 0.361047 0.932548i \(-0.382420\pi\)
−0.200442 + 0.979706i \(0.564238\pi\)
\(20\) 0.415415 + 0.909632i 0.0928896 + 0.203400i
\(21\) −0.223940 + 1.55754i −0.0488677 + 0.339882i
\(22\) −2.16736 −0.462083
\(23\) −2.44401 + 4.12636i −0.509611 + 0.860405i
\(24\) −1.00000 −0.204124
\(25\) −0.142315 + 0.989821i −0.0284630 + 0.197964i
\(26\) −0.0880575 0.192819i −0.0172695 0.0378149i
\(27\) 0.959493 + 0.281733i 0.184655 + 0.0542195i
\(28\) 1.03046 + 1.18921i 0.194738 + 0.224740i
\(29\) −5.97820 + 1.75536i −1.11012 + 0.325962i −0.784867 0.619664i \(-0.787269\pi\)
−0.325257 + 0.945626i \(0.605451\pi\)
\(30\) −0.841254 0.540641i −0.153591 0.0987071i
\(31\) −1.76017 + 3.85423i −0.316135 + 0.692240i −0.999276 0.0380469i \(-0.987886\pi\)
0.683141 + 0.730287i \(0.260614\pi\)
\(32\) −0.654861 + 0.755750i −0.115764 + 0.133599i
\(33\) 1.82330 1.17177i 0.317396 0.203978i
\(34\) −0.424989 2.95586i −0.0728850 0.506927i
\(35\) 0.223940 + 1.55754i 0.0378528 + 0.263272i
\(36\) 0.841254 0.540641i 0.140209 0.0901068i
\(37\) −6.99603 + 8.07385i −1.15014 + 1.32733i −0.213540 + 0.976934i \(0.568500\pi\)
−0.936600 + 0.350399i \(0.886046\pi\)
\(38\) −0.303093 + 0.663682i −0.0491682 + 0.107663i
\(39\) 0.178324 + 0.114602i 0.0285548 + 0.0183510i
\(40\) −0.959493 + 0.281733i −0.151709 + 0.0445458i
\(41\) 6.89281 + 7.95473i 1.07648 + 1.24232i 0.968724 + 0.248142i \(0.0798200\pi\)
0.107753 + 0.994178i \(0.465635\pi\)
\(42\) −1.50981 0.443321i −0.232969 0.0684060i
\(43\) −3.95589 8.66219i −0.603268 1.32097i −0.927085 0.374852i \(-0.877693\pi\)
0.323817 0.946120i \(-0.395034\pi\)
\(44\) 0.308448 2.14530i 0.0465003 0.323417i
\(45\) 1.00000 0.149071
\(46\) −3.73654 3.00637i −0.550923 0.443266i
\(47\) −5.12157 −0.747058 −0.373529 0.927619i \(-0.621852\pi\)
−0.373529 + 0.927619i \(0.621852\pi\)
\(48\) 0.142315 0.989821i 0.0205414 0.142868i
\(49\) −1.87931 4.11511i −0.268473 0.587873i
\(50\) −0.959493 0.281733i −0.135693 0.0398430i
\(51\) 1.95558 + 2.25686i 0.273837 + 0.316024i
\(52\) 0.203388 0.0597202i 0.0282049 0.00828170i
\(53\) 6.72208 + 4.32002i 0.923348 + 0.593400i 0.913627 0.406553i \(-0.133269\pi\)
0.00972097 + 0.999953i \(0.496906\pi\)
\(54\) −0.415415 + 0.909632i −0.0565308 + 0.123785i
\(55\) 1.41932 1.63798i 0.191381 0.220866i
\(56\) −1.32376 + 0.850727i −0.176895 + 0.113683i
\(57\) −0.103835 0.722189i −0.0137533 0.0956563i
\(58\) −0.886704 6.16716i −0.116430 0.809788i
\(59\) −6.90331 + 4.43649i −0.898734 + 0.577582i −0.906415 0.422389i \(-0.861192\pi\)
0.00768030 + 0.999971i \(0.497555\pi\)
\(60\) 0.654861 0.755750i 0.0845422 0.0975669i
\(61\) −2.36875 + 5.18683i −0.303287 + 0.664105i −0.998503 0.0546951i \(-0.982581\pi\)
0.695216 + 0.718801i \(0.255309\pi\)
\(62\) −3.56450 2.29077i −0.452692 0.290928i
\(63\) 1.50981 0.443321i 0.190219 0.0558532i
\(64\) −0.654861 0.755750i −0.0818576 0.0944687i
\(65\) 0.203388 + 0.0597202i 0.0252272 + 0.00740737i
\(66\) 0.900355 + 1.97150i 0.110826 + 0.242675i
\(67\) 2.17625 15.1361i 0.265871 1.84917i −0.220458 0.975396i \(-0.570755\pi\)
0.486329 0.873776i \(-0.338336\pi\)
\(68\) 2.98626 0.362137
\(69\) 4.76874 + 0.508997i 0.574089 + 0.0612760i
\(70\) −1.57355 −0.188076
\(71\) 0.286605 1.99338i 0.0340138 0.236571i −0.965721 0.259580i \(-0.916416\pi\)
0.999735 + 0.0230096i \(0.00732481\pi\)
\(72\) 0.415415 + 0.909632i 0.0489571 + 0.107201i
\(73\) −1.77683 0.521724i −0.207962 0.0610632i 0.176092 0.984374i \(-0.443654\pi\)
−0.384054 + 0.923310i \(0.625472\pi\)
\(74\) −6.99603 8.07385i −0.813272 0.938566i
\(75\) 0.959493 0.281733i 0.110793 0.0325317i
\(76\) −0.613792 0.394460i −0.0704067 0.0452477i
\(77\) 1.41676 3.10227i 0.161454 0.353536i
\(78\) −0.138814 + 0.160200i −0.0157176 + 0.0181390i
\(79\) 2.50585 1.61041i 0.281930 0.181186i −0.392032 0.919952i \(-0.628228\pi\)
0.673962 + 0.738766i \(0.264591\pi\)
\(80\) −0.142315 0.989821i −0.0159113 0.110665i
\(81\) −0.142315 0.989821i −0.0158128 0.109980i
\(82\) −8.85471 + 5.69058i −0.977839 + 0.628419i
\(83\) −3.99455 + 4.60995i −0.438459 + 0.506008i −0.931371 0.364070i \(-0.881387\pi\)
0.492913 + 0.870079i \(0.335932\pi\)
\(84\) 0.653678 1.43135i 0.0713221 0.156174i
\(85\) 2.51220 + 1.61449i 0.272487 + 0.175116i
\(86\) 9.13700 2.68287i 0.985269 0.289301i
\(87\) 4.08016 + 4.70876i 0.437439 + 0.504832i
\(88\) 2.07957 + 0.610617i 0.221683 + 0.0650920i
\(89\) 5.73900 + 12.5667i 0.608333 + 1.33206i 0.923709 + 0.383096i \(0.125142\pi\)
−0.315376 + 0.948967i \(0.602131\pi\)
\(90\) −0.142315 + 0.989821i −0.0150013 + 0.104336i
\(91\) 0.333553 0.0349659
\(92\) 3.50754 3.27065i 0.365686 0.340989i
\(93\) 4.23713 0.439370
\(94\) 0.728876 5.06944i 0.0751778 0.522873i
\(95\) −0.303093 0.663682i −0.0310967 0.0680923i
\(96\) 0.959493 + 0.281733i 0.0979278 + 0.0287542i
\(97\) −5.45096 6.29074i −0.553461 0.638728i 0.408225 0.912881i \(-0.366148\pi\)
−0.961686 + 0.274153i \(0.911602\pi\)
\(98\) 4.34068 1.27454i 0.438475 0.128748i
\(99\) −1.82330 1.17177i −0.183249 0.117767i
\(100\) 0.415415 0.909632i 0.0415415 0.0909632i
\(101\) −2.14739 + 2.47822i −0.213673 + 0.246592i −0.852461 0.522791i \(-0.824891\pi\)
0.638788 + 0.769383i \(0.279436\pi\)
\(102\) −2.51220 + 1.61449i −0.248745 + 0.159859i
\(103\) −1.82014 12.6594i −0.179344 1.24736i −0.858286 0.513171i \(-0.828471\pi\)
0.678942 0.734191i \(-0.262439\pi\)
\(104\) 0.0301671 + 0.209817i 0.00295813 + 0.0205743i
\(105\) 1.32376 0.850727i 0.129185 0.0830225i
\(106\) −5.23270 + 6.03885i −0.508244 + 0.586545i
\(107\) −0.258616 + 0.566291i −0.0250014 + 0.0547454i −0.921721 0.387854i \(-0.873216\pi\)
0.896719 + 0.442600i \(0.145944\pi\)
\(108\) −0.841254 0.540641i −0.0809497 0.0520232i
\(109\) 5.63387 1.65425i 0.539627 0.158449i −0.000550814 1.00000i \(-0.500175\pi\)
0.540177 + 0.841551i \(0.318357\pi\)
\(110\) 1.41932 + 1.63798i 0.135327 + 0.156176i
\(111\) 10.2505 + 3.00982i 0.972934 + 0.285679i
\(112\) −0.653678 1.43135i −0.0617667 0.135250i
\(113\) 1.01353 7.04928i 0.0953451 0.663140i −0.884962 0.465663i \(-0.845816\pi\)
0.980307 0.197477i \(-0.0632749\pi\)
\(114\) 0.729615 0.0683347
\(115\) 4.71898 0.855132i 0.440047 0.0797414i
\(116\) 6.23058 0.578495
\(117\) 0.0301671 0.209817i 0.00278895 0.0193976i
\(118\) −3.40889 7.46442i −0.313814 0.687156i
\(119\) 4.50870 + 1.32387i 0.413312 + 0.121359i
\(120\) 0.654861 + 0.755750i 0.0597803 + 0.0689902i
\(121\) 6.04724 1.77563i 0.549749 0.161421i
\(122\) −4.79693 3.08280i −0.434293 0.279103i
\(123\) 4.37250 9.57443i 0.394255 0.863298i
\(124\) 2.77473 3.20221i 0.249178 0.287567i
\(125\) 0.841254 0.540641i 0.0752440 0.0483564i
\(126\) 0.223940 + 1.55754i 0.0199502 + 0.138756i
\(127\) −0.0743873 0.517375i −0.00660080 0.0459096i 0.986255 0.165231i \(-0.0528371\pi\)
−0.992856 + 0.119322i \(0.961928\pi\)
\(128\) 0.841254 0.540641i 0.0743570 0.0477863i
\(129\) −6.23607 + 7.19681i −0.549055 + 0.633644i
\(130\) −0.0880575 + 0.192819i −0.00772315 + 0.0169113i
\(131\) 1.35345 + 0.869809i 0.118251 + 0.0759956i 0.598430 0.801175i \(-0.295792\pi\)
−0.480178 + 0.877171i \(0.659428\pi\)
\(132\) −2.07957 + 0.610617i −0.181003 + 0.0531474i
\(133\) −0.751838 0.867668i −0.0651927 0.0752363i
\(134\) 14.6723 + 4.30819i 1.26750 + 0.372171i
\(135\) −0.415415 0.909632i −0.0357532 0.0782887i
\(136\) −0.424989 + 2.95586i −0.0364425 + 0.253463i
\(137\) −7.50760 −0.641418 −0.320709 0.947178i \(-0.603921\pi\)
−0.320709 + 0.947178i \(0.603921\pi\)
\(138\) −1.18248 + 4.64777i −0.100659 + 0.395644i
\(139\) −8.39251 −0.711843 −0.355922 0.934516i \(-0.615833\pi\)
−0.355922 + 0.934516i \(0.615833\pi\)
\(140\) 0.223940 1.55754i 0.0189264 0.131636i
\(141\) 2.12758 + 4.65874i 0.179174 + 0.392337i
\(142\) 1.93230 + 0.567376i 0.162155 + 0.0476131i
\(143\) −0.300860 0.347211i −0.0251592 0.0290353i
\(144\) −0.959493 + 0.281733i −0.0799577 + 0.0234777i
\(145\) 5.24150 + 3.36851i 0.435283 + 0.279739i
\(146\) 0.769283 1.68450i 0.0636663 0.139410i
\(147\) −2.96254 + 3.41896i −0.244346 + 0.281991i
\(148\) 8.98731 5.77580i 0.738753 0.474767i
\(149\) −0.834859 5.80657i −0.0683943 0.475693i −0.995017 0.0997014i \(-0.968211\pi\)
0.926623 0.375992i \(-0.122698\pi\)
\(150\) 0.142315 + 0.989821i 0.0116200 + 0.0808186i
\(151\) 8.78863 5.64811i 0.715209 0.459637i −0.131758 0.991282i \(-0.542062\pi\)
0.846967 + 0.531645i \(0.178426\pi\)
\(152\) 0.477796 0.551407i 0.0387544 0.0447250i
\(153\) 1.24054 2.71640i 0.100292 0.219608i
\(154\) 2.86906 + 1.84384i 0.231196 + 0.148580i
\(155\) 4.06550 1.19374i 0.326549 0.0958833i
\(156\) −0.138814 0.160200i −0.0111140 0.0128262i
\(157\) 2.48623 + 0.730022i 0.198423 + 0.0582621i 0.379434 0.925219i \(-0.376119\pi\)
−0.181011 + 0.983481i \(0.557937\pi\)
\(158\) 1.23740 + 2.70953i 0.0984424 + 0.215559i
\(159\) 1.13717 7.90922i 0.0901837 0.627242i
\(160\) 1.00000 0.0790569
\(161\) 6.74568 3.38311i 0.531634 0.266627i
\(162\) 1.00000 0.0785674
\(163\) −0.379070 + 2.63649i −0.0296911 + 0.206506i −0.999267 0.0382854i \(-0.987810\pi\)
0.969576 + 0.244791i \(0.0787195\pi\)
\(164\) −4.37250 9.57443i −0.341435 0.747638i
\(165\) −2.07957 0.610617i −0.161894 0.0475365i
\(166\) −3.99455 4.60995i −0.310037 0.357802i
\(167\) 5.13997 1.50923i 0.397743 0.116788i −0.0767430 0.997051i \(-0.524452\pi\)
0.474486 + 0.880263i \(0.342634\pi\)
\(168\) 1.32376 + 0.850727i 0.102130 + 0.0656350i
\(169\) −5.38173 + 11.7843i −0.413979 + 0.906488i
\(170\) −1.95558 + 2.25686i −0.149986 + 0.173094i
\(171\) −0.613792 + 0.394460i −0.0469378 + 0.0301651i
\(172\) 1.35523 + 9.42582i 0.103335 + 0.718712i
\(173\) 3.23370 + 22.4909i 0.245854 + 1.70995i 0.621689 + 0.783264i \(0.286447\pi\)
−0.375835 + 0.926687i \(0.622644\pi\)
\(174\) −5.24150 + 3.36851i −0.397357 + 0.255366i
\(175\) 1.03046 1.18921i 0.0778953 0.0898960i
\(176\) −0.900355 + 1.97150i −0.0678668 + 0.148608i
\(177\) 6.90331 + 4.43649i 0.518885 + 0.333467i
\(178\) −13.2555 + 3.89216i −0.993541 + 0.291730i
\(179\) −5.61516 6.48024i −0.419697 0.484356i 0.506048 0.862505i \(-0.331106\pi\)
−0.925744 + 0.378150i \(0.876560\pi\)
\(180\) −0.959493 0.281733i −0.0715164 0.0209991i
\(181\) 2.45971 + 5.38602i 0.182829 + 0.400340i 0.978749 0.205062i \(-0.0657396\pi\)
−0.795920 + 0.605402i \(0.793012\pi\)
\(182\) −0.0474696 + 0.330158i −0.00351868 + 0.0244730i
\(183\) 5.70212 0.421513
\(184\) 2.73819 + 3.93730i 0.201862 + 0.290261i
\(185\) 10.6832 0.785447
\(186\) −0.603007 + 4.19400i −0.0442146 + 0.307519i
\(187\) −2.68870 5.88742i −0.196617 0.430531i
\(188\) 4.91411 + 1.44291i 0.358398 + 0.105235i
\(189\) −1.03046 1.18921i −0.0749548 0.0865025i
\(190\) 0.700061 0.205556i 0.0507878 0.0149126i
\(191\) 1.80760 + 1.16167i 0.130793 + 0.0840557i 0.604401 0.796680i \(-0.293412\pi\)
−0.473608 + 0.880736i \(0.657049\pi\)
\(192\) −0.415415 + 0.909632i −0.0299800 + 0.0656470i
\(193\) −9.51150 + 10.9769i −0.684653 + 0.790131i −0.986594 0.163195i \(-0.947820\pi\)
0.301941 + 0.953327i \(0.402365\pi\)
\(194\) 7.00246 4.50021i 0.502748 0.323096i
\(195\) −0.0301671 0.209817i −0.00216031 0.0150253i
\(196\) 0.643822 + 4.47788i 0.0459873 + 0.319849i
\(197\) 14.3473 9.22045i 1.02220 0.656930i 0.0816797 0.996659i \(-0.473972\pi\)
0.940524 + 0.339729i \(0.110335\pi\)
\(198\) 1.41932 1.63798i 0.100867 0.116406i
\(199\) −2.65786 + 5.81990i −0.188411 + 0.412562i −0.980139 0.198311i \(-0.936454\pi\)
0.791728 + 0.610873i \(0.209182\pi\)
\(200\) 0.841254 + 0.540641i 0.0594856 + 0.0382291i
\(201\) −14.6723 + 4.30819i −1.03491 + 0.303876i
\(202\) −2.14739 2.47822i −0.151090 0.174367i
\(203\) 9.40702 + 2.76215i 0.660243 + 0.193865i
\(204\) −1.24054 2.71640i −0.0868550 0.190186i
\(205\) 1.49795 10.4185i 0.104621 0.727658i
\(206\) 12.7895 0.891089
\(207\) −1.51801 4.54925i −0.105509 0.316195i
\(208\) −0.211975 −0.0146978
\(209\) −0.225048 + 1.56525i −0.0155669 + 0.108270i
\(210\) 0.653678 + 1.43135i 0.0451080 + 0.0987729i
\(211\) 13.0873 + 3.84277i 0.900965 + 0.264547i 0.699233 0.714893i \(-0.253525\pi\)
0.201732 + 0.979441i \(0.435343\pi\)
\(212\) −5.23270 6.03885i −0.359383 0.414750i
\(213\) −1.93230 + 0.567376i −0.132399 + 0.0388759i
\(214\) −0.523722 0.336576i −0.0358009 0.0230078i
\(215\) −3.95589 + 8.66219i −0.269789 + 0.590757i
\(216\) 0.654861 0.755750i 0.0445576 0.0514222i
\(217\) 5.60893 3.60464i 0.380759 0.244699i
\(218\) 0.835632 + 5.81195i 0.0565961 + 0.393635i
\(219\) 0.263545 + 1.83299i 0.0178087 + 0.123862i
\(220\) −1.82330 + 1.17177i −0.122927 + 0.0790004i
\(221\) 0.414534 0.478398i 0.0278846 0.0321805i
\(222\) −4.43798 + 9.71782i −0.297858 + 0.652217i
\(223\) −12.6168 8.10833i −0.844884 0.542974i 0.0450914 0.998983i \(-0.485642\pi\)
−0.889975 + 0.456009i \(0.849278\pi\)
\(224\) 1.50981 0.443321i 0.100879 0.0296206i
\(225\) −0.654861 0.755750i −0.0436574 0.0503833i
\(226\) 6.83328 + 2.00643i 0.454543 + 0.133466i
\(227\) −10.9363 23.9472i −0.725870 1.58943i −0.805490 0.592609i \(-0.798098\pi\)
0.0796200 0.996825i \(-0.474629\pi\)
\(228\) −0.103835 + 0.722189i −0.00687665 + 0.0478281i
\(229\) 8.48699 0.560836 0.280418 0.959878i \(-0.409527\pi\)
0.280418 + 0.959878i \(0.409527\pi\)
\(230\) 0.174847 + 4.79264i 0.0115291 + 0.316018i
\(231\) −3.41046 −0.224392
\(232\) −0.886704 + 6.16716i −0.0582150 + 0.404894i
\(233\) −1.55914 3.41405i −0.102143 0.223662i 0.851660 0.524095i \(-0.175596\pi\)
−0.953803 + 0.300433i \(0.902869\pi\)
\(234\) 0.203388 + 0.0597202i 0.0132959 + 0.00390403i
\(235\) 3.35392 + 3.87063i 0.218785 + 0.252492i
\(236\) 7.87358 2.31189i 0.512526 0.150491i
\(237\) −2.50585 1.61041i −0.162773 0.104608i
\(238\) −1.95205 + 4.27440i −0.126533 + 0.277068i
\(239\) −12.5834 + 14.5221i −0.813955 + 0.939354i −0.999059 0.0433647i \(-0.986192\pi\)
0.185104 + 0.982719i \(0.440738\pi\)
\(240\) −0.841254 + 0.540641i −0.0543027 + 0.0348982i
\(241\) 1.01041 + 7.02757i 0.0650864 + 0.452686i 0.996138 + 0.0877988i \(0.0279833\pi\)
−0.931052 + 0.364887i \(0.881108\pi\)
\(242\) 0.896944 + 6.23838i 0.0576578 + 0.401019i
\(243\) −0.841254 + 0.540641i −0.0539664 + 0.0346821i
\(244\) 3.73409 4.30937i 0.239051 0.275879i
\(245\) −1.87931 + 4.11511i −0.120065 + 0.262905i
\(246\) 8.85471 + 5.69058i 0.564556 + 0.362818i
\(247\) −0.148395 + 0.0435728i −0.00944216 + 0.00277247i
\(248\) 2.77473 + 3.20221i 0.176196 + 0.203341i
\(249\) 5.85276 + 1.71852i 0.370903 + 0.108907i
\(250\) 0.415415 + 0.909632i 0.0262732 + 0.0575302i
\(251\) 3.76561 26.1904i 0.237683 1.65312i −0.425716 0.904857i \(-0.639978\pi\)
0.663399 0.748266i \(-0.269113\pi\)
\(252\) −1.57355 −0.0991246
\(253\) −9.60614 3.97037i −0.603933 0.249615i
\(254\) 0.522695 0.0327968
\(255\) 0.424989 2.95586i 0.0266139 0.185103i
\(256\) 0.415415 + 0.909632i 0.0259634 + 0.0568520i
\(257\) 6.12308 + 1.79790i 0.381947 + 0.112150i 0.467069 0.884221i \(-0.345310\pi\)
−0.0851221 + 0.996371i \(0.527128\pi\)
\(258\) −6.23607 7.19681i −0.388241 0.448054i
\(259\) 16.1297 4.73611i 1.00225 0.294287i
\(260\) −0.178324 0.114602i −0.0110592 0.00710732i
\(261\) 2.58828 5.66754i 0.160210 0.350812i
\(262\) −1.05357 + 1.21589i −0.0650899 + 0.0751177i
\(263\) −12.4799 + 8.02037i −0.769546 + 0.494557i −0.865549 0.500824i \(-0.833030\pi\)
0.0960034 + 0.995381i \(0.469394\pi\)
\(264\) −0.308448 2.14530i −0.0189837 0.132034i
\(265\) −1.13717 7.90922i −0.0698560 0.485859i
\(266\) 0.965834 0.620704i 0.0592191 0.0380578i
\(267\) 9.04696 10.4408i 0.553665 0.638964i
\(268\) −6.35243 + 13.9099i −0.388037 + 0.849682i
\(269\) −16.3597 10.5138i −0.997470 0.641035i −0.0633491 0.997991i \(-0.520178\pi\)
−0.934121 + 0.356956i \(0.883815\pi\)
\(270\) 0.959493 0.281733i 0.0583929 0.0171457i
\(271\) 16.9935 + 19.6116i 1.03228 + 1.19132i 0.981274 + 0.192619i \(0.0616983\pi\)
0.0510090 + 0.998698i \(0.483756\pi\)
\(272\) −2.86530 0.841327i −0.173734 0.0510129i
\(273\) −0.138563 0.303411i −0.00838622 0.0183633i
\(274\) 1.06844 7.43118i 0.0645470 0.448934i
\(275\) −2.16736 −0.130697
\(276\) −4.43218 1.83189i −0.266786 0.110267i
\(277\) −15.3274 −0.920933 −0.460467 0.887677i \(-0.652318\pi\)
−0.460467 + 0.887677i \(0.652318\pi\)
\(278\) 1.19438 8.30708i 0.0716340 0.498226i
\(279\) −1.76017 3.85423i −0.105378 0.230747i
\(280\) 1.50981 + 0.443321i 0.0902286 + 0.0264935i
\(281\) −13.5955 15.6901i −0.811042 0.935992i 0.187890 0.982190i \(-0.439835\pi\)
−0.998932 + 0.0461978i \(0.985290\pi\)
\(282\) −4.91411 + 1.44291i −0.292631 + 0.0859242i
\(283\) −18.6624 11.9936i −1.10936 0.712945i −0.148209 0.988956i \(-0.547351\pi\)
−0.961154 + 0.276011i \(0.910987\pi\)
\(284\) −0.836596 + 1.83189i −0.0496428 + 0.108703i
\(285\) −0.477796 + 0.551407i −0.0283022 + 0.0326625i
\(286\) 0.386494 0.248385i 0.0228539 0.0146873i
\(287\) −2.35711 16.3940i −0.139136 0.967709i
\(288\) −0.142315 0.989821i −0.00838598 0.0583258i
\(289\) −6.79922 + 4.36959i −0.399954 + 0.257035i
\(290\) −4.08016 + 4.70876i −0.239595 + 0.276508i
\(291\) −3.45785 + 7.57164i −0.202703 + 0.443857i
\(292\) 1.55787 + 1.00118i 0.0911674 + 0.0585897i
\(293\) −13.2236 + 3.88279i −0.772529 + 0.226835i −0.644159 0.764891i \(-0.722793\pi\)
−0.128370 + 0.991726i \(0.540974\pi\)
\(294\) −2.96254 3.41896i −0.172779 0.199398i
\(295\) 7.87358 + 2.31189i 0.458418 + 0.134604i
\(296\) 4.43798 + 9.71782i 0.257952 + 0.564837i
\(297\) −0.308448 + 2.14530i −0.0178980 + 0.124483i
\(298\) 5.86628 0.339825
\(299\) −0.0370632 1.01592i −0.00214342 0.0587521i
\(300\) −1.00000 −0.0577350
\(301\) −2.13252 + 14.8320i −0.122917 + 0.854904i
\(302\) 4.33987 + 9.50299i 0.249731 + 0.546836i
\(303\) 3.14632 + 0.923844i 0.180752 + 0.0530734i
\(304\) 0.477796 + 0.551407i 0.0274035 + 0.0316253i
\(305\) 5.47114 1.60647i 0.313277 0.0919863i
\(306\) 2.51220 + 1.61449i 0.143613 + 0.0922945i
\(307\) 6.23946 13.6625i 0.356105 0.779761i −0.643789 0.765203i \(-0.722639\pi\)
0.999894 0.0145582i \(-0.00463420\pi\)
\(308\) −2.23338 + 2.57746i −0.127259 + 0.146864i
\(309\) −10.7592 + 6.91454i −0.612072 + 0.393355i
\(310\) 0.603007 + 4.19400i 0.0342485 + 0.238203i
\(311\) −0.400583 2.78612i −0.0227150 0.157986i 0.975307 0.220854i \(-0.0708844\pi\)
−0.998022 + 0.0628678i \(0.979975\pi\)
\(312\) 0.178324 0.114602i 0.0100956 0.00648807i
\(313\) 2.29458 2.64808i 0.129697 0.149678i −0.687186 0.726481i \(-0.741154\pi\)
0.816883 + 0.576803i \(0.195700\pi\)
\(314\) −1.07642 + 2.35703i −0.0607458 + 0.133015i
\(315\) −1.32376 0.850727i −0.0745853 0.0479331i
\(316\) −2.85805 + 0.839200i −0.160778 + 0.0472087i
\(317\) 3.09921 + 3.57668i 0.174069 + 0.200887i 0.836080 0.548608i \(-0.184842\pi\)
−0.662011 + 0.749495i \(0.730297\pi\)
\(318\) 7.66687 + 2.25120i 0.429937 + 0.126241i
\(319\) −5.60974 12.2836i −0.314085 0.687750i
\(320\) −0.142315 + 0.989821i −0.00795564 + 0.0553327i
\(321\) 0.622550 0.0347473
\(322\) 2.38867 + 7.15848i 0.133115 + 0.398927i
\(323\) −2.17882 −0.121233
\(324\) −0.142315 + 0.989821i −0.00790638 + 0.0549901i
\(325\) −0.0880575 0.192819i −0.00488455 0.0106957i
\(326\) −2.55571 0.750424i −0.141548 0.0415621i
\(327\) −3.84515 4.43754i −0.212637 0.245397i
\(328\) 10.0993 2.96541i 0.557638 0.163737i
\(329\) 6.77972 + 4.35706i 0.373778 + 0.240213i
\(330\) 0.900355 1.97150i 0.0495629 0.108528i
\(331\) 12.6958 14.6517i 0.697825 0.805332i −0.290632 0.956835i \(-0.593866\pi\)
0.988457 + 0.151502i \(0.0484111\pi\)
\(332\) 5.13152 3.29782i 0.281629 0.180992i
\(333\) −1.52038 10.5745i −0.0833165 0.579479i
\(334\) 0.762376 + 5.30244i 0.0417154 + 0.290137i
\(335\) −12.8643 + 8.26736i −0.702850 + 0.451694i
\(336\) −1.03046 + 1.18921i −0.0562161 + 0.0648769i
\(337\) −7.10835 + 15.5651i −0.387216 + 0.847885i 0.611192 + 0.791482i \(0.290690\pi\)
−0.998408 + 0.0564028i \(0.982037\pi\)
\(338\) −10.8985 7.00404i −0.592800 0.380969i
\(339\) −6.83328 + 2.00643i −0.371133 + 0.108974i
\(340\) −1.95558 2.25686i −0.106056 0.122396i
\(341\) −8.81141 2.58726i −0.477165 0.140108i
\(342\) −0.303093 0.663682i −0.0163894 0.0358878i
\(343\) −2.58067 + 17.9489i −0.139343 + 0.969152i
\(344\) −9.52274 −0.513432
\(345\) −2.73819 3.93730i −0.147419 0.211977i
\(346\) −22.7222 −1.22155
\(347\) 4.12557 28.6940i 0.221472 1.54037i −0.511002 0.859579i \(-0.670726\pi\)
0.732475 0.680794i \(-0.238365\pi\)
\(348\) −2.58828 5.66754i −0.138746 0.303812i
\(349\) −18.6674 5.48124i −0.999242 0.293404i −0.259097 0.965851i \(-0.583425\pi\)
−0.740145 + 0.672447i \(0.765243\pi\)
\(350\) 1.03046 + 1.18921i 0.0550803 + 0.0635661i
\(351\) −0.203388 + 0.0597202i −0.0108561 + 0.00318763i
\(352\) −1.82330 1.17177i −0.0971823 0.0624553i
\(353\) −10.5894 + 23.1876i −0.563619 + 1.23415i 0.386506 + 0.922287i \(0.373682\pi\)
−0.950126 + 0.311867i \(0.899046\pi\)
\(354\) −5.37377 + 6.20167i −0.285613 + 0.329615i
\(355\) −1.69418 + 1.08879i −0.0899179 + 0.0577868i
\(356\) −1.96609 13.6745i −0.104203 0.724746i
\(357\) −0.668743 4.65121i −0.0353936 0.246168i
\(358\) 7.21340 4.63577i 0.381240 0.245008i
\(359\) −13.6098 + 15.7066i −0.718300 + 0.828963i −0.991102 0.133108i \(-0.957504\pi\)
0.272801 + 0.962070i \(0.412050\pi\)
\(360\) 0.415415 0.909632i 0.0218943 0.0479418i
\(361\) −15.5360 9.98437i −0.817683 0.525493i
\(362\) −5.68125 + 1.66817i −0.298600 + 0.0876769i
\(363\) −4.12728 4.76314i −0.216626 0.250000i
\(364\) −0.320042 0.0939729i −0.0167748 0.00492552i
\(365\) 0.769283 + 1.68450i 0.0402661 + 0.0881705i
\(366\) −0.811496 + 5.64408i −0.0424176 + 0.295021i
\(367\) −9.83949 −0.513617 −0.256809 0.966462i \(-0.582671\pi\)
−0.256809 + 0.966462i \(0.582671\pi\)
\(368\) −4.28691 + 2.14998i −0.223470 + 0.112076i
\(369\) −10.5256 −0.547942
\(370\) −1.52038 + 10.5745i −0.0790410 + 0.549742i
\(371\) −5.22324 11.4373i −0.271177 0.593795i
\(372\) −4.06550 1.19374i −0.210786 0.0618924i
\(373\) 7.12236 + 8.21964i 0.368782 + 0.425597i 0.909563 0.415567i \(-0.136417\pi\)
−0.540781 + 0.841163i \(0.681871\pi\)
\(374\) 6.21014 1.82346i 0.321119 0.0942889i
\(375\) −0.841254 0.540641i −0.0434421 0.0279186i
\(376\) −2.12758 + 4.65874i −0.109721 + 0.240256i
\(377\) 0.864891 0.998138i 0.0445442 0.0514067i
\(378\) 1.32376 0.850727i 0.0680867 0.0437567i
\(379\) −3.50519 24.3792i −0.180050 1.25227i −0.856641 0.515914i \(-0.827452\pi\)
0.676591 0.736359i \(-0.263457\pi\)
\(380\) 0.103835 + 0.722189i 0.00532663 + 0.0370475i
\(381\) −0.439719 + 0.282590i −0.0225275 + 0.0144775i
\(382\) −1.40710 + 1.62388i −0.0719934 + 0.0830848i
\(383\) −11.5087 + 25.2006i −0.588068 + 1.28769i 0.348535 + 0.937296i \(0.386679\pi\)
−0.936603 + 0.350393i \(0.886048\pi\)
\(384\) −0.841254 0.540641i −0.0429300 0.0275895i
\(385\) −3.27231 + 0.960838i −0.166773 + 0.0489689i
\(386\) −9.51150 10.9769i −0.484123 0.558707i
\(387\) 9.13700 + 2.68287i 0.464460 + 0.136378i
\(388\) 3.45785 + 7.57164i 0.175546 + 0.384392i
\(389\) 2.21897 15.4333i 0.112506 0.782499i −0.852961 0.521975i \(-0.825195\pi\)
0.965467 0.260524i \(-0.0838954\pi\)
\(390\) 0.211975 0.0107338
\(391\) 3.53119 13.8794i 0.178580 0.701914i
\(392\) −4.52393 −0.228493
\(393\) 0.228963 1.59247i 0.0115497 0.0803297i
\(394\) 7.08477 + 15.5135i 0.356925 + 0.781558i
\(395\) −2.85805 0.839200i −0.143804 0.0422247i
\(396\) 1.41932 + 1.63798i 0.0713236 + 0.0823118i
\(397\) −0.00241068 0.000707840i −0.000120989 3.55255e-5i −0.281793 0.959475i \(-0.590929\pi\)
0.281672 + 0.959511i \(0.409111\pi\)
\(398\) −5.38241 3.45907i −0.269796 0.173387i
\(399\) −0.476933 + 1.04434i −0.0238765 + 0.0522823i
\(400\) −0.654861 + 0.755750i −0.0327430 + 0.0377875i
\(401\) 14.2313 9.14592i 0.710679 0.456725i −0.134705 0.990886i \(-0.543009\pi\)
0.845383 + 0.534160i \(0.179372\pi\)
\(402\) −2.17625 15.1361i −0.108541 0.754921i
\(403\) −0.127822 0.889022i −0.00636727 0.0442854i
\(404\) 2.75860 1.77284i 0.137245 0.0882022i
\(405\) −0.654861 + 0.755750i −0.0325403 + 0.0375535i
\(406\) −4.07279 + 8.91817i −0.202129 + 0.442602i
\(407\) −19.4788 12.5182i −0.965527 0.620507i
\(408\) 2.86530 0.841327i 0.141853 0.0416519i
\(409\) 21.7941 + 25.1518i 1.07765 + 1.24367i 0.968332 + 0.249668i \(0.0803214\pi\)
0.109319 + 0.994007i \(0.465133\pi\)
\(410\) 10.0993 + 2.96541i 0.498767 + 0.146451i
\(411\) 3.11877 + 6.82915i 0.153838 + 0.336857i
\(412\) −1.82014 + 12.6594i −0.0896719 + 0.623681i
\(413\) 12.9125 0.635385
\(414\) 4.71898 0.855132i 0.231925 0.0420274i
\(415\) 6.09984 0.299430
\(416\) 0.0301671 0.209817i 0.00147907 0.0102871i
\(417\) 3.48637 + 7.63409i 0.170728 + 0.373843i
\(418\) −1.51729 0.445515i −0.0742129 0.0217909i
\(419\) −14.4029 16.6218i −0.703626 0.812028i 0.285612 0.958345i \(-0.407803\pi\)
−0.989238 + 0.146318i \(0.953258\pi\)
\(420\) −1.50981 + 0.443321i −0.0736714 + 0.0216319i
\(421\) 13.8880 + 8.92529i 0.676861 + 0.434992i 0.833393 0.552681i \(-0.186395\pi\)
−0.156532 + 0.987673i \(0.550032\pi\)
\(422\) −5.66617 + 12.4072i −0.275825 + 0.603972i
\(423\) 3.35392 3.87063i 0.163073 0.188196i
\(424\) 6.72208 4.32002i 0.326453 0.209799i
\(425\) −0.424989 2.95586i −0.0206150 0.143380i
\(426\) −0.286605 1.99338i −0.0138861 0.0965797i
\(427\) 7.54822 4.85095i 0.365284 0.234754i
\(428\) 0.407683 0.470492i 0.0197061 0.0227421i
\(429\) −0.190853 + 0.417909i −0.00921445 + 0.0201768i
\(430\) −8.01104 5.14838i −0.386327 0.248277i
\(431\) 3.12324 0.917067i 0.150441 0.0441736i −0.205645 0.978627i \(-0.565929\pi\)
0.356086 + 0.934453i \(0.384111\pi\)
\(432\) 0.654861 + 0.755750i 0.0315070 + 0.0363610i
\(433\) 33.5771 + 9.85913i 1.61361 + 0.473800i 0.959292 0.282417i \(-0.0911362\pi\)
0.654321 + 0.756217i \(0.272954\pi\)
\(434\) 2.76972 + 6.06484i 0.132951 + 0.291121i
\(435\) 0.886704 6.16716i 0.0425142 0.295693i
\(436\) −5.87171 −0.281204
\(437\) −2.55915 + 2.38632i −0.122421 + 0.114153i
\(438\) −1.85184 −0.0884844
\(439\) −3.06140 + 21.2925i −0.146112 + 1.01623i 0.776393 + 0.630250i \(0.217047\pi\)
−0.922505 + 0.385985i \(0.873862\pi\)
\(440\) −0.900355 1.97150i −0.0429228 0.0939877i
\(441\) 4.34068 + 1.27454i 0.206699 + 0.0606923i
\(442\) 0.414534 + 0.478398i 0.0197174 + 0.0227551i
\(443\) −5.24561 + 1.54025i −0.249227 + 0.0731795i −0.403960 0.914777i \(-0.632366\pi\)
0.154733 + 0.987956i \(0.450548\pi\)
\(444\) −8.98731 5.77580i −0.426519 0.274107i
\(445\) 5.73900 12.5667i 0.272055 0.595717i
\(446\) 9.82135 11.3344i 0.465055 0.536702i
\(447\) −4.93503 + 3.17155i −0.233419 + 0.150009i
\(448\) 0.223940 + 1.55754i 0.0105802 + 0.0735867i
\(449\) 2.97157 + 20.6677i 0.140237 + 0.975371i 0.931460 + 0.363843i \(0.118536\pi\)
−0.791223 + 0.611528i \(0.790555\pi\)
\(450\) 0.841254 0.540641i 0.0396571 0.0254861i
\(451\) −14.9392 + 17.2408i −0.703461 + 0.811837i
\(452\) −2.95849 + 6.47819i −0.139156 + 0.304708i
\(453\) −8.78863 5.64811i −0.412926 0.265371i
\(454\) 25.2599 7.41697i 1.18551 0.348096i
\(455\) −0.218431 0.252083i −0.0102402 0.0118178i
\(456\) −0.700061 0.205556i −0.0327834 0.00962606i
\(457\) −7.70442 16.8703i −0.360397 0.789160i −0.999794 0.0202834i \(-0.993543\pi\)
0.639397 0.768877i \(-0.279184\pi\)
\(458\) −1.20782 + 8.40061i −0.0564379 + 0.392534i
\(459\) −2.98626 −0.139387
\(460\) −4.76874 0.508997i −0.222344 0.0237321i
\(461\) −37.2038 −1.73275 −0.866376 0.499393i \(-0.833557\pi\)
−0.866376 + 0.499393i \(0.833557\pi\)
\(462\) 0.485359 3.37575i 0.0225810 0.157054i
\(463\) 6.84882 + 14.9968i 0.318292 + 0.696962i 0.999379 0.0352407i \(-0.0112198\pi\)
−0.681087 + 0.732202i \(0.738493\pi\)
\(464\) −5.97820 1.75536i −0.277531 0.0814904i
\(465\) −2.77473 3.20221i −0.128675 0.148499i
\(466\) 3.60119 1.05740i 0.166822 0.0489833i
\(467\) 30.6845 + 19.7197i 1.41991 + 0.912520i 0.999988 + 0.00495867i \(0.00157840\pi\)
0.419920 + 0.907561i \(0.362058\pi\)
\(468\) −0.0880575 + 0.192819i −0.00407046 + 0.00891306i
\(469\) −15.7575 + 18.1852i −0.727615 + 0.839713i
\(470\) −4.30854 + 2.76893i −0.198738 + 0.127721i
\(471\) −0.368765 2.56481i −0.0169918 0.118180i
\(472\) 1.16783 + 8.12245i 0.0537539 + 0.373866i
\(473\) 17.3628 11.1584i 0.798344 0.513065i
\(474\) 1.95064 2.25116i 0.0895959 0.103399i
\(475\) −0.303093 + 0.663682i −0.0139069 + 0.0304518i
\(476\) −3.95308 2.54049i −0.181189 0.116443i
\(477\) −7.66687 + 2.25120i −0.351042 + 0.103075i
\(478\) −12.5834 14.5221i −0.575553 0.664224i
\(479\) −15.6755 4.60275i −0.716234 0.210305i −0.0967432 0.995309i \(-0.530843\pi\)
−0.619490 + 0.785004i \(0.712661\pi\)
\(480\) −0.415415 0.909632i −0.0189610 0.0415188i
\(481\) 0.322283 2.24153i 0.0146948 0.102205i
\(482\) −7.09984 −0.323389
\(483\) −5.87964 4.73069i −0.267533 0.215254i
\(484\) −6.30254 −0.286479
\(485\) −1.18461 + 8.23912i −0.0537902 + 0.374119i
\(486\) −0.415415 0.909632i −0.0188436 0.0412617i
\(487\) 33.1026 + 9.71979i 1.50002 + 0.440446i 0.925723 0.378202i \(-0.123457\pi\)
0.574297 + 0.818647i \(0.305276\pi\)
\(488\) 3.73409 + 4.30937i 0.169034 + 0.195076i
\(489\) 2.55571 0.750424i 0.115573 0.0339353i
\(490\) −3.80577 2.44582i −0.171927 0.110491i
\(491\) 5.98515 13.1057i 0.270106 0.591450i −0.725166 0.688574i \(-0.758237\pi\)
0.995272 + 0.0971240i \(0.0309643\pi\)
\(492\) −6.89281 + 7.95473i −0.310752 + 0.358627i
\(493\) 15.6525 10.0592i 0.704952 0.453045i
\(494\) −0.0220104 0.153086i −0.000990295 0.00688765i
\(495\) 0.308448 + 2.14530i 0.0138637 + 0.0964242i
\(496\) −3.56450 + 2.29077i −0.160051 + 0.102858i
\(497\) −2.07522 + 2.39493i −0.0930863 + 0.107427i
\(498\) −2.53397 + 5.54861i −0.113550 + 0.248639i
\(499\) 28.2070 + 18.1276i 1.26272 + 0.811501i 0.988654 0.150210i \(-0.0479950\pi\)
0.274066 + 0.961711i \(0.411631\pi\)
\(500\) −0.959493 + 0.281733i −0.0429098 + 0.0125995i
\(501\) −3.50807 4.04853i −0.156729 0.180875i
\(502\) 25.3879 + 7.45456i 1.13312 + 0.332713i
\(503\) 9.52974 + 20.8672i 0.424910 + 0.930423i 0.994125 + 0.108235i \(0.0345198\pi\)
−0.569215 + 0.822188i \(0.692753\pi\)
\(504\) 0.223940 1.55754i 0.00997508 0.0693782i
\(505\) 3.27915 0.145920
\(506\) 5.29705 8.94332i 0.235483 0.397579i
\(507\) 12.9551 0.575355
\(508\) −0.0743873 + 0.517375i −0.00330040 + 0.0229548i
\(509\) 1.25324 + 2.74421i 0.0555489 + 0.121635i 0.935371 0.353668i \(-0.115066\pi\)
−0.879822 + 0.475303i \(0.842338\pi\)
\(510\) 2.86530 + 0.841327i 0.126877 + 0.0372546i
\(511\) 1.90825 + 2.20223i 0.0844159 + 0.0974211i
\(512\) −0.959493 + 0.281733i −0.0424040 + 0.0124509i
\(513\) 0.613792 + 0.394460i 0.0270996 + 0.0174158i
\(514\) −2.65100 + 5.80489i −0.116931 + 0.256043i
\(515\) −8.37536 + 9.66568i −0.369062 + 0.425921i
\(516\) 8.01104 5.14838i 0.352666 0.226645i
\(517\) −1.57974 10.9873i −0.0694768 0.483222i
\(518\) 2.39240 + 16.6395i 0.105116 + 0.731099i
\(519\) 19.1151 12.2845i 0.839060 0.539231i
\(520\) 0.138814 0.160200i 0.00608739 0.00702522i
\(521\) −7.56431 + 16.5635i −0.331399 + 0.725662i −0.999836 0.0181066i \(-0.994236\pi\)
0.668437 + 0.743768i \(0.266963\pi\)
\(522\) 5.24150 + 3.36851i 0.229414 + 0.147436i
\(523\) −6.04591 + 1.77524i −0.264369 + 0.0776257i −0.411231 0.911531i \(-0.634901\pi\)
0.146862 + 0.989157i \(0.453083\pi\)
\(524\) −1.05357 1.21589i −0.0460255 0.0531163i
\(525\) −1.50981 0.443321i −0.0658937 0.0193481i
\(526\) −6.16265 13.4943i −0.268704 0.588381i
\(527\) 1.80073 12.5244i 0.0784412 0.545571i
\(528\) 2.16736 0.0943224
\(529\) −11.0537 20.1697i −0.480594 0.876943i
\(530\) 7.99055 0.347087
\(531\) 1.16783 8.12245i 0.0506796 0.352485i
\(532\) 0.476933 + 1.04434i 0.0206777 + 0.0452778i
\(533\) −2.14079 0.628591i −0.0927277 0.0272273i
\(534\) 9.04696 + 10.4408i 0.391500 + 0.451816i
\(535\) 0.597332 0.175392i 0.0258249 0.00758288i
\(536\) −12.8643 8.26736i −0.555651 0.357095i
\(537\) −3.56201 + 7.79971i −0.153712 + 0.336582i
\(538\) 12.7350 14.6969i 0.549044 0.633630i
\(539\) 8.24849 5.30098i 0.355288 0.228329i
\(540\) 0.142315 + 0.989821i 0.00612426 + 0.0425951i
\(541\) 1.01424 + 7.05422i 0.0436057 + 0.303285i 0.999939 + 0.0110075i \(0.00350386\pi\)
−0.956334 + 0.292277i \(0.905587\pi\)
\(542\) −21.8304 + 14.0295i −0.937695 + 0.602620i
\(543\) 3.87750 4.47487i 0.166399 0.192035i
\(544\) 1.24054 2.71640i 0.0531876 0.116465i
\(545\) −4.93960 3.17449i −0.211589 0.135980i
\(546\) 0.320042 0.0939729i 0.0136965 0.00402167i
\(547\) 18.1803 + 20.9812i 0.777335 + 0.897092i 0.996914 0.0785028i \(-0.0250139\pi\)
−0.219579 + 0.975595i \(0.570468\pi\)
\(548\) 7.20349 + 2.11514i 0.307718 + 0.0903541i
\(549\) −2.36875 5.18683i −0.101096 0.221368i
\(550\) 0.308448 2.14530i 0.0131523 0.0914760i
\(551\) −4.54593 −0.193663
\(552\) 2.44401 4.12636i 0.104024 0.175629i
\(553\) −4.68716 −0.199318
\(554\) 2.18131 15.1714i 0.0926751 0.644570i
\(555\) −4.43798 9.71782i −0.188382 0.412498i
\(556\) 8.05255 + 2.36444i 0.341504 + 0.100275i
\(557\) 9.12359 + 10.5292i 0.386579 + 0.446136i 0.915369 0.402617i \(-0.131899\pi\)
−0.528789 + 0.848753i \(0.677354\pi\)
\(558\) 4.06550 1.19374i 0.172106 0.0505349i
\(559\) 1.69814 + 1.09133i 0.0718236 + 0.0461582i
\(560\) −0.653678 + 1.43135i −0.0276229 + 0.0604858i
\(561\) −4.23846 + 4.89145i −0.178948 + 0.206517i
\(562\) 17.4652 11.2242i 0.736726 0.473465i
\(563\) 4.26600 + 29.6707i 0.179791 + 1.25047i 0.857246 + 0.514907i \(0.172174\pi\)
−0.677456 + 0.735564i \(0.736917\pi\)
\(564\) −0.728876 5.06944i −0.0306912 0.213462i
\(565\) −5.99121 + 3.85032i −0.252052 + 0.161984i
\(566\) 14.5274 16.7656i 0.610634 0.704709i
\(567\) −0.653678 + 1.43135i −0.0274519 + 0.0601112i
\(568\) −1.69418 1.08879i −0.0710864 0.0456844i
\(569\) 18.9571 5.56632i 0.794724 0.233352i 0.140925 0.990020i \(-0.454992\pi\)
0.653799 + 0.756668i \(0.273174\pi\)
\(570\) −0.477796 0.551407i −0.0200127 0.0230959i
\(571\) −16.2296 4.76543i −0.679186 0.199427i −0.0760964 0.997100i \(-0.524246\pi\)
−0.603090 + 0.797673i \(0.706064\pi\)
\(572\) 0.190853 + 0.417909i 0.00797994 + 0.0174736i
\(573\) 0.305791 2.12683i 0.0127746 0.0888494i
\(574\) 16.5626 0.691310
\(575\) −3.73654 3.00637i −0.155824 0.125374i
\(576\) 1.00000 0.0416667
\(577\) −3.69235 + 25.6809i −0.153715 + 1.06911i 0.756208 + 0.654331i \(0.227050\pi\)
−0.909923 + 0.414778i \(0.863859\pi\)
\(578\) −3.35749 7.35187i −0.139653 0.305798i
\(579\) 13.9361 + 4.09201i 0.579165 + 0.170058i
\(580\) −4.08016 4.70876i −0.169420 0.195521i
\(581\) 9.20963 2.70419i 0.382080 0.112189i
\(582\) −7.00246 4.50021i −0.290262 0.186540i
\(583\) −7.19433 + 15.7534i −0.297959 + 0.652439i
\(584\) −1.21270 + 1.39953i −0.0501818 + 0.0579129i
\(585\) −0.178324 + 0.114602i −0.00737281 + 0.00473822i
\(586\) −1.96136 13.6415i −0.0810230 0.563527i
\(587\) 4.95472 + 34.4609i 0.204503 + 1.42235i 0.790710 + 0.612191i \(0.209711\pi\)
−0.586207 + 0.810161i \(0.699379\pi\)
\(588\) 3.80577 2.44582i 0.156947 0.100864i
\(589\) −2.02449 + 2.33638i −0.0834175 + 0.0962689i
\(590\) −3.40889 + 7.46442i −0.140342 + 0.307305i
\(591\) −14.3473 9.22045i −0.590169 0.379279i
\(592\) −10.2505 + 3.00982i −0.421293 + 0.123703i
\(593\) 11.2510 + 12.9843i 0.462022 + 0.533201i 0.938175 0.346161i \(-0.112515\pi\)
−0.476154 + 0.879362i \(0.657969\pi\)
\(594\) −2.07957 0.610617i −0.0853258 0.0250539i
\(595\) −1.95205 4.27440i −0.0800263 0.175233i
\(596\) −0.834859 + 5.80657i −0.0341972 + 0.237846i
\(597\) 6.39809 0.261856
\(598\) 1.01085 + 0.107894i 0.0413368 + 0.00441213i
\(599\) 16.5166 0.674848 0.337424 0.941353i \(-0.390444\pi\)
0.337424 + 0.941353i \(0.390444\pi\)
\(600\) 0.142315 0.989821i 0.00580998 0.0404093i
\(601\) 5.74327 + 12.5760i 0.234273 + 0.512986i 0.989857 0.142065i \(-0.0453743\pi\)
−0.755584 + 0.655051i \(0.772647\pi\)
\(602\) −14.3776 4.22163i −0.585986 0.172061i
\(603\) 10.0140 + 11.5568i 0.407801 + 0.470627i
\(604\) −10.0239 + 2.94328i −0.407866 + 0.119760i
\(605\) −5.30203 3.40741i −0.215558 0.138531i
\(606\) −1.36221 + 2.98282i −0.0553360 + 0.121169i
\(607\) −11.9103 + 13.7452i −0.483425 + 0.557902i −0.944097 0.329669i \(-0.893063\pi\)
0.460672 + 0.887570i \(0.347608\pi\)
\(608\) −0.613792 + 0.394460i −0.0248925 + 0.0159975i
\(609\) −1.39528 9.70436i −0.0565395 0.393241i
\(610\) 0.811496 + 5.64408i 0.0328565 + 0.228522i
\(611\) 0.913301 0.586943i 0.0369482 0.0237452i
\(612\) −1.95558 + 2.25686i −0.0790498 + 0.0912284i
\(613\) 13.0064 28.4800i 0.525323 1.15030i −0.442062 0.896984i \(-0.645753\pi\)
0.967385 0.253312i \(-0.0815198\pi\)
\(614\) 12.6355 + 8.12034i 0.509927 + 0.327710i
\(615\) −10.0993 + 2.96541i −0.407241 + 0.119577i
\(616\) −2.23338 2.57746i −0.0899854 0.103849i
\(617\) 31.5185 + 9.25465i 1.26889 + 0.372578i 0.845794 0.533509i \(-0.179127\pi\)
0.423091 + 0.906087i \(0.360945\pi\)
\(618\) −5.31296 11.6338i −0.213719 0.467979i
\(619\) 3.73050 25.9462i 0.149941 1.04286i −0.766370 0.642399i \(-0.777939\pi\)
0.916312 0.400466i \(-0.131152\pi\)
\(620\) −4.23713 −0.170167
\(621\) −3.50754 + 3.27065i −0.140753 + 0.131247i
\(622\) 2.81477 0.112862
\(623\) 3.09375 21.5175i 0.123949 0.862081i
\(624\) 0.0880575 + 0.192819i 0.00352512 + 0.00771893i
\(625\) −0.959493 0.281733i −0.0383797 0.0112693i
\(626\) 2.29458 + 2.64808i 0.0917097 + 0.105839i
\(627\) 1.51729 0.445515i 0.0605946 0.0177922i
\(628\) −2.17985 1.40090i −0.0869854 0.0559021i
\(629\) 13.2530 29.0199i 0.528430 1.15710i
\(630\) 1.03046 1.18921i 0.0410544 0.0473794i
\(631\) 15.9385 10.2430i 0.634500 0.407769i −0.183473 0.983025i \(-0.558734\pi\)
0.817973 + 0.575256i \(0.195098\pi\)
\(632\) −0.423915 2.94839i −0.0168624 0.117281i
\(633\) −1.94114 13.5010i −0.0771535 0.536615i
\(634\) −3.98134 + 2.55865i −0.158119 + 0.101617i
\(635\) −0.342293 + 0.395027i −0.0135835 + 0.0156762i
\(636\) −3.31939 + 7.26846i −0.131623 + 0.288213i
\(637\) 0.806727 + 0.518452i 0.0319637 + 0.0205418i
\(638\) 12.9569 3.80450i 0.512970 0.150622i
\(639\) 1.31881 + 1.52199i 0.0521714 + 0.0602090i
\(640\) −0.959493 0.281733i −0.0379273 0.0111365i
\(641\) −2.63936 5.77939i −0.104248 0.228272i 0.850319 0.526268i \(-0.176409\pi\)
−0.954567 + 0.297996i \(0.903682\pi\)
\(642\) −0.0885980 + 0.616213i −0.00349669 + 0.0243200i
\(643\) 20.4018 0.804568 0.402284 0.915515i \(-0.368217\pi\)
0.402284 + 0.915515i \(0.368217\pi\)
\(644\) −7.42556 + 1.34560i −0.292608 + 0.0530239i
\(645\) 9.52274 0.374958
\(646\) 0.310079 2.15664i 0.0121999 0.0848520i
\(647\) 1.07443 + 2.35268i 0.0422404 + 0.0924935i 0.929576 0.368631i \(-0.120173\pi\)
−0.887335 + 0.461125i \(0.847446\pi\)
\(648\) −0.959493 0.281733i −0.0376924 0.0110675i
\(649\) −11.6469 13.4413i −0.457182 0.527616i
\(650\) 0.203388 0.0597202i 0.00797754 0.00234242i
\(651\) −5.60893 3.60464i −0.219831 0.141277i
\(652\) 1.10650 2.42290i 0.0433339 0.0948880i
\(653\) −28.7076 + 33.1303i −1.12342 + 1.29649i −0.173203 + 0.984886i \(0.555412\pi\)
−0.950212 + 0.311604i \(0.899134\pi\)
\(654\) 4.93960 3.17449i 0.193154 0.124132i
\(655\) −0.228963 1.59247i −0.00894633 0.0622231i
\(656\) 1.49795 + 10.4185i 0.0584852 + 0.406773i
\(657\) 1.55787 1.00118i 0.0607783 0.0390598i
\(658\) −5.27757 + 6.09064i −0.205741 + 0.237438i
\(659\) 2.20816 4.83520i 0.0860177 0.188353i −0.861735 0.507359i \(-0.830622\pi\)
0.947753 + 0.319006i \(0.103349\pi\)
\(660\) 1.82330 + 1.17177i 0.0709719 + 0.0456109i
\(661\) −17.0979 + 5.02038i −0.665030 + 0.195270i −0.596789 0.802399i \(-0.703557\pi\)
−0.0682411 + 0.997669i \(0.521739\pi\)
\(662\) 12.6958 + 14.6517i 0.493436 + 0.569456i
\(663\) −0.607370 0.178340i −0.0235883 0.00692615i
\(664\) 2.53397 + 5.54861i 0.0983370 + 0.215328i
\(665\) −0.163390 + 1.13640i −0.00633600 + 0.0440678i
\(666\) 10.6832 0.413967
\(667\) 7.36753 28.9583i 0.285272 1.12127i
\(668\) −5.35697 −0.207267
\(669\) −2.13438 + 14.8450i −0.0825201 + 0.573940i
\(670\) −6.35243 13.9099i −0.245416 0.537386i
\(671\) −11.8580 3.48181i −0.457771 0.134414i
\(672\) −1.03046 1.18921i −0.0397508 0.0458749i
\(673\) 34.9140 10.2517i 1.34584 0.395173i 0.472088 0.881551i \(-0.343500\pi\)
0.873748 + 0.486378i \(0.161682\pi\)
\(674\) −14.3951 9.25114i −0.554477 0.356341i
\(675\) −0.415415 + 0.909632i −0.0159893 + 0.0350118i
\(676\) 8.48376 9.79079i 0.326299 0.376569i
\(677\) 21.4069 13.7574i 0.822735 0.528740i −0.0602267 0.998185i \(-0.519182\pi\)
0.882962 + 0.469445i \(0.155546\pi\)
\(678\) −1.01353 7.04928i −0.0389245 0.270726i
\(679\) 1.86404 + 12.9647i 0.0715354 + 0.497539i
\(680\) 2.51220 1.61449i 0.0963386 0.0619130i
\(681\) −17.2401 + 19.8961i −0.660640 + 0.762420i
\(682\) 3.81492 8.35352i 0.146081 0.319873i
\(683\) −33.2503 21.3686i −1.27229 0.817649i −0.282370 0.959306i \(-0.591121\pi\)
−0.989916 + 0.141657i \(0.954757\pi\)
\(684\) 0.700061 0.205556i 0.0267675 0.00785965i
\(685\) 4.91643 + 5.67387i 0.187847 + 0.216787i
\(686\) −17.3990 5.10880i −0.664296 0.195055i
\(687\) −3.52562 7.72004i −0.134511 0.294538i
\(688\) 1.35523 9.42582i 0.0516676 0.359356i
\(689\) −1.69379 −0.0645284
\(690\) 4.28691 2.14998i 0.163200 0.0818484i
\(691\) 6.48084 0.246543 0.123271 0.992373i \(-0.460661\pi\)
0.123271 + 0.992373i \(0.460661\pi\)
\(692\) 3.23370 22.4909i 0.122927 0.854975i
\(693\) 1.41676 + 3.10227i 0.0538182 + 0.117845i
\(694\) 27.8148 + 8.16716i 1.05583 + 0.310021i
\(695\) 5.49592 + 6.34263i 0.208472 + 0.240590i
\(696\) 5.97820 1.75536i 0.226603 0.0665367i
\(697\) −26.4425 16.9935i −1.00158 0.643676i
\(698\) 8.08209 17.6973i 0.305912 0.669853i
\(699\) −2.45784 + 2.83649i −0.0929639 + 0.107286i
\(700\) −1.32376 + 0.850727i −0.0500333 + 0.0321545i
\(701\) −6.16570 42.8834i −0.232875 1.61968i −0.685563 0.728013i \(-0.740444\pi\)
0.452688 0.891669i \(-0.350465\pi\)
\(702\) −0.0301671 0.209817i −0.00113859 0.00791903i
\(703\) −6.55728 + 4.21411i −0.247313 + 0.158938i
\(704\) 1.41932 1.63798i 0.0534927 0.0617338i
\(705\) 2.12758 4.65874i 0.0801292 0.175458i
\(706\) −21.4446 13.7816i −0.807078 0.518678i
\(707\) 4.95091 1.45372i 0.186198 0.0546727i
\(708\) −5.37377 6.20167i −0.201959 0.233073i
\(709\) 38.7329 + 11.3730i 1.45464 + 0.427122i 0.911075 0.412242i \(-0.135254\pi\)
0.543570 + 0.839364i \(0.317072\pi\)
\(710\) −0.836596 1.83189i −0.0313969 0.0687496i
\(711\) −0.423915 + 2.94839i −0.0158980 + 0.110573i
\(712\) 13.8151 0.517743
\(713\) −11.6021 16.6828i −0.434501 0.624778i
\(714\) 4.69904 0.175857
\(715\) −0.0653832 + 0.454750i −0.00244519 + 0.0170067i
\(716\) 3.56201 + 7.79971i 0.133119 + 0.291489i
\(717\) 18.4371 + 5.41362i 0.688545 + 0.202175i
\(718\) −13.6098 15.7066i −0.507915 0.586165i
\(719\) 17.4442 5.12207i 0.650557 0.191021i 0.0602295 0.998185i \(-0.480817\pi\)
0.590328 + 0.807164i \(0.298999\pi\)
\(720\) 0.841254 + 0.540641i 0.0313517 + 0.0201485i
\(721\) −8.36023 + 18.3064i −0.311351 + 0.681764i
\(722\) 12.0937 13.9569i 0.450083 0.519423i
\(723\) 5.97276 3.83846i 0.222129 0.142754i
\(724\) −0.842660 5.86083i −0.0313172 0.217816i
\(725\) −0.886704 6.16716i −0.0329314 0.229043i
\(726\) 5.30203 3.40741i 0.196777 0.126461i
\(727\) 2.51415 2.90148i 0.0932445 0.107610i −0.707210 0.707004i \(-0.750046\pi\)
0.800454 + 0.599394i \(0.204592\pi\)
\(728\) 0.138563 0.303411i 0.00513549 0.0112452i
\(729\) 0.841254 + 0.540641i 0.0311575 + 0.0200237i
\(730\) −1.77683 + 0.521724i −0.0657634 + 0.0193099i
\(731\) 18.6225 + 21.4915i 0.688779 + 0.794893i
\(732\) −5.47114 1.60647i −0.202219 0.0593769i
\(733\) −17.2848 37.8485i −0.638429 1.39796i −0.901326 0.433141i \(-0.857405\pi\)
0.262897 0.964824i \(-0.415322\pi\)
\(734\) 1.40031 9.73934i 0.0516862 0.359486i
\(735\) 4.52393 0.166868
\(736\) −1.51801 4.54925i −0.0559545 0.167687i
\(737\) 33.1428 1.22083
\(738\) 1.49795 10.4185i 0.0551403 0.383509i
\(739\) 6.09060 + 13.3365i 0.224046 + 0.490593i 0.987957 0.154729i \(-0.0494505\pi\)
−0.763911 + 0.645322i \(0.776723\pi\)
\(740\) −10.2505 3.00982i −0.376816 0.110643i
\(741\) 0.101281 + 0.116884i 0.00372064 + 0.00429385i
\(742\) 12.0642 3.54238i 0.442892 0.130045i
\(743\) 19.4748 + 12.5157i 0.714460 + 0.459155i 0.846706 0.532061i \(-0.178582\pi\)
−0.132246 + 0.991217i \(0.542219\pi\)
\(744\) 1.76017 3.85423i 0.0645309 0.141303i
\(745\) −3.84160 + 4.43344i −0.140745 + 0.162429i
\(746\) −9.14959 + 5.88009i −0.334990 + 0.215285i
\(747\) −0.868098 6.03776i −0.0317621 0.220910i
\(748\) 0.921106 + 6.40643i 0.0336790 + 0.234242i
\(749\) 0.824105 0.529620i 0.0301121 0.0193519i
\(750\) 0.654861 0.755750i 0.0239121 0.0275961i
\(751\) −5.98831 + 13.1126i −0.218517 + 0.478484i −0.986865 0.161547i \(-0.948352\pi\)
0.768348 + 0.640032i \(0.221079\pi\)
\(752\) −4.30854 2.76893i −0.157116 0.100973i
\(753\) −25.3879 + 7.45456i −0.925187 + 0.271659i
\(754\) 0.864891 + 0.998138i 0.0314975 + 0.0363500i
\(755\) −10.0239 2.94328i −0.364807 0.107117i
\(756\) 0.653678 + 1.43135i 0.0237740 + 0.0520579i
\(757\) −7.18900 + 50.0006i −0.261288 + 1.81730i 0.261912 + 0.965092i \(0.415647\pi\)
−0.523201 + 0.852210i \(0.675262\pi\)
\(758\) 24.6298 0.894596
\(759\) 0.378957 + 10.3874i 0.0137553 + 0.377039i
\(760\) −0.729615 −0.0264659
\(761\) 5.82441 40.5097i 0.211135 1.46848i −0.558241 0.829679i \(-0.688524\pi\)
0.769376 0.638796i \(-0.220567\pi\)
\(762\) −0.217135 0.475460i −0.00786599 0.0172241i
\(763\) −8.86519 2.60305i −0.320941 0.0942369i
\(764\) −1.40710 1.62388i −0.0509070 0.0587498i
\(765\) −2.86530 + 0.841327i −0.103595 + 0.0304182i
\(766\) −23.3062 14.9780i −0.842087 0.541177i
\(767\) 0.722598 1.58227i 0.0260915 0.0571324i
\(768\) 0.654861 0.755750i 0.0236303 0.0272708i