Properties

Label 690.2.m.c.151.1
Level $690$
Weight $2$
Character 690.151
Analytic conductor $5.510$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \( x^{20} - 4 x^{19} - 3 x^{18} + 66 x^{17} - 163 x^{16} - 52 x^{15} + 1567 x^{14} - 6182 x^{13} + 17043 x^{12} - 35832 x^{11} + 60906 x^{10} - 87666 x^{9} + 106197 x^{8} - 102542 x^{7} + \cdots + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 151.1
Root \(1.74971 + 2.01927i\) of defining polynomial
Character \(\chi\) \(=\) 690.151
Dual form 690.2.m.c.361.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.654861 - 0.755750i) q^{2} +(-0.841254 - 0.540641i) q^{3} +(-0.142315 + 0.989821i) q^{4} +(0.415415 - 0.909632i) q^{5} +(0.142315 + 0.989821i) q^{6} +(0.170792 + 0.0501489i) q^{7} +(0.841254 - 0.540641i) q^{8} +(0.415415 + 0.909632i) q^{9} +O(q^{10})\) \(q+(-0.654861 - 0.755750i) q^{2} +(-0.841254 - 0.540641i) q^{3} +(-0.142315 + 0.989821i) q^{4} +(0.415415 - 0.909632i) q^{5} +(0.142315 + 0.989821i) q^{6} +(0.170792 + 0.0501489i) q^{7} +(0.841254 - 0.540641i) q^{8} +(0.415415 + 0.909632i) q^{9} +(-0.959493 + 0.281733i) q^{10} +(-0.0281441 + 0.0324800i) q^{11} +(0.654861 - 0.755750i) q^{12} +(-4.70795 + 1.38238i) q^{13} +(-0.0739446 - 0.161916i) q^{14} +(-0.841254 + 0.540641i) q^{15} +(-0.959493 - 0.281733i) q^{16} +(-0.635235 - 4.41816i) q^{17} +(0.415415 - 0.909632i) q^{18} +(0.832926 - 5.79313i) q^{19} +(0.841254 + 0.540641i) q^{20} +(-0.116566 - 0.134525i) q^{21} +0.0429772 q^{22} +(1.68276 - 4.49092i) q^{23} -1.00000 q^{24} +(-0.654861 - 0.755750i) q^{25} +(4.12779 + 2.65277i) q^{26} +(0.142315 - 0.989821i) q^{27} +(-0.0739446 + 0.161916i) q^{28} +(0.802900 + 5.58429i) q^{29} +(0.959493 + 0.281733i) q^{30} +(-8.62178 + 5.54088i) q^{31} +(0.415415 + 0.909632i) q^{32} +(0.0412363 - 0.0121081i) q^{33} +(-2.92303 + 3.37336i) q^{34} +(0.116566 - 0.134525i) q^{35} +(-0.959493 + 0.281733i) q^{36} +(-0.965008 - 2.11307i) q^{37} +(-4.92360 + 3.16421i) q^{38} +(4.70795 + 1.38238i) q^{39} +(-0.142315 - 0.989821i) q^{40} +(1.37136 - 3.00286i) q^{41} +(-0.0253323 + 0.176190i) q^{42} +(-4.26719 - 2.74236i) q^{43} +(-0.0281441 - 0.0324800i) q^{44} +1.00000 q^{45} +(-4.49598 + 1.66918i) q^{46} -9.19936 q^{47} +(0.654861 + 0.755750i) q^{48} +(-5.86212 - 3.76736i) q^{49} +(-0.142315 + 0.989821i) q^{50} +(-1.85424 + 4.06022i) q^{51} +(-0.698298 - 4.85677i) q^{52} +(-10.0340 - 2.94625i) q^{53} +(-0.841254 + 0.540641i) q^{54} +(0.0178534 + 0.0390934i) q^{55} +(0.170792 - 0.0501489i) q^{56} +(-3.83270 + 4.42318i) q^{57} +(3.69454 - 4.26372i) q^{58} +(12.6103 - 3.70271i) q^{59} +(-0.415415 - 0.909632i) q^{60} +(-10.1136 + 6.49960i) q^{61} +(9.83359 + 2.88740i) q^{62} +(0.0253323 + 0.176190i) q^{63} +(0.415415 - 0.909632i) q^{64} +(-0.698298 + 4.85677i) q^{65} +(-0.0361547 - 0.0232352i) q^{66} +(-6.02227 - 6.95007i) q^{67} +4.46359 q^{68} +(-3.84360 + 2.86823i) q^{69} -0.178002 q^{70} +(9.86179 + 11.3811i) q^{71} +(0.841254 + 0.540641i) q^{72} +(-1.21575 + 8.45572i) q^{73} +(-0.965008 + 2.11307i) q^{74} +(0.142315 + 0.989821i) q^{75} +(5.61562 + 1.64890i) q^{76} +(-0.00643560 + 0.00413591i) q^{77} +(-2.03832 - 4.46330i) q^{78} +(6.03395 - 1.77173i) q^{79} +(-0.654861 + 0.755750i) q^{80} +(-0.654861 + 0.755750i) q^{81} +(-3.16746 + 0.930052i) q^{82} +(-1.27425 - 2.79022i) q^{83} +(0.149745 - 0.0962351i) q^{84} +(-4.28278 - 1.25754i) q^{85} +(0.721880 + 5.02079i) q^{86} +(2.34365 - 5.13188i) q^{87} +(-0.00611629 + 0.0425397i) q^{88} +(-12.3038 - 7.90715i) q^{89} +(-0.654861 - 0.755750i) q^{90} -0.873404 q^{91} +(4.20572 + 2.30475i) q^{92} +10.2487 q^{93} +(6.02430 + 6.95241i) q^{94} +(-4.92360 - 3.16421i) q^{95} +(0.142315 - 0.989821i) q^{96} +(-1.37544 + 3.01180i) q^{97} +(0.991695 + 6.89739i) q^{98} +(-0.0412363 - 0.0121081i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9} - 2 q^{10} - 24 q^{11} + 2 q^{12} - 4 q^{13} + 2 q^{14} + 2 q^{15} - 2 q^{16} + 16 q^{17} - 2 q^{18} + 14 q^{19} - 2 q^{20} - 13 q^{21} - 2 q^{22} - 2 q^{23} - 20 q^{24} - 2 q^{25} + 7 q^{26} + 2 q^{27} + 2 q^{28} + 18 q^{29} + 2 q^{30} + 22 q^{31} - 2 q^{32} + 2 q^{33} - 17 q^{34} + 13 q^{35} - 2 q^{36} - 16 q^{37} + 3 q^{38} + 4 q^{39} - 2 q^{40} + 29 q^{41} + 9 q^{42} - 22 q^{43} - 24 q^{44} + 20 q^{45} - 2 q^{46} - 94 q^{47} + 2 q^{48} - 22 q^{49} - 2 q^{50} - 5 q^{51} - 4 q^{52} + 58 q^{53} + 2 q^{54} + 9 q^{55} + 2 q^{56} - 25 q^{57} - 4 q^{58} + 45 q^{59} + 2 q^{60} + q^{61} - 9 q^{63} - 2 q^{64} - 4 q^{65} - 9 q^{66} + 16 q^{67} - 6 q^{68} + 24 q^{69} + 2 q^{70} + 59 q^{71} - 2 q^{72} + 3 q^{73} - 16 q^{74} + 2 q^{75} - 8 q^{76} - 19 q^{77} - 18 q^{78} - 20 q^{79} - 2 q^{80} - 2 q^{81} - 37 q^{82} + 13 q^{83} + 9 q^{84} + 5 q^{85} - 22 q^{86} + 4 q^{87} + 9 q^{88} - 97 q^{89} - 2 q^{90} - 18 q^{91} + 9 q^{92} + 22 q^{93} + 27 q^{94} + 3 q^{95} + 2 q^{96} - 17 q^{97} - 11 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{7}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.654861 0.755750i −0.463056 0.534396i
\(3\) −0.841254 0.540641i −0.485698 0.312139i
\(4\) −0.142315 + 0.989821i −0.0711574 + 0.494911i
\(5\) 0.415415 0.909632i 0.185779 0.406800i
\(6\) 0.142315 + 0.989821i 0.0580998 + 0.404093i
\(7\) 0.170792 + 0.0501489i 0.0645531 + 0.0189545i 0.313850 0.949473i \(-0.398381\pi\)
−0.249297 + 0.968427i \(0.580199\pi\)
\(8\) 0.841254 0.540641i 0.297428 0.191145i
\(9\) 0.415415 + 0.909632i 0.138472 + 0.303211i
\(10\) −0.959493 + 0.281733i −0.303418 + 0.0890917i
\(11\) −0.0281441 + 0.0324800i −0.00848575 + 0.00979308i −0.759977 0.649950i \(-0.774790\pi\)
0.751491 + 0.659744i \(0.229335\pi\)
\(12\) 0.654861 0.755750i 0.189042 0.218166i
\(13\) −4.70795 + 1.38238i −1.30575 + 0.383403i −0.859331 0.511420i \(-0.829120\pi\)
−0.446421 + 0.894823i \(0.647301\pi\)
\(14\) −0.0739446 0.161916i −0.0197625 0.0432739i
\(15\) −0.841254 + 0.540641i −0.217211 + 0.139593i
\(16\) −0.959493 0.281733i −0.239873 0.0704331i
\(17\) −0.635235 4.41816i −0.154067 1.07156i −0.909311 0.416117i \(-0.863391\pi\)
0.755244 0.655444i \(-0.227518\pi\)
\(18\) 0.415415 0.909632i 0.0979143 0.214402i
\(19\) 0.832926 5.79313i 0.191086 1.32903i −0.638053 0.769993i \(-0.720260\pi\)
0.829139 0.559042i \(-0.188831\pi\)
\(20\) 0.841254 + 0.540641i 0.188110 + 0.120891i
\(21\) −0.116566 0.134525i −0.0254369 0.0293557i
\(22\) 0.0429772 0.00916276
\(23\) 1.68276 4.49092i 0.350879 0.936421i
\(24\) −1.00000 −0.204124
\(25\) −0.654861 0.755750i −0.130972 0.151150i
\(26\) 4.12779 + 2.65277i 0.809526 + 0.520251i
\(27\) 0.142315 0.989821i 0.0273885 0.190491i
\(28\) −0.0739446 + 0.161916i −0.0139742 + 0.0305993i
\(29\) 0.802900 + 5.58429i 0.149095 + 1.03698i 0.917706 + 0.397260i \(0.130039\pi\)
−0.768611 + 0.639716i \(0.779052\pi\)
\(30\) 0.959493 + 0.281733i 0.175179 + 0.0514371i
\(31\) −8.62178 + 5.54088i −1.54852 + 0.995172i −0.562834 + 0.826570i \(0.690289\pi\)
−0.985684 + 0.168602i \(0.946075\pi\)
\(32\) 0.415415 + 0.909632i 0.0734357 + 0.160802i
\(33\) 0.0412363 0.0121081i 0.00717832 0.00210774i
\(34\) −2.92303 + 3.37336i −0.501295 + 0.578526i
\(35\) 0.116566 0.134525i 0.0197033 0.0227388i
\(36\) −0.959493 + 0.281733i −0.159915 + 0.0469554i
\(37\) −0.965008 2.11307i −0.158646 0.347387i 0.813572 0.581465i \(-0.197520\pi\)
−0.972218 + 0.234078i \(0.924793\pi\)
\(38\) −4.92360 + 3.16421i −0.798714 + 0.513302i
\(39\) 4.70795 + 1.38238i 0.753876 + 0.221358i
\(40\) −0.142315 0.989821i −0.0225020 0.156505i
\(41\) 1.37136 3.00286i 0.214171 0.468969i −0.771805 0.635860i \(-0.780646\pi\)
0.985975 + 0.166891i \(0.0533729\pi\)
\(42\) −0.0253323 + 0.176190i −0.00390886 + 0.0271867i
\(43\) −4.26719 2.74236i −0.650740 0.418205i 0.173196 0.984887i \(-0.444590\pi\)
−0.823937 + 0.566682i \(0.808227\pi\)
\(44\) −0.0281441 0.0324800i −0.00424288 0.00489654i
\(45\) 1.00000 0.149071
\(46\) −4.49598 + 1.66918i −0.662896 + 0.246107i
\(47\) −9.19936 −1.34186 −0.670932 0.741519i \(-0.734106\pi\)
−0.670932 + 0.741519i \(0.734106\pi\)
\(48\) 0.654861 + 0.755750i 0.0945210 + 0.109083i
\(49\) −5.86212 3.76736i −0.837446 0.538194i
\(50\) −0.142315 + 0.989821i −0.0201264 + 0.139982i
\(51\) −1.85424 + 4.06022i −0.259646 + 0.568545i
\(52\) −0.698298 4.85677i −0.0968365 0.673512i
\(53\) −10.0340 2.94625i −1.37828 0.404699i −0.493108 0.869968i \(-0.664139\pi\)
−0.885169 + 0.465269i \(0.845958\pi\)
\(54\) −0.841254 + 0.540641i −0.114480 + 0.0735719i
\(55\) 0.0178534 + 0.0390934i 0.00240735 + 0.00527135i
\(56\) 0.170792 0.0501489i 0.0228230 0.00670143i
\(57\) −3.83270 + 4.42318i −0.507654 + 0.585864i
\(58\) 3.69454 4.26372i 0.485117 0.559854i
\(59\) 12.6103 3.70271i 1.64172 0.482052i 0.674984 0.737832i \(-0.264150\pi\)
0.966735 + 0.255780i \(0.0823321\pi\)
\(60\) −0.415415 0.909632i −0.0536298 0.117433i
\(61\) −10.1136 + 6.49960i −1.29491 + 0.832188i −0.992648 0.121036i \(-0.961378\pi\)
−0.302262 + 0.953225i \(0.597742\pi\)
\(62\) 9.83359 + 2.88740i 1.24887 + 0.366700i
\(63\) 0.0253323 + 0.176190i 0.00319157 + 0.0221979i
\(64\) 0.415415 0.909632i 0.0519269 0.113704i
\(65\) −0.698298 + 4.85677i −0.0866132 + 0.602408i
\(66\) −0.0361547 0.0232352i −0.00445033 0.00286006i
\(67\) −6.02227 6.95007i −0.735737 0.849086i 0.257368 0.966314i \(-0.417145\pi\)
−0.993105 + 0.117227i \(0.962599\pi\)
\(68\) 4.46359 0.541290
\(69\) −3.84360 + 2.86823i −0.462715 + 0.345294i
\(70\) −0.178002 −0.0212753
\(71\) 9.86179 + 11.3811i 1.17038 + 1.35069i 0.924404 + 0.381414i \(0.124563\pi\)
0.245975 + 0.969276i \(0.420892\pi\)
\(72\) 0.841254 + 0.540641i 0.0991427 + 0.0637151i
\(73\) −1.21575 + 8.45572i −0.142293 + 0.989667i 0.786109 + 0.618088i \(0.212092\pi\)
−0.928401 + 0.371579i \(0.878817\pi\)
\(74\) −0.965008 + 2.11307i −0.112180 + 0.245640i
\(75\) 0.142315 + 0.989821i 0.0164331 + 0.114295i
\(76\) 5.61562 + 1.64890i 0.644156 + 0.189141i
\(77\) −0.00643560 + 0.00413591i −0.000733405 + 0.000471331i
\(78\) −2.03832 4.46330i −0.230794 0.505369i
\(79\) 6.03395 1.77173i 0.678872 0.199335i 0.0759220 0.997114i \(-0.475810\pi\)
0.602950 + 0.797779i \(0.293992\pi\)
\(80\) −0.654861 + 0.755750i −0.0732157 + 0.0844954i
\(81\) −0.654861 + 0.755750i −0.0727623 + 0.0839722i
\(82\) −3.16746 + 0.930052i −0.349788 + 0.102707i
\(83\) −1.27425 2.79022i −0.139867 0.306266i 0.826716 0.562619i \(-0.190206\pi\)
−0.966583 + 0.256353i \(0.917479\pi\)
\(84\) 0.149745 0.0962351i 0.0163385 0.0105001i
\(85\) −4.28278 1.25754i −0.464533 0.136399i
\(86\) 0.721880 + 5.02079i 0.0778423 + 0.541405i
\(87\) 2.34365 5.13188i 0.251266 0.550196i
\(88\) −0.00611629 + 0.0425397i −0.000651999 + 0.00453475i
\(89\) −12.3038 7.90715i −1.30420 0.838156i −0.310534 0.950562i \(-0.600508\pi\)
−0.993662 + 0.112406i \(0.964144\pi\)
\(90\) −0.654861 0.755750i −0.0690284 0.0796630i
\(91\) −0.873404 −0.0915576
\(92\) 4.20572 + 2.30475i 0.438477 + 0.240287i
\(93\) 10.2487 1.06274
\(94\) 6.02430 + 6.95241i 0.621359 + 0.717087i
\(95\) −4.92360 3.16421i −0.505151 0.324641i
\(96\) 0.142315 0.989821i 0.0145249 0.101023i
\(97\) −1.37544 + 3.01180i −0.139655 + 0.305802i −0.966517 0.256603i \(-0.917397\pi\)
0.826862 + 0.562405i \(0.190124\pi\)
\(98\) 0.991695 + 6.89739i 0.100176 + 0.696741i
\(99\) −0.0412363 0.0121081i −0.00414440 0.00121691i
\(100\) 0.841254 0.540641i 0.0841254 0.0540641i
\(101\) 0.610309 + 1.33639i 0.0607281 + 0.132976i 0.937563 0.347816i \(-0.113077\pi\)
−0.876835 + 0.480792i \(0.840349\pi\)
\(102\) 4.28278 1.25754i 0.424059 0.124515i
\(103\) 9.91658 11.4443i 0.977110 1.12764i −0.0146965 0.999892i \(-0.504678\pi\)
0.991806 0.127753i \(-0.0407763\pi\)
\(104\) −3.21321 + 3.70824i −0.315081 + 0.363623i
\(105\) −0.170792 + 0.0501489i −0.0166675 + 0.00489403i
\(106\) 4.34425 + 9.51258i 0.421951 + 0.923944i
\(107\) 16.1511 10.3797i 1.56138 1.00344i 0.579273 0.815134i \(-0.303337\pi\)
0.982110 0.188307i \(-0.0602999\pi\)
\(108\) 0.959493 + 0.281733i 0.0923273 + 0.0271097i
\(109\) −0.747726 5.20055i −0.0716191 0.498122i −0.993784 0.111325i \(-0.964491\pi\)
0.922165 0.386797i \(-0.126419\pi\)
\(110\) 0.0178534 0.0390934i 0.00170225 0.00372741i
\(111\) −0.330597 + 2.29935i −0.0313789 + 0.218245i
\(112\) −0.149745 0.0962351i −0.0141495 0.00909336i
\(113\) 2.54892 + 2.94162i 0.239783 + 0.276724i 0.862867 0.505430i \(-0.168666\pi\)
−0.623085 + 0.782154i \(0.714121\pi\)
\(114\) 5.85270 0.548156
\(115\) −3.38604 3.39628i −0.315750 0.316705i
\(116\) −5.64172 −0.523820
\(117\) −3.21321 3.70824i −0.297062 0.342827i
\(118\) −11.0563 7.10546i −1.01782 0.654110i
\(119\) 0.113073 0.786440i 0.0103654 0.0720929i
\(120\) −0.415415 + 0.909632i −0.0379220 + 0.0830377i
\(121\) 1.56520 + 10.8862i 0.142291 + 0.989655i
\(122\) 11.5351 + 3.38700i 1.04433 + 0.306644i
\(123\) −2.77713 + 1.78476i −0.250406 + 0.160926i
\(124\) −4.25748 9.32258i −0.382333 0.837192i
\(125\) −0.959493 + 0.281733i −0.0858197 + 0.0251989i
\(126\) 0.116566 0.134525i 0.0103846 0.0119844i
\(127\) 6.94161 8.01104i 0.615968 0.710865i −0.358968 0.933350i \(-0.616871\pi\)
0.974936 + 0.222485i \(0.0714168\pi\)
\(128\) −0.959493 + 0.281733i −0.0848080 + 0.0249019i
\(129\) 2.10716 + 4.61403i 0.185525 + 0.406243i
\(130\) 4.12779 2.65277i 0.362031 0.232663i
\(131\) −8.94559 2.62666i −0.781580 0.229493i −0.133484 0.991051i \(-0.542616\pi\)
−0.648096 + 0.761558i \(0.724435\pi\)
\(132\) 0.00611629 + 0.0425397i 0.000532355 + 0.00370261i
\(133\) 0.432776 0.947647i 0.0375264 0.0821714i
\(134\) −1.30876 + 9.10265i −0.113060 + 0.786350i
\(135\) −0.841254 0.540641i −0.0724036 0.0465310i
\(136\) −2.92303 3.37336i −0.250648 0.289263i
\(137\) 20.3195 1.73601 0.868007 0.496552i \(-0.165401\pi\)
0.868007 + 0.496552i \(0.165401\pi\)
\(138\) 4.68469 + 1.02651i 0.398787 + 0.0873820i
\(139\) −1.79719 −0.152436 −0.0762179 0.997091i \(-0.524284\pi\)
−0.0762179 + 0.997091i \(0.524284\pi\)
\(140\) 0.116566 + 0.134525i 0.00985166 + 0.0113694i
\(141\) 7.73899 + 4.97355i 0.651741 + 0.418848i
\(142\) 2.14317 14.9061i 0.179851 1.25089i
\(143\) 0.0876013 0.191820i 0.00732559 0.0160408i
\(144\) −0.142315 0.989821i −0.0118596 0.0824851i
\(145\) 5.41319 + 1.58945i 0.449541 + 0.131997i
\(146\) 7.18655 4.61851i 0.594763 0.382231i
\(147\) 2.89474 + 6.33860i 0.238754 + 0.522799i
\(148\) 2.22890 0.654464i 0.183214 0.0537966i
\(149\) 5.13346 5.92433i 0.420549 0.485340i −0.505455 0.862853i \(-0.668675\pi\)
0.926004 + 0.377513i \(0.123221\pi\)
\(150\) 0.654861 0.755750i 0.0534692 0.0617067i
\(151\) 9.95586 2.92330i 0.810196 0.237895i 0.149707 0.988730i \(-0.452167\pi\)
0.660489 + 0.750835i \(0.270349\pi\)
\(152\) −2.43130 5.32380i −0.197204 0.431817i
\(153\) 3.75501 2.41320i 0.303575 0.195096i
\(154\) 0.00734014 + 0.00215526i 0.000591485 + 0.000173676i
\(155\) 1.45855 + 10.1444i 0.117153 + 0.814819i
\(156\) −2.03832 + 4.46330i −0.163196 + 0.357350i
\(157\) −0.556411 + 3.86992i −0.0444064 + 0.308854i 0.955498 + 0.294999i \(0.0953193\pi\)
−0.999904 + 0.0138547i \(0.995590\pi\)
\(158\) −5.29038 3.39992i −0.420880 0.270483i
\(159\) 6.84828 + 7.90334i 0.543104 + 0.626776i
\(160\) 1.00000 0.0790569
\(161\) 0.512615 0.682622i 0.0403998 0.0537981i
\(162\) 1.00000 0.0785674
\(163\) −6.33198 7.30749i −0.495959 0.572367i 0.451489 0.892277i \(-0.350893\pi\)
−0.947448 + 0.319909i \(0.896347\pi\)
\(164\) 2.77713 + 1.78476i 0.216858 + 0.139366i
\(165\) 0.00611629 0.0425397i 0.000476152 0.00331171i
\(166\) −1.27425 + 2.79022i −0.0989010 + 0.216563i
\(167\) 0.212772 + 1.47986i 0.0164648 + 0.114515i 0.996396 0.0848190i \(-0.0270312\pi\)
−0.979932 + 0.199334i \(0.936122\pi\)
\(168\) −0.170792 0.0501489i −0.0131769 0.00386907i
\(169\) 9.31756 5.98803i 0.716735 0.460618i
\(170\) 1.85424 + 4.06022i 0.142214 + 0.311405i
\(171\) 5.61562 1.64890i 0.429438 0.126094i
\(172\) 3.32173 3.83348i 0.253279 0.292300i
\(173\) 0.570037 0.657858i 0.0433391 0.0500160i −0.733666 0.679510i \(-0.762192\pi\)
0.777005 + 0.629494i \(0.216738\pi\)
\(174\) −5.41319 + 1.58945i −0.410373 + 0.120496i
\(175\) −0.0739446 0.161916i −0.00558969 0.0122397i
\(176\) 0.0361547 0.0232352i 0.00272526 0.00175142i
\(177\) −12.6103 3.70271i −0.947847 0.278313i
\(178\) 2.08143 + 14.4766i 0.156010 + 1.08507i
\(179\) 8.14852 17.8428i 0.609049 1.33363i −0.314173 0.949366i \(-0.601727\pi\)
0.923222 0.384266i \(-0.125545\pi\)
\(180\) −0.142315 + 0.989821i −0.0106075 + 0.0737769i
\(181\) −13.2081 8.48836i −0.981754 0.630935i −0.0518177 0.998657i \(-0.516501\pi\)
−0.929936 + 0.367722i \(0.880138\pi\)
\(182\) 0.571958 + 0.660074i 0.0423963 + 0.0489280i
\(183\) 12.0220 0.888694
\(184\) −1.01235 4.68777i −0.0746311 0.345587i
\(185\) −2.32300 −0.170790
\(186\) −6.71149 7.74548i −0.492111 0.567926i
\(187\) 0.161380 + 0.103712i 0.0118013 + 0.00758421i
\(188\) 1.30921 9.10572i 0.0954836 0.664103i
\(189\) 0.0739446 0.161916i 0.00537868 0.0117777i
\(190\) 0.832926 + 5.79313i 0.0604268 + 0.420278i
\(191\) 7.87268 + 2.31163i 0.569647 + 0.167264i 0.553857 0.832612i \(-0.313155\pi\)
0.0157903 + 0.999875i \(0.494974\pi\)
\(192\) −0.841254 + 0.540641i −0.0607122 + 0.0390174i
\(193\) 0.582156 + 1.27474i 0.0419045 + 0.0917580i 0.929427 0.369007i \(-0.120302\pi\)
−0.887522 + 0.460765i \(0.847575\pi\)
\(194\) 3.17689 0.932819i 0.228087 0.0669725i
\(195\) 3.21321 3.70824i 0.230103 0.265553i
\(196\) 4.56328 5.26630i 0.325948 0.376164i
\(197\) −10.4918 + 3.08068i −0.747512 + 0.219489i −0.633235 0.773960i \(-0.718273\pi\)
−0.114277 + 0.993449i \(0.536455\pi\)
\(198\) 0.0178534 + 0.0390934i 0.00126878 + 0.00277825i
\(199\) 2.65133 1.70391i 0.187948 0.120787i −0.443283 0.896382i \(-0.646186\pi\)
0.631231 + 0.775595i \(0.282550\pi\)
\(200\) −0.959493 0.281733i −0.0678464 0.0199215i
\(201\) 1.30876 + 9.10265i 0.0923131 + 0.642052i
\(202\) 0.610309 1.33639i 0.0429412 0.0940282i
\(203\) −0.142918 + 0.994014i −0.0100309 + 0.0697661i
\(204\) −3.75501 2.41320i −0.262903 0.168958i
\(205\) −2.16182 2.49487i −0.150988 0.174249i
\(206\) −15.1430 −1.05507
\(207\) 4.78412 0.334903i 0.332520 0.0232774i
\(208\) 4.90671 0.340219
\(209\) 0.164719 + 0.190096i 0.0113938 + 0.0131492i
\(210\) 0.149745 + 0.0962351i 0.0103334 + 0.00664085i
\(211\) −2.67467 + 18.6028i −0.184132 + 1.28067i 0.662732 + 0.748857i \(0.269397\pi\)
−0.846864 + 0.531810i \(0.821512\pi\)
\(212\) 4.34425 9.51258i 0.298364 0.653327i
\(213\) −2.14317 14.9061i −0.146848 1.02135i
\(214\) −18.4211 5.40893i −1.25924 0.369747i
\(215\) −4.26719 + 2.74236i −0.291020 + 0.187027i
\(216\) −0.415415 0.909632i −0.0282654 0.0618926i
\(217\) −1.75040 + 0.513963i −0.118825 + 0.0348901i
\(218\) −3.44065 + 3.97073i −0.233031 + 0.268932i
\(219\) 5.59426 6.45612i 0.378025 0.436264i
\(220\) −0.0412363 + 0.0121081i −0.00278015 + 0.000816326i
\(221\) 9.09823 + 19.9223i 0.612013 + 1.34012i
\(222\) 1.95423 1.25591i 0.131159 0.0842909i
\(223\) 26.3495 + 7.73691i 1.76449 + 0.518102i 0.992998 0.118133i \(-0.0376910\pi\)
0.771495 + 0.636235i \(0.219509\pi\)
\(224\) 0.0253323 + 0.176190i 0.00169259 + 0.0117722i
\(225\) 0.415415 0.909632i 0.0276943 0.0606421i
\(226\) 0.553934 3.85270i 0.0368472 0.256278i
\(227\) −18.4663 11.8675i −1.22565 0.787676i −0.242441 0.970166i \(-0.577948\pi\)
−0.983208 + 0.182490i \(0.941584\pi\)
\(228\) −3.83270 4.42318i −0.253827 0.292932i
\(229\) 23.2857 1.53876 0.769382 0.638789i \(-0.220564\pi\)
0.769382 + 0.638789i \(0.220564\pi\)
\(230\) −0.349358 + 4.78309i −0.0230360 + 0.315388i
\(231\) 0.00765001 0.000503334
\(232\) 3.69454 + 4.26372i 0.242558 + 0.279927i
\(233\) 2.40075 + 1.54287i 0.157278 + 0.101077i 0.616913 0.787032i \(-0.288383\pi\)
−0.459634 + 0.888108i \(0.652020\pi\)
\(234\) −0.698298 + 4.85677i −0.0456491 + 0.317497i
\(235\) −3.82155 + 8.36803i −0.249291 + 0.545870i
\(236\) 1.87040 + 13.0089i 0.121752 + 0.846806i
\(237\) −6.03395 1.77173i −0.391947 0.115086i
\(238\) −0.668399 + 0.429554i −0.0433259 + 0.0278438i
\(239\) −6.36935 13.9469i −0.411999 0.902151i −0.995911 0.0903350i \(-0.971206\pi\)
0.583913 0.811816i \(-0.301521\pi\)
\(240\) 0.959493 0.281733i 0.0619350 0.0181858i
\(241\) −10.4302 + 12.0371i −0.671870 + 0.775379i −0.984668 0.174441i \(-0.944188\pi\)
0.312798 + 0.949820i \(0.398734\pi\)
\(242\) 7.20226 8.31185i 0.462979 0.534306i
\(243\) 0.959493 0.281733i 0.0615515 0.0180732i
\(244\) −4.99413 10.9356i −0.319716 0.700081i
\(245\) −5.86212 + 3.76736i −0.374517 + 0.240688i
\(246\) 3.16746 + 0.930052i 0.201950 + 0.0592979i
\(247\) 4.08693 + 28.4252i 0.260045 + 1.80865i
\(248\) −4.25748 + 9.32258i −0.270350 + 0.591984i
\(249\) −0.436539 + 3.03619i −0.0276645 + 0.192411i
\(250\) 0.841254 + 0.540641i 0.0532055 + 0.0341931i
\(251\) −14.8450 17.1320i −0.937008 1.08136i −0.996538 0.0831383i \(-0.973506\pi\)
0.0595300 0.998227i \(-0.481040\pi\)
\(252\) −0.178002 −0.0112131
\(253\) 0.0985052 + 0.181049i 0.00619297 + 0.0113824i
\(254\) −10.6001 −0.665111
\(255\) 2.92303 + 3.37336i 0.183047 + 0.211248i
\(256\) 0.841254 + 0.540641i 0.0525783 + 0.0337901i
\(257\) −0.305179 + 2.12257i −0.0190366 + 0.132402i −0.997123 0.0757951i \(-0.975851\pi\)
0.978087 + 0.208197i \(0.0667596\pi\)
\(258\) 2.10716 4.61403i 0.131186 0.287257i
\(259\) −0.0588469 0.409289i −0.00365657 0.0254320i
\(260\) −4.70795 1.38238i −0.291975 0.0857316i
\(261\) −4.74611 + 3.05014i −0.293777 + 0.188799i
\(262\) 3.87302 + 8.48073i 0.239276 + 0.523941i
\(263\) −10.3304 + 3.03327i −0.636997 + 0.187039i −0.584257 0.811569i \(-0.698614\pi\)
−0.0527406 + 0.998608i \(0.516796\pi\)
\(264\) 0.0281441 0.0324800i 0.00173215 0.00199900i
\(265\) −6.84828 + 7.90334i −0.420687 + 0.485498i
\(266\) −0.999592 + 0.293507i −0.0612889 + 0.0179960i
\(267\) 6.07566 + 13.3038i 0.371824 + 0.814181i
\(268\) 7.73639 4.97187i 0.472575 0.303705i
\(269\) 16.4006 + 4.81565i 0.999962 + 0.293615i 0.740441 0.672122i \(-0.234617\pi\)
0.259522 + 0.965737i \(0.416435\pi\)
\(270\) 0.142315 + 0.989821i 0.00866101 + 0.0602386i
\(271\) 2.51486 5.50677i 0.152767 0.334513i −0.817739 0.575589i \(-0.804773\pi\)
0.970506 + 0.241076i \(0.0775003\pi\)
\(272\) −0.635235 + 4.41816i −0.0385168 + 0.267890i
\(273\) 0.734754 + 0.472198i 0.0444693 + 0.0285787i
\(274\) −13.3065 15.3565i −0.803872 0.927718i
\(275\) 0.0429772 0.00259162
\(276\) −2.29204 4.21267i −0.137964 0.253573i
\(277\) −17.3834 −1.04447 −0.522233 0.852803i \(-0.674901\pi\)
−0.522233 + 0.852803i \(0.674901\pi\)
\(278\) 1.17691 + 1.35823i 0.0705864 + 0.0814610i
\(279\) −8.62178 5.54088i −0.516173 0.331724i
\(280\) 0.0253323 0.176190i 0.00151389 0.0105294i
\(281\) 10.2212 22.3813i 0.609746 1.33516i −0.313002 0.949753i \(-0.601335\pi\)
0.922748 0.385405i \(-0.125938\pi\)
\(282\) −1.30921 9.10572i −0.0779620 0.542238i
\(283\) 4.44304 + 1.30459i 0.264111 + 0.0775500i 0.411107 0.911587i \(-0.365142\pi\)
−0.146996 + 0.989137i \(0.546960\pi\)
\(284\) −12.6688 + 8.14171i −0.751752 + 0.483122i
\(285\) 2.43130 + 5.32380i 0.144018 + 0.315355i
\(286\) −0.202335 + 0.0594108i −0.0119643 + 0.00351303i
\(287\) 0.384807 0.444091i 0.0227145 0.0262139i
\(288\) −0.654861 + 0.755750i −0.0385880 + 0.0445330i
\(289\) −2.80521 + 0.823684i −0.165012 + 0.0484520i
\(290\) −2.34365 5.13188i −0.137624 0.301355i
\(291\) 2.78540 1.79007i 0.163283 0.104936i
\(292\) −8.19663 2.40675i −0.479671 0.140844i
\(293\) 0.815608 + 5.67268i 0.0476483 + 0.331401i 0.999678 + 0.0253941i \(0.00808406\pi\)
−0.952029 + 0.306007i \(0.901007\pi\)
\(294\) 2.89474 6.33860i 0.168825 0.369675i
\(295\) 1.87040 13.0089i 0.108899 0.757407i
\(296\) −1.95423 1.25591i −0.113587 0.0729981i
\(297\) 0.0281441 + 0.0324800i 0.00163308 + 0.00188468i
\(298\) −7.83901 −0.454102
\(299\) −1.71420 + 23.4692i −0.0991346 + 1.35726i
\(300\) −1.00000 −0.0577350
\(301\) −0.591273 0.682366i −0.0340804 0.0393309i
\(302\) −8.72898 5.60978i −0.502297 0.322806i
\(303\) 0.209083 1.45420i 0.0120115 0.0835417i
\(304\) −2.43130 + 5.32380i −0.139445 + 0.305341i
\(305\) 1.71091 + 11.8997i 0.0979666 + 0.681373i
\(306\) −4.28278 1.25754i −0.244830 0.0718887i
\(307\) 1.73414 1.11446i 0.0989726 0.0636058i −0.490218 0.871600i \(-0.663083\pi\)
0.589191 + 0.807994i \(0.299447\pi\)
\(308\) −0.00317793 0.00695870i −0.000181079 0.000396509i
\(309\) −14.5296 + 4.26629i −0.826562 + 0.242701i
\(310\) 6.71149 7.74548i 0.381187 0.439913i
\(311\) 11.5240 13.2994i 0.653464 0.754138i −0.328231 0.944598i \(-0.606452\pi\)
0.981695 + 0.190460i \(0.0609978\pi\)
\(312\) 4.70795 1.38238i 0.266535 0.0782619i
\(313\) 13.8188 + 30.2589i 0.781083 + 1.71033i 0.700574 + 0.713580i \(0.252928\pi\)
0.0805098 + 0.996754i \(0.474345\pi\)
\(314\) 3.28907 2.11375i 0.185613 0.119286i
\(315\) 0.170792 + 0.0501489i 0.00962301 + 0.00282557i
\(316\) 0.894973 + 6.22467i 0.0503462 + 0.350165i
\(317\) −3.75040 + 8.21223i −0.210643 + 0.461245i −0.985233 0.171220i \(-0.945229\pi\)
0.774589 + 0.632464i \(0.217957\pi\)
\(318\) 1.48827 10.3512i 0.0834583 0.580465i
\(319\) −0.203974 0.131086i −0.0114204 0.00733943i
\(320\) −0.654861 0.755750i −0.0366078 0.0422477i
\(321\) −19.1988 −1.07157
\(322\) −0.851583 + 0.0596134i −0.0474569 + 0.00332212i
\(323\) −26.1241 −1.45358
\(324\) −0.654861 0.755750i −0.0363812 0.0419861i
\(325\) 4.12779 + 2.65277i 0.228968 + 0.147149i
\(326\) −1.37607 + 9.57078i −0.0762135 + 0.530077i
\(327\) −2.18260 + 4.77923i −0.120698 + 0.264292i
\(328\) −0.469808 3.26758i −0.0259408 0.180422i
\(329\) −1.57117 0.461338i −0.0866216 0.0254344i
\(330\) −0.0361547 + 0.0232352i −0.00199025 + 0.00127906i
\(331\) 13.2741 + 29.0661i 0.729608 + 1.59762i 0.799929 + 0.600094i \(0.204870\pi\)
−0.0703215 + 0.997524i \(0.522403\pi\)
\(332\) 2.94316 0.864190i 0.161527 0.0474286i
\(333\) 1.52124 1.75560i 0.0833634 0.0962065i
\(334\) 0.979068 1.12990i 0.0535722 0.0618256i
\(335\) −8.82375 + 2.59089i −0.482093 + 0.141555i
\(336\) 0.0739446 + 0.161916i 0.00403401 + 0.00883325i
\(337\) 0.0442525 0.0284393i 0.00241058 0.00154919i −0.539435 0.842027i \(-0.681362\pi\)
0.541846 + 0.840478i \(0.317726\pi\)
\(338\) −10.6272 3.12042i −0.578041 0.169728i
\(339\) −0.553934 3.85270i −0.0300856 0.209250i
\(340\) 1.85424 4.06022i 0.100560 0.220197i
\(341\) 0.0626842 0.435978i 0.00339454 0.0236095i
\(342\) −4.92360 3.16421i −0.266238 0.171101i
\(343\) −1.62824 1.87909i −0.0879165 0.101461i
\(344\) −5.07242 −0.273486
\(345\) 1.01235 + 4.68777i 0.0545029 + 0.252381i
\(346\) −0.870471 −0.0467968
\(347\) −2.69859 3.11434i −0.144868 0.167186i 0.678678 0.734436i \(-0.262553\pi\)
−0.823546 + 0.567249i \(0.808008\pi\)
\(348\) 4.74611 + 3.05014i 0.254418 + 0.163505i
\(349\) 2.35752 16.3969i 0.126195 0.877708i −0.824119 0.566416i \(-0.808329\pi\)
0.950315 0.311291i \(-0.100762\pi\)
\(350\) −0.0739446 + 0.161916i −0.00395251 + 0.00865478i
\(351\) 0.698298 + 4.85677i 0.0372724 + 0.259235i
\(352\) −0.0412363 0.0121081i −0.00219790 0.000645362i
\(353\) −17.5599 + 11.2851i −0.934619 + 0.600643i −0.916864 0.399199i \(-0.869288\pi\)
−0.0177549 + 0.999842i \(0.505652\pi\)
\(354\) 5.45966 + 11.9550i 0.290178 + 0.635400i
\(355\) 14.4494 4.24272i 0.766893 0.225180i
\(356\) 9.57767 11.0532i 0.507616 0.585820i
\(357\) −0.520305 + 0.600464i −0.0275374 + 0.0317799i
\(358\) −18.8208 + 5.52629i −0.994711 + 0.292074i
\(359\) −1.65518 3.62435i −0.0873573 0.191286i 0.860911 0.508755i \(-0.169894\pi\)
−0.948269 + 0.317469i \(0.897167\pi\)
\(360\) 0.841254 0.540641i 0.0443380 0.0284943i
\(361\) −14.6362 4.29757i −0.770326 0.226188i
\(362\) 2.23442 + 15.5407i 0.117439 + 0.816803i
\(363\) 4.56880 10.0043i 0.239800 0.525088i
\(364\) 0.124298 0.864514i 0.00651500 0.0453128i
\(365\) 7.18655 + 4.61851i 0.376161 + 0.241744i
\(366\) −7.87275 9.08564i −0.411515 0.474914i
\(367\) 9.26597 0.483680 0.241840 0.970316i \(-0.422249\pi\)
0.241840 + 0.970316i \(0.422249\pi\)
\(368\) −2.87983 + 3.83491i −0.150122 + 0.199909i
\(369\) 3.30119 0.171853
\(370\) 1.52124 + 1.75560i 0.0790855 + 0.0912695i
\(371\) −1.56597 1.00639i −0.0813013 0.0522491i
\(372\) −1.45855 + 10.1444i −0.0756221 + 0.525963i
\(373\) −9.06422 + 19.8479i −0.469327 + 1.02768i 0.515934 + 0.856628i \(0.327445\pi\)
−0.985261 + 0.171055i \(0.945282\pi\)
\(374\) −0.0273006 0.189880i −0.00141168 0.00981845i
\(375\) 0.959493 + 0.281733i 0.0495480 + 0.0145486i
\(376\) −7.73899 + 4.97355i −0.399108 + 0.256491i
\(377\) −11.4996 25.1807i −0.592261 1.29687i
\(378\) −0.170792 + 0.0501489i −0.00878457 + 0.00257938i
\(379\) −4.48868 + 5.18022i −0.230568 + 0.266090i −0.859231 0.511588i \(-0.829057\pi\)
0.628662 + 0.777678i \(0.283603\pi\)
\(380\) 3.83270 4.42318i 0.196614 0.226904i
\(381\) −10.1707 + 2.98640i −0.521063 + 0.152998i
\(382\) −3.40850 7.46357i −0.174394 0.381870i
\(383\) −10.9595 + 7.04326i −0.560006 + 0.359894i −0.789818 0.613341i \(-0.789825\pi\)
0.229812 + 0.973235i \(0.426189\pi\)
\(384\) 0.959493 + 0.281733i 0.0489639 + 0.0143771i
\(385\) 0.00108871 + 0.00757215i 5.54858e−5 + 0.000385912i
\(386\) 0.582156 1.27474i 0.0296309 0.0648827i
\(387\) 0.721880 5.02079i 0.0366952 0.255221i
\(388\) −2.78540 1.79007i −0.141407 0.0908769i
\(389\) −3.74016 4.31637i −0.189634 0.218849i 0.652969 0.757385i \(-0.273523\pi\)
−0.842603 + 0.538536i \(0.818978\pi\)
\(390\) −4.90671 −0.248461
\(391\) −20.9105 4.58190i −1.05749 0.231717i
\(392\) −6.96832 −0.351953
\(393\) 6.10543 + 7.04604i 0.307978 + 0.355426i
\(394\) 9.19891 + 5.91178i 0.463435 + 0.297831i
\(395\) 0.894973 6.22467i 0.0450310 0.313197i
\(396\) 0.0178534 0.0390934i 0.000897165 0.00196452i
\(397\) −3.01072 20.9400i −0.151104 1.05095i −0.914374 0.404870i \(-0.867317\pi\)
0.763271 0.646079i \(-0.223592\pi\)
\(398\) −3.02398 0.887920i −0.151578 0.0445074i
\(399\) −0.876411 + 0.563235i −0.0438754 + 0.0281970i
\(400\) 0.415415 + 0.909632i 0.0207708 + 0.0454816i
\(401\) 30.4725 8.94753i 1.52172 0.446818i 0.589218 0.807974i \(-0.299436\pi\)
0.932505 + 0.361156i \(0.117618\pi\)
\(402\) 6.02227 6.95007i 0.300363 0.346638i
\(403\) 32.9314 38.0048i 1.64043 1.89315i
\(404\) −1.40964 + 0.413909i −0.0701325 + 0.0205927i
\(405\) 0.415415 + 0.909632i 0.0206421 + 0.0452000i
\(406\) 0.844817 0.542931i 0.0419276 0.0269452i
\(407\) 0.0957918 + 0.0281270i 0.00474822 + 0.00139420i
\(408\) 0.635235 + 4.41816i 0.0314488 + 0.218731i
\(409\) 0.584986 1.28094i 0.0289257 0.0633384i −0.894618 0.446832i \(-0.852552\pi\)
0.923543 + 0.383494i \(0.125279\pi\)
\(410\) −0.469808 + 3.26758i −0.0232021 + 0.161374i
\(411\) −17.0939 10.9856i −0.843178 0.541878i
\(412\) 9.91658 + 11.4443i 0.488555 + 0.563822i
\(413\) 2.33942 0.115115
\(414\) −3.38604 3.39628i −0.166415 0.166918i
\(415\) −3.06741 −0.150573
\(416\) −3.21321 3.70824i −0.157541 0.181812i
\(417\) 1.51189 + 0.971635i 0.0740378 + 0.0475812i
\(418\) 0.0357968 0.248972i 0.00175088 0.0121776i
\(419\) −8.73060 + 19.1173i −0.426518 + 0.933943i 0.567361 + 0.823469i \(0.307964\pi\)
−0.993879 + 0.110474i \(0.964763\pi\)
\(420\) −0.0253323 0.176190i −0.00123609 0.00859719i
\(421\) −6.37116 1.87074i −0.310511 0.0911743i 0.122764 0.992436i \(-0.460824\pi\)
−0.433275 + 0.901262i \(0.642642\pi\)
\(422\) 15.8106 10.1608i 0.769646 0.494622i
\(423\) −3.82155 8.36803i −0.185810 0.406868i
\(424\) −10.0340 + 2.94625i −0.487295 + 0.143083i
\(425\) −2.92303 + 3.37336i −0.141788 + 0.163632i
\(426\) −9.86179 + 11.3811i −0.477806 + 0.551417i
\(427\) −2.05326 + 0.602892i −0.0993642 + 0.0291760i
\(428\) 7.97548 + 17.4639i 0.385509 + 0.844148i
\(429\) −0.177401 + 0.114008i −0.00856498 + 0.00550438i
\(430\) 4.86695 + 1.42906i 0.234705 + 0.0689156i
\(431\) −3.64327 25.3395i −0.175490 1.22056i −0.867042 0.498234i \(-0.833982\pi\)
0.691552 0.722326i \(-0.256927\pi\)
\(432\) −0.415415 + 0.909632i −0.0199867 + 0.0437647i
\(433\) −2.87940 + 20.0267i −0.138375 + 0.962420i 0.795788 + 0.605575i \(0.207057\pi\)
−0.934163 + 0.356845i \(0.883852\pi\)
\(434\) 1.53469 + 0.986288i 0.0736676 + 0.0473433i
\(435\) −3.69454 4.26372i −0.177140 0.204430i
\(436\) 5.25403 0.251622
\(437\) −24.6148 13.4890i −1.17749 0.645268i
\(438\) −8.54267 −0.408184
\(439\) 5.64129 + 6.51039i 0.269244 + 0.310724i 0.874230 0.485512i \(-0.161367\pi\)
−0.604986 + 0.796236i \(0.706821\pi\)
\(440\) 0.0361547 + 0.0232352i 0.00172361 + 0.00110770i
\(441\) 0.991695 6.89739i 0.0472236 0.328447i
\(442\) 9.09823 19.9223i 0.432759 0.947609i
\(443\) 2.10373 + 14.6318i 0.0999511 + 0.695175i 0.976760 + 0.214336i \(0.0687588\pi\)
−0.876809 + 0.480839i \(0.840332\pi\)
\(444\) −2.22890 0.654464i −0.105779 0.0310595i
\(445\) −12.3038 + 7.90715i −0.583254 + 0.374835i
\(446\) −11.4081 24.9802i −0.540188 1.18285i
\(447\) −7.52148 + 2.20850i −0.355754 + 0.104459i
\(448\) 0.116566 0.134525i 0.00550725 0.00635570i
\(449\) 7.65173 8.83057i 0.361108 0.416740i −0.545903 0.837848i \(-0.683813\pi\)
0.907010 + 0.421108i \(0.138359\pi\)
\(450\) −0.959493 + 0.281733i −0.0452309 + 0.0132810i
\(451\) 0.0589373 + 0.129055i 0.00277525 + 0.00607694i
\(452\) −3.27442 + 2.10434i −0.154016 + 0.0989800i
\(453\) −9.95586 2.92330i −0.467767 0.137349i
\(454\) 3.12394 + 21.7274i 0.146614 + 1.01972i
\(455\) −0.362825 + 0.794476i −0.0170095 + 0.0372456i
\(456\) −0.832926 + 5.79313i −0.0390053 + 0.271288i
\(457\) −8.45151 5.43146i −0.395345 0.254073i 0.327831 0.944736i \(-0.393682\pi\)
−0.723176 + 0.690663i \(0.757319\pi\)
\(458\) −15.2489 17.5982i −0.712535 0.822309i
\(459\) −4.46359 −0.208343
\(460\) 3.84360 2.86823i 0.179209 0.133732i
\(461\) −10.0371 −0.467476 −0.233738 0.972300i \(-0.575096\pi\)
−0.233738 + 0.972300i \(0.575096\pi\)
\(462\) −0.00500969 0.00578150i −0.000233072 0.000268980i
\(463\) 12.8039 + 8.22858i 0.595048 + 0.382414i 0.803224 0.595677i \(-0.203116\pi\)
−0.208176 + 0.978091i \(0.566753\pi\)
\(464\) 0.802900 5.58429i 0.0372737 0.259244i
\(465\) 4.25748 9.32258i 0.197436 0.432324i
\(466\) −0.406135 2.82473i −0.0188138 0.130853i
\(467\) −2.03439 0.597350i −0.0941402 0.0276421i 0.234323 0.972159i \(-0.424713\pi\)
−0.328463 + 0.944517i \(0.606531\pi\)
\(468\) 4.12779 2.65277i 0.190807 0.122624i
\(469\) −0.680014 1.48902i −0.0314001 0.0687567i
\(470\) 8.82672 2.59176i 0.407146 0.119549i
\(471\) 2.56032 2.95477i 0.117973 0.136149i
\(472\) 8.60661 9.93256i 0.396151 0.457183i
\(473\) 0.209168 0.0614172i 0.00961754 0.00282396i
\(474\) 2.61241 + 5.72039i 0.119992 + 0.262746i
\(475\) −4.92360 + 3.16421i −0.225910 + 0.145184i
\(476\) 0.762343 + 0.223844i 0.0349420 + 0.0102599i
\(477\) −1.48827 10.3512i −0.0681434 0.473948i
\(478\) −6.36935 + 13.9469i −0.291327 + 0.637917i
\(479\) −2.93436 + 20.4089i −0.134074 + 0.932509i 0.806091 + 0.591791i \(0.201579\pi\)
−0.940166 + 0.340717i \(0.889330\pi\)
\(480\) −0.841254 0.540641i −0.0383978 0.0246768i
\(481\) 7.46428 + 8.61424i 0.340342 + 0.392775i
\(482\) 15.9274 0.725473
\(483\) −0.800293 + 0.297117i −0.0364146 + 0.0135193i
\(484\) −10.9982 −0.499916
\(485\) 2.16825 + 2.50229i 0.0984552 + 0.113623i
\(486\) −0.841254 0.540641i −0.0381600 0.0245240i
\(487\) −4.58505 + 31.8897i −0.207768 + 1.44506i 0.572648 + 0.819801i \(0.305916\pi\)
−0.780417 + 0.625260i \(0.784993\pi\)
\(488\) −4.99413 + 10.9356i −0.226074 + 0.495032i
\(489\) 1.37607 + 9.57078i 0.0622281 + 0.432806i
\(490\) 6.68605 + 1.96320i 0.302045 + 0.0886884i
\(491\) −17.0648 + 10.9669i −0.770125 + 0.494929i −0.865743 0.500489i \(-0.833154\pi\)
0.0956179 + 0.995418i \(0.469517\pi\)
\(492\) −1.37136 3.00286i −0.0618258 0.135380i
\(493\) 24.1622 7.09467i 1.08821 0.319528i
\(494\) 18.8060 21.7032i 0.846120 0.976475i
\(495\) −0.0281441 + 0.0324800i −0.00126498 + 0.00145987i
\(496\) 9.83359 2.88740i 0.441541 0.129648i
\(497\) 1.11356 + 2.43836i 0.0499500 + 0.109375i
\(498\) 2.58047 1.65837i 0.115634 0.0743133i
\(499\) 34.1188 + 10.0182i 1.52737 + 0.448476i 0.934244 0.356636i \(-0.116076\pi\)
0.593124 + 0.805111i \(0.297894\pi\)
\(500\) −0.142315 0.989821i −0.00636451 0.0442662i
\(501\) 0.621078 1.35997i 0.0277477 0.0607590i
\(502\) −3.22613 + 22.4382i −0.143989 + 1.00147i
\(503\) 13.5163 + 8.68638i 0.602661 + 0.387307i 0.806099 0.591781i \(-0.201575\pi\)
−0.203438 + 0.979088i \(0.565211\pi\)
\(504\) 0.116566 + 0.134525i 0.00519228 + 0.00599221i
\(505\) 1.46916 0.0653766
\(506\) 0.0723202 0.193007i 0.00321502 0.00858020i
\(507\) −11.0758 −0.491894
\(508\) 6.94161 + 8.01104i 0.307984 + 0.355432i
\(509\) −17.2356 11.0766i −0.763955 0.490964i 0.0997187 0.995016i \(-0.468206\pi\)
−0.863673 + 0.504052i \(0.831842\pi\)
\(510\) 0.635235 4.41816i 0.0281287 0.195639i
\(511\) −0.631685 + 1.38320i −0.0279441 + 0.0611890i
\(512\) −0.142315 0.989821i −0.00628949 0.0437443i
\(513\) −5.61562 1.64890i −0.247936 0.0728005i
\(514\) 1.80398 1.15935i 0.0795701 0.0511366i
\(515\) −6.29064 13.7746i −0.277199 0.606981i
\(516\) −4.86695 + 1.42906i −0.214255 + 0.0629111i
\(517\) 0.258907 0.298795i 0.0113867 0.0131410i
\(518\) −0.270783 + 0.312501i −0.0118975 + 0.0137305i
\(519\) −0.835211 + 0.245240i −0.0366617 + 0.0107648i
\(520\) 2.03832 + 4.46330i 0.0893863 + 0.195729i
\(521\) 21.6606 13.9204i 0.948968 0.609865i 0.0280440 0.999607i \(-0.491072\pi\)
0.920924 + 0.389742i \(0.127436\pi\)
\(522\) 5.41319 + 1.58945i 0.236929 + 0.0695685i
\(523\) −4.63877 32.2634i −0.202839 1.41078i −0.795806 0.605551i \(-0.792953\pi\)
0.592967 0.805227i \(-0.297956\pi\)
\(524\) 3.87302 8.48073i 0.169194 0.370482i
\(525\) −0.0253323 + 0.176190i −0.00110559 + 0.00768956i
\(526\) 9.05734 + 5.82080i 0.394919 + 0.253799i
\(527\) 29.9574 + 34.5726i 1.30496 + 1.50601i
\(528\) −0.0429772 −0.00187034
\(529\) −17.3366 15.1143i −0.753767 0.657141i
\(530\) 10.4576 0.454250
\(531\) 8.60661 + 9.93256i 0.373495 + 0.431036i
\(532\) 0.876411 + 0.563235i 0.0379972 + 0.0244193i
\(533\) −2.30521 + 16.0331i −0.0998497 + 0.694470i
\(534\) 6.07566 13.3038i 0.262919 0.575713i
\(535\) −2.73228 19.0034i −0.118127 0.821589i
\(536\) −8.82375 2.59089i −0.381128 0.111909i
\(537\) −16.5015 + 10.6049i −0.712092 + 0.457634i
\(538\) −7.10068 15.5483i −0.306132 0.670336i
\(539\) 0.287347 0.0843728i 0.0123769 0.00363419i
\(540\) 0.654861 0.755750i 0.0281807 0.0325223i
\(541\) 28.5766 32.9792i 1.22860 1.41789i 0.352467 0.935824i \(-0.385343\pi\)
0.876138 0.482061i \(-0.160112\pi\)
\(542\) −5.80862 + 1.70557i −0.249502 + 0.0732603i
\(543\) 6.52224 + 14.2817i 0.279896 + 0.612887i
\(544\) 3.75501 2.41320i 0.160995 0.103465i
\(545\) −5.04120 1.48023i −0.215941 0.0634061i
\(546\) −0.124298 0.864514i −0.00531948 0.0369978i
\(547\) −2.17668 + 4.76627i −0.0930683 + 0.203791i −0.950441 0.310905i \(-0.899368\pi\)
0.857373 + 0.514696i \(0.172095\pi\)
\(548\) −2.89177 + 20.1127i −0.123530 + 0.859172i
\(549\) −10.1136 6.49960i −0.431637 0.277396i
\(550\) −0.0281441 0.0324800i −0.00120007 0.00138495i
\(551\) 33.0193 1.40667
\(552\) −1.68276 + 4.49092i −0.0716230 + 0.191146i
\(553\) 1.11940 0.0476016
\(554\) 11.3837 + 13.1375i 0.483647 + 0.558158i
\(555\) 1.95423 + 1.25591i 0.0829524 + 0.0533103i
\(556\) 0.255767 1.77890i 0.0108469 0.0754421i
\(557\) −5.04431 + 11.0455i −0.213734 + 0.468012i −0.985884 0.167428i \(-0.946454\pi\)
0.772150 + 0.635440i \(0.219181\pi\)
\(558\) 1.45855 + 10.1444i 0.0617452 + 0.429447i
\(559\) 23.8807 + 7.01201i 1.01005 + 0.296576i
\(560\) −0.149745 + 0.0962351i −0.00632787 + 0.00406667i
\(561\) −0.0796901 0.174497i −0.00336452 0.00736727i
\(562\) −23.6081 + 6.93197i −0.995849 + 0.292408i
\(563\) 5.02324 5.79713i 0.211704 0.244320i −0.639959 0.768409i \(-0.721049\pi\)
0.851663 + 0.524089i \(0.175594\pi\)
\(564\) −6.02430 + 6.95241i −0.253669 + 0.292749i
\(565\) 3.73465 1.09659i 0.157118 0.0461340i
\(566\) −1.92362 4.21215i −0.0808560 0.177050i
\(567\) −0.149745 + 0.0962351i −0.00628869 + 0.00404149i
\(568\) 14.4494 + 4.24272i 0.606282 + 0.178020i
\(569\) 1.39172 + 9.67964i 0.0583440 + 0.405792i 0.997975 + 0.0636029i \(0.0202591\pi\)
−0.939631 + 0.342189i \(0.888832\pi\)
\(570\) 2.43130 5.32380i 0.101836 0.222990i
\(571\) 5.71483 39.7475i 0.239158 1.66338i −0.417112 0.908855i \(-0.636958\pi\)
0.656270 0.754526i \(-0.272133\pi\)
\(572\) 0.177401 + 0.114008i 0.00741749 + 0.00476693i
\(573\) −5.37316 6.20096i −0.224467 0.259049i
\(574\) −0.587617 −0.0245267
\(575\) −4.49598 + 1.66918i −0.187495 + 0.0696096i
\(576\) 1.00000 0.0416667
\(577\) 18.8113 + 21.7094i 0.783125 + 0.903775i 0.997331 0.0730137i \(-0.0232617\pi\)
−0.214206 + 0.976789i \(0.568716\pi\)
\(578\) 2.45952 + 1.58064i 0.102303 + 0.0657458i
\(579\) 0.199438 1.38712i 0.00828834 0.0576467i
\(580\) −2.34365 + 5.13188i −0.0973149 + 0.213090i
\(581\) −0.0777047 0.540448i −0.00322373 0.0224216i
\(582\) −3.17689 0.932819i −0.131686 0.0386666i
\(583\) 0.378092 0.242985i 0.0156590 0.0100634i
\(584\) 3.54875 + 7.77068i 0.146848 + 0.321553i
\(585\) −4.70795 + 1.38238i −0.194650 + 0.0571544i
\(586\) 3.75301 4.33121i 0.155036 0.178921i
\(587\) −9.39502 + 10.8424i −0.387774 + 0.447515i −0.915753 0.401743i \(-0.868405\pi\)
0.527979 + 0.849258i \(0.322950\pi\)
\(588\) −6.68605 + 1.96320i −0.275728 + 0.0809611i
\(589\) 24.9177 + 54.5622i 1.02672 + 2.24820i
\(590\) −11.0563 + 7.10546i −0.455181 + 0.292527i
\(591\) 10.4918 + 3.08068i 0.431576 + 0.126722i
\(592\) 0.330597 + 2.29935i 0.0135874 + 0.0945028i
\(593\) 17.9256 39.2516i 0.736116 1.61187i −0.0537243 0.998556i \(-0.517109\pi\)
0.789840 0.613313i \(-0.210164\pi\)
\(594\) 0.00611629 0.0425397i 0.000250954 0.00174543i
\(595\) −0.668399 0.429554i −0.0274017 0.0176100i
\(596\) 5.13346 + 5.92433i 0.210275 + 0.242670i
\(597\) −3.15164 −0.128988
\(598\) 18.8594 14.0736i 0.771219 0.575511i
\(599\) 13.6793 0.558920 0.279460 0.960157i \(-0.409844\pi\)
0.279460 + 0.960157i \(0.409844\pi\)
\(600\) 0.654861 + 0.755750i 0.0267346 + 0.0308533i
\(601\) −31.9544 20.5359i −1.30345 0.837675i −0.309865 0.950781i \(-0.600284\pi\)
−0.993583 + 0.113105i \(0.963920\pi\)
\(602\) −0.128496 + 0.893709i −0.00523711 + 0.0364249i
\(603\) 3.82026 8.36521i 0.155573 0.340658i
\(604\) 1.47668 + 10.2705i 0.0600853 + 0.417903i
\(605\) 10.5527 + 3.09854i 0.429026 + 0.125973i
\(606\) −1.23593 + 0.794286i −0.0502063 + 0.0322657i
\(607\) 0.361622 + 0.791843i 0.0146778 + 0.0321399i 0.916829 0.399280i \(-0.130740\pi\)
−0.902151 + 0.431420i \(0.858013\pi\)
\(608\) 5.61562 1.64890i 0.227744 0.0668716i
\(609\) 0.657635 0.758951i 0.0266487 0.0307542i
\(610\) 7.87275 9.08564i 0.318759 0.367867i
\(611\) 43.3102 12.7170i 1.75214 0.514475i
\(612\) 1.85424 + 4.06022i 0.0749533 + 0.164125i
\(613\) −29.6589 + 19.0606i −1.19791 + 0.769851i −0.978594 0.205802i \(-0.934020\pi\)
−0.219318 + 0.975653i \(0.570383\pi\)
\(614\) −1.97788 0.580757i −0.0798206 0.0234374i
\(615\) 0.469808 + 3.26758i 0.0189445 + 0.131762i
\(616\) −0.00317793 + 0.00695870i −0.000128042 + 0.000280374i
\(617\) 4.54465 31.6087i 0.182961 1.27252i −0.666754 0.745278i \(-0.732317\pi\)
0.849715 0.527242i \(-0.176774\pi\)
\(618\) 12.7391 + 8.18694i 0.512443 + 0.329327i
\(619\) −12.8217 14.7971i −0.515348 0.594744i 0.437112 0.899407i \(-0.356001\pi\)
−0.952460 + 0.304664i \(0.901456\pi\)
\(620\) −10.2487 −0.411599
\(621\) −4.20572 2.30475i −0.168770 0.0924866i
\(622\) −17.5976 −0.705599
\(623\) −1.70484 1.96749i −0.0683031 0.0788260i
\(624\) −4.12779 2.65277i −0.165244 0.106196i
\(625\) −0.142315 + 0.989821i −0.00569259 + 0.0395929i
\(626\) 13.8188 30.2589i 0.552309 1.20939i
\(627\) −0.0357968 0.248972i −0.00142959 0.00994299i
\(628\) −3.75135 1.10150i −0.149695 0.0439545i
\(629\) −8.72288 + 5.60585i −0.347804 + 0.223520i
\(630\) −0.0739446 0.161916i −0.00294603 0.00645090i
\(631\) −44.6916 + 13.1226i −1.77915 + 0.522404i −0.995151 0.0983636i \(-0.968639\pi\)
−0.783995 + 0.620768i \(0.786821\pi\)
\(632\) 4.11821 4.75267i 0.163814 0.189051i
\(633\) 12.3075 14.2036i 0.489179 0.564542i
\(634\) 8.66238 2.54350i 0.344027 0.101015i
\(635\) −4.40345 9.64221i −0.174746 0.382640i
\(636\) −8.79751 + 5.65381i −0.348844 + 0.224188i
\(637\) 32.8065 + 9.63286i 1.29984 + 0.381668i
\(638\) 0.0345064 + 0.239997i 0.00136612 + 0.00950157i
\(639\) −6.25589 + 13.6985i −0.247479 + 0.541904i
\(640\) −0.142315 + 0.989821i −0.00562549 + 0.0391261i
\(641\) −0.497077 0.319452i −0.0196334 0.0126176i 0.530787 0.847505i \(-0.321896\pi\)
−0.550421 + 0.834887i \(0.685533\pi\)
\(642\) 12.5726 + 14.5095i 0.496199 + 0.572644i
\(643\) 4.24217 0.167295 0.0836474 0.996495i \(-0.473343\pi\)
0.0836474 + 0.996495i \(0.473343\pi\)
\(644\) 0.602721 + 0.604545i 0.0237505 + 0.0238224i
\(645\) 5.07242 0.199726
\(646\) 17.1076 + 19.7432i 0.673090 + 0.776787i
\(647\) −31.9764 20.5500i −1.25712 0.807902i −0.269233 0.963075i \(-0.586770\pi\)
−0.987887 + 0.155172i \(0.950407\pi\)
\(648\) −0.142315 + 0.989821i −0.00559065 + 0.0388839i
\(649\) −0.234641 + 0.513791i −0.00921045 + 0.0201681i
\(650\) −0.698298 4.85677i −0.0273895 0.190498i
\(651\) 1.75040 + 0.513963i 0.0686035 + 0.0201438i
\(652\) 8.13425 5.22756i 0.318562 0.204727i
\(653\) −3.35850 7.35408i −0.131428 0.287788i 0.832465 0.554078i \(-0.186929\pi\)
−0.963893 + 0.266291i \(0.914202\pi\)
\(654\) 5.04120 1.48023i 0.197127 0.0578816i
\(655\) −6.10543 + 7.04604i −0.238559 + 0.275312i
\(656\) −2.16182 + 2.49487i −0.0844048 + 0.0974083i
\(657\) −8.19663 + 2.40675i −0.319781 + 0.0938962i
\(658\) 0.680243 + 1.48953i 0.0265186 + 0.0580677i
\(659\) 4.46395 2.86881i 0.173891 0.111753i −0.450800 0.892625i \(-0.648861\pi\)
0.624691 + 0.780872i \(0.285225\pi\)
\(660\) 0.0412363 + 0.0121081i 0.00160512 + 0.000471306i
\(661\) −0.717146 4.98786i −0.0278938 0.194005i 0.971110 0.238632i \(-0.0766991\pi\)
−0.999004 + 0.0446271i \(0.985790\pi\)
\(662\) 13.2741 29.0661i 0.515911 1.12969i
\(663\) 3.11691 21.6786i 0.121051 0.841928i
\(664\) −2.58047 1.65837i −0.100142 0.0643572i
\(665\) −0.682228 0.787333i −0.0264557 0.0305315i
\(666\) −2.32300 −0.0900143
\(667\) 26.4297 + 5.79126i 1.02336 + 0.224238i
\(668\) −1.49508 −0.0578463
\(669\) −17.9837 20.7543i −0.695291 0.802408i
\(670\) 7.73639 + 4.97187i 0.298883 + 0.192080i
\(671\) 0.0735302 0.511414i 0.00283860 0.0197429i
\(672\) 0.0739446 0.161916i 0.00285248 0.00624605i
\(673\) −3.36559 23.4082i −0.129734 0.902319i −0.945890 0.324488i \(-0.894808\pi\)
0.816156 0.577832i \(-0.196101\pi\)
\(674\) −0.0504722 0.0148200i −0.00194412 0.000570844i
\(675\) −0.841254 + 0.540641i −0.0323799 + 0.0208093i
\(676\) 4.60106 + 10.0749i 0.176964 + 0.387496i
\(677\) 31.3117 9.19395i 1.20341 0.353352i 0.382253 0.924058i \(-0.375148\pi\)
0.821155 + 0.570706i \(0.193330\pi\)
\(678\) −2.54892 + 2.94162i −0.0978909 + 0.112972i
\(679\) −0.385953 + 0.445413i −0.0148115 + 0.0170934i
\(680\) −4.28278 + 1.25754i −0.164237 + 0.0482244i
\(681\) 9.11872 + 19.9672i 0.349430 + 0.765146i
\(682\) −0.370540 + 0.238131i −0.0141887 + 0.00911852i
\(683\) −45.1194 13.2482i −1.72644 0.506930i −0.740224 0.672361i \(-0.765280\pi\)
−0.986221 + 0.165431i \(0.947099\pi\)
\(684\) 0.832926 + 5.79313i 0.0318477 + 0.221506i
\(685\) 8.44103 18.4833i 0.322515 0.706210i
\(686\) −0.353850 + 2.46108i −0.0135100 + 0.0939644i
\(687\) −19.5892 12.5892i −0.747375 0.480309i
\(688\) 3.32173 + 3.83348i 0.126640 + 0.146150i
\(689\) 51.3125 1.95485
\(690\) 2.87983 3.83491i 0.109633 0.145993i
\(691\) −21.4937 −0.817659 −0.408829 0.912611i \(-0.634063\pi\)
−0.408829 + 0.912611i \(0.634063\pi\)
\(692\) 0.570037 + 0.657858i 0.0216696 + 0.0250080i
\(693\) −0.00643560 0.00413591i −0.000244468 0.000157110i
\(694\) −0.586459 + 4.07891i −0.0222617 + 0.154833i
\(695\) −0.746581 + 1.63478i −0.0283194 + 0.0620109i
\(696\) −0.802900 5.58429i −0.0304338 0.211672i
\(697\) −14.1383 4.15137i −0.535525 0.157244i
\(698\) −13.9358 + 8.95601i −0.527479 + 0.338990i
\(699\) −1.18550 2.59589i −0.0448398 0.0981855i
\(700\) 0.170792 0.0501489i 0.00645531 0.00189545i
\(701\) 28.8521 33.2971i 1.08973 1.25761i 0.125629 0.992077i \(-0.459905\pi\)
0.964101 0.265537i \(-0.0855493\pi\)
\(702\) 3.21321 3.70824i 0.121275 0.139959i
\(703\) −13.0451 + 3.83038i −0.492004 + 0.144466i
\(704\) 0.0178534 + 0.0390934i 0.000672874 + 0.00147339i
\(705\) 7.73899 4.97355i 0.291467 0.187315i
\(706\) 20.0280 + 5.88074i 0.753763 + 0.221325i
\(707\) 0.0372171 + 0.258851i 0.00139969 + 0.00973508i
\(708\) 5.45966 11.9550i 0.205186 0.449296i
\(709\) 2.84279 19.7721i 0.106763 0.742555i −0.864169 0.503202i \(-0.832155\pi\)
0.970932 0.239354i \(-0.0769356\pi\)
\(710\) −12.6688 8.14171i −0.475450 0.305553i
\(711\) 4.11821 + 4.75267i 0.154445 + 0.178239i
\(712\) −14.6255 −0.548114
\(713\) 10.3753 + 48.0437i 0.388557 + 1.79925i
\(714\) 0.794527 0.0297344
\(715\) −0.138095 0.159370i −0.00516445 0.00596009i
\(716\) 16.5015 + 10.6049i 0.616690 + 0.396323i
\(717\) −2.18204 + 15.1764i −0.0814898 + 0.566774i
\(718\) −1.65518 + 3.62435i −0.0617709 + 0.135260i
\(719\) 0.833551 + 5.79747i 0.0310862 + 0.216209i 0.999443 0.0333589i \(-0.0106204\pi\)
−0.968357 + 0.249568i \(0.919711\pi\)
\(720\) −0.959493 0.281733i −0.0357582 0.0104996i
\(721\) 2.26759 1.45729i 0.0844494 0.0542724i
\(722\) 6.33678 + 13.8756i 0.235831 + 0.516397i
\(723\) 15.2822 4.48726i 0.568352 0.166883i
\(724\) 10.2817 11.8657i 0.382115 0.440985i
\(725\) 3.69454 4.26372i 0.137212 0.158351i
\(726\) −10.5527 + 3.09854i −0.391646 + 0.114998i
\(727\) 13.9276 + 30.4973i 0.516548 + 1.13108i 0.970730 + 0.240173i \(0.0772043\pi\)
−0.454182 + 0.890909i \(0.650068\pi\)
\(728\) −0.734754 + 0.472198i −0.0272318 + 0.0175008i
\(729\) −0.959493 0.281733i −0.0355368 0.0104345i
\(730\) −1.21575 8.45572i −0.0449969 0.312960i
\(731\) −9.40549 + 20.5951i −0.347875 + 0.761739i
\(732\) −1.71091 + 11.8997i −0.0632372 + 0.439824i
\(733\) 26.9636 + 17.3284i 0.995923 + 0.640041i 0.933713 0.358022i \(-0.116549\pi\)
0.0622097 + 0.998063i \(0.480185\pi\)
\(734\) −6.06792 7.00275i −0.223971 0.258476i
\(735\) 6.96832 0.257030
\(736\) 4.78412 0.334903i 0.176345 0.0123447i
\(737\) 0.395229 0.0145585
\(738\) −2.16182 2.49487i −0.0795776 0.0918374i
\(739\) 0.170922 + 0.109845i 0.00628746 + 0.00404070i 0.543781 0.839227i \(-0.316992\pi\)
−0.537493 + 0.843268i \(0.680629\pi\)
\(740\) 0.330597 2.29935i 0.0121530 0.0845259i
\(741\) 11.9297 26.1224i 0.438248 0.959629i
\(742\) 0.264916 + 1.84253i 0.00972536 + 0.0676413i
\(743\) −2.49263 0.731903i −0.0914459 0.0268509i 0.235690 0.971828i \(-0.424265\pi\)
−0.327135 + 0.944977i \(0.606083\pi\)
\(744\) 8.62178 5.54088i 0.316090 0.203139i
\(745\) −3.25644 7.13061i −0.119307 0.261245i
\(746\) 20.9358 6.14731i 0.766515 0.225069i
\(747\) 2.00873 2.31820i 0.0734956 0.0848184i
\(748\) −0.125624 + 0.144977i −0.00459325 + 0.00530089i
\(749\) 3.27900 0.962800i 0.119812 0.0351799i
\(750\) −0.415415 0.909632i −0.0151688 0.0332151i
\(751\) 16.5591 10.6419i 0.604252 0.388329i −0.202446 0.979293i \(-0.564889\pi\)
0.806698 + 0.590965i \(0.201253\pi\)
\(752\) 8.82672 + 2.59176i 0.321877 + 0.0945117i
\(753\) 3.22613 + 22.4382i 0.117567 + 0.817694i
\(754\) −11.4996 + 25.1807i −0.418792 + 0.917026i
\(755\) 1.47668 10.2705i 0.0537420 0.373784i
\(756\) 0.149745 + 0.0962351i 0.00544616 + 0.00350004i
\(757\) −3.34963 3.86568i −0.121744 0.140501i 0.691605 0.722276i \(-0.256904\pi\)
−0.813350 + 0.581775i \(0.802358\pi\)
\(758\) 6.85441 0.248963
\(759\) 0.0150144 0.205564i 0.000544988 0.00746149i
\(760\) −5.85270 −0.212300
\(761\) −1.08051 1.24698i −0.0391685 0.0452029i 0.735827 0.677169i \(-0.236794\pi\)
−0.774996 + 0.631966i \(0.782248\pi\)
\(762\) 8.91739 + 5.73086i 0.323043 + 0.207607i
\(763\) 0.133097 0.925707i 0.00481842 0.0335128i
\(764\) −3.40850 + 7.46357i −0.123315 + 0.270023i
\(765\) −0.635235 4.41816i −0.0229670 0.159739i
\(766\) 12.4999 + 3.67030i 0.451640 + 0.132613i
\(767\) −54.2501 + 34.8644i −1.95886 + 1.25888i
\(768\) −0.415415 0.909632i −0.0149900 0.0328235i