Properties

Label 690.2.m.c.301.2
Level $690$
Weight $2$
Character 690.301
Analytic conductor $5.510$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \( x^{20} - 4 x^{19} - 3 x^{18} + 66 x^{17} - 163 x^{16} - 52 x^{15} + 1567 x^{14} - 6182 x^{13} + 17043 x^{12} - 35832 x^{11} + 60906 x^{10} - 87666 x^{9} + 106197 x^{8} - 102542 x^{7} + \cdots + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 301.2
Root \(-0.359204 - 0.230846i\) of defining polynomial
Character \(\chi\) \(=\) 690.301
Dual form 690.2.m.c.541.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.841254 + 0.540641i) q^{2} +(0.142315 + 0.989821i) q^{3} +(0.415415 + 0.909632i) q^{4} +(-0.959493 - 0.281733i) q^{5} +(-0.415415 + 0.909632i) q^{6} +(1.54913 - 1.78779i) q^{7} +(-0.142315 + 0.989821i) q^{8} +(-0.959493 + 0.281733i) q^{9} +O(q^{10})\) \(q+(0.841254 + 0.540641i) q^{2} +(0.142315 + 0.989821i) q^{3} +(0.415415 + 0.909632i) q^{4} +(-0.959493 - 0.281733i) q^{5} +(-0.415415 + 0.909632i) q^{6} +(1.54913 - 1.78779i) q^{7} +(-0.142315 + 0.989821i) q^{8} +(-0.959493 + 0.281733i) q^{9} +(-0.654861 - 0.755750i) q^{10} +(-1.62678 + 1.04547i) q^{11} +(-0.841254 + 0.540641i) q^{12} +(3.97412 + 4.58638i) q^{13} +(2.26976 - 0.666461i) q^{14} +(0.142315 - 0.989821i) q^{15} +(-0.654861 + 0.755750i) q^{16} +(-2.45190 + 5.36891i) q^{17} +(-0.959493 - 0.281733i) q^{18} +(3.60485 + 7.89352i) q^{19} +(-0.142315 - 0.989821i) q^{20} +(1.99005 + 1.27893i) q^{21} -1.93376 q^{22} +(2.20490 - 4.25892i) q^{23} -1.00000 q^{24} +(0.841254 + 0.540641i) q^{25} +(0.863659 + 6.00688i) q^{26} +(-0.415415 - 0.909632i) q^{27} +(2.26976 + 0.666461i) q^{28} +(2.26162 - 4.95225i) q^{29} +(0.654861 - 0.755750i) q^{30} +(-0.123935 + 0.861987i) q^{31} +(-0.959493 + 0.281733i) q^{32} +(-1.26634 - 1.46144i) q^{33} +(-4.96532 + 3.19102i) q^{34} +(-1.99005 + 1.27893i) q^{35} +(-0.654861 - 0.755750i) q^{36} +(-5.29079 + 1.55352i) q^{37} +(-1.23497 + 8.58938i) q^{38} +(-3.97412 + 4.58638i) q^{39} +(0.415415 - 0.909632i) q^{40} +(-4.21153 - 1.23662i) q^{41} +(0.982698 + 2.15181i) q^{42} +(-1.59352 - 11.0832i) q^{43} +(-1.62678 - 1.04547i) q^{44} +1.00000 q^{45} +(4.15743 - 2.39077i) q^{46} -0.306240 q^{47} +(-0.841254 - 0.540641i) q^{48} +(0.199814 + 1.38973i) q^{49} +(0.415415 + 0.909632i) q^{50} +(-5.66321 - 1.66287i) q^{51} +(-2.52101 + 5.52024i) q^{52} +(4.65460 - 5.37169i) q^{53} +(0.142315 - 0.989821i) q^{54} +(1.85543 - 0.544803i) q^{55} +(1.54913 + 1.78779i) q^{56} +(-7.30015 + 4.69152i) q^{57} +(4.57999 - 2.94338i) q^{58} +(2.26729 + 2.61659i) q^{59} +(0.959493 - 0.281733i) q^{60} +(1.80512 - 12.5549i) q^{61} +(-0.570286 + 0.658145i) q^{62} +(-0.982698 + 2.15181i) q^{63} +(-0.959493 - 0.281733i) q^{64} +(-2.52101 - 5.52024i) q^{65} +(-0.275203 - 1.91408i) q^{66} +(8.25507 + 5.30521i) q^{67} -5.90229 q^{68} +(4.52936 + 1.57635i) q^{69} -2.36558 q^{70} +(3.04921 + 1.95961i) q^{71} +(-0.142315 - 0.989821i) q^{72} +(1.63456 + 3.57920i) q^{73} +(-5.29079 - 1.55352i) q^{74} +(-0.415415 + 0.909632i) q^{75} +(-5.68269 + 6.55818i) q^{76} +(-0.651014 + 4.52790i) q^{77} +(-5.82283 + 1.70974i) q^{78} +(-3.55823 - 4.10642i) q^{79} +(0.841254 - 0.540641i) q^{80} +(0.841254 - 0.540641i) q^{81} +(-2.87440 - 3.31723i) q^{82} +(-3.72729 + 1.09443i) q^{83} +(-0.336657 + 2.34150i) q^{84} +(3.86518 - 4.46066i) q^{85} +(4.65146 - 10.1853i) q^{86} +(5.22371 + 1.53382i) q^{87} +(-0.803313 - 1.75901i) q^{88} +(-1.50084 - 10.4386i) q^{89} +(0.841254 + 0.540641i) q^{90} +14.3559 q^{91} +(4.79000 + 0.236428i) q^{92} -0.870851 q^{93} +(-0.257626 - 0.165566i) q^{94} +(-1.23497 - 8.58938i) q^{95} +(-0.415415 - 0.909632i) q^{96} +(4.16125 + 1.22185i) q^{97} +(-0.583253 + 1.27715i) q^{98} +(1.26634 - 1.46144i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9} - 2 q^{10} - 24 q^{11} + 2 q^{12} - 4 q^{13} + 2 q^{14} + 2 q^{15} - 2 q^{16} + 16 q^{17} - 2 q^{18} + 14 q^{19} - 2 q^{20} - 13 q^{21} - 2 q^{22} - 2 q^{23} - 20 q^{24} - 2 q^{25} + 7 q^{26} + 2 q^{27} + 2 q^{28} + 18 q^{29} + 2 q^{30} + 22 q^{31} - 2 q^{32} + 2 q^{33} - 17 q^{34} + 13 q^{35} - 2 q^{36} - 16 q^{37} + 3 q^{38} + 4 q^{39} - 2 q^{40} + 29 q^{41} + 9 q^{42} - 22 q^{43} - 24 q^{44} + 20 q^{45} - 2 q^{46} - 94 q^{47} + 2 q^{48} - 22 q^{49} - 2 q^{50} - 5 q^{51} - 4 q^{52} + 58 q^{53} + 2 q^{54} + 9 q^{55} + 2 q^{56} - 25 q^{57} - 4 q^{58} + 45 q^{59} + 2 q^{60} + q^{61} - 9 q^{63} - 2 q^{64} - 4 q^{65} - 9 q^{66} + 16 q^{67} - 6 q^{68} + 24 q^{69} + 2 q^{70} + 59 q^{71} - 2 q^{72} + 3 q^{73} - 16 q^{74} + 2 q^{75} - 8 q^{76} - 19 q^{77} - 18 q^{78} - 20 q^{79} - 2 q^{80} - 2 q^{81} - 37 q^{82} + 13 q^{83} + 9 q^{84} + 5 q^{85} - 22 q^{86} + 4 q^{87} + 9 q^{88} - 97 q^{89} - 2 q^{90} - 18 q^{91} + 9 q^{92} + 22 q^{93} + 27 q^{94} + 3 q^{95} + 2 q^{96} - 17 q^{97} - 11 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.841254 + 0.540641i 0.594856 + 0.382291i
\(3\) 0.142315 + 0.989821i 0.0821655 + 0.571474i
\(4\) 0.415415 + 0.909632i 0.207708 + 0.454816i
\(5\) −0.959493 0.281733i −0.429098 0.125995i
\(6\) −0.415415 + 0.909632i −0.169592 + 0.371356i
\(7\) 1.54913 1.78779i 0.585515 0.675720i −0.383266 0.923638i \(-0.625201\pi\)
0.968781 + 0.247918i \(0.0797463\pi\)
\(8\) −0.142315 + 0.989821i −0.0503159 + 0.349955i
\(9\) −0.959493 + 0.281733i −0.319831 + 0.0939109i
\(10\) −0.654861 0.755750i −0.207085 0.238989i
\(11\) −1.62678 + 1.04547i −0.490493 + 0.315221i −0.762404 0.647102i \(-0.775981\pi\)
0.271910 + 0.962323i \(0.412345\pi\)
\(12\) −0.841254 + 0.540641i −0.242849 + 0.156070i
\(13\) 3.97412 + 4.58638i 1.10222 + 1.27203i 0.959328 + 0.282295i \(0.0910955\pi\)
0.142895 + 0.989738i \(0.454359\pi\)
\(14\) 2.26976 0.666461i 0.606618 0.178119i
\(15\) 0.142315 0.989821i 0.0367455 0.255571i
\(16\) −0.654861 + 0.755750i −0.163715 + 0.188937i
\(17\) −2.45190 + 5.36891i −0.594673 + 1.30215i 0.337903 + 0.941181i \(0.390282\pi\)
−0.932577 + 0.360972i \(0.882445\pi\)
\(18\) −0.959493 0.281733i −0.226155 0.0664050i
\(19\) 3.60485 + 7.89352i 0.827010 + 1.81090i 0.500638 + 0.865657i \(0.333099\pi\)
0.326372 + 0.945241i \(0.394174\pi\)
\(20\) −0.142315 0.989821i −0.0318226 0.221331i
\(21\) 1.99005 + 1.27893i 0.434265 + 0.279085i
\(22\) −1.93376 −0.412279
\(23\) 2.20490 4.25892i 0.459754 0.888047i
\(24\) −1.00000 −0.204124
\(25\) 0.841254 + 0.540641i 0.168251 + 0.108128i
\(26\) 0.863659 + 6.00688i 0.169377 + 1.17805i
\(27\) −0.415415 0.909632i −0.0799467 0.175059i
\(28\) 2.26976 + 0.666461i 0.428944 + 0.125949i
\(29\) 2.26162 4.95225i 0.419972 0.919611i −0.574877 0.818240i \(-0.694950\pi\)
0.994849 0.101370i \(-0.0323227\pi\)
\(30\) 0.654861 0.755750i 0.119561 0.137980i
\(31\) −0.123935 + 0.861987i −0.0222594 + 0.154817i −0.997920 0.0644702i \(-0.979464\pi\)
0.975660 + 0.219288i \(0.0703733\pi\)
\(32\) −0.959493 + 0.281733i −0.169616 + 0.0498038i
\(33\) −1.26634 1.46144i −0.220442 0.254404i
\(34\) −4.96532 + 3.19102i −0.851546 + 0.547255i
\(35\) −1.99005 + 1.27893i −0.336380 + 0.216179i
\(36\) −0.654861 0.755750i −0.109143 0.125958i
\(37\) −5.29079 + 1.55352i −0.869801 + 0.255396i −0.686031 0.727573i \(-0.740648\pi\)
−0.183770 + 0.982969i \(0.558830\pi\)
\(38\) −1.23497 + 8.58938i −0.200338 + 1.39338i
\(39\) −3.97412 + 4.58638i −0.636368 + 0.734408i
\(40\) 0.415415 0.909632i 0.0656829 0.143825i
\(41\) −4.21153 1.23662i −0.657731 0.193127i −0.0641982 0.997937i \(-0.520449\pi\)
−0.593533 + 0.804810i \(0.702267\pi\)
\(42\) 0.982698 + 2.15181i 0.151634 + 0.332031i
\(43\) −1.59352 11.0832i −0.243010 1.69017i −0.636848 0.770989i \(-0.719762\pi\)
0.393839 0.919180i \(-0.371147\pi\)
\(44\) −1.62678 1.04547i −0.245247 0.157610i
\(45\) 1.00000 0.149071
\(46\) 4.15743 2.39077i 0.612979 0.352500i
\(47\) −0.306240 −0.0446697 −0.0223349 0.999751i \(-0.507110\pi\)
−0.0223349 + 0.999751i \(0.507110\pi\)
\(48\) −0.841254 0.540641i −0.121424 0.0780348i
\(49\) 0.199814 + 1.38973i 0.0285448 + 0.198534i
\(50\) 0.415415 + 0.909632i 0.0587486 + 0.128641i
\(51\) −5.66321 1.66287i −0.793008 0.232848i
\(52\) −2.52101 + 5.52024i −0.349601 + 0.765519i
\(53\) 4.65460 5.37169i 0.639358 0.737858i −0.339903 0.940460i \(-0.610394\pi\)
0.979261 + 0.202602i \(0.0649398\pi\)
\(54\) 0.142315 0.989821i 0.0193666 0.134698i
\(55\) 1.85543 0.544803i 0.250186 0.0734612i
\(56\) 1.54913 + 1.78779i 0.207011 + 0.238903i
\(57\) −7.30015 + 4.69152i −0.966929 + 0.621408i
\(58\) 4.57999 2.94338i 0.601382 0.386484i
\(59\) 2.26729 + 2.61659i 0.295176 + 0.340652i 0.883894 0.467687i \(-0.154913\pi\)
−0.588718 + 0.808339i \(0.700367\pi\)
\(60\) 0.959493 0.281733i 0.123870 0.0363715i
\(61\) 1.80512 12.5549i 0.231122 1.60749i −0.462142 0.886806i \(-0.652919\pi\)
0.693264 0.720684i \(-0.256172\pi\)
\(62\) −0.570286 + 0.658145i −0.0724264 + 0.0835846i
\(63\) −0.982698 + 2.15181i −0.123808 + 0.271102i
\(64\) −0.959493 0.281733i −0.119937 0.0352166i
\(65\) −2.52101 5.52024i −0.312692 0.684701i
\(66\) −0.275203 1.91408i −0.0338751 0.235607i
\(67\) 8.25507 + 5.30521i 1.00852 + 0.648135i 0.937009 0.349305i \(-0.113582\pi\)
0.0715087 + 0.997440i \(0.477219\pi\)
\(68\) −5.90229 −0.715758
\(69\) 4.52936 + 1.57635i 0.545271 + 0.189770i
\(70\) −2.36558 −0.282741
\(71\) 3.04921 + 1.95961i 0.361875 + 0.232563i 0.708925 0.705284i \(-0.249180\pi\)
−0.347050 + 0.937847i \(0.612817\pi\)
\(72\) −0.142315 0.989821i −0.0167720 0.116652i
\(73\) 1.63456 + 3.57920i 0.191311 + 0.418913i 0.980844 0.194795i \(-0.0624042\pi\)
−0.789533 + 0.613709i \(0.789677\pi\)
\(74\) −5.29079 1.55352i −0.615042 0.180593i
\(75\) −0.415415 + 0.909632i −0.0479680 + 0.105035i
\(76\) −5.68269 + 6.55818i −0.651849 + 0.752274i
\(77\) −0.651014 + 4.52790i −0.0741900 + 0.516003i
\(78\) −5.82283 + 1.70974i −0.659305 + 0.193589i
\(79\) −3.55823 4.10642i −0.400333 0.462008i 0.519413 0.854523i \(-0.326151\pi\)
−0.919746 + 0.392515i \(0.871605\pi\)
\(80\) 0.841254 0.540641i 0.0940550 0.0604455i
\(81\) 0.841254 0.540641i 0.0934726 0.0600712i
\(82\) −2.87440 3.31723i −0.317424 0.366327i
\(83\) −3.72729 + 1.09443i −0.409124 + 0.120130i −0.479817 0.877369i \(-0.659297\pi\)
0.0706935 + 0.997498i \(0.477479\pi\)
\(84\) −0.336657 + 2.34150i −0.0367323 + 0.255479i
\(85\) 3.86518 4.46066i 0.419238 0.483826i
\(86\) 4.65146 10.1853i 0.501580 1.09831i
\(87\) 5.22371 + 1.53382i 0.560040 + 0.164443i
\(88\) −0.803313 1.75901i −0.0856334 0.187511i
\(89\) −1.50084 10.4386i −0.159089 1.10649i −0.900317 0.435234i \(-0.856666\pi\)
0.741228 0.671253i \(-0.234244\pi\)
\(90\) 0.841254 + 0.540641i 0.0886759 + 0.0569885i
\(91\) 14.3559 1.50491
\(92\) 4.79000 + 0.236428i 0.499392 + 0.0246493i
\(93\) −0.870851 −0.0903031
\(94\) −0.257626 0.165566i −0.0265721 0.0170768i
\(95\) −1.23497 8.58938i −0.126705 0.881252i
\(96\) −0.415415 0.909632i −0.0423981 0.0928389i
\(97\) 4.16125 + 1.22185i 0.422511 + 0.124061i 0.486075 0.873917i \(-0.338428\pi\)
−0.0635633 + 0.997978i \(0.520246\pi\)
\(98\) −0.583253 + 1.27715i −0.0589175 + 0.129011i
\(99\) 1.26634 1.46144i 0.127272 0.146880i
\(100\) −0.142315 + 0.989821i −0.0142315 + 0.0989821i
\(101\) 14.8735 4.36724i 1.47996 0.434557i 0.560641 0.828059i \(-0.310555\pi\)
0.919324 + 0.393503i \(0.128737\pi\)
\(102\) −3.86518 4.46066i −0.382710 0.441671i
\(103\) −0.959972 + 0.616937i −0.0945888 + 0.0607886i −0.587080 0.809529i \(-0.699723\pi\)
0.492491 + 0.870317i \(0.336086\pi\)
\(104\) −5.10527 + 3.28096i −0.500613 + 0.321724i
\(105\) −1.54913 1.78779i −0.151179 0.174470i
\(106\) 6.81985 2.00249i 0.662403 0.194499i
\(107\) −1.20688 + 8.39401i −0.116673 + 0.811480i 0.844504 + 0.535549i \(0.179895\pi\)
−0.961177 + 0.275931i \(0.911014\pi\)
\(108\) 0.654861 0.755750i 0.0630140 0.0727220i
\(109\) 4.98441 10.9143i 0.477420 1.04540i −0.505745 0.862683i \(-0.668782\pi\)
0.983165 0.182720i \(-0.0584903\pi\)
\(110\) 1.85543 + 0.544803i 0.176908 + 0.0519449i
\(111\) −2.29066 5.01585i −0.217420 0.476083i
\(112\) 0.336657 + 2.34150i 0.0318111 + 0.221251i
\(113\) −15.2523 9.80207i −1.43482 0.922101i −0.999765 0.0216960i \(-0.993093\pi\)
−0.435053 0.900405i \(-0.643270\pi\)
\(114\) −8.67771 −0.812742
\(115\) −3.31546 + 3.46521i −0.309169 + 0.323133i
\(116\) 5.44424 0.505485
\(117\) −5.10527 3.28096i −0.471983 0.303325i
\(118\) 0.492730 + 3.42701i 0.0453594 + 0.315482i
\(119\) 5.80017 + 12.7006i 0.531701 + 1.16426i
\(120\) 0.959493 + 0.281733i 0.0875893 + 0.0257185i
\(121\) −3.01615 + 6.60445i −0.274196 + 0.600405i
\(122\) 8.30625 9.58593i 0.752013 0.867869i
\(123\) 0.624667 4.34465i 0.0563243 0.391744i
\(124\) −0.835576 + 0.245347i −0.0750369 + 0.0220328i
\(125\) −0.654861 0.755750i −0.0585725 0.0675963i
\(126\) −1.99005 + 1.27893i −0.177288 + 0.113936i
\(127\) −2.59811 + 1.66970i −0.230545 + 0.148162i −0.650814 0.759237i \(-0.725572\pi\)
0.420269 + 0.907400i \(0.361936\pi\)
\(128\) −0.654861 0.755750i −0.0578821 0.0667995i
\(129\) 10.7436 3.15460i 0.945920 0.277747i
\(130\) 0.863659 6.00688i 0.0757479 0.526838i
\(131\) 9.84731 11.3644i 0.860363 0.992912i −0.139633 0.990203i \(-0.544592\pi\)
0.999996 0.00270877i \(-0.000862229\pi\)
\(132\) 0.803313 1.75901i 0.0699194 0.153102i
\(133\) 19.6963 + 5.78336i 1.70789 + 0.501481i
\(134\) 4.07640 + 8.92606i 0.352147 + 0.771094i
\(135\) 0.142315 + 0.989821i 0.0122485 + 0.0851903i
\(136\) −4.96532 3.19102i −0.425773 0.273628i
\(137\) −19.4446 −1.66127 −0.830633 0.556821i \(-0.812021\pi\)
−0.830633 + 0.556821i \(0.812021\pi\)
\(138\) 2.95810 + 3.77487i 0.251810 + 0.321338i
\(139\) 2.62788 0.222894 0.111447 0.993770i \(-0.464452\pi\)
0.111447 + 0.993770i \(0.464452\pi\)
\(140\) −1.99005 1.27893i −0.168190 0.108089i
\(141\) −0.0435825 0.303123i −0.00367031 0.0255276i
\(142\) 1.50572 + 3.29706i 0.126357 + 0.276683i
\(143\) −11.2599 3.30622i −0.941604 0.276480i
\(144\) 0.415415 0.909632i 0.0346179 0.0758027i
\(145\) −3.56522 + 4.11448i −0.296075 + 0.341689i
\(146\) −0.559977 + 3.89472i −0.0463440 + 0.322330i
\(147\) −1.34715 + 0.395560i −0.111111 + 0.0326252i
\(148\) −3.61100 4.16732i −0.296823 0.342551i
\(149\) −0.874541 + 0.562033i −0.0716452 + 0.0460436i −0.575973 0.817469i \(-0.695377\pi\)
0.504328 + 0.863512i \(0.331740\pi\)
\(150\) −0.841254 + 0.540641i −0.0686881 + 0.0441431i
\(151\) 12.3623 + 14.2669i 1.00603 + 1.16102i 0.986921 + 0.161206i \(0.0515384\pi\)
0.0191118 + 0.999817i \(0.493916\pi\)
\(152\) −8.32620 + 2.44479i −0.675344 + 0.198299i
\(153\) 0.839984 5.84222i 0.0679087 0.472315i
\(154\) −2.99564 + 3.45715i −0.241395 + 0.278585i
\(155\) 0.361765 0.792154i 0.0290576 0.0636273i
\(156\) −5.82283 1.70974i −0.466199 0.136888i
\(157\) −3.25537 7.12827i −0.259807 0.568898i 0.734110 0.679031i \(-0.237600\pi\)
−0.993917 + 0.110133i \(0.964872\pi\)
\(158\) −0.773278 5.37827i −0.0615187 0.427872i
\(159\) 5.97943 + 3.84275i 0.474200 + 0.304750i
\(160\) 1.00000 0.0790569
\(161\) −4.19838 10.5395i −0.330878 0.830629i
\(162\) 1.00000 0.0785674
\(163\) 1.39755 + 0.898152i 0.109465 + 0.0703487i 0.594228 0.804297i \(-0.297458\pi\)
−0.484763 + 0.874646i \(0.661094\pi\)
\(164\) −0.624667 4.34465i −0.0487783 0.339260i
\(165\) 0.803313 + 1.75901i 0.0625378 + 0.136939i
\(166\) −3.72729 1.09443i −0.289294 0.0849444i
\(167\) −5.01459 + 10.9804i −0.388041 + 0.849691i 0.610303 + 0.792168i \(0.291048\pi\)
−0.998344 + 0.0575233i \(0.981680\pi\)
\(168\) −1.54913 + 1.78779i −0.119518 + 0.137931i
\(169\) −3.39115 + 23.5859i −0.260857 + 1.81430i
\(170\) 5.66321 1.66287i 0.434348 0.127536i
\(171\) −5.68269 6.55818i −0.434566 0.501516i
\(172\) 9.41964 6.05363i 0.718241 0.461585i
\(173\) −18.8182 + 12.0937i −1.43072 + 0.919470i −0.430869 + 0.902414i \(0.641793\pi\)
−0.999855 + 0.0170557i \(0.994571\pi\)
\(174\) 3.56522 + 4.11448i 0.270279 + 0.311918i
\(175\) 2.26976 0.666461i 0.171578 0.0503797i
\(176\) 0.275203 1.91408i 0.0207442 0.144279i
\(177\) −2.26729 + 2.61659i −0.170420 + 0.196675i
\(178\) 4.38093 9.59291i 0.328365 0.719019i
\(179\) 10.5210 + 3.08926i 0.786379 + 0.230902i 0.650181 0.759780i \(-0.274693\pi\)
0.136199 + 0.990682i \(0.456511\pi\)
\(180\) 0.415415 + 0.909632i 0.0309632 + 0.0678000i
\(181\) −2.90131 20.1791i −0.215653 1.49990i −0.753832 0.657067i \(-0.771797\pi\)
0.538179 0.842830i \(-0.319112\pi\)
\(182\) 12.0769 + 7.76137i 0.895202 + 0.575311i
\(183\) 12.6840 0.937628
\(184\) 3.90178 + 2.78857i 0.287643 + 0.205576i
\(185\) 5.51415 0.405409
\(186\) −0.732607 0.470818i −0.0537173 0.0345220i
\(187\) −1.62433 11.2974i −0.118783 0.826151i
\(188\) −0.127217 0.278566i −0.00927824 0.0203165i
\(189\) −2.26976 0.666461i −0.165101 0.0484779i
\(190\) 3.60485 7.89352i 0.261523 0.572656i
\(191\) 12.6019 14.5434i 0.911841 1.05232i −0.0865855 0.996244i \(-0.527596\pi\)
0.998426 0.0560762i \(-0.0178590\pi\)
\(192\) 0.142315 0.989821i 0.0102707 0.0714342i
\(193\) 4.83087 1.41847i 0.347733 0.102104i −0.103202 0.994660i \(-0.532909\pi\)
0.450935 + 0.892557i \(0.351091\pi\)
\(194\) 2.84009 + 3.27763i 0.203906 + 0.235320i
\(195\) 5.10527 3.28096i 0.365596 0.234954i
\(196\) −1.18114 + 0.759074i −0.0843673 + 0.0542195i
\(197\) −10.0796 11.6325i −0.718141 0.828779i 0.272941 0.962031i \(-0.412004\pi\)
−0.991082 + 0.133252i \(0.957458\pi\)
\(198\) 1.85543 0.544803i 0.131860 0.0387175i
\(199\) 2.28126 15.8665i 0.161714 1.12475i −0.733688 0.679487i \(-0.762202\pi\)
0.895402 0.445259i \(-0.146888\pi\)
\(200\) −0.654861 + 0.755750i −0.0463056 + 0.0534396i
\(201\) −4.07640 + 8.92606i −0.287527 + 0.629596i
\(202\) 14.8735 + 4.36724i 1.04649 + 0.307278i
\(203\) −5.35004 11.7150i −0.375499 0.822229i
\(204\) −0.839984 5.84222i −0.0588106 0.409037i
\(205\) 3.69254 + 2.37305i 0.257898 + 0.165741i
\(206\) −1.14112 −0.0795057
\(207\) −0.915710 + 4.70760i −0.0636462 + 0.327201i
\(208\) −6.06865 −0.420785
\(209\) −14.1167 9.07228i −0.976476 0.627543i
\(210\) −0.336657 2.34150i −0.0232316 0.161579i
\(211\) −8.23589 18.0341i −0.566982 1.24152i −0.948389 0.317110i \(-0.897287\pi\)
0.381406 0.924407i \(-0.375440\pi\)
\(212\) 6.81985 + 2.00249i 0.468389 + 0.137532i
\(213\) −1.50572 + 3.29706i −0.103170 + 0.225911i
\(214\) −5.55344 + 6.40901i −0.379625 + 0.438111i
\(215\) −1.59352 + 11.0832i −0.108677 + 0.755866i
\(216\) 0.959493 0.281733i 0.0652852 0.0191695i
\(217\) 1.34906 + 1.55690i 0.0915801 + 0.105689i
\(218\) 10.0939 6.48695i 0.683644 0.439351i
\(219\) −3.31014 + 2.12730i −0.223679 + 0.143750i
\(220\) 1.26634 + 1.46144i 0.0853768 + 0.0985301i
\(221\) −34.3680 + 10.0914i −2.31184 + 0.678818i
\(222\) 0.784746 5.45803i 0.0526687 0.366319i
\(223\) 13.5527 15.6406i 0.907555 1.04737i −0.0911161 0.995840i \(-0.529043\pi\)
0.998671 0.0515342i \(-0.0164111\pi\)
\(224\) −0.982698 + 2.15181i −0.0656593 + 0.143774i
\(225\) −0.959493 0.281733i −0.0639662 0.0187822i
\(226\) −7.53167 16.4920i −0.500999 1.09703i
\(227\) 3.84330 + 26.7308i 0.255089 + 1.77418i 0.566651 + 0.823958i \(0.308239\pi\)
−0.311562 + 0.950226i \(0.600852\pi\)
\(228\) −7.30015 4.69152i −0.483465 0.310704i
\(229\) −24.1932 −1.59873 −0.799366 0.600844i \(-0.794831\pi\)
−0.799366 + 0.600844i \(0.794831\pi\)
\(230\) −4.66258 + 1.12265i −0.307441 + 0.0740252i
\(231\) −4.57447 −0.300978
\(232\) 4.57999 + 2.94338i 0.300691 + 0.193242i
\(233\) −0.441041 3.06751i −0.0288936 0.200959i 0.970261 0.242059i \(-0.0778228\pi\)
−0.999155 + 0.0411001i \(0.986914\pi\)
\(234\) −2.52101 5.52024i −0.164803 0.360869i
\(235\) 0.293835 + 0.0862778i 0.0191677 + 0.00562815i
\(236\) −1.43827 + 3.14937i −0.0936235 + 0.205007i
\(237\) 3.55823 4.10642i 0.231132 0.266741i
\(238\) −1.98705 + 13.8202i −0.128801 + 0.895833i
\(239\) −1.19283 + 0.350247i −0.0771579 + 0.0226556i −0.320084 0.947389i \(-0.603711\pi\)
0.242926 + 0.970045i \(0.421893\pi\)
\(240\) 0.654861 + 0.755750i 0.0422711 + 0.0487834i
\(241\) 20.5486 13.2058i 1.32365 0.850661i 0.328081 0.944650i \(-0.393598\pi\)
0.995573 + 0.0939892i \(0.0299619\pi\)
\(242\) −6.10798 + 3.92536i −0.392636 + 0.252332i
\(243\) 0.654861 + 0.755750i 0.0420093 + 0.0484814i
\(244\) 12.1702 3.57350i 0.779118 0.228770i
\(245\) 0.199814 1.38973i 0.0127656 0.0887869i
\(246\) 2.87440 3.31723i 0.183265 0.211499i
\(247\) −21.8766 + 47.9030i −1.39197 + 3.04800i
\(248\) −0.835576 0.245347i −0.0530591 0.0155796i
\(249\) −1.61374 3.53360i −0.102267 0.223933i
\(250\) −0.142315 0.989821i −0.00900078 0.0626018i
\(251\) 5.94552 + 3.82095i 0.375278 + 0.241176i 0.714660 0.699472i \(-0.246582\pi\)
−0.339382 + 0.940649i \(0.610218\pi\)
\(252\) −2.36558 −0.149018
\(253\) 0.865680 + 9.23349i 0.0544248 + 0.580505i
\(254\) −3.08838 −0.193782
\(255\) 4.96532 + 3.19102i 0.310941 + 0.199829i
\(256\) −0.142315 0.989821i −0.00889468 0.0618638i
\(257\) 0.104424 + 0.228658i 0.00651382 + 0.0142633i 0.912861 0.408271i \(-0.133868\pi\)
−0.906347 + 0.422534i \(0.861141\pi\)
\(258\) 10.7436 + 3.15460i 0.668866 + 0.196397i
\(259\) −5.41875 + 11.8654i −0.336704 + 0.737280i
\(260\) 3.97412 4.58638i 0.246464 0.284435i
\(261\) −0.774796 + 5.38882i −0.0479587 + 0.333560i
\(262\) 14.4281 4.23648i 0.891373 0.261731i
\(263\) 8.46439 + 9.76843i 0.521937 + 0.602347i 0.954115 0.299441i \(-0.0968003\pi\)
−0.432178 + 0.901788i \(0.642255\pi\)
\(264\) 1.62678 1.04547i 0.100122 0.0643442i
\(265\) −5.97943 + 3.84275i −0.367314 + 0.236058i
\(266\) 13.4429 + 15.5139i 0.824235 + 0.951218i
\(267\) 10.1187 2.97113i 0.619257 0.181830i
\(268\) −1.39651 + 9.71295i −0.0853055 + 0.593313i
\(269\) −6.79047 + 7.83662i −0.414022 + 0.477807i −0.924007 0.382377i \(-0.875106\pi\)
0.509984 + 0.860184i \(0.329651\pi\)
\(270\) −0.415415 + 0.909632i −0.0252814 + 0.0553584i
\(271\) 19.0546 + 5.59494i 1.15749 + 0.339868i 0.803455 0.595365i \(-0.202993\pi\)
0.354031 + 0.935234i \(0.384811\pi\)
\(272\) −2.45190 5.36891i −0.148668 0.325538i
\(273\) 2.04305 + 14.2098i 0.123651 + 0.860014i
\(274\) −16.3578 10.5126i −0.988214 0.635086i
\(275\) −1.93376 −0.116610
\(276\) 0.447667 + 4.77489i 0.0269464 + 0.287415i
\(277\) −11.6528 −0.700148 −0.350074 0.936722i \(-0.613843\pi\)
−0.350074 + 0.936722i \(0.613843\pi\)
\(278\) 2.21071 + 1.42074i 0.132590 + 0.0852102i
\(279\) −0.123935 0.861987i −0.00741980 0.0516058i
\(280\) −0.982698 2.15181i −0.0587274 0.128595i
\(281\) 21.2257 + 6.23243i 1.26622 + 0.371796i 0.844806 0.535073i \(-0.179716\pi\)
0.421414 + 0.906869i \(0.361534\pi\)
\(282\) 0.127217 0.278566i 0.00757565 0.0165884i
\(283\) 13.4840 15.5614i 0.801541 0.925028i −0.196923 0.980419i \(-0.563095\pi\)
0.998465 + 0.0553907i \(0.0176404\pi\)
\(284\) −0.515835 + 3.58771i −0.0306092 + 0.212892i
\(285\) 8.32620 2.44479i 0.493202 0.144817i
\(286\) −7.68499 8.86895i −0.454423 0.524432i
\(287\) −8.73500 + 5.61365i −0.515611 + 0.331363i
\(288\) 0.841254 0.540641i 0.0495713 0.0318576i
\(289\) −11.6808 13.4803i −0.687105 0.792962i
\(290\) −5.22371 + 1.53382i −0.306747 + 0.0900690i
\(291\) −0.617210 + 4.29279i −0.0361815 + 0.251648i
\(292\) −2.57673 + 2.97370i −0.150792 + 0.174023i
\(293\) −0.139397 + 0.305236i −0.00814364 + 0.0178321i −0.913660 0.406479i \(-0.866756\pi\)
0.905516 + 0.424311i \(0.139484\pi\)
\(294\) −1.34715 0.395560i −0.0785675 0.0230695i
\(295\) −1.43827 3.14937i −0.0837394 0.183364i
\(296\) −0.784746 5.45803i −0.0456124 0.317241i
\(297\) 1.62678 + 1.04547i 0.0943955 + 0.0606643i
\(298\) −1.03957 −0.0602206
\(299\) 28.2956 6.81296i 1.63637 0.394003i
\(300\) −1.00000 −0.0577350
\(301\) −22.2829 14.3204i −1.28437 0.825412i
\(302\) 2.68659 + 18.6857i 0.154596 + 1.07524i
\(303\) 6.43950 + 14.1005i 0.369940 + 0.810055i
\(304\) −8.32620 2.44479i −0.477540 0.140219i
\(305\) −5.26912 + 11.5378i −0.301709 + 0.660651i
\(306\) 3.86518 4.46066i 0.220958 0.254999i
\(307\) 3.03982 21.1424i 0.173492 1.20666i −0.697944 0.716152i \(-0.745902\pi\)
0.871436 0.490510i \(-0.163189\pi\)
\(308\) −4.38917 + 1.28878i −0.250096 + 0.0734348i
\(309\) −0.747275 0.862402i −0.0425110 0.0490603i
\(310\) 0.732607 0.470818i 0.0416093 0.0267406i
\(311\) 3.54403 2.27761i 0.200963 0.129151i −0.436289 0.899807i \(-0.643707\pi\)
0.637252 + 0.770655i \(0.280071\pi\)
\(312\) −3.97412 4.58638i −0.224990 0.259653i
\(313\) −11.3826 + 3.34224i −0.643383 + 0.188914i −0.587118 0.809501i \(-0.699738\pi\)
−0.0562655 + 0.998416i \(0.517919\pi\)
\(314\) 1.11524 7.75667i 0.0629367 0.437734i
\(315\) 1.54913 1.78779i 0.0872834 0.100730i
\(316\) 2.25719 4.94255i 0.126977 0.278040i
\(317\) 3.67684 + 1.07962i 0.206512 + 0.0606373i 0.383352 0.923602i \(-0.374770\pi\)
−0.176841 + 0.984240i \(0.556588\pi\)
\(318\) 2.95267 + 6.46545i 0.165578 + 0.362564i
\(319\) 1.49827 + 10.4207i 0.0838870 + 0.583447i
\(320\) 0.841254 + 0.540641i 0.0470275 + 0.0302227i
\(321\) −8.48033 −0.473326
\(322\) 2.16619 11.1362i 0.120717 0.620596i
\(323\) −51.2184 −2.84987
\(324\) 0.841254 + 0.540641i 0.0467363 + 0.0300356i
\(325\) 0.863659 + 6.00688i 0.0479072 + 0.333202i
\(326\) 0.690118 + 1.51115i 0.0382221 + 0.0836947i
\(327\) 11.5126 + 3.38040i 0.636648 + 0.186937i
\(328\) 1.82339 3.99268i 0.100680 0.220459i
\(329\) −0.474405 + 0.547492i −0.0261548 + 0.0301842i
\(330\) −0.275203 + 1.91408i −0.0151494 + 0.105366i
\(331\) 1.61311 0.473650i 0.0886643 0.0260342i −0.237100 0.971485i \(-0.576197\pi\)
0.325764 + 0.945451i \(0.394379\pi\)
\(332\) −2.54390 2.93582i −0.139615 0.161124i
\(333\) 4.63880 2.98118i 0.254205 0.163367i
\(334\) −10.1550 + 6.52623i −0.555658 + 0.357099i
\(335\) −6.42603 7.41604i −0.351092 0.405181i
\(336\) −2.26976 + 0.666461i −0.123825 + 0.0363584i
\(337\) −1.88162 + 13.0870i −0.102499 + 0.712893i 0.872164 + 0.489213i \(0.162716\pi\)
−0.974663 + 0.223680i \(0.928193\pi\)
\(338\) −15.6043 + 18.0084i −0.848764 + 0.979526i
\(339\) 7.53167 16.4920i 0.409064 0.895725i
\(340\) 5.66321 + 1.66287i 0.307131 + 0.0901817i
\(341\) −0.699566 1.53184i −0.0378836 0.0829536i
\(342\) −1.23497 8.58938i −0.0667794 0.464461i
\(343\) 16.7245 + 10.7482i 0.903036 + 0.580346i
\(344\) 11.1971 0.603710
\(345\) −3.90178 2.78857i −0.210065 0.150131i
\(346\) −22.3693 −1.20258
\(347\) 0.259569 + 0.166815i 0.0139344 + 0.00895511i 0.547589 0.836747i \(-0.315546\pi\)
−0.533655 + 0.845702i \(0.679182\pi\)
\(348\) 0.774796 + 5.38882i 0.0415334 + 0.288871i
\(349\) 9.36546 + 20.5075i 0.501322 + 1.09774i 0.976038 + 0.217602i \(0.0698236\pi\)
−0.474716 + 0.880139i \(0.657449\pi\)
\(350\) 2.26976 + 0.666461i 0.121324 + 0.0356239i
\(351\) 2.52101 5.52024i 0.134561 0.294648i
\(352\) 1.26634 1.46144i 0.0674963 0.0778949i
\(353\) 3.32812 23.1476i 0.177138 1.23202i −0.686207 0.727406i \(-0.740726\pi\)
0.863345 0.504614i \(-0.168365\pi\)
\(354\) −3.32201 + 0.975429i −0.176563 + 0.0518435i
\(355\) −2.37361 2.73930i −0.125978 0.145387i
\(356\) 8.87180 5.70156i 0.470204 0.302182i
\(357\) −11.7459 + 7.54862i −0.621658 + 0.399515i
\(358\) 7.18068 + 8.28695i 0.379511 + 0.437979i
\(359\) 0.321376 0.0943646i 0.0169616 0.00498037i −0.273241 0.961946i \(-0.588096\pi\)
0.290202 + 0.956965i \(0.406277\pi\)
\(360\) −0.142315 + 0.989821i −0.00750065 + 0.0521682i
\(361\) −36.8704 + 42.5507i −1.94055 + 2.23951i
\(362\) 8.46889 18.5443i 0.445115 0.974665i
\(363\) −6.96647 2.04554i −0.365645 0.107363i
\(364\) 5.96365 + 13.0586i 0.312580 + 0.684455i
\(365\) −0.559977 3.89472i −0.0293105 0.203859i
\(366\) 10.6705 + 6.85749i 0.557754 + 0.358447i
\(367\) −30.2098 −1.57694 −0.788469 0.615074i \(-0.789126\pi\)
−0.788469 + 0.615074i \(0.789126\pi\)
\(368\) 1.77478 + 4.45535i 0.0925166 + 0.232251i
\(369\) 4.38933 0.228499
\(370\) 4.63880 + 2.98118i 0.241160 + 0.154984i
\(371\) −2.39288 16.6429i −0.124232 0.864054i
\(372\) −0.361765 0.792154i −0.0187566 0.0410713i
\(373\) −7.27287 2.13551i −0.376575 0.110572i 0.0879673 0.996123i \(-0.471963\pi\)
−0.464542 + 0.885551i \(0.653781\pi\)
\(374\) 4.74139 10.3822i 0.245171 0.536850i
\(375\) 0.654861 0.755750i 0.0338169 0.0390267i
\(376\) 0.0435825 0.303123i 0.00224760 0.0156324i
\(377\) 31.7009 9.30821i 1.63268 0.479397i
\(378\) −1.54913 1.78779i −0.0796785 0.0919538i
\(379\) 6.75705 4.34250i 0.347087 0.223059i −0.355469 0.934688i \(-0.615679\pi\)
0.702555 + 0.711629i \(0.252042\pi\)
\(380\) 7.30015 4.69152i 0.374490 0.240670i
\(381\) −2.02246 2.33404i −0.103614 0.119577i
\(382\) 18.4641 5.42156i 0.944707 0.277391i
\(383\) −4.37378 + 30.4203i −0.223490 + 1.55441i 0.501201 + 0.865331i \(0.332892\pi\)
−0.724691 + 0.689074i \(0.758017\pi\)
\(384\) 0.654861 0.755750i 0.0334182 0.0385667i
\(385\) 1.90030 4.16108i 0.0968483 0.212068i
\(386\) 4.83087 + 1.41847i 0.245885 + 0.0721982i
\(387\) 4.65146 + 10.1853i 0.236447 + 0.517747i
\(388\) 0.617210 + 4.29279i 0.0313341 + 0.217933i
\(389\) 24.1072 + 15.4927i 1.22228 + 0.785513i 0.982671 0.185356i \(-0.0593439\pi\)
0.239610 + 0.970869i \(0.422980\pi\)
\(390\) 6.06865 0.307298
\(391\) 17.4596 + 22.2804i 0.882969 + 1.12677i
\(392\) −1.40403 −0.0709140
\(393\) 12.6501 + 8.12975i 0.638115 + 0.410092i
\(394\) −2.19051 15.2353i −0.110356 0.767543i
\(395\) 2.25719 + 4.94255i 0.113571 + 0.248687i
\(396\) 1.85543 + 0.544803i 0.0932388 + 0.0273774i
\(397\) −9.61110 + 21.0454i −0.482367 + 1.05624i 0.499439 + 0.866349i \(0.333540\pi\)
−0.981806 + 0.189887i \(0.939188\pi\)
\(398\) 10.4972 12.1144i 0.526177 0.607240i
\(399\) −2.92141 + 20.3189i −0.146254 + 1.01722i
\(400\) −0.959493 + 0.281733i −0.0479746 + 0.0140866i
\(401\) −11.6482 13.4427i −0.581681 0.671296i 0.386284 0.922380i \(-0.373758\pi\)
−0.967965 + 0.251084i \(0.919213\pi\)
\(402\) −8.25507 + 5.30521i −0.411726 + 0.264600i
\(403\) −4.44593 + 2.85723i −0.221468 + 0.142329i
\(404\) 10.1512 + 11.7152i 0.505043 + 0.582851i
\(405\) −0.959493 + 0.281733i −0.0476776 + 0.0139994i
\(406\) 1.83284 12.7477i 0.0909625 0.632658i
\(407\) 6.98281 8.05859i 0.346125 0.399450i
\(408\) 2.45190 5.36891i 0.121387 0.265801i
\(409\) −9.99152 2.93378i −0.494049 0.145066i 0.0252110 0.999682i \(-0.491974\pi\)
−0.519260 + 0.854616i \(0.673792\pi\)
\(410\) 1.82339 + 3.99268i 0.0900510 + 0.197184i
\(411\) −2.76726 19.2467i −0.136499 0.949369i
\(412\) −0.959972 0.616937i −0.0472944 0.0303943i
\(413\) 8.19023 0.403015
\(414\) −3.31546 + 3.46521i −0.162946 + 0.170306i
\(415\) 3.88465 0.190690
\(416\) −5.10527 3.28096i −0.250307 0.160862i
\(417\) 0.373986 + 2.60113i 0.0183142 + 0.127378i
\(418\) −6.97092 15.2642i −0.340959 0.746595i
\(419\) −15.6250 4.58791i −0.763331 0.224134i −0.123181 0.992384i \(-0.539310\pi\)
−0.640150 + 0.768250i \(0.721128\pi\)
\(420\) 0.982698 2.15181i 0.0479507 0.104997i
\(421\) −11.1382 + 12.8541i −0.542841 + 0.626472i −0.959200 0.282729i \(-0.908760\pi\)
0.416359 + 0.909200i \(0.363306\pi\)
\(422\) 2.82149 19.6239i 0.137348 0.955277i
\(423\) 0.293835 0.0862778i 0.0142868 0.00419497i
\(424\) 4.65460 + 5.37169i 0.226047 + 0.260872i
\(425\) −4.96532 + 3.19102i −0.240854 + 0.154787i
\(426\) −3.04921 + 1.95961i −0.147735 + 0.0949434i
\(427\) −19.6491 22.6763i −0.950887 1.09738i
\(428\) −8.13682 + 2.38919i −0.393308 + 0.115486i
\(429\) 1.67011 11.6159i 0.0806336 0.560819i
\(430\) −7.33257 + 8.46224i −0.353608 + 0.408085i
\(431\) −10.8650 + 23.7910i −0.523348 + 1.14597i 0.444808 + 0.895626i \(0.353272\pi\)
−0.968156 + 0.250347i \(0.919455\pi\)
\(432\) 0.959493 + 0.281733i 0.0461636 + 0.0135549i
\(433\) 11.8861 + 26.0268i 0.571207 + 1.25077i 0.946152 + 0.323722i \(0.104934\pi\)
−0.374945 + 0.927047i \(0.622338\pi\)
\(434\) 0.293178 + 2.03910i 0.0140730 + 0.0978800i
\(435\) −4.57999 2.94338i −0.219593 0.141124i
\(436\) 11.9986 0.574630
\(437\) 41.5662 + 2.05165i 1.98838 + 0.0981439i
\(438\) −3.93477 −0.188011
\(439\) −30.2628 19.4487i −1.44437 0.928237i −0.999467 0.0326563i \(-0.989603\pi\)
−0.444899 0.895581i \(-0.646760\pi\)
\(440\) 0.275203 + 1.91408i 0.0131198 + 0.0912500i
\(441\) −0.583253 1.27715i −0.0277740 0.0608165i
\(442\) −34.3680 10.0914i −1.63472 0.479997i
\(443\) −4.31352 + 9.44530i −0.204942 + 0.448760i −0.983995 0.178198i \(-0.942973\pi\)
0.779053 + 0.626958i \(0.215700\pi\)
\(444\) 3.61100 4.16732i 0.171371 0.197772i
\(445\) −1.50084 + 10.4386i −0.0711467 + 0.494836i
\(446\) 19.8572 5.83060i 0.940266 0.276087i
\(447\) −0.680773 0.785653i −0.0321994 0.0371601i
\(448\) −1.99005 + 1.27893i −0.0940212 + 0.0604238i
\(449\) 0.216291 0.139002i 0.0102074 0.00655991i −0.535527 0.844518i \(-0.679887\pi\)
0.545735 + 0.837958i \(0.316251\pi\)
\(450\) −0.654861 0.755750i −0.0308704 0.0356264i
\(451\) 8.14409 2.39132i 0.383490 0.112603i
\(452\) 2.58023 17.9459i 0.121364 0.844105i
\(453\) −12.3623 + 14.2669i −0.580833 + 0.670317i
\(454\) −11.2186 + 24.5652i −0.526513 + 1.15290i
\(455\) −13.7744 4.04452i −0.645752 0.189610i
\(456\) −3.60485 7.89352i −0.168813 0.369648i
\(457\) −4.60490 32.0278i −0.215408 1.49820i −0.754696 0.656074i \(-0.772216\pi\)
0.539289 0.842121i \(-0.318693\pi\)
\(458\) −20.3526 13.0798i −0.951016 0.611181i
\(459\) 5.90229 0.275495
\(460\) −4.52936 1.57635i −0.211183 0.0734977i
\(461\) 28.8459 1.34349 0.671744 0.740783i \(-0.265545\pi\)
0.671744 + 0.740783i \(0.265545\pi\)
\(462\) −3.84829 2.47314i −0.179038 0.115061i
\(463\) 3.44072 + 23.9307i 0.159904 + 1.11216i 0.898807 + 0.438344i \(0.144435\pi\)
−0.738903 + 0.673811i \(0.764656\pi\)
\(464\) 2.26162 + 4.95225i 0.104993 + 0.229903i
\(465\) 0.835576 + 0.245347i 0.0387489 + 0.0113777i
\(466\) 1.28739 2.81900i 0.0596373 0.130587i
\(467\) −1.44299 + 1.66530i −0.0667738 + 0.0770611i −0.788154 0.615479i \(-0.788963\pi\)
0.721380 + 0.692540i \(0.243508\pi\)
\(468\) 0.863659 6.00688i 0.0399226 0.277668i
\(469\) 22.2727 6.53987i 1.02846 0.301983i
\(470\) 0.200545 + 0.231441i 0.00925044 + 0.0106756i
\(471\) 6.59243 4.23670i 0.303763 0.195217i
\(472\) −2.91263 + 1.87183i −0.134065 + 0.0861581i
\(473\) 14.1794 + 16.3639i 0.651971 + 0.752415i
\(474\) 5.21347 1.53081i 0.239463 0.0703126i
\(475\) −1.23497 + 8.58938i −0.0566642 + 0.394108i
\(476\) −9.14340 + 10.5520i −0.419087 + 0.483652i
\(477\) −2.95267 + 6.46545i −0.135194 + 0.296033i
\(478\) −1.19283 0.350247i −0.0545589 0.0160199i
\(479\) −0.694918 1.52166i −0.0317516 0.0695263i 0.893092 0.449875i \(-0.148531\pi\)
−0.924843 + 0.380348i \(0.875804\pi\)
\(480\) 0.142315 + 0.989821i 0.00649575 + 0.0451790i
\(481\) −28.1512 18.0917i −1.28359 0.824911i
\(482\) 24.4262 1.11258
\(483\) 9.83473 5.65557i 0.447496 0.257337i
\(484\) −7.26057 −0.330026
\(485\) −3.64846 2.34472i −0.165668 0.106468i
\(486\) 0.142315 + 0.989821i 0.00645553 + 0.0448992i
\(487\) 5.48941 + 12.0201i 0.248749 + 0.544684i 0.992280 0.124017i \(-0.0395778\pi\)
−0.743531 + 0.668701i \(0.766851\pi\)
\(488\) 12.1702 + 3.57350i 0.550919 + 0.161765i
\(489\) −0.690118 + 1.51115i −0.0312082 + 0.0683364i
\(490\) 0.919441 1.06109i 0.0415361 0.0479352i
\(491\) −3.75614 + 26.1245i −0.169512 + 1.17898i 0.710383 + 0.703815i \(0.248522\pi\)
−0.879896 + 0.475167i \(0.842388\pi\)
\(492\) 4.21153 1.23662i 0.189871 0.0557510i
\(493\) 21.0430 + 24.2849i 0.947727 + 1.09374i
\(494\) −44.3021 + 28.4712i −1.99324 + 1.28098i
\(495\) −1.62678 + 1.04547i −0.0731184 + 0.0469904i
\(496\) −0.570286 0.658145i −0.0256066 0.0295516i
\(497\) 8.22698 2.41566i 0.369031 0.108357i
\(498\) 0.552843 3.84511i 0.0247735 0.172303i
\(499\) −0.236157 + 0.272539i −0.0105718 + 0.0122005i −0.761011 0.648739i \(-0.775297\pi\)
0.750439 + 0.660940i \(0.229842\pi\)
\(500\) 0.415415 0.909632i 0.0185779 0.0406800i
\(501\) −11.5823 3.40087i −0.517460 0.151940i
\(502\) 2.93592 + 6.42878i 0.131037 + 0.286930i
\(503\) 0.884410 + 6.15121i 0.0394339 + 0.274269i 0.999993 0.00380803i \(-0.00121214\pi\)
−0.960559 + 0.278077i \(0.910303\pi\)
\(504\) −1.99005 1.27893i −0.0886440 0.0569681i
\(505\) −15.5014 −0.689802
\(506\) −4.26375 + 8.23573i −0.189547 + 0.366123i
\(507\) −23.8285 −1.05826
\(508\) −2.59811 1.66970i −0.115272 0.0740811i
\(509\) −3.37889 23.5007i −0.149767 1.04165i −0.916601 0.399804i \(-0.869078\pi\)
0.766834 0.641845i \(-0.221831\pi\)
\(510\) 2.45190 + 5.36891i 0.108572 + 0.237740i
\(511\) 8.93099 + 2.62237i 0.395084 + 0.116007i
\(512\) 0.415415 0.909632i 0.0183589 0.0402004i
\(513\) 5.68269 6.55818i 0.250897 0.289551i
\(514\) −0.0357742 + 0.248815i −0.00157793 + 0.0109748i
\(515\) 1.09490 0.321491i 0.0482469 0.0141666i
\(516\) 7.33257 + 8.46224i 0.322798 + 0.372529i
\(517\) 0.498186 0.320165i 0.0219102 0.0140808i
\(518\) −10.9735 + 7.05221i −0.482146 + 0.309856i
\(519\) −14.6488 16.9056i −0.643009 0.742072i
\(520\) 5.82283 1.70974i 0.255348 0.0749769i
\(521\) −2.97529 + 20.6936i −0.130350 + 0.906603i 0.814748 + 0.579816i \(0.196875\pi\)
−0.945098 + 0.326788i \(0.894034\pi\)
\(522\) −3.56522 + 4.11448i −0.156045 + 0.180086i
\(523\) 2.13656 4.67841i 0.0934251 0.204573i −0.857150 0.515067i \(-0.827767\pi\)
0.950575 + 0.310494i \(0.100494\pi\)
\(524\) 14.4281 + 4.23648i 0.630296 + 0.185072i
\(525\) 0.982698 + 2.15181i 0.0428885 + 0.0939126i
\(526\) 1.83949 + 12.7939i 0.0802055 + 0.557841i
\(527\) −4.32406 2.77890i −0.188359 0.121051i
\(528\) 1.93376 0.0841561
\(529\) −13.2768 18.7810i −0.577253 0.816565i
\(530\) −7.10777 −0.308742
\(531\) −2.91263 1.87183i −0.126397 0.0812307i
\(532\) 2.92141 + 20.3189i 0.126659 + 0.880935i
\(533\) −11.0655 24.2301i −0.479302 1.04952i
\(534\) 10.1187 + 2.97113i 0.437881 + 0.128573i
\(535\) 3.52286 7.71398i 0.152306 0.333504i
\(536\) −6.42603 + 7.41604i −0.277562 + 0.320324i
\(537\) −1.56051 + 10.8536i −0.0673411 + 0.468367i
\(538\) −9.94930 + 2.92138i −0.428945 + 0.125950i
\(539\) −1.77798 2.05190i −0.0765830 0.0883814i
\(540\) −0.841254 + 0.540641i −0.0362018 + 0.0232655i
\(541\) 9.69757 6.23225i 0.416931 0.267945i −0.315313 0.948988i \(-0.602109\pi\)
0.732244 + 0.681042i \(0.238473\pi\)
\(542\) 13.0049 + 15.0085i 0.558609 + 0.644669i
\(543\) 19.5608 5.74356i 0.839433 0.246480i
\(544\) 0.839984 5.84222i 0.0360140 0.250483i
\(545\) −7.85743 + 9.06795i −0.336575 + 0.388428i
\(546\) −5.96365 + 13.0586i −0.255221 + 0.558855i
\(547\) −19.5231 5.73249i −0.834746 0.245104i −0.163691 0.986512i \(-0.552340\pi\)
−0.671054 + 0.741408i \(0.734158\pi\)
\(548\) −8.07758 17.6874i −0.345057 0.755570i
\(549\) 1.80512 + 12.5549i 0.0770407 + 0.535830i
\(550\) −1.62678 1.04547i −0.0693662 0.0445790i
\(551\) 47.2435 2.01264
\(552\) −2.20490 + 4.25892i −0.0938468 + 0.181272i
\(553\) −12.8536 −0.546589
\(554\) −9.80294 6.29997i −0.416487 0.267660i
\(555\) 0.784746 + 5.45803i 0.0333106 + 0.231680i
\(556\) 1.09166 + 2.39040i 0.0462967 + 0.101376i
\(557\) −9.60939 2.82157i −0.407163 0.119554i 0.0717365 0.997424i \(-0.477146\pi\)
−0.478899 + 0.877870i \(0.658964\pi\)
\(558\) 0.361765 0.792154i 0.0153147 0.0335346i
\(559\) 44.4988 51.3544i 1.88210 2.17206i
\(560\) 0.336657 2.34150i 0.0142264 0.0989466i
\(561\) 10.9513 3.21559i 0.462364 0.135762i
\(562\) 14.4867 + 16.7185i 0.611084 + 0.705229i
\(563\) 18.6985 12.0168i 0.788048 0.506448i −0.0836477 0.996495i \(-0.526657\pi\)
0.871696 + 0.490048i \(0.163021\pi\)
\(564\) 0.257626 0.165566i 0.0108480 0.00697158i
\(565\) 11.8729 + 13.7021i 0.499498 + 0.576451i
\(566\) 19.7566 5.80106i 0.830432 0.243837i
\(567\) 0.336657 2.34150i 0.0141383 0.0983339i
\(568\) −2.37361 + 2.73930i −0.0995946 + 0.114938i
\(569\) 4.65768 10.1989i 0.195260 0.427560i −0.786524 0.617560i \(-0.788121\pi\)
0.981784 + 0.190000i \(0.0608487\pi\)
\(570\) 8.32620 + 2.44479i 0.348746 + 0.102401i
\(571\) −5.13293 11.2395i −0.214806 0.470360i 0.771301 0.636471i \(-0.219606\pi\)
−0.986107 + 0.166110i \(0.946879\pi\)
\(572\) −1.67011 11.6159i −0.0698307 0.485683i
\(573\) 16.1888 + 10.4039i 0.676295 + 0.434629i
\(574\) −10.3833 −0.433391
\(575\) 4.15743 2.39077i 0.173377 0.0997022i
\(576\) 1.00000 0.0416667
\(577\) −27.2689 17.5246i −1.13522 0.729560i −0.168575 0.985689i \(-0.553916\pi\)
−0.966643 + 0.256129i \(0.917553\pi\)
\(578\) −2.53848 17.6555i −0.105587 0.734372i
\(579\) 2.09154 + 4.57983i 0.0869213 + 0.190331i
\(580\) −5.22371 1.53382i −0.216903 0.0636884i
\(581\) −3.81744 + 8.35902i −0.158374 + 0.346791i
\(582\) −2.84009 + 3.27763i −0.117725 + 0.135862i
\(583\) −1.95608 + 13.6048i −0.0810124 + 0.563454i
\(584\) −3.77539 + 1.10855i −0.156227 + 0.0458723i
\(585\) 3.97412 + 4.58638i 0.164310 + 0.189623i
\(586\) −0.282291 + 0.181417i −0.0116613 + 0.00749428i
\(587\) 34.1750 21.9629i 1.41055 0.906506i 0.410566 0.911831i \(-0.365331\pi\)
0.999986 + 0.00532466i \(0.00169490\pi\)
\(588\) −0.919441 1.06109i −0.0379171 0.0437587i
\(589\) −7.25088 + 2.12905i −0.298767 + 0.0877260i
\(590\) 0.492730 3.42701i 0.0202854 0.141088i
\(591\) 10.0796 11.6325i 0.414619 0.478496i
\(592\) 2.29066 5.01585i 0.0941456 0.206150i
\(593\) −2.53889 0.745485i −0.104260 0.0306134i 0.229187 0.973383i \(-0.426393\pi\)
−0.333446 + 0.942769i \(0.608212\pi\)
\(594\) 0.803313 + 1.75901i 0.0329603 + 0.0721730i
\(595\) −1.98705 13.8202i −0.0814611 0.566574i
\(596\) −0.874541 0.562033i −0.0358226 0.0230218i
\(597\) 16.0297 0.656050
\(598\) 27.4871 + 9.56631i 1.12403 + 0.391196i
\(599\) 20.8962 0.853796 0.426898 0.904300i \(-0.359606\pi\)
0.426898 + 0.904300i \(0.359606\pi\)
\(600\) −0.841254 0.540641i −0.0343440 0.0220716i
\(601\) 4.26278 + 29.6483i 0.173883 + 1.20938i 0.870585 + 0.492019i \(0.163741\pi\)
−0.696702 + 0.717361i \(0.745350\pi\)
\(602\) −11.0034 24.0941i −0.448466 0.982003i
\(603\) −9.41534 2.76459i −0.383422 0.112583i
\(604\) −7.84212 + 17.1719i −0.319092 + 0.698713i
\(605\) 4.75466 5.48718i 0.193305 0.223085i
\(606\) −2.20607 + 15.3436i −0.0896157 + 0.623291i
\(607\) 21.4429 6.29622i 0.870342 0.255556i 0.184081 0.982911i \(-0.441069\pi\)
0.686261 + 0.727355i \(0.259251\pi\)
\(608\) −5.68269 6.55818i −0.230464 0.265969i
\(609\) 10.8343 6.96280i 0.439029 0.282147i
\(610\) −10.6705 + 6.85749i −0.432034 + 0.277652i
\(611\) −1.21704 1.40453i −0.0492360 0.0568213i
\(612\) 5.66321 1.66287i 0.228922 0.0672175i
\(613\) 3.67014 25.5264i 0.148236 1.03100i −0.770871 0.636992i \(-0.780179\pi\)
0.919106 0.394010i \(-0.128912\pi\)
\(614\) 13.9877 16.1427i 0.564498 0.651466i
\(615\) −1.82339 + 3.99268i −0.0735263 + 0.161000i
\(616\) −4.38917 1.28878i −0.176845 0.0519263i
\(617\) −8.39926 18.3918i −0.338141 0.740426i 0.661816 0.749666i \(-0.269786\pi\)
−0.999957 + 0.00924007i \(0.997059\pi\)
\(618\) −0.162398 1.12951i −0.00653262 0.0454354i
\(619\) 4.95083 + 3.18170i 0.198991 + 0.127883i 0.636342 0.771407i \(-0.280447\pi\)
−0.437351 + 0.899291i \(0.644083\pi\)
\(620\) 0.870851 0.0349742
\(621\) −4.79000 0.236428i −0.192216 0.00948753i
\(622\) 4.21280 0.168918
\(623\) −20.9870 13.4875i −0.840824 0.540365i
\(624\) −0.863659 6.00688i −0.0345740 0.240468i
\(625\) 0.415415 + 0.909632i 0.0166166 + 0.0363853i
\(626\) −11.3826 3.34224i −0.454941 0.133583i
\(627\) 6.97092 15.2642i 0.278392 0.609592i
\(628\) 5.13177 5.92238i 0.204780 0.236329i
\(629\) 4.63180 32.2149i 0.184682 1.28449i
\(630\) 2.26976 0.666461i 0.0904293 0.0265525i
\(631\) −6.47994 7.47826i −0.257963 0.297705i 0.611964 0.790885i \(-0.290380\pi\)
−0.869927 + 0.493181i \(0.835834\pi\)
\(632\) 4.57101 2.93761i 0.181825 0.116852i
\(633\) 16.6784 10.7186i 0.662908 0.426025i
\(634\) 2.50947 + 2.89608i 0.0996636 + 0.115018i
\(635\) 2.96328 0.870097i 0.117594 0.0345287i
\(636\) −1.01154 + 7.03542i −0.0401102 + 0.278973i
\(637\) −5.57977 + 6.43939i −0.221078 + 0.255138i
\(638\) −4.37343 + 9.57647i −0.173146 + 0.379136i
\(639\) −3.47778 1.02117i −0.137579 0.0403969i
\(640\) 0.415415 + 0.909632i 0.0164207 + 0.0359564i
\(641\) −4.40027 30.6046i −0.173800 1.20881i −0.870764 0.491701i \(-0.836375\pi\)
0.696964 0.717107i \(-0.254534\pi\)
\(642\) −7.13411 4.58481i −0.281561 0.180948i
\(643\) −23.2892 −0.918437 −0.459218 0.888323i \(-0.651870\pi\)
−0.459218 + 0.888323i \(0.651870\pi\)
\(644\) 7.84300 8.19724i 0.309057 0.323017i
\(645\) −11.1971 −0.440887
\(646\) −43.0876 27.6907i −1.69526 1.08948i
\(647\) 4.18814 + 29.1292i 0.164653 + 1.14519i 0.889720 + 0.456508i \(0.150900\pi\)
−0.725067 + 0.688679i \(0.758191\pi\)
\(648\) 0.415415 + 0.909632i 0.0163190 + 0.0357337i
\(649\) −6.42396 1.88624i −0.252162 0.0740416i
\(650\) −2.52101 + 5.52024i −0.0988820 + 0.216521i
\(651\) −1.34906 + 1.55690i −0.0528738 + 0.0610196i
\(652\) −0.236424 + 1.64436i −0.00925907 + 0.0643983i
\(653\) 18.3778 5.39620i 0.719177 0.211169i 0.0983892 0.995148i \(-0.468631\pi\)
0.620788 + 0.783979i \(0.286813\pi\)
\(654\) 7.85743 + 9.06795i 0.307250 + 0.354585i
\(655\) −12.6501 + 8.12975i −0.494282 + 0.317656i
\(656\) 3.69254 2.37305i 0.144169 0.0926521i
\(657\) −2.57673 2.97370i −0.100528 0.116015i
\(658\) −0.695091 + 0.204097i −0.0270975 + 0.00795654i
\(659\) −4.34742 + 30.2370i −0.169351 + 1.17786i 0.710878 + 0.703316i \(0.248298\pi\)
−0.880229 + 0.474549i \(0.842611\pi\)
\(660\) −1.26634 + 1.46144i −0.0492923 + 0.0568864i
\(661\) −10.8862 + 23.8374i −0.423422 + 0.927166i 0.570926 + 0.821001i \(0.306584\pi\)
−0.994349 + 0.106164i \(0.966143\pi\)
\(662\) 1.61311 + 0.473650i 0.0626951 + 0.0184089i
\(663\) −14.8797 32.5820i −0.577881 1.26538i
\(664\) −0.552843 3.84511i −0.0214545 0.149219i
\(665\) −17.2691 11.0982i −0.669667 0.430369i
\(666\) 5.51415 0.213669
\(667\) −16.1046 20.5513i −0.623573 0.795749i
\(668\) −12.0713 −0.467052
\(669\) 17.4102 + 11.1888i 0.673117 + 0.432586i
\(670\) −1.39651 9.71295i −0.0539519 0.375244i
\(671\) 10.1892 + 22.3113i 0.393350 + 0.861317i
\(672\) −2.26976 0.666461i −0.0875578 0.0257093i
\(673\) 4.63491 10.1490i 0.178663 0.391217i −0.799020 0.601305i \(-0.794648\pi\)
0.977683 + 0.210088i \(0.0673750\pi\)
\(674\) −8.65828 + 9.99219i −0.333504 + 0.384885i
\(675\) 0.142315 0.989821i 0.00547770 0.0380982i
\(676\) −22.8633 + 6.71326i −0.879356 + 0.258202i
\(677\) −15.0740 17.3963i −0.579339 0.668593i 0.388123 0.921608i \(-0.373124\pi\)
−0.967463 + 0.253014i \(0.918578\pi\)
\(678\) 15.2523 9.80207i 0.585762 0.376446i
\(679\) 8.63072 5.54663i 0.331217 0.212860i
\(680\) 3.86518 + 4.46066i 0.148223 + 0.171058i
\(681\) −25.9117 + 7.60837i −0.992940 + 0.291553i
\(682\) 0.239661 1.66688i 0.00917708 0.0638280i
\(683\) 10.1587 11.7238i 0.388713 0.448599i −0.527341 0.849654i \(-0.676811\pi\)
0.916054 + 0.401055i \(0.131356\pi\)
\(684\) 3.60485 7.89352i 0.137835 0.301816i
\(685\) 18.6570 + 5.47818i 0.712846 + 0.209310i
\(686\) 8.25862 + 18.0839i 0.315316 + 0.690445i
\(687\) −3.44305 23.9470i −0.131361 0.913634i
\(688\) 9.41964 + 6.05363i 0.359120 + 0.230793i
\(689\) 43.1345 1.64329
\(690\) −1.77478 4.45535i −0.0675645 0.169612i
\(691\) −19.4011 −0.738051 −0.369026 0.929419i \(-0.620309\pi\)
−0.369026 + 0.929419i \(0.620309\pi\)
\(692\) −18.8182 12.0937i −0.715362 0.459735i
\(693\) −0.651014 4.52790i −0.0247300 0.172001i
\(694\) 0.128177 + 0.280668i 0.00486552 + 0.0106540i
\(695\) −2.52143 0.740358i −0.0956433 0.0280834i
\(696\) −2.26162 + 4.95225i −0.0857264 + 0.187715i
\(697\) 16.9656 19.5793i 0.642616 0.741618i
\(698\) −3.20846 + 22.3154i −0.121442 + 0.844649i
\(699\) 2.97352 0.873104i 0.112469 0.0330238i
\(700\) 1.54913 + 1.78779i 0.0585515 + 0.0675720i
\(701\) 10.5902 6.80588i 0.399985 0.257055i −0.325149 0.945663i \(-0.605414\pi\)
0.725134 + 0.688608i \(0.241778\pi\)
\(702\) 5.10527 3.28096i 0.192686 0.123832i
\(703\) −31.3352 36.1628i −1.18183 1.36391i
\(704\) 1.85543 0.544803i 0.0699291 0.0205330i
\(705\) −0.0435825 + 0.303123i −0.00164141 + 0.0114163i
\(706\) 15.3143 17.6737i 0.576362 0.665157i
\(707\) 15.2332 33.3560i 0.572902 1.25448i
\(708\) −3.32201 0.975429i −0.124849 0.0366589i
\(709\) −4.33736 9.49750i −0.162893 0.356686i 0.810531 0.585696i \(-0.199179\pi\)
−0.973424 + 0.229010i \(0.926451\pi\)
\(710\) −0.515835 3.58771i −0.0193590 0.134644i
\(711\) 4.57101 + 2.93761i 0.171426 + 0.110169i
\(712\) 10.5459 0.395225
\(713\) 3.39787 + 2.42843i 0.127251 + 0.0909453i
\(714\) −13.9624 −0.522528
\(715\) 9.87237 + 6.34459i 0.369206 + 0.237274i
\(716\) 1.56051 + 10.8536i 0.0583191 + 0.405618i
\(717\) −0.516440 1.13085i −0.0192868 0.0422322i
\(718\) 0.321376 + 0.0943646i 0.0119937 + 0.00352166i
\(719\) −20.6825 + 45.2883i −0.771327 + 1.68897i −0.0476171 + 0.998866i \(0.515163\pi\)
−0.723710 + 0.690105i \(0.757565\pi\)
\(720\) −0.654861 + 0.755750i −0.0244052 + 0.0281651i
\(721\) −0.384167 + 2.67194i −0.0143071 + 0.0995082i
\(722\) −54.0220 + 15.8623i −2.01049 + 0.590333i
\(723\) 15.9958 + 18.4601i 0.594889 + 0.686538i
\(724\) 17.1503 11.0218i 0.637385 0.409622i
\(725\) 4.57999 2.94338i 0.170096 0.109314i
\(726\) −4.75466 5.48718i −0.176462 0.203648i
\(727\) 11.9834 3.51866i 0.444441 0.130500i −0.0518517 0.998655i \(-0.516512\pi\)
0.496293 + 0.868155i \(0.334694\pi\)
\(728\) −2.04305 + 14.2098i −0.0757206 + 0.526649i
\(729\) −0.654861 + 0.755750i −0.0242541 + 0.0279907i
\(730\) 1.63456 3.57920i 0.0604979 0.132472i
\(731\) 63.4118 + 18.6194i 2.34537 + 0.688663i
\(732\) 5.26912 + 11.5378i 0.194752 + 0.426448i
\(733\) −4.48168 31.1708i −0.165535 1.15132i −0.887977 0.459888i \(-0.847890\pi\)
0.722442 0.691431i \(-0.243019\pi\)
\(734\) −25.4141 16.3326i −0.938051 0.602849i
\(735\) 1.40403 0.0517883
\(736\) −0.915710 + 4.70760i −0.0337535 + 0.173524i
\(737\) −18.9756 −0.698977
\(738\) 3.69254 + 2.37305i 0.135924 + 0.0873532i
\(739\) −0.857963 5.96727i −0.0315607 0.219509i 0.967937 0.251192i \(-0.0808225\pi\)
−0.999498 + 0.0316825i \(0.989913\pi\)
\(740\) 2.29066 + 5.01585i 0.0842064 + 0.184386i
\(741\) −50.5288 14.8366i −1.85622 0.545036i
\(742\) 6.98479 15.2945i 0.256420 0.561481i
\(743\) 14.3783 16.5934i 0.527487 0.608753i −0.428002 0.903778i \(-0.640782\pi\)
0.955490 + 0.295025i \(0.0953279\pi\)
\(744\) 0.123935 0.861987i 0.00454368 0.0316020i
\(745\) 0.997459 0.292880i 0.0365441 0.0107303i
\(746\) −4.96379 5.72851i −0.181737 0.209736i
\(747\) 3.26797 2.10020i 0.119569 0.0768423i
\(748\) 9.60174 6.17067i 0.351075 0.225622i
\(749\) 13.1371 + 15.1610i 0.480019 + 0.553972i
\(750\) 0.959493 0.281733i 0.0350357 0.0102874i
\(751\) −2.00583 + 13.9509i −0.0731938 + 0.509074i 0.919937 + 0.392066i \(0.128239\pi\)
−0.993131 + 0.117008i \(0.962670\pi\)
\(752\) 0.200545 0.231441i 0.00731311 0.00843978i
\(753\) −2.93592 + 6.42878i −0.106991 + 0.234278i
\(754\) 31.7009 + 9.30821i 1.15448 + 0.338985i
\(755\) −7.84212 17.1719i −0.285404 0.624948i
\(756\) −0.336657 2.34150i −0.0122441 0.0851596i
\(757\) −32.1908 20.6878i −1.16999 0.751910i −0.196474 0.980509i \(-0.562949\pi\)
−0.973521 + 0.228599i \(0.926586\pi\)
\(758\) 8.03213 0.291740
\(759\) −9.01631 + 2.17093i −0.327271 + 0.0787998i
\(760\) 8.67771 0.314774
\(761\) −27.7911 17.8602i −1.00743 0.647433i −0.0706996 0.997498i \(-0.522523\pi\)
−0.936725 + 0.350065i \(0.886160\pi\)
\(762\) −0.439522 3.05694i −0.0159222 0.110741i
\(763\) −11.7910 25.8187i −0.426864 0.934701i
\(764\) 18.4641 + 5.42156i 0.668008 + 0.196145i
\(765\) −2.45190 + 5.36891i −0.0886487 + 0.194113i
\(766\) −20.1259 + 23.2265i −0.727179 + 0.839209i
\(767\) −2.99020 + 20.7973i −0.107970 + 0.750948i
\(768\) 0.959493 0.281733i 0.0346227 0.0101661i
\(769\)