Properties

Label 690.2.m.c.211.2
Level $690$
Weight $2$
Character 690.211
Analytic conductor $5.510$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \( x^{20} - 4 x^{19} - 3 x^{18} + 66 x^{17} - 163 x^{16} - 52 x^{15} + 1567 x^{14} - 6182 x^{13} + 17043 x^{12} - 35832 x^{11} + 60906 x^{10} - 87666 x^{9} + 106197 x^{8} - 102542 x^{7} + \cdots + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 211.2
Root \(0.706969 + 1.54805i\) of defining polynomial
Character \(\chi\) \(=\) 690.211
Dual form 690.2.m.c.121.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.415415 + 0.909632i) q^{2} +(0.959493 - 0.281733i) q^{3} +(-0.654861 + 0.755750i) q^{4} +(0.841254 + 0.540641i) q^{5} +(0.654861 + 0.755750i) q^{6} +(0.0903198 + 0.628188i) q^{7} +(-0.959493 - 0.281733i) q^{8} +(0.841254 - 0.540641i) q^{9} +O(q^{10})\) \(q+(0.415415 + 0.909632i) q^{2} +(0.959493 - 0.281733i) q^{3} +(-0.654861 + 0.755750i) q^{4} +(0.841254 + 0.540641i) q^{5} +(0.654861 + 0.755750i) q^{6} +(0.0903198 + 0.628188i) q^{7} +(-0.959493 - 0.281733i) q^{8} +(0.841254 - 0.540641i) q^{9} +(-0.142315 + 0.989821i) q^{10} +(-1.92870 + 4.22327i) q^{11} +(-0.415415 + 0.909632i) q^{12} +(-0.580306 + 4.03612i) q^{13} +(-0.533899 + 0.343116i) q^{14} +(0.959493 + 0.281733i) q^{15} +(-0.142315 - 0.989821i) q^{16} +(-0.821414 - 0.947963i) q^{17} +(0.841254 + 0.540641i) q^{18} +(0.992447 - 1.14534i) q^{19} +(-0.959493 + 0.281733i) q^{20} +(0.263642 + 0.577296i) q^{21} -4.64283 q^{22} +(4.65690 + 1.14600i) q^{23} -1.00000 q^{24} +(0.415415 + 0.909632i) q^{25} +(-3.91245 + 1.14880i) q^{26} +(0.654861 - 0.755750i) q^{27} +(-0.533899 - 0.343116i) q^{28} +(3.08455 + 3.55976i) q^{29} +(0.142315 + 0.989821i) q^{30} +(4.34190 + 1.27490i) q^{31} +(0.841254 - 0.540641i) q^{32} +(-0.660744 + 4.59558i) q^{33} +(0.521069 - 1.14098i) q^{34} +(-0.263642 + 0.577296i) q^{35} +(-0.142315 + 0.989821i) q^{36} +(8.68671 - 5.58261i) q^{37} +(1.45412 + 0.426968i) q^{38} +(0.580306 + 4.03612i) q^{39} +(-0.654861 - 0.755750i) q^{40} +(-7.73059 - 4.96815i) q^{41} +(-0.415606 + 0.479635i) q^{42} +(-7.97050 + 2.34035i) q^{43} +(-1.92870 - 4.22327i) q^{44} +1.00000 q^{45} +(0.892108 + 4.71213i) q^{46} -5.16744 q^{47} +(-0.415415 - 0.909632i) q^{48} +(6.32999 - 1.85865i) q^{49} +(-0.654861 + 0.755750i) q^{50} +(-1.05521 - 0.678144i) q^{51} +(-2.67027 - 3.08166i) q^{52} +(0.247376 + 1.72054i) q^{53} +(0.959493 + 0.281733i) q^{54} +(-3.90580 + 2.51011i) q^{55} +(0.0903198 - 0.628188i) q^{56} +(0.629565 - 1.37855i) q^{57} +(-1.95670 + 4.28458i) q^{58} +(0.112768 - 0.784317i) q^{59} +(-0.841254 + 0.540641i) q^{60} +(-9.73628 - 2.85883i) q^{61} +(0.644003 + 4.47914i) q^{62} +(0.415606 + 0.479635i) q^{63} +(0.841254 + 0.540641i) q^{64} +(-2.67027 + 3.08166i) q^{65} +(-4.45477 + 1.30804i) q^{66} +(-0.0920044 - 0.201462i) q^{67} +1.25433 q^{68} +(4.79112 - 0.212422i) q^{69} -0.634648 q^{70} +(2.51178 + 5.50003i) q^{71} +(-0.959493 + 0.281733i) q^{72} +(10.6779 - 12.3229i) q^{73} +(8.68671 + 5.58261i) q^{74} +(0.654861 + 0.755750i) q^{75} +(0.215679 + 1.50008i) q^{76} +(-2.82721 - 0.830143i) q^{77} +(-3.43031 + 2.20453i) q^{78} +(1.88753 - 13.1281i) q^{79} +(0.415415 - 0.909632i) q^{80} +(0.415415 - 0.909632i) q^{81} +(1.30778 - 9.09584i) q^{82} +(0.774423 - 0.497691i) q^{83} +(-0.608940 - 0.178801i) q^{84} +(-0.178510 - 1.24157i) q^{85} +(-5.43992 - 6.27801i) q^{86} +(3.96250 + 2.54655i) q^{87} +(3.04041 - 3.50882i) q^{88} +(2.72265 - 0.799443i) q^{89} +(0.415415 + 0.909632i) q^{90} -2.58785 q^{91} +(-3.91571 + 2.76898i) q^{92} +4.52520 q^{93} +(-2.14663 - 4.70046i) q^{94} +(1.45412 - 0.426968i) q^{95} +(0.654861 - 0.755750i) q^{96} +(5.73275 + 3.68422i) q^{97} +(4.32026 + 4.98585i) q^{98} +(0.660744 + 4.59558i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9} - 2 q^{10} - 24 q^{11} + 2 q^{12} - 4 q^{13} + 2 q^{14} + 2 q^{15} - 2 q^{16} + 16 q^{17} - 2 q^{18} + 14 q^{19} - 2 q^{20} - 13 q^{21} - 2 q^{22} - 2 q^{23} - 20 q^{24} - 2 q^{25} + 7 q^{26} + 2 q^{27} + 2 q^{28} + 18 q^{29} + 2 q^{30} + 22 q^{31} - 2 q^{32} + 2 q^{33} - 17 q^{34} + 13 q^{35} - 2 q^{36} - 16 q^{37} + 3 q^{38} + 4 q^{39} - 2 q^{40} + 29 q^{41} + 9 q^{42} - 22 q^{43} - 24 q^{44} + 20 q^{45} - 2 q^{46} - 94 q^{47} + 2 q^{48} - 22 q^{49} - 2 q^{50} - 5 q^{51} - 4 q^{52} + 58 q^{53} + 2 q^{54} + 9 q^{55} + 2 q^{56} - 25 q^{57} - 4 q^{58} + 45 q^{59} + 2 q^{60} + q^{61} - 9 q^{63} - 2 q^{64} - 4 q^{65} - 9 q^{66} + 16 q^{67} - 6 q^{68} + 24 q^{69} + 2 q^{70} + 59 q^{71} - 2 q^{72} + 3 q^{73} - 16 q^{74} + 2 q^{75} - 8 q^{76} - 19 q^{77} - 18 q^{78} - 20 q^{79} - 2 q^{80} - 2 q^{81} - 37 q^{82} + 13 q^{83} + 9 q^{84} + 5 q^{85} - 22 q^{86} + 4 q^{87} + 9 q^{88} - 97 q^{89} - 2 q^{90} - 18 q^{91} + 9 q^{92} + 22 q^{93} + 27 q^{94} + 3 q^{95} + 2 q^{96} - 17 q^{97} - 11 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.415415 + 0.909632i 0.293743 + 0.643207i
\(3\) 0.959493 0.281733i 0.553964 0.162658i
\(4\) −0.654861 + 0.755750i −0.327430 + 0.377875i
\(5\) 0.841254 + 0.540641i 0.376220 + 0.241782i
\(6\) 0.654861 + 0.755750i 0.267346 + 0.308533i
\(7\) 0.0903198 + 0.628188i 0.0341377 + 0.237433i 0.999745 0.0225712i \(-0.00718525\pi\)
−0.965608 + 0.260004i \(0.916276\pi\)
\(8\) −0.959493 0.281733i −0.339232 0.0996075i
\(9\) 0.841254 0.540641i 0.280418 0.180214i
\(10\) −0.142315 + 0.989821i −0.0450039 + 0.313009i
\(11\) −1.92870 + 4.22327i −0.581526 + 1.27336i 0.358903 + 0.933375i \(0.383151\pi\)
−0.940429 + 0.339989i \(0.889577\pi\)
\(12\) −0.415415 + 0.909632i −0.119920 + 0.262588i
\(13\) −0.580306 + 4.03612i −0.160948 + 1.11942i 0.735904 + 0.677086i \(0.236757\pi\)
−0.896852 + 0.442331i \(0.854152\pi\)
\(14\) −0.533899 + 0.343116i −0.142691 + 0.0917017i
\(15\) 0.959493 + 0.281733i 0.247740 + 0.0727430i
\(16\) −0.142315 0.989821i −0.0355787 0.247455i
\(17\) −0.821414 0.947963i −0.199222 0.229915i 0.647344 0.762198i \(-0.275880\pi\)
−0.846566 + 0.532283i \(0.821334\pi\)
\(18\) 0.841254 + 0.540641i 0.198285 + 0.127430i
\(19\) 0.992447 1.14534i 0.227683 0.262760i −0.630401 0.776270i \(-0.717109\pi\)
0.858084 + 0.513510i \(0.171655\pi\)
\(20\) −0.959493 + 0.281733i −0.214549 + 0.0629973i
\(21\) 0.263642 + 0.577296i 0.0575314 + 0.125976i
\(22\) −4.64283 −0.989856
\(23\) 4.65690 + 1.14600i 0.971030 + 0.238957i
\(24\) −1.00000 −0.204124
\(25\) 0.415415 + 0.909632i 0.0830830 + 0.181926i
\(26\) −3.91245 + 1.14880i −0.767294 + 0.225298i
\(27\) 0.654861 0.755750i 0.126028 0.145444i
\(28\) −0.533899 0.343116i −0.100898 0.0648429i
\(29\) 3.08455 + 3.55976i 0.572786 + 0.661031i 0.966038 0.258400i \(-0.0831953\pi\)
−0.393252 + 0.919431i \(0.628650\pi\)
\(30\) 0.142315 + 0.989821i 0.0259830 + 0.180716i
\(31\) 4.34190 + 1.27490i 0.779828 + 0.228978i 0.647335 0.762206i \(-0.275884\pi\)
0.132493 + 0.991184i \(0.457702\pi\)
\(32\) 0.841254 0.540641i 0.148714 0.0955727i
\(33\) −0.660744 + 4.59558i −0.115021 + 0.799987i
\(34\) 0.521069 1.14098i 0.0893626 0.195677i
\(35\) −0.263642 + 0.577296i −0.0445637 + 0.0975808i
\(36\) −0.142315 + 0.989821i −0.0237191 + 0.164970i
\(37\) 8.68671 5.58261i 1.42809 0.917776i 0.428186 0.903691i \(-0.359153\pi\)
0.999901 0.0140848i \(-0.00448348\pi\)
\(38\) 1.45412 + 0.426968i 0.235889 + 0.0692634i
\(39\) 0.580306 + 4.03612i 0.0929233 + 0.646296i
\(40\) −0.654861 0.755750i −0.103543 0.119494i
\(41\) −7.73059 4.96815i −1.20732 0.775895i −0.227108 0.973869i \(-0.572927\pi\)
−0.980207 + 0.197975i \(0.936564\pi\)
\(42\) −0.415606 + 0.479635i −0.0641294 + 0.0740092i
\(43\) −7.97050 + 2.34035i −1.21549 + 0.356900i −0.825756 0.564027i \(-0.809251\pi\)
−0.389734 + 0.920927i \(0.627433\pi\)
\(44\) −1.92870 4.22327i −0.290763 0.636682i
\(45\) 1.00000 0.149071
\(46\) 0.892108 + 4.71213i 0.131534 + 0.694765i
\(47\) −5.16744 −0.753748 −0.376874 0.926265i \(-0.623001\pi\)
−0.376874 + 0.926265i \(0.623001\pi\)
\(48\) −0.415415 0.909632i −0.0599600 0.131294i
\(49\) 6.32999 1.85865i 0.904284 0.265522i
\(50\) −0.654861 + 0.755750i −0.0926113 + 0.106879i
\(51\) −1.05521 0.678144i −0.147759 0.0949592i
\(52\) −2.67027 3.08166i −0.370300 0.427349i
\(53\) 0.247376 + 1.72054i 0.0339797 + 0.236334i 0.999732 0.0231300i \(-0.00736315\pi\)
−0.965753 + 0.259464i \(0.916454\pi\)
\(54\) 0.959493 + 0.281733i 0.130570 + 0.0383389i
\(55\) −3.90580 + 2.51011i −0.526658 + 0.338463i
\(56\) 0.0903198 0.628188i 0.0120695 0.0839451i
\(57\) 0.629565 1.37855i 0.0833879 0.182594i
\(58\) −1.95670 + 4.28458i −0.256928 + 0.562593i
\(59\) 0.112768 0.784317i 0.0146811 0.102109i −0.981163 0.193180i \(-0.938120\pi\)
0.995844 + 0.0910707i \(0.0290289\pi\)
\(60\) −0.841254 + 0.540641i −0.108605 + 0.0697964i
\(61\) −9.73628 2.85883i −1.24660 0.366036i −0.409110 0.912485i \(-0.634161\pi\)
−0.837492 + 0.546449i \(0.815979\pi\)
\(62\) 0.644003 + 4.47914i 0.0817885 + 0.568851i
\(63\) 0.415606 + 0.479635i 0.0523614 + 0.0604283i
\(64\) 0.841254 + 0.540641i 0.105157 + 0.0675801i
\(65\) −2.67027 + 3.08166i −0.331207 + 0.382233i
\(66\) −4.45477 + 1.30804i −0.548344 + 0.161008i
\(67\) −0.0920044 0.201462i −0.0112401 0.0246125i 0.903929 0.427683i \(-0.140670\pi\)
−0.915169 + 0.403071i \(0.867943\pi\)
\(68\) 1.25433 0.152110
\(69\) 4.79112 0.212422i 0.576784 0.0255726i
\(70\) −0.634648 −0.0758549
\(71\) 2.51178 + 5.50003i 0.298093 + 0.652733i 0.998114 0.0613895i \(-0.0195532\pi\)
−0.700021 + 0.714123i \(0.746826\pi\)
\(72\) −0.959493 + 0.281733i −0.113077 + 0.0332025i
\(73\) 10.6779 12.3229i 1.24975 1.44229i 0.398804 0.917036i \(-0.369425\pi\)
0.850946 0.525253i \(-0.176029\pi\)
\(74\) 8.68671 + 5.58261i 1.00981 + 0.648965i
\(75\) 0.654861 + 0.755750i 0.0756168 + 0.0872664i
\(76\) 0.215679 + 1.50008i 0.0247401 + 0.172071i
\(77\) −2.82721 0.830143i −0.322190 0.0946036i
\(78\) −3.43031 + 2.20453i −0.388406 + 0.249614i
\(79\) 1.88753 13.1281i 0.212364 1.47702i −0.552868 0.833269i \(-0.686466\pi\)
0.765232 0.643755i \(-0.222624\pi\)
\(80\) 0.415415 0.909632i 0.0464448 0.101700i
\(81\) 0.415415 0.909632i 0.0461572 0.101070i
\(82\) 1.30778 9.09584i 0.144421 1.00447i
\(83\) 0.774423 0.497691i 0.0850039 0.0546287i −0.497448 0.867494i \(-0.665730\pi\)
0.582452 + 0.812865i \(0.302093\pi\)
\(84\) −0.608940 0.178801i −0.0664408 0.0195088i
\(85\) −0.178510 1.24157i −0.0193622 0.134667i
\(86\) −5.43992 6.27801i −0.586602 0.676975i
\(87\) 3.96250 + 2.54655i 0.424825 + 0.273018i
\(88\) 3.04041 3.50882i 0.324109 0.374041i
\(89\) 2.72265 0.799443i 0.288601 0.0847408i −0.134228 0.990950i \(-0.542855\pi\)
0.422829 + 0.906210i \(0.361037\pi\)
\(90\) 0.415415 + 0.909632i 0.0437886 + 0.0958836i
\(91\) −2.58785 −0.271281
\(92\) −3.91571 + 2.76898i −0.408241 + 0.288686i
\(93\) 4.52520 0.469241
\(94\) −2.14663 4.70046i −0.221408 0.484816i
\(95\) 1.45412 0.426968i 0.149190 0.0438060i
\(96\) 0.654861 0.755750i 0.0668364 0.0771334i
\(97\) 5.73275 + 3.68422i 0.582073 + 0.374075i 0.798293 0.602269i \(-0.205737\pi\)
−0.216220 + 0.976345i \(0.569373\pi\)
\(98\) 4.32026 + 4.98585i 0.436412 + 0.503647i
\(99\) 0.660744 + 4.59558i 0.0664073 + 0.461873i
\(100\) −0.959493 0.281733i −0.0959493 0.0281733i
\(101\) −11.7359 + 7.54218i −1.16776 + 0.750474i −0.973097 0.230396i \(-0.925998\pi\)
−0.194664 + 0.980870i \(0.562362\pi\)
\(102\) 0.178510 1.24157i 0.0176752 0.122933i
\(103\) −0.422105 + 0.924280i −0.0415912 + 0.0910720i −0.929287 0.369358i \(-0.879578\pi\)
0.887696 + 0.460430i \(0.152305\pi\)
\(104\) 1.69390 3.70913i 0.166101 0.363710i
\(105\) −0.0903198 + 0.628188i −0.00881431 + 0.0613048i
\(106\) −1.46229 + 0.939759i −0.142030 + 0.0912775i
\(107\) 3.99701 + 1.17363i 0.386406 + 0.113459i 0.469165 0.883111i \(-0.344555\pi\)
−0.0827590 + 0.996570i \(0.526373\pi\)
\(108\) 0.142315 + 0.989821i 0.0136943 + 0.0952456i
\(109\) −12.2888 14.1821i −1.17706 1.35840i −0.919960 0.392012i \(-0.871779\pi\)
−0.257098 0.966385i \(-0.582766\pi\)
\(110\) −3.90580 2.51011i −0.372403 0.239329i
\(111\) 6.76204 7.80381i 0.641824 0.740704i
\(112\) 0.608940 0.178801i 0.0575394 0.0168951i
\(113\) −2.44726 5.35875i −0.230219 0.504109i 0.758904 0.651203i \(-0.225735\pi\)
−0.989122 + 0.147094i \(0.953008\pi\)
\(114\) 1.51551 0.141940
\(115\) 3.29806 + 3.48178i 0.307545 + 0.324678i
\(116\) −4.71024 −0.437334
\(117\) 1.69390 + 3.70913i 0.156602 + 0.342909i
\(118\) 0.760285 0.223240i 0.0699899 0.0205509i
\(119\) 0.521309 0.601622i 0.0477883 0.0551506i
\(120\) −0.841254 0.540641i −0.0767956 0.0493535i
\(121\) −6.91265 7.97762i −0.628423 0.725239i
\(122\) −1.44411 10.0440i −0.130744 0.909344i
\(123\) −8.81714 2.58895i −0.795014 0.233437i
\(124\) −3.80684 + 2.44651i −0.341864 + 0.219703i
\(125\) −0.142315 + 0.989821i −0.0127290 + 0.0885323i
\(126\) −0.263642 + 0.577296i −0.0234871 + 0.0514296i
\(127\) 6.38105 13.9726i 0.566227 1.23986i −0.382555 0.923933i \(-0.624956\pi\)
0.948782 0.315931i \(-0.102317\pi\)
\(128\) −0.142315 + 0.989821i −0.0125790 + 0.0874887i
\(129\) −6.98829 + 4.49110i −0.615284 + 0.395419i
\(130\) −3.91245 1.14880i −0.343144 0.100756i
\(131\) 2.42640 + 16.8760i 0.211996 + 1.47446i 0.766481 + 0.642268i \(0.222006\pi\)
−0.554485 + 0.832194i \(0.687085\pi\)
\(132\) −3.04041 3.50882i −0.264634 0.305404i
\(133\) 0.809129 + 0.519996i 0.0701604 + 0.0450893i
\(134\) 0.145036 0.167380i 0.0125292 0.0144595i
\(135\) 0.959493 0.281733i 0.0825800 0.0242477i
\(136\) 0.521069 + 1.14098i 0.0446813 + 0.0978384i
\(137\) 5.52659 0.472169 0.236084 0.971733i \(-0.424136\pi\)
0.236084 + 0.971733i \(0.424136\pi\)
\(138\) 2.18353 + 4.26992i 0.185875 + 0.363479i
\(139\) 0.415639 0.0352540 0.0176270 0.999845i \(-0.494389\pi\)
0.0176270 + 0.999845i \(0.494389\pi\)
\(140\) −0.263642 0.577296i −0.0222818 0.0487904i
\(141\) −4.95812 + 1.45583i −0.417549 + 0.122603i
\(142\) −3.95957 + 4.56959i −0.332280 + 0.383471i
\(143\) −15.9264 10.2353i −1.33183 0.855915i
\(144\) −0.654861 0.755750i −0.0545717 0.0629791i
\(145\) 0.670337 + 4.66229i 0.0556684 + 0.387182i
\(146\) 15.6451 + 4.59381i 1.29480 + 0.380186i
\(147\) 5.54994 3.56673i 0.457751 0.294179i
\(148\) −1.46953 + 10.2208i −0.120795 + 0.840146i
\(149\) 2.16320 4.73674i 0.177216 0.388049i −0.800090 0.599879i \(-0.795215\pi\)
0.977306 + 0.211831i \(0.0679425\pi\)
\(150\) −0.415415 + 0.909632i −0.0339185 + 0.0742711i
\(151\) 2.91493 20.2738i 0.237213 1.64985i −0.428423 0.903578i \(-0.640931\pi\)
0.665636 0.746277i \(-0.268160\pi\)
\(152\) −1.27493 + 0.819346i −0.103410 + 0.0664577i
\(153\) −1.20352 0.353387i −0.0972992 0.0285696i
\(154\) −0.419340 2.91657i −0.0337914 0.235024i
\(155\) 2.96338 + 3.41992i 0.238024 + 0.274694i
\(156\) −3.43031 2.20453i −0.274645 0.176503i
\(157\) 12.1505 14.0224i 0.969714 1.11911i −0.0231352 0.999732i \(-0.507365\pi\)
0.992849 0.119377i \(-0.0380897\pi\)
\(158\) 12.7258 3.73664i 1.01241 0.297271i
\(159\) 0.722088 + 1.58115i 0.0572653 + 0.125393i
\(160\) 1.00000 0.0790569
\(161\) −0.299292 + 3.02891i −0.0235875 + 0.238712i
\(162\) 1.00000 0.0785674
\(163\) 7.35041 + 16.0952i 0.575729 + 1.26067i 0.943691 + 0.330829i \(0.107328\pi\)
−0.367962 + 0.929841i \(0.619944\pi\)
\(164\) 8.81714 2.58895i 0.688503 0.202163i
\(165\) −3.04041 + 3.50882i −0.236696 + 0.273161i
\(166\) 0.774423 + 0.497691i 0.0601069 + 0.0386283i
\(167\) 6.82003 + 7.87074i 0.527750 + 0.609056i 0.955554 0.294815i \(-0.0952582\pi\)
−0.427804 + 0.903871i \(0.640713\pi\)
\(168\) −0.0903198 0.628188i −0.00696832 0.0484657i
\(169\) −3.48006 1.02184i −0.267697 0.0786030i
\(170\) 1.05521 0.678144i 0.0809312 0.0520113i
\(171\) 0.215679 1.50008i 0.0164934 0.114714i
\(172\) 3.45085 7.55631i 0.263125 0.576163i
\(173\) 6.13672 13.4375i 0.466566 1.02164i −0.519375 0.854546i \(-0.673835\pi\)
0.985941 0.167091i \(-0.0534375\pi\)
\(174\) −0.670337 + 4.66229i −0.0508181 + 0.353448i
\(175\) −0.533899 + 0.343116i −0.0403590 + 0.0259372i
\(176\) 4.45477 + 1.30804i 0.335791 + 0.0985970i
\(177\) −0.112768 0.784317i −0.00847614 0.0589529i
\(178\) 1.85823 + 2.14451i 0.139280 + 0.160738i
\(179\) −7.79833 5.01168i −0.582874 0.374591i 0.215725 0.976454i \(-0.430789\pi\)
−0.798599 + 0.601864i \(0.794425\pi\)
\(180\) −0.654861 + 0.755750i −0.0488104 + 0.0563302i
\(181\) 2.25536 0.662234i 0.167640 0.0492234i −0.196836 0.980436i \(-0.563067\pi\)
0.364475 + 0.931213i \(0.381248\pi\)
\(182\) −1.07503 2.35399i −0.0796867 0.174490i
\(183\) −10.1473 −0.750111
\(184\) −4.14539 2.41158i −0.305603 0.177784i
\(185\) 10.3259 0.759176
\(186\) 1.87984 + 4.11627i 0.137836 + 0.301819i
\(187\) 5.58777 1.64072i 0.408618 0.119981i
\(188\) 3.38395 3.90529i 0.246800 0.284822i
\(189\) 0.533899 + 0.343116i 0.0388355 + 0.0249580i
\(190\) 0.992447 + 1.14534i 0.0719997 + 0.0830920i
\(191\) 2.20839 + 15.3597i 0.159793 + 1.11139i 0.899013 + 0.437922i \(0.144286\pi\)
−0.739220 + 0.673465i \(0.764805\pi\)
\(192\) 0.959493 + 0.281733i 0.0692454 + 0.0203323i
\(193\) 12.2985 7.90377i 0.885266 0.568926i −0.0171204 0.999853i \(-0.505450\pi\)
0.902387 + 0.430927i \(0.141814\pi\)
\(194\) −0.969809 + 6.74517i −0.0696283 + 0.484275i
\(195\) −1.69390 + 3.70913i −0.121303 + 0.265617i
\(196\) −2.74059 + 6.00104i −0.195756 + 0.428646i
\(197\) 1.40666 9.78356i 0.100221 0.697049i −0.876322 0.481726i \(-0.840010\pi\)
0.976543 0.215324i \(-0.0690807\pi\)
\(198\) −3.90580 + 2.51011i −0.277573 + 0.178385i
\(199\) −0.653037 0.191749i −0.0462926 0.0135927i 0.258504 0.966010i \(-0.416770\pi\)
−0.304797 + 0.952417i \(0.598589\pi\)
\(200\) −0.142315 0.989821i −0.0100632 0.0699909i
\(201\) −0.145036 0.167380i −0.0102300 0.0118061i
\(202\) −11.7359 7.54218i −0.825732 0.530666i
\(203\) −1.95760 + 2.25919i −0.137397 + 0.158564i
\(204\) 1.20352 0.353387i 0.0842636 0.0247420i
\(205\) −3.81740 8.35895i −0.266619 0.583814i
\(206\) −1.01610 −0.0707953
\(207\) 4.53720 1.55363i 0.315357 0.107985i
\(208\) 4.07762 0.282732
\(209\) 2.92297 + 6.40040i 0.202186 + 0.442725i
\(210\) −0.608940 + 0.178801i −0.0420208 + 0.0123384i
\(211\) −11.1605 + 12.8799i −0.768321 + 0.886689i −0.996208 0.0869981i \(-0.972273\pi\)
0.227888 + 0.973687i \(0.426818\pi\)
\(212\) −1.46229 0.939759i −0.100431 0.0645429i
\(213\) 3.95957 + 4.56959i 0.271305 + 0.313103i
\(214\) 0.592849 + 4.12335i 0.0405263 + 0.281867i
\(215\) −7.97050 2.34035i −0.543584 0.159611i
\(216\) −0.841254 + 0.540641i −0.0572401 + 0.0367859i
\(217\) −0.408715 + 2.84268i −0.0277454 + 0.192973i
\(218\) 7.79551 17.0698i 0.527978 1.15611i
\(219\) 6.77358 14.8321i 0.457716 1.00226i
\(220\) 0.660744 4.59558i 0.0445474 0.309834i
\(221\) 4.30276 2.76521i 0.289435 0.186008i
\(222\) 9.90764 + 2.90915i 0.664957 + 0.195249i
\(223\) 0.292102 + 2.03161i 0.0195606 + 0.136047i 0.997262 0.0739549i \(-0.0235621\pi\)
−0.977701 + 0.210002i \(0.932653\pi\)
\(224\) 0.415606 + 0.479635i 0.0277688 + 0.0320469i
\(225\) 0.841254 + 0.540641i 0.0560836 + 0.0360427i
\(226\) 3.85786 4.45221i 0.256621 0.296156i
\(227\) −10.1046 + 2.96697i −0.670664 + 0.196925i −0.599298 0.800526i \(-0.704554\pi\)
−0.0713651 + 0.997450i \(0.522736\pi\)
\(228\) 0.629565 + 1.37855i 0.0416939 + 0.0912970i
\(229\) −13.4818 −0.890903 −0.445452 0.895306i \(-0.646957\pi\)
−0.445452 + 0.895306i \(0.646957\pi\)
\(230\) −1.79708 + 4.44640i −0.118496 + 0.293187i
\(231\) −2.94656 −0.193870
\(232\) −1.95670 4.28458i −0.128464 0.281297i
\(233\) 19.8322 5.82327i 1.29925 0.381495i 0.442289 0.896872i \(-0.354166\pi\)
0.856963 + 0.515377i \(0.172348\pi\)
\(234\) −2.67027 + 3.08166i −0.174561 + 0.201454i
\(235\) −4.34712 2.79373i −0.283575 0.182243i
\(236\) 0.518900 + 0.598842i 0.0337775 + 0.0389813i
\(237\) −1.88753 13.1281i −0.122608 0.852760i
\(238\) 0.763814 + 0.224276i 0.0495107 + 0.0145377i
\(239\) −19.9411 + 12.8153i −1.28988 + 0.828955i −0.992072 0.125671i \(-0.959892\pi\)
−0.297807 + 0.954626i \(0.596255\pi\)
\(240\) 0.142315 0.989821i 0.00918638 0.0638927i
\(241\) −10.8214 + 23.6955i −0.697066 + 1.52636i 0.146428 + 0.989221i \(0.453222\pi\)
−0.843493 + 0.537140i \(0.819505\pi\)
\(242\) 4.38508 9.60199i 0.281884 0.617239i
\(243\) 0.142315 0.989821i 0.00912950 0.0634971i
\(244\) 8.53646 5.48605i 0.546491 0.351209i
\(245\) 6.32999 + 1.85865i 0.404408 + 0.118745i
\(246\) −1.30778 9.09584i −0.0833813 0.579929i
\(247\) 4.04682 + 4.67028i 0.257493 + 0.297163i
\(248\) −3.80684 2.44651i −0.241735 0.155353i
\(249\) 0.602837 0.695711i 0.0382033 0.0440889i
\(250\) −0.959493 + 0.281733i −0.0606837 + 0.0178183i
\(251\) −1.14910 2.51618i −0.0725307 0.158820i 0.869894 0.493239i \(-0.164187\pi\)
−0.942425 + 0.334419i \(0.891460\pi\)
\(252\) −0.634648 −0.0399790
\(253\) −13.8216 + 17.4570i −0.868958 + 1.09752i
\(254\) 15.3607 0.963814
\(255\) −0.521069 1.14098i −0.0326306 0.0714511i
\(256\) −0.959493 + 0.281733i −0.0599683 + 0.0176083i
\(257\) 3.54282 4.08863i 0.220995 0.255042i −0.634416 0.772992i \(-0.718759\pi\)
0.855411 + 0.517950i \(0.173305\pi\)
\(258\) −6.98829 4.49110i −0.435072 0.279604i
\(259\) 4.29151 + 4.95267i 0.266661 + 0.307744i
\(260\) −0.580306 4.03612i −0.0359890 0.250309i
\(261\) 4.51944 + 1.32703i 0.279746 + 0.0821409i
\(262\) −14.3430 + 9.21767i −0.886112 + 0.569469i
\(263\) −0.702621 + 4.88684i −0.0433255 + 0.301335i 0.956624 + 0.291324i \(0.0940958\pi\)
−0.999950 + 0.0100111i \(0.996813\pi\)
\(264\) 1.92870 4.22327i 0.118703 0.259924i
\(265\) −0.722088 + 1.58115i −0.0443575 + 0.0971293i
\(266\) −0.136880 + 0.952024i −0.00839267 + 0.0583723i
\(267\) 2.38714 1.53412i 0.146091 0.0938867i
\(268\) 0.212505 + 0.0623970i 0.0129808 + 0.00381150i
\(269\) −0.977048 6.79552i −0.0595717 0.414330i −0.997685 0.0680021i \(-0.978338\pi\)
0.938113 0.346328i \(-0.112572\pi\)
\(270\) 0.654861 + 0.755750i 0.0398536 + 0.0459935i
\(271\) 3.50106 + 2.25000i 0.212674 + 0.136678i 0.642641 0.766167i \(-0.277838\pi\)
−0.429967 + 0.902845i \(0.641475\pi\)
\(272\) −0.821414 + 0.947963i −0.0498056 + 0.0574787i
\(273\) −2.48303 + 0.729082i −0.150280 + 0.0441260i
\(274\) 2.29583 + 5.02717i 0.138696 + 0.303702i
\(275\) −4.64283 −0.279973
\(276\) −2.97698 + 3.76000i −0.179193 + 0.226325i
\(277\) 23.7731 1.42839 0.714193 0.699948i \(-0.246794\pi\)
0.714193 + 0.699948i \(0.246794\pi\)
\(278\) 0.172663 + 0.378078i 0.0103556 + 0.0226756i
\(279\) 4.34190 1.27490i 0.259943 0.0763260i
\(280\) 0.415606 0.479635i 0.0248372 0.0286637i
\(281\) −11.0316 7.08959i −0.658091 0.422929i 0.168524 0.985698i \(-0.446100\pi\)
−0.826615 + 0.562768i \(0.809736\pi\)
\(282\) −3.38395 3.90529i −0.201511 0.232556i
\(283\) −0.578738 4.02521i −0.0344024 0.239274i 0.965364 0.260908i \(-0.0840221\pi\)
−0.999766 + 0.0216346i \(0.993113\pi\)
\(284\) −5.80151 1.70348i −0.344256 0.101083i
\(285\) 1.27493 0.819346i 0.0755201 0.0485338i
\(286\) 2.69426 18.7390i 0.159315 1.10806i
\(287\) 2.42271 5.30498i 0.143008 0.313143i
\(288\) 0.415415 0.909632i 0.0244786 0.0536006i
\(289\) 2.19544 15.2696i 0.129144 0.898213i
\(290\) −3.96250 + 2.54655i −0.232686 + 0.149538i
\(291\) 6.53850 + 1.91988i 0.383294 + 0.112545i
\(292\) 2.32052 + 16.1396i 0.135798 + 0.944498i
\(293\) −19.3798 22.3655i −1.13218 1.30660i −0.946029 0.324083i \(-0.894944\pi\)
−0.186150 0.982521i \(-0.559601\pi\)
\(294\) 5.54994 + 3.56673i 0.323679 + 0.208016i
\(295\) 0.518900 0.598842i 0.0302115 0.0348660i
\(296\) −9.90764 + 2.90915i −0.575870 + 0.169091i
\(297\) 1.92870 + 4.22327i 0.111915 + 0.245059i
\(298\) 5.20731 0.301652
\(299\) −7.32780 + 18.1307i −0.423778 + 1.04853i
\(300\) −1.00000 −0.0577350
\(301\) −2.19007 4.79559i −0.126234 0.276413i
\(302\) 19.6526 5.77051i 1.13088 0.332056i
\(303\) −9.13559 + 10.5430i −0.524826 + 0.605682i
\(304\) −1.27493 0.819346i −0.0731221 0.0469927i
\(305\) −6.64508 7.66883i −0.380496 0.439116i
\(306\) −0.178510 1.24157i −0.0102048 0.0709757i
\(307\) 16.0476 + 4.71199i 0.915883 + 0.268928i 0.705515 0.708695i \(-0.250716\pi\)
0.210368 + 0.977622i \(0.432534\pi\)
\(308\) 2.47881 1.59303i 0.141243 0.0907714i
\(309\) −0.144607 + 1.00576i −0.00822638 + 0.0572158i
\(310\) −1.87984 + 4.11627i −0.106768 + 0.233788i
\(311\) −12.8962 + 28.2387i −0.731274 + 1.60127i 0.0661225 + 0.997812i \(0.478937\pi\)
−0.797397 + 0.603456i \(0.793790\pi\)
\(312\) 0.580306 4.03612i 0.0328533 0.228500i
\(313\) −16.2299 + 10.4303i −0.917367 + 0.589556i −0.911892 0.410429i \(-0.865379\pi\)
−0.00547422 + 0.999985i \(0.501743\pi\)
\(314\) 17.8027 + 5.22735i 1.00467 + 0.294996i
\(315\) 0.0903198 + 0.628188i 0.00508894 + 0.0353944i
\(316\) 8.68547 + 10.0236i 0.488596 + 0.563870i
\(317\) 21.6010 + 13.8821i 1.21323 + 0.779696i 0.981196 0.193012i \(-0.0618256\pi\)
0.232034 + 0.972708i \(0.425462\pi\)
\(318\) −1.13830 + 1.31367i −0.0638327 + 0.0736668i
\(319\) −20.9830 + 6.16117i −1.17482 + 0.344959i
\(320\) 0.415415 + 0.909632i 0.0232224 + 0.0508500i
\(321\) 4.16576 0.232510
\(322\) −2.87953 + 0.986010i −0.160470 + 0.0549482i
\(323\) −1.90095 −0.105772
\(324\) 0.415415 + 0.909632i 0.0230786 + 0.0505351i
\(325\) −3.91245 + 1.14880i −0.217024 + 0.0637239i
\(326\) −11.5872 + 13.3723i −0.641755 + 0.740625i
\(327\) −15.7866 10.1454i −0.873002 0.561044i
\(328\) 6.01776 + 6.94486i 0.332275 + 0.383466i
\(329\) −0.466722 3.24612i −0.0257312 0.178964i
\(330\) −4.45477 1.30804i −0.245227 0.0720051i
\(331\) −20.2940 + 13.0422i −1.11546 + 0.716863i −0.962476 0.271366i \(-0.912525\pi\)
−0.152984 + 0.988229i \(0.548888\pi\)
\(332\) −0.131009 + 0.911188i −0.00719006 + 0.0500079i
\(333\) 4.28954 9.39278i 0.235065 0.514721i
\(334\) −4.32633 + 9.47334i −0.236726 + 0.518358i
\(335\) 0.0315193 0.219222i 0.00172208 0.0119774i
\(336\) 0.533899 0.343116i 0.0291266 0.0187185i
\(337\) −10.7411 3.15388i −0.585106 0.171803i −0.0242357 0.999706i \(-0.507715\pi\)
−0.560870 + 0.827904i \(0.689533\pi\)
\(338\) −0.516173 3.59006i −0.0280761 0.195274i
\(339\) −3.85786 4.45221i −0.209530 0.241811i
\(340\) 1.05521 + 0.678144i 0.0572270 + 0.0367775i
\(341\) −13.7585 + 15.8781i −0.745063 + 0.859848i
\(342\) 1.45412 0.426968i 0.0786298 0.0230878i
\(343\) 3.58480 + 7.84962i 0.193561 + 0.423840i
\(344\) 8.30699 0.447883
\(345\) 4.14539 + 2.41158i 0.223181 + 0.129835i
\(346\) 14.7725 0.794175
\(347\) −3.80652 8.33512i −0.204345 0.447453i 0.779517 0.626381i \(-0.215464\pi\)
−0.983862 + 0.178928i \(0.942737\pi\)
\(348\) −4.51944 + 1.32703i −0.242267 + 0.0711361i
\(349\) 1.69993 1.96182i 0.0909950 0.105014i −0.708426 0.705785i \(-0.750594\pi\)
0.799421 + 0.600771i \(0.205140\pi\)
\(350\) −0.533899 0.343116i −0.0285381 0.0183403i
\(351\) 2.67027 + 3.08166i 0.142529 + 0.164487i
\(352\) 0.660744 + 4.59558i 0.0352178 + 0.244945i
\(353\) 0.0427256 + 0.0125454i 0.00227406 + 0.000667723i 0.282869 0.959158i \(-0.408714\pi\)
−0.280595 + 0.959826i \(0.590532\pi\)
\(354\) 0.666594 0.428394i 0.0354291 0.0227689i
\(355\) −0.860497 + 5.98489i −0.0456704 + 0.317645i
\(356\) −1.17878 + 2.58117i −0.0624752 + 0.136802i
\(357\) 0.330695 0.724122i 0.0175023 0.0383246i
\(358\) 1.31924 9.17553i 0.0697241 0.484942i
\(359\) −12.2268 + 7.85768i −0.645305 + 0.414713i −0.821948 0.569562i \(-0.807113\pi\)
0.176643 + 0.984275i \(0.443476\pi\)
\(360\) −0.959493 0.281733i −0.0505697 0.0148486i
\(361\) 2.37712 + 16.5332i 0.125111 + 0.870169i
\(362\) 1.53930 + 1.77645i 0.0809038 + 0.0933680i
\(363\) −8.88020 5.70696i −0.466089 0.299537i
\(364\) 1.69468 1.95577i 0.0888255 0.102510i
\(365\) 15.6451 4.59381i 0.818901 0.240451i
\(366\) −4.21535 9.23032i −0.220340 0.482477i
\(367\) −12.1296 −0.633161 −0.316581 0.948566i \(-0.602535\pi\)
−0.316581 + 0.948566i \(0.602535\pi\)
\(368\) 0.471588 4.77259i 0.0245832 0.248788i
\(369\) −9.18937 −0.478380
\(370\) 4.28954 + 9.39278i 0.223003 + 0.488307i
\(371\) −1.05848 + 0.310797i −0.0549535 + 0.0161358i
\(372\) −2.96338 + 3.41992i −0.153644 + 0.177314i
\(373\) −9.69647 6.23154i −0.502064 0.322657i 0.264977 0.964255i \(-0.414636\pi\)
−0.767041 + 0.641598i \(0.778272\pi\)
\(374\) 3.81369 + 4.40123i 0.197201 + 0.227582i
\(375\) 0.142315 + 0.989821i 0.00734911 + 0.0511142i
\(376\) 4.95812 + 1.45583i 0.255695 + 0.0750790i
\(377\) −16.1576 + 10.3838i −0.832158 + 0.534795i
\(378\) −0.0903198 + 0.628188i −0.00464555 + 0.0323105i
\(379\) −8.76485 + 19.1923i −0.450220 + 0.985844i 0.539389 + 0.842057i \(0.318655\pi\)
−0.989609 + 0.143787i \(0.954072\pi\)
\(380\) −0.629565 + 1.37855i −0.0322960 + 0.0707184i
\(381\) 2.18605 15.2043i 0.111995 0.778941i
\(382\) −13.0543 + 8.38946i −0.667914 + 0.429242i
\(383\) −18.1179 5.31989i −0.925780 0.271834i −0.216111 0.976369i \(-0.569337\pi\)
−0.709669 + 0.704535i \(0.751156\pi\)
\(384\) 0.142315 + 0.989821i 0.00726247 + 0.0505116i
\(385\) −1.92959 2.22686i −0.0983409 0.113491i
\(386\) 12.2985 + 7.90377i 0.625978 + 0.402291i
\(387\) −5.43992 + 6.27801i −0.276527 + 0.319129i
\(388\) −6.53850 + 1.91988i −0.331942 + 0.0974669i
\(389\) 5.33480 + 11.6816i 0.270485 + 0.592280i 0.995319 0.0966437i \(-0.0308107\pi\)
−0.724834 + 0.688924i \(0.758083\pi\)
\(390\) −4.07762 −0.206478
\(391\) −2.73888 5.35590i −0.138511 0.270860i
\(392\) −6.59722 −0.333210
\(393\) 7.08263 + 15.5088i 0.357271 + 0.782315i
\(394\) 9.48378 2.78469i 0.477786 0.140291i
\(395\) 8.68547 10.0236i 0.437013 0.504340i
\(396\) −3.90580 2.51011i −0.196274 0.126138i
\(397\) 17.5657 + 20.2719i 0.881598 + 1.01742i 0.999702 + 0.0244169i \(0.00777292\pi\)
−0.118104 + 0.993001i \(0.537682\pi\)
\(398\) −0.0968604 0.673679i −0.00485517 0.0337685i
\(399\) 0.922853 + 0.270974i 0.0462005 + 0.0135657i
\(400\) 0.841254 0.540641i 0.0420627 0.0270320i
\(401\) 0.137366 0.955401i 0.00685973 0.0477105i −0.986104 0.166129i \(-0.946873\pi\)
0.992964 + 0.118418i \(0.0377824\pi\)
\(402\) 0.0920044 0.201462i 0.00458876 0.0100480i
\(403\) −7.66526 + 16.7846i −0.381834 + 0.836099i
\(404\) 1.98535 13.8084i 0.0987751 0.686996i
\(405\) 0.841254 0.540641i 0.0418022 0.0268647i
\(406\) −2.86825 0.842194i −0.142349 0.0417974i
\(407\) 6.82279 + 47.4535i 0.338193 + 2.35218i
\(408\) 0.821414 + 0.947963i 0.0406661 + 0.0469311i
\(409\) 15.0330 + 9.66114i 0.743335 + 0.477712i 0.856683 0.515843i \(-0.172521\pi\)
−0.113348 + 0.993555i \(0.536158\pi\)
\(410\) 6.01776 6.94486i 0.297196 0.342982i
\(411\) 5.30273 1.55702i 0.261564 0.0768022i
\(412\) −0.422105 0.924280i −0.0207956 0.0455360i
\(413\) 0.502883 0.0247453
\(414\) 3.29806 + 3.48178i 0.162091 + 0.171120i
\(415\) 0.920558 0.0451884
\(416\) 1.69390 + 3.70913i 0.0830505 + 0.181855i
\(417\) 0.398803 0.117099i 0.0195294 0.00573436i
\(418\) −4.60777 + 5.31765i −0.225373 + 0.260095i
\(419\) −2.45829 1.57985i −0.120095 0.0771806i 0.479214 0.877698i \(-0.340922\pi\)
−0.599309 + 0.800517i \(0.704558\pi\)
\(420\) −0.415606 0.479635i −0.0202795 0.0234038i
\(421\) 0.196990 + 1.37010i 0.00960071 + 0.0667744i 0.994059 0.108847i \(-0.0347158\pi\)
−0.984458 + 0.175621i \(0.943807\pi\)
\(422\) −16.3522 4.80144i −0.796013 0.233731i
\(423\) −4.34712 + 2.79373i −0.211364 + 0.135836i
\(424\) 0.247376 1.72054i 0.0120136 0.0835568i
\(425\) 0.521069 1.14098i 0.0252756 0.0553458i
\(426\) −2.51178 + 5.50003i −0.121696 + 0.266477i
\(427\) 0.916503 6.37442i 0.0443527 0.308480i
\(428\) −3.50446 + 2.25218i −0.169394 + 0.108863i
\(429\) −18.1648 5.33368i −0.877007 0.257512i
\(430\) −1.18221 8.22244i −0.0570111 0.396521i
\(431\) −19.2651 22.2331i −0.927966 1.07093i −0.997307 0.0733368i \(-0.976635\pi\)
0.0693413 0.997593i \(-0.477910\pi\)
\(432\) −0.841254 0.540641i −0.0404748 0.0260116i
\(433\) −9.05181 + 10.4463i −0.435002 + 0.502019i −0.930349 0.366676i \(-0.880496\pi\)
0.495346 + 0.868696i \(0.335041\pi\)
\(434\) −2.75557 + 0.809110i −0.132272 + 0.0388385i
\(435\) 1.95670 + 4.28458i 0.0938167 + 0.205430i
\(436\) 18.7656 0.898709
\(437\) 5.93429 4.19641i 0.283875 0.200742i
\(438\) 16.3056 0.779110
\(439\) −2.97658 6.51780i −0.142064 0.311078i 0.825203 0.564836i \(-0.191061\pi\)
−0.967268 + 0.253758i \(0.918333\pi\)
\(440\) 4.45477 1.30804i 0.212373 0.0623582i
\(441\) 4.32026 4.98585i 0.205727 0.237421i
\(442\) 4.30276 + 2.76521i 0.204661 + 0.131528i
\(443\) −0.764927 0.882773i −0.0363428 0.0419418i 0.737287 0.675579i \(-0.236106\pi\)
−0.773630 + 0.633638i \(0.781561\pi\)
\(444\) 1.46953 + 10.2208i 0.0697408 + 0.485058i
\(445\) 2.72265 + 0.799443i 0.129066 + 0.0378973i
\(446\) −1.72668 + 1.10967i −0.0817605 + 0.0525443i
\(447\) 0.741078 5.15431i 0.0350518 0.243790i
\(448\) −0.263642 + 0.577296i −0.0124559 + 0.0272747i
\(449\) 13.0187 28.5071i 0.614392 1.34533i −0.305136 0.952309i \(-0.598702\pi\)
0.919529 0.393023i \(-0.128571\pi\)
\(450\) −0.142315 + 0.989821i −0.00670879 + 0.0466606i
\(451\) 35.8919 23.0663i 1.69008 1.08615i
\(452\) 5.65248 + 1.65972i 0.265870 + 0.0780666i
\(453\) −2.91493 20.2738i −0.136955 0.952544i
\(454\) −6.89644 7.95891i −0.323666 0.373530i
\(455\) −2.17704 1.39910i −0.102061 0.0655907i
\(456\) −0.992447 + 1.14534i −0.0464756 + 0.0536357i
\(457\) −21.9219 + 6.43685i −1.02546 + 0.301103i −0.750865 0.660456i \(-0.770363\pi\)
−0.274598 + 0.961559i \(0.588545\pi\)
\(458\) −5.60055 12.2635i −0.261696 0.573035i
\(459\) −1.25433 −0.0585473
\(460\) −4.79112 + 0.212422i −0.223387 + 0.00990424i
\(461\) 8.22119 0.382899 0.191450 0.981502i \(-0.438681\pi\)
0.191450 + 0.981502i \(0.438681\pi\)
\(462\) −1.22405 2.68029i −0.0569478 0.124698i
\(463\) 3.37475 0.990915i 0.156838 0.0460517i −0.202371 0.979309i \(-0.564865\pi\)
0.359209 + 0.933257i \(0.383047\pi\)
\(464\) 3.08455 3.55976i 0.143197 0.165258i
\(465\) 3.80684 + 2.44651i 0.176538 + 0.113454i
\(466\) 13.5356 + 15.6210i 0.627026 + 0.723627i
\(467\) 2.92102 + 20.3161i 0.135169 + 0.940118i 0.938670 + 0.344816i \(0.112059\pi\)
−0.803502 + 0.595302i \(0.797032\pi\)
\(468\) −3.91245 1.14880i −0.180853 0.0531032i
\(469\) 0.118246 0.0759920i 0.00546009 0.00350899i
\(470\) 0.735403 5.11484i 0.0339216 0.235930i
\(471\) 7.70773 16.8776i 0.355154 0.777678i
\(472\) −0.329167 + 0.720776i −0.0151512 + 0.0331764i
\(473\) 5.48880 38.1754i 0.252375 1.75531i
\(474\) 11.1576 7.17056i 0.512486 0.329355i
\(475\) 1.45412 + 0.426968i 0.0667196 + 0.0195906i
\(476\) 0.113291 + 0.787957i 0.00519269 + 0.0361160i
\(477\) 1.13830 + 1.31367i 0.0521192 + 0.0601487i
\(478\) −19.9411 12.8153i −0.912082 0.586160i
\(479\) 18.8025 21.6993i 0.859110 0.991465i −0.140889 0.990025i \(-0.544996\pi\)
0.999999 0.00143991i \(-0.000458337\pi\)
\(480\) 0.959493 0.281733i 0.0437947 0.0128593i
\(481\) 17.4911 + 38.3002i 0.797526 + 1.74634i
\(482\) −26.0495 −1.18652
\(483\) 0.566174 + 2.99054i 0.0257618 + 0.136074i
\(484\) 10.5559 0.479814
\(485\) 2.83086 + 6.19872i 0.128543 + 0.281469i
\(486\) 0.959493 0.281733i 0.0435235 0.0127796i
\(487\) −12.0282 + 13.8813i −0.545051 + 0.629022i −0.959723 0.280949i \(-0.909351\pi\)
0.414672 + 0.909971i \(0.363896\pi\)
\(488\) 8.53646 + 5.48605i 0.386428 + 0.248342i
\(489\) 11.5872 + 13.3723i 0.523991 + 0.604718i
\(490\) 0.938883 + 6.53007i 0.0424144 + 0.294999i
\(491\) 24.6127 + 7.22694i 1.11075 + 0.326147i 0.785117 0.619347i \(-0.212603\pi\)
0.325638 + 0.945495i \(0.394421\pi\)
\(492\) 7.73059 4.96815i 0.348522 0.223981i
\(493\) 0.840826 5.84807i 0.0378689 0.263384i
\(494\) −2.56713 + 5.62122i −0.115500 + 0.252911i
\(495\) −1.92870 + 4.22327i −0.0866888 + 0.189822i
\(496\) 0.644003 4.47914i 0.0289166 0.201119i
\(497\) −3.22819 + 2.07463i −0.144804 + 0.0930598i
\(498\) 0.883269 + 0.259351i 0.0395802 + 0.0116218i
\(499\) 2.12257 + 14.7628i 0.0950193 + 0.660874i 0.980547 + 0.196286i \(0.0628883\pi\)
−0.885527 + 0.464587i \(0.846203\pi\)
\(500\) −0.654861 0.755750i −0.0292863 0.0337981i
\(501\) 8.76122 + 5.63049i 0.391422 + 0.251552i
\(502\) 1.81145 2.09052i 0.0808488 0.0933045i
\(503\) 30.1016 8.83863i 1.34216 0.394095i 0.469723 0.882814i \(-0.344354\pi\)
0.872441 + 0.488719i \(0.162536\pi\)
\(504\) −0.263642 0.577296i −0.0117436 0.0257148i
\(505\) −13.9504 −0.620786
\(506\) −21.6212 5.32068i −0.961180 0.236533i
\(507\) −3.62698 −0.161080
\(508\) 6.38105 + 13.9726i 0.283113 + 0.619932i
\(509\) −20.2277 + 5.93938i −0.896575 + 0.263258i −0.697380 0.716701i \(-0.745651\pi\)
−0.199195 + 0.979960i \(0.563833\pi\)
\(510\) 0.821414 0.947963i 0.0363728 0.0419765i
\(511\) 8.70553 + 5.59471i 0.385110 + 0.247495i
\(512\) −0.654861 0.755750i −0.0289410 0.0333997i
\(513\) −0.215679 1.50008i −0.00952247 0.0662303i
\(514\) 5.19089 + 1.52418i 0.228960 + 0.0672288i
\(515\) −0.854801 + 0.549347i −0.0376670 + 0.0242071i
\(516\) 1.18221 8.22244i 0.0520438 0.361973i
\(517\) 9.96645 21.8235i 0.438324 0.959796i
\(518\) −2.72235 + 5.96111i −0.119613 + 0.261916i
\(519\) 2.10235 14.6221i 0.0922828 0.641841i
\(520\) 3.43031 2.20453i 0.150429 0.0966749i
\(521\) −20.3503 5.97539i −0.891563 0.261787i −0.196302 0.980544i \(-0.562893\pi\)
−0.695261 + 0.718757i \(0.744711\pi\)
\(522\) 0.670337 + 4.66229i 0.0293398 + 0.204063i
\(523\) 8.68322 + 10.0210i 0.379691 + 0.438187i 0.913140 0.407645i \(-0.133650\pi\)
−0.533449 + 0.845832i \(0.679105\pi\)
\(524\) −14.3430 9.21767i −0.626575 0.402676i
\(525\) −0.415606 + 0.479635i −0.0181385 + 0.0209330i
\(526\) −4.73710 + 1.39094i −0.206547 + 0.0606478i
\(527\) −2.35794 5.16317i −0.102714 0.224911i
\(528\) 4.64283 0.202053
\(529\) 20.3734 + 10.6736i 0.885799 + 0.464069i
\(530\) −1.73823 −0.0755040
\(531\) −0.329167 0.720776i −0.0142846 0.0312790i
\(532\) −0.922853 + 0.270974i −0.0400108 + 0.0117482i
\(533\) 24.5381 28.3185i 1.06286 1.22661i
\(534\) 2.38714 + 1.53412i 0.103302 + 0.0663879i
\(535\) 2.72799 + 3.14827i 0.117941 + 0.136111i
\(536\) 0.0315193 + 0.219222i 0.00136143 + 0.00946893i
\(537\) −8.89439 2.61163i −0.383821 0.112700i
\(538\) 5.77554 3.71171i 0.249001 0.160023i
\(539\) −4.35908 + 30.3180i −0.187759 + 1.30589i
\(540\) −0.415415 + 0.909632i −0.0178766 + 0.0391443i
\(541\) 5.73338 12.5544i 0.246497 0.539754i −0.745427 0.666588i \(-0.767754\pi\)
0.991924 + 0.126834i \(0.0404815\pi\)
\(542\) −0.592275 + 4.11936i −0.0254404 + 0.176942i
\(543\) 1.97743 1.27082i 0.0848596 0.0545360i
\(544\) −1.20352 0.353387i −0.0516007 0.0151513i
\(545\) −2.67062 18.5746i −0.114397 0.795648i
\(546\) −1.69468 1.95577i −0.0725257 0.0836991i
\(547\) 13.2660 + 8.52553i 0.567213 + 0.364525i 0.792598 0.609744i \(-0.208728\pi\)
−0.225386 + 0.974270i \(0.572364\pi\)
\(548\) −3.61915 + 4.17672i −0.154602 + 0.178421i
\(549\) −9.73628 + 2.85883i −0.415534 + 0.122012i
\(550\) −1.92870 4.22327i −0.0822402 0.180081i
\(551\) 7.13840 0.304106
\(552\) −4.65690 1.14600i −0.198211 0.0487769i
\(553\) 8.41738 0.357943
\(554\) 9.87570 + 21.6248i 0.419578 + 0.918748i
\(555\) 9.90764 2.90915i 0.420556 0.123486i
\(556\) −0.272186 + 0.314119i −0.0115432 + 0.0133216i
\(557\) −36.0032 23.1378i −1.52550 0.980381i −0.990799 0.135341i \(-0.956787\pi\)
−0.534704 0.845040i \(-0.679577\pi\)
\(558\) 2.96338 + 3.41992i 0.125450 + 0.144777i
\(559\) −4.82060 33.5280i −0.203889 1.41808i
\(560\) 0.608940 + 0.178801i 0.0257324 + 0.00755572i
\(561\) 4.89918 3.14851i 0.206844 0.132930i
\(562\) 1.86622 12.9798i 0.0787216 0.547521i
\(563\) −9.62893 + 21.0844i −0.405811 + 0.888602i 0.590837 + 0.806791i \(0.298798\pi\)
−0.996648 + 0.0818113i \(0.973930\pi\)
\(564\) 2.14663 4.70046i 0.0903894 0.197925i
\(565\) 0.838393 5.83115i 0.0352715 0.245318i
\(566\) 3.42104 2.19857i 0.143797 0.0924128i
\(567\) 0.608940 + 0.178801i 0.0255731 + 0.00750893i
\(568\) −0.860497 5.98489i −0.0361056 0.251120i
\(569\) −13.8040 15.9307i −0.578695 0.667850i 0.388628 0.921395i \(-0.372949\pi\)
−0.967324 + 0.253545i \(0.918404\pi\)
\(570\) 1.27493 + 0.819346i 0.0534008 + 0.0343186i
\(571\) 14.3126 16.5176i 0.598962 0.691239i −0.372608 0.927989i \(-0.621537\pi\)
0.971571 + 0.236749i \(0.0760820\pi\)
\(572\) 18.1648 5.33368i 0.759510 0.223012i
\(573\) 6.44625 + 14.1153i 0.269296 + 0.589676i
\(574\) 5.83201 0.243423
\(575\) 0.892108 + 4.71213i 0.0372035 + 0.196509i
\(576\) 1.00000 0.0416667
\(577\) 6.95792 + 15.2357i 0.289662 + 0.634271i 0.997389 0.0722148i \(-0.0230067\pi\)
−0.707727 + 0.706486i \(0.750279\pi\)
\(578\) 14.8018 4.34619i 0.615672 0.180778i
\(579\) 9.57358 11.0485i 0.397865 0.459160i
\(580\) −3.96250 2.54655i −0.164534 0.105740i
\(581\) 0.382589 + 0.441531i 0.0158725 + 0.0183178i
\(582\) 0.969809 + 6.74517i 0.0401999 + 0.279596i
\(583\) −7.74342 2.27367i −0.320700 0.0941659i
\(584\) −13.7171 + 8.81545i −0.567618 + 0.364786i
\(585\) −0.580306 + 4.03612i −0.0239927 + 0.166873i
\(586\) 12.2937 26.9194i 0.507847 1.11203i
\(587\) −11.5142 + 25.2125i −0.475240 + 1.04063i 0.508504 + 0.861059i \(0.330199\pi\)
−0.983745 + 0.179572i \(0.942529\pi\)
\(588\) −0.938883 + 6.53007i −0.0387189 + 0.269296i
\(589\) 5.76930 3.70770i 0.237720 0.152773i
\(590\) 0.760285 + 0.223240i 0.0313004 + 0.00919064i
\(591\) −1.40666 9.78356i −0.0578624 0.402442i
\(592\) −6.76204 7.80381i −0.277918 0.320734i
\(593\) −36.3331 23.3499i −1.49202 0.958865i −0.995885 0.0906211i \(-0.971115\pi\)
−0.496138 0.868244i \(-0.665249\pi\)
\(594\) −3.04041 + 3.50882i −0.124750 + 0.143969i
\(595\) 0.763814 0.224276i 0.0313133 0.00919442i
\(596\) 2.16320 + 4.73674i 0.0886080 + 0.194024i
\(597\) −0.680607 −0.0278554
\(598\) −19.5364 + 0.866177i −0.798902 + 0.0354206i
\(599\) −28.5126 −1.16499 −0.582496 0.812834i \(-0.697924\pi\)
−0.582496 + 0.812834i \(0.697924\pi\)
\(600\) −0.415415 0.909632i −0.0169592 0.0371356i
\(601\) 4.55155 1.33646i 0.185662 0.0545152i −0.187580 0.982249i \(-0.560064\pi\)
0.373242 + 0.927734i \(0.378246\pi\)
\(602\) 3.45243 3.98432i 0.140711 0.162389i
\(603\) −0.186317 0.119739i −0.00758743 0.00487615i
\(604\) 13.4130 + 15.4794i 0.545768 + 0.629850i
\(605\) −1.50226 10.4485i −0.0610757 0.424791i
\(606\) −13.3853 3.93029i −0.543742 0.159657i
\(607\) 14.7705 9.49245i 0.599518 0.385287i −0.205396 0.978679i \(-0.565848\pi\)
0.804913 + 0.593392i \(0.202212\pi\)
\(608\) 0.215679 1.50008i 0.00874695 0.0608364i
\(609\) −1.24182 + 2.71920i −0.0503210 + 0.110188i
\(610\) 4.21535 9.23032i 0.170674 0.373725i
\(611\) 2.99869 20.8564i 0.121314 0.843758i
\(612\) 1.05521 0.678144i 0.0426545 0.0274124i
\(613\) 35.1406 + 10.3182i 1.41932 + 0.416749i 0.899272 0.437391i \(-0.144097\pi\)
0.520044 + 0.854139i \(0.325915\pi\)
\(614\) 2.38022 + 16.5548i 0.0960580 + 0.668098i
\(615\) −6.01776 6.94486i −0.242659 0.280044i
\(616\) 2.47881 + 1.59303i 0.0998740 + 0.0641851i
\(617\) 4.38651 5.06230i 0.176594 0.203800i −0.660551 0.750781i \(-0.729677\pi\)
0.837145 + 0.546980i \(0.184223\pi\)
\(618\) −0.974944 + 0.286269i −0.0392180 + 0.0115154i
\(619\) 5.43286 + 11.8963i 0.218365 + 0.478153i 0.986834 0.161734i \(-0.0517085\pi\)
−0.768469 + 0.639887i \(0.778981\pi\)
\(620\) −4.52520 −0.181736
\(621\) 3.91571 2.76898i 0.157132 0.111115i
\(622\) −31.0440 −1.24475
\(623\) 0.748110 + 1.63813i 0.0299724 + 0.0656304i
\(624\) 3.91245 1.14880i 0.156623 0.0459887i
\(625\) −0.654861 + 0.755750i −0.0261944 + 0.0302300i
\(626\) −16.2299 10.4303i −0.648676 0.416879i
\(627\) 4.60777 + 5.31765i 0.184016 + 0.212366i
\(628\) 2.64055 + 18.3654i 0.105369 + 0.732861i
\(629\) −12.4275 3.64904i −0.495517 0.145497i
\(630\) −0.533899 + 0.343116i −0.0212711 + 0.0136701i
\(631\) 5.54580 38.5719i 0.220775 1.53552i −0.514343 0.857584i \(-0.671964\pi\)
0.735118 0.677939i \(-0.237127\pi\)
\(632\) −5.50968 + 12.0645i −0.219163 + 0.479901i
\(633\) −7.07973 + 15.5025i −0.281394 + 0.616167i
\(634\) −3.65423 + 25.4157i −0.145128 + 1.00939i
\(635\) 12.9222 8.30460i 0.512803 0.329558i
\(636\) −1.66782 0.489716i −0.0661334 0.0194185i
\(637\) 3.82841 + 26.6272i 0.151687 + 1.05501i
\(638\) −14.3210 16.5274i −0.566976 0.654325i
\(639\) 5.08658 + 3.26895i 0.201222 + 0.129318i
\(640\) −0.654861 + 0.755750i −0.0258856 + 0.0298736i
\(641\) 12.5748 3.69231i 0.496676 0.145837i −0.0237944 0.999717i \(-0.507575\pi\)
0.520471 + 0.853880i \(0.325757\pi\)
\(642\) 1.73052 + 3.78930i 0.0682981 + 0.149552i
\(643\) −47.2323 −1.86266 −0.931330 0.364177i \(-0.881350\pi\)
−0.931330 + 0.364177i \(0.881350\pi\)
\(644\) −2.09310 2.20971i −0.0824799 0.0870746i
\(645\) −8.30699 −0.327088
\(646\) −0.789685 1.72917i −0.0310697 0.0680332i
\(647\) 8.13751 2.38939i 0.319919 0.0939366i −0.117831 0.993034i \(-0.537594\pi\)
0.437749 + 0.899097i \(0.355776\pi\)
\(648\) −0.654861 + 0.755750i −0.0257254 + 0.0296886i
\(649\) 3.09489 + 1.98896i 0.121485 + 0.0780736i
\(650\) −2.67027 3.08166i −0.104737 0.120873i
\(651\) 0.408715 + 2.84268i 0.0160188 + 0.111413i
\(652\) −16.9774 4.98501i −0.664886 0.195228i
\(653\) 29.2716 18.8117i 1.14549 0.736159i 0.176751 0.984256i \(-0.443441\pi\)
0.968735 + 0.248096i \(0.0798050\pi\)
\(654\) 2.67062 18.5746i 0.104430 0.726324i
\(655\) −7.08263 + 15.5088i −0.276741 + 0.605979i
\(656\) −3.81740 + 8.35895i −0.149045 + 0.326362i
\(657\) 2.32052 16.1396i 0.0905322 0.629666i
\(658\) 2.75889 1.77303i 0.107553 0.0691200i
\(659\) 44.2875 + 13.0040i 1.72520 + 0.506564i 0.985974 0.166898i \(-0.0533749\pi\)
0.739223 + 0.673461i \(0.235193\pi\)
\(660\) −0.660744 4.59558i −0.0257194 0.178883i
\(661\) −30.3754 35.0551i −1.18147 1.36348i −0.916900 0.399117i \(-0.869317\pi\)
−0.264566 0.964368i \(-0.585229\pi\)
\(662\) −20.2940 13.0422i −0.788750 0.506899i
\(663\) 3.34941 3.86543i 0.130080 0.150121i
\(664\) −0.883269 + 0.259351i −0.0342775 + 0.0100648i
\(665\) 0.399552 + 0.874896i 0.0154940 + 0.0339270i
\(666\) 10.3259 0.400121
\(667\) 10.2849 + 20.1123i 0.398235 + 0.778752i
\(668\) −10.4145 −0.402948
\(669\) 0.852642 + 1.86702i 0.0329650 + 0.0721833i
\(670\) 0.212505 0.0623970i 0.00820977 0.00241061i
\(671\) 30.8520 35.6051i 1.19103 1.37452i
\(672\) 0.533899 + 0.343116i 0.0205956 + 0.0132360i
\(673\) 25.0481 + 28.9070i 0.965533 + 1.11428i 0.993403 + 0.114673i \(0.0365819\pi\)
−0.0278705 + 0.999612i \(0.508873\pi\)
\(674\) −1.59315 11.0806i −0.0613660 0.426810i
\(675\) 0.959493 + 0.281733i 0.0369309 + 0.0108439i
\(676\) 3.05121 1.96089i 0.117354 0.0754190i
\(677\) 0.243339 1.69246i 0.00935229 0.0650466i −0.984611 0.174761i \(-0.944085\pi\)
0.993963 + 0.109715i \(0.0349937\pi\)
\(678\) 2.44726 5.35875i 0.0939864 0.205801i
\(679\) −1.79660 + 3.93400i −0.0689471 + 0.150973i
\(680\) −0.178510 + 1.24157i −0.00684556 + 0.0476119i
\(681\) −8.85937 + 5.69357i −0.339492 + 0.218178i
\(682\) −20.1587 5.91913i −0.771917 0.226655i
\(683\) −2.52837 17.5852i −0.0967454 0.672879i −0.979262 0.202598i \(-0.935062\pi\)
0.882517 0.470281i \(-0.155848\pi\)
\(684\) 0.992447 + 1.14534i 0.0379472 + 0.0437933i
\(685\) 4.64927 + 2.98790i 0.177639 + 0.114162i
\(686\) −5.65108 + 6.52170i −0.215759 + 0.249000i
\(687\) −12.9357 + 3.79827i −0.493528 + 0.144913i
\(688\) 3.45085 + 7.55631i 0.131562 + 0.288081i
\(689\) −7.08785 −0.270025
\(690\) −0.471588 + 4.77259i −0.0179530 + 0.181689i
\(691\) −5.60823 −0.213347 −0.106674 0.994294i \(-0.534020\pi\)
−0.106674 + 0.994294i \(0.534020\pi\)
\(692\) 6.13672 + 13.4375i 0.233283 + 0.510819i
\(693\) −2.82721 + 0.830143i −0.107397 + 0.0315345i
\(694\) 6.00061 6.92507i 0.227780 0.262872i
\(695\) 0.349658 + 0.224711i 0.0132633 + 0.00852379i
\(696\) −3.08455 3.55976i −0.116920 0.134932i
\(697\) 1.64040 + 11.4092i 0.0621345 + 0.432155i
\(698\) 2.49071 + 0.731338i 0.0942747 + 0.0276816i
\(699\) 17.3883 11.1748i 0.657685 0.422669i
\(700\) 0.0903198 0.628188i 0.00341377 0.0237433i
\(701\) 3.23513 7.08395i 0.122189 0.267557i −0.838646 0.544676i \(-0.816652\pi\)
0.960836 + 0.277119i \(0.0893797\pi\)
\(702\) −1.69390 + 3.70913i −0.0639323 + 0.139992i
\(703\) 2.22709 15.4897i 0.0839961 0.584206i
\(704\) −3.90580 + 2.51011i −0.147205 + 0.0946032i
\(705\) −4.95812 1.45583i −0.186734 0.0548299i
\(706\) 0.00633719 + 0.0440761i 0.000238503 + 0.00165883i
\(707\) −5.79788 6.69111i −0.218052 0.251645i
\(708\) 0.666594 + 0.428394i 0.0250521 + 0.0161000i
\(709\) −0.982644 + 1.13403i −0.0369040 + 0.0425895i −0.773901 0.633306i \(-0.781697\pi\)
0.736998 + 0.675895i \(0.236243\pi\)
\(710\) −5.80151 + 1.70348i −0.217727 + 0.0639303i
\(711\) −5.50968 12.0645i −0.206629 0.452455i
\(712\) −2.83760 −0.106343
\(713\) 18.7587 + 10.9129i 0.702520 + 0.408690i
\(714\) 0.796060 0.0297918
\(715\) −7.86452 17.2209i −0.294116 0.644025i
\(716\) 8.89439 2.61163i 0.332399 0.0976012i
\(717\) −15.5228 + 17.9143i −0.579710 + 0.669021i
\(718\) −12.2268 7.85768i −0.456300 0.293246i
\(719\) −34.7050 40.0517i −1.29428 1.49368i −0.762852 0.646574i \(-0.776201\pi\)
−0.531427 0.847104i \(-0.678344\pi\)
\(720\) −0.142315 0.989821i −0.00530376 0.0368885i
\(721\) −0.618746 0.181680i −0.0230433 0.00676612i
\(722\) −14.0517 + 9.03045i −0.522948 + 0.336079i
\(723\) −3.70724 + 25.7844i −0.137874 + 0.958932i
\(724\) −0.976464 + 2.13816i −0.0362900 + 0.0794640i
\(725\) −1.95670 + 4.28458i −0.0726701 + 0.159125i
\(726\) 1.50226 10.4485i 0.0557542 0.387779i
\(727\) 17.1945 11.0502i 0.637708 0.409830i −0.181448 0.983400i \(-0.558078\pi\)
0.819156 + 0.573570i \(0.194442\pi\)
\(728\) 2.48303 + 0.729082i 0.0920270 + 0.0270216i
\(729\) −0.142315 0.989821i −0.00527092 0.0366601i
\(730\) 10.6779 + 12.3229i 0.395206 + 0.456092i
\(731\) 8.76565 + 5.63334i 0.324209 + 0.208357i
\(732\) 6.64508 7.66883i 0.245609 0.283448i
\(733\) −22.9686 + 6.74420i −0.848366 + 0.249103i −0.676889 0.736085i \(-0.736672\pi\)
−0.171477 + 0.985188i \(0.554854\pi\)
\(734\) −5.03883 11.0335i −0.185987 0.407254i
\(735\) 6.59722 0.243342
\(736\) 4.53720 1.55363i 0.167244 0.0572677i
\(737\) 1.02828 0.0378770
\(738\) −3.81740 8.35895i −0.140521 0.307697i
\(739\) −3.24418 + 0.952577i −0.119339 + 0.0350411i −0.340857 0.940115i \(-0.610717\pi\)
0.221518 + 0.975156i \(0.428899\pi\)
\(740\) −6.76204 + 7.80381i −0.248577 + 0.286874i
\(741\) 5.19867 + 3.34098i 0.190978 + 0.122734i
\(742\) −0.722419 0.833716i −0.0265208 0.0306067i
\(743\) 0.431420 + 3.00059i 0.0158272 + 0.110081i 0.996204 0.0870542i \(-0.0277453\pi\)
−0.980376 + 0.197135i \(0.936836\pi\)
\(744\) −4.34190 1.27490i −0.159182 0.0467400i
\(745\) 4.38067 2.81529i 0.160495 0.103144i
\(746\) 1.64035 11.4089i 0.0600575 0.417709i
\(747\) 0.382414 0.837369i 0.0139918 0.0306377i
\(748\) −2.41924 + 5.29739i −0.0884561 + 0.193692i
\(749\) −0.376250 + 2.61688i −0.0137479 + 0.0956186i
\(750\) −0.841254 + 0.540641i −0.0307182 + 0.0197414i
\(751\) −14.4623 4.24650i −0.527735 0.154957i 0.00700200 0.999975i \(-0.497771\pi\)
−0.534737 + 0.845018i \(0.679589\pi\)
\(752\) 0.735403 + 5.11484i 0.0268174 + 0.186519i
\(753\) −1.81145 2.09052i −0.0660128 0.0761828i
\(754\) −16.1576 10.3838i −0.588424 0.378157i
\(755\) 13.4130 15.4794i 0.488150 0.563355i
\(756\) −0.608940 + 0.178801i −0.0221469 + 0.00650292i
\(757\) 8.64045 + 18.9199i 0.314042 + 0.687657i 0.999169 0.0407675i \(-0.0129803\pi\)
−0.685126 + 0.728424i \(0.740253\pi\)
\(758\) −21.0990 −0.766351
\(759\) −8.34354 + 20.6439i −0.302851 + 0.749327i
\(760\) −1.51551 −0.0549733
\(761\) 16.1754 + 35.4192i 0.586358 + 1.28394i 0.937618 + 0.347667i \(0.113026\pi\)
−0.351260 + 0.936278i \(0.614247\pi\)
\(762\) 14.7385 4.32760i 0.533918 0.156772i
\(763\) 7.79909 9.00063i 0.282346 0.325845i
\(764\) −13.0543 8.38946i −0.472286 0.303520i
\(765\) −0.821414 0.947963i −0.0296983 0.0342737i
\(766\) −2.68730 18.6906i −0.0970960 0.675318i
\(767\) 3.10015 + 0.910287i 0.111940 + 0.0328686i
\(768\) −0.841254 + 0.540641i −0.0303561 + 0.0195087i
\(769\) 7.10462