Properties

Label 690.2.m.c.121.2
Level $690$
Weight $2$
Character 690.121
Analytic conductor $5.510$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \( x^{20} - 4 x^{19} - 3 x^{18} + 66 x^{17} - 163 x^{16} - 52 x^{15} + 1567 x^{14} - 6182 x^{13} + 17043 x^{12} - 35832 x^{11} + 60906 x^{10} - 87666 x^{9} + 106197 x^{8} - 102542 x^{7} + \cdots + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 121.2
Root \(0.706969 - 1.54805i\) of defining polynomial
Character \(\chi\) \(=\) 690.121
Dual form 690.2.m.c.211.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.415415 - 0.909632i) q^{2} +(0.959493 + 0.281733i) q^{3} +(-0.654861 - 0.755750i) q^{4} +(0.841254 - 0.540641i) q^{5} +(0.654861 - 0.755750i) q^{6} +(0.0903198 - 0.628188i) q^{7} +(-0.959493 + 0.281733i) q^{8} +(0.841254 + 0.540641i) q^{9} +O(q^{10})\) \(q+(0.415415 - 0.909632i) q^{2} +(0.959493 + 0.281733i) q^{3} +(-0.654861 - 0.755750i) q^{4} +(0.841254 - 0.540641i) q^{5} +(0.654861 - 0.755750i) q^{6} +(0.0903198 - 0.628188i) q^{7} +(-0.959493 + 0.281733i) q^{8} +(0.841254 + 0.540641i) q^{9} +(-0.142315 - 0.989821i) q^{10} +(-1.92870 - 4.22327i) q^{11} +(-0.415415 - 0.909632i) q^{12} +(-0.580306 - 4.03612i) q^{13} +(-0.533899 - 0.343116i) q^{14} +(0.959493 - 0.281733i) q^{15} +(-0.142315 + 0.989821i) q^{16} +(-0.821414 + 0.947963i) q^{17} +(0.841254 - 0.540641i) q^{18} +(0.992447 + 1.14534i) q^{19} +(-0.959493 - 0.281733i) q^{20} +(0.263642 - 0.577296i) q^{21} -4.64283 q^{22} +(4.65690 - 1.14600i) q^{23} -1.00000 q^{24} +(0.415415 - 0.909632i) q^{25} +(-3.91245 - 1.14880i) q^{26} +(0.654861 + 0.755750i) q^{27} +(-0.533899 + 0.343116i) q^{28} +(3.08455 - 3.55976i) q^{29} +(0.142315 - 0.989821i) q^{30} +(4.34190 - 1.27490i) q^{31} +(0.841254 + 0.540641i) q^{32} +(-0.660744 - 4.59558i) q^{33} +(0.521069 + 1.14098i) q^{34} +(-0.263642 - 0.577296i) q^{35} +(-0.142315 - 0.989821i) q^{36} +(8.68671 + 5.58261i) q^{37} +(1.45412 - 0.426968i) q^{38} +(0.580306 - 4.03612i) q^{39} +(-0.654861 + 0.755750i) q^{40} +(-7.73059 + 4.96815i) q^{41} +(-0.415606 - 0.479635i) q^{42} +(-7.97050 - 2.34035i) q^{43} +(-1.92870 + 4.22327i) q^{44} +1.00000 q^{45} +(0.892108 - 4.71213i) q^{46} -5.16744 q^{47} +(-0.415415 + 0.909632i) q^{48} +(6.32999 + 1.85865i) q^{49} +(-0.654861 - 0.755750i) q^{50} +(-1.05521 + 0.678144i) q^{51} +(-2.67027 + 3.08166i) q^{52} +(0.247376 - 1.72054i) q^{53} +(0.959493 - 0.281733i) q^{54} +(-3.90580 - 2.51011i) q^{55} +(0.0903198 + 0.628188i) q^{56} +(0.629565 + 1.37855i) q^{57} +(-1.95670 - 4.28458i) q^{58} +(0.112768 + 0.784317i) q^{59} +(-0.841254 - 0.540641i) q^{60} +(-9.73628 + 2.85883i) q^{61} +(0.644003 - 4.47914i) q^{62} +(0.415606 - 0.479635i) q^{63} +(0.841254 - 0.540641i) q^{64} +(-2.67027 - 3.08166i) q^{65} +(-4.45477 - 1.30804i) q^{66} +(-0.0920044 + 0.201462i) q^{67} +1.25433 q^{68} +(4.79112 + 0.212422i) q^{69} -0.634648 q^{70} +(2.51178 - 5.50003i) q^{71} +(-0.959493 - 0.281733i) q^{72} +(10.6779 + 12.3229i) q^{73} +(8.68671 - 5.58261i) q^{74} +(0.654861 - 0.755750i) q^{75} +(0.215679 - 1.50008i) q^{76} +(-2.82721 + 0.830143i) q^{77} +(-3.43031 - 2.20453i) q^{78} +(1.88753 + 13.1281i) q^{79} +(0.415415 + 0.909632i) q^{80} +(0.415415 + 0.909632i) q^{81} +(1.30778 + 9.09584i) q^{82} +(0.774423 + 0.497691i) q^{83} +(-0.608940 + 0.178801i) q^{84} +(-0.178510 + 1.24157i) q^{85} +(-5.43992 + 6.27801i) q^{86} +(3.96250 - 2.54655i) q^{87} +(3.04041 + 3.50882i) q^{88} +(2.72265 + 0.799443i) q^{89} +(0.415415 - 0.909632i) q^{90} -2.58785 q^{91} +(-3.91571 - 2.76898i) q^{92} +4.52520 q^{93} +(-2.14663 + 4.70046i) q^{94} +(1.45412 + 0.426968i) q^{95} +(0.654861 + 0.755750i) q^{96} +(5.73275 - 3.68422i) q^{97} +(4.32026 - 4.98585i) q^{98} +(0.660744 - 4.59558i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9} - 2 q^{10} - 24 q^{11} + 2 q^{12} - 4 q^{13} + 2 q^{14} + 2 q^{15} - 2 q^{16} + 16 q^{17} - 2 q^{18} + 14 q^{19} - 2 q^{20} - 13 q^{21} - 2 q^{22} - 2 q^{23} - 20 q^{24} - 2 q^{25} + 7 q^{26} + 2 q^{27} + 2 q^{28} + 18 q^{29} + 2 q^{30} + 22 q^{31} - 2 q^{32} + 2 q^{33} - 17 q^{34} + 13 q^{35} - 2 q^{36} - 16 q^{37} + 3 q^{38} + 4 q^{39} - 2 q^{40} + 29 q^{41} + 9 q^{42} - 22 q^{43} - 24 q^{44} + 20 q^{45} - 2 q^{46} - 94 q^{47} + 2 q^{48} - 22 q^{49} - 2 q^{50} - 5 q^{51} - 4 q^{52} + 58 q^{53} + 2 q^{54} + 9 q^{55} + 2 q^{56} - 25 q^{57} - 4 q^{58} + 45 q^{59} + 2 q^{60} + q^{61} - 9 q^{63} - 2 q^{64} - 4 q^{65} - 9 q^{66} + 16 q^{67} - 6 q^{68} + 24 q^{69} + 2 q^{70} + 59 q^{71} - 2 q^{72} + 3 q^{73} - 16 q^{74} + 2 q^{75} - 8 q^{76} - 19 q^{77} - 18 q^{78} - 20 q^{79} - 2 q^{80} - 2 q^{81} - 37 q^{82} + 13 q^{83} + 9 q^{84} + 5 q^{85} - 22 q^{86} + 4 q^{87} + 9 q^{88} - 97 q^{89} - 2 q^{90} - 18 q^{91} + 9 q^{92} + 22 q^{93} + 27 q^{94} + 3 q^{95} + 2 q^{96} - 17 q^{97} - 11 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{9}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.415415 0.909632i 0.293743 0.643207i
\(3\) 0.959493 + 0.281733i 0.553964 + 0.162658i
\(4\) −0.654861 0.755750i −0.327430 0.377875i
\(5\) 0.841254 0.540641i 0.376220 0.241782i
\(6\) 0.654861 0.755750i 0.267346 0.308533i
\(7\) 0.0903198 0.628188i 0.0341377 0.237433i −0.965608 0.260004i \(-0.916276\pi\)
0.999745 + 0.0225712i \(0.00718525\pi\)
\(8\) −0.959493 + 0.281733i −0.339232 + 0.0996075i
\(9\) 0.841254 + 0.540641i 0.280418 + 0.180214i
\(10\) −0.142315 0.989821i −0.0450039 0.313009i
\(11\) −1.92870 4.22327i −0.581526 1.27336i −0.940429 0.339989i \(-0.889577\pi\)
0.358903 0.933375i \(-0.383151\pi\)
\(12\) −0.415415 0.909632i −0.119920 0.262588i
\(13\) −0.580306 4.03612i −0.160948 1.11942i −0.896852 0.442331i \(-0.854152\pi\)
0.735904 0.677086i \(-0.236757\pi\)
\(14\) −0.533899 0.343116i −0.142691 0.0917017i
\(15\) 0.959493 0.281733i 0.247740 0.0727430i
\(16\) −0.142315 + 0.989821i −0.0355787 + 0.247455i
\(17\) −0.821414 + 0.947963i −0.199222 + 0.229915i −0.846566 0.532283i \(-0.821334\pi\)
0.647344 + 0.762198i \(0.275880\pi\)
\(18\) 0.841254 0.540641i 0.198285 0.127430i
\(19\) 0.992447 + 1.14534i 0.227683 + 0.262760i 0.858084 0.513510i \(-0.171655\pi\)
−0.630401 + 0.776270i \(0.717109\pi\)
\(20\) −0.959493 0.281733i −0.214549 0.0629973i
\(21\) 0.263642 0.577296i 0.0575314 0.125976i
\(22\) −4.64283 −0.989856
\(23\) 4.65690 1.14600i 0.971030 0.238957i
\(24\) −1.00000 −0.204124
\(25\) 0.415415 0.909632i 0.0830830 0.181926i
\(26\) −3.91245 1.14880i −0.767294 0.225298i
\(27\) 0.654861 + 0.755750i 0.126028 + 0.145444i
\(28\) −0.533899 + 0.343116i −0.100898 + 0.0648429i
\(29\) 3.08455 3.55976i 0.572786 0.661031i −0.393252 0.919431i \(-0.628650\pi\)
0.966038 + 0.258400i \(0.0831953\pi\)
\(30\) 0.142315 0.989821i 0.0259830 0.180716i
\(31\) 4.34190 1.27490i 0.779828 0.228978i 0.132493 0.991184i \(-0.457702\pi\)
0.647335 + 0.762206i \(0.275884\pi\)
\(32\) 0.841254 + 0.540641i 0.148714 + 0.0955727i
\(33\) −0.660744 4.59558i −0.115021 0.799987i
\(34\) 0.521069 + 1.14098i 0.0893626 + 0.195677i
\(35\) −0.263642 0.577296i −0.0445637 0.0975808i
\(36\) −0.142315 0.989821i −0.0237191 0.164970i
\(37\) 8.68671 + 5.58261i 1.42809 + 0.917776i 0.999901 + 0.0140848i \(0.00448348\pi\)
0.428186 + 0.903691i \(0.359153\pi\)
\(38\) 1.45412 0.426968i 0.235889 0.0692634i
\(39\) 0.580306 4.03612i 0.0929233 0.646296i
\(40\) −0.654861 + 0.755750i −0.103543 + 0.119494i
\(41\) −7.73059 + 4.96815i −1.20732 + 0.775895i −0.980207 0.197975i \(-0.936564\pi\)
−0.227108 + 0.973869i \(0.572927\pi\)
\(42\) −0.415606 0.479635i −0.0641294 0.0740092i
\(43\) −7.97050 2.34035i −1.21549 0.356900i −0.389734 0.920927i \(-0.627433\pi\)
−0.825756 + 0.564027i \(0.809251\pi\)
\(44\) −1.92870 + 4.22327i −0.290763 + 0.636682i
\(45\) 1.00000 0.149071
\(46\) 0.892108 4.71213i 0.131534 0.694765i
\(47\) −5.16744 −0.753748 −0.376874 0.926265i \(-0.623001\pi\)
−0.376874 + 0.926265i \(0.623001\pi\)
\(48\) −0.415415 + 0.909632i −0.0599600 + 0.131294i
\(49\) 6.32999 + 1.85865i 0.904284 + 0.265522i
\(50\) −0.654861 0.755750i −0.0926113 0.106879i
\(51\) −1.05521 + 0.678144i −0.147759 + 0.0949592i
\(52\) −2.67027 + 3.08166i −0.370300 + 0.427349i
\(53\) 0.247376 1.72054i 0.0339797 0.236334i −0.965753 0.259464i \(-0.916454\pi\)
0.999732 + 0.0231300i \(0.00736315\pi\)
\(54\) 0.959493 0.281733i 0.130570 0.0383389i
\(55\) −3.90580 2.51011i −0.526658 0.338463i
\(56\) 0.0903198 + 0.628188i 0.0120695 + 0.0839451i
\(57\) 0.629565 + 1.37855i 0.0833879 + 0.182594i
\(58\) −1.95670 4.28458i −0.256928 0.562593i
\(59\) 0.112768 + 0.784317i 0.0146811 + 0.102109i 0.995844 0.0910707i \(-0.0290289\pi\)
−0.981163 + 0.193180i \(0.938120\pi\)
\(60\) −0.841254 0.540641i −0.108605 0.0697964i
\(61\) −9.73628 + 2.85883i −1.24660 + 0.366036i −0.837492 0.546449i \(-0.815979\pi\)
−0.409110 + 0.912485i \(0.634161\pi\)
\(62\) 0.644003 4.47914i 0.0817885 0.568851i
\(63\) 0.415606 0.479635i 0.0523614 0.0604283i
\(64\) 0.841254 0.540641i 0.105157 0.0675801i
\(65\) −2.67027 3.08166i −0.331207 0.382233i
\(66\) −4.45477 1.30804i −0.548344 0.161008i
\(67\) −0.0920044 + 0.201462i −0.0112401 + 0.0246125i −0.915169 0.403071i \(-0.867943\pi\)
0.903929 + 0.427683i \(0.140670\pi\)
\(68\) 1.25433 0.152110
\(69\) 4.79112 + 0.212422i 0.576784 + 0.0255726i
\(70\) −0.634648 −0.0758549
\(71\) 2.51178 5.50003i 0.298093 0.652733i −0.700021 0.714123i \(-0.746826\pi\)
0.998114 + 0.0613895i \(0.0195532\pi\)
\(72\) −0.959493 0.281733i −0.113077 0.0332025i
\(73\) 10.6779 + 12.3229i 1.24975 + 1.44229i 0.850946 + 0.525253i \(0.176029\pi\)
0.398804 + 0.917036i \(0.369425\pi\)
\(74\) 8.68671 5.58261i 1.00981 0.648965i
\(75\) 0.654861 0.755750i 0.0756168 0.0872664i
\(76\) 0.215679 1.50008i 0.0247401 0.172071i
\(77\) −2.82721 + 0.830143i −0.322190 + 0.0946036i
\(78\) −3.43031 2.20453i −0.388406 0.249614i
\(79\) 1.88753 + 13.1281i 0.212364 + 1.47702i 0.765232 + 0.643755i \(0.222624\pi\)
−0.552868 + 0.833269i \(0.686466\pi\)
\(80\) 0.415415 + 0.909632i 0.0464448 + 0.101700i
\(81\) 0.415415 + 0.909632i 0.0461572 + 0.101070i
\(82\) 1.30778 + 9.09584i 0.144421 + 1.00447i
\(83\) 0.774423 + 0.497691i 0.0850039 + 0.0546287i 0.582452 0.812865i \(-0.302093\pi\)
−0.497448 + 0.867494i \(0.665730\pi\)
\(84\) −0.608940 + 0.178801i −0.0664408 + 0.0195088i
\(85\) −0.178510 + 1.24157i −0.0193622 + 0.134667i
\(86\) −5.43992 + 6.27801i −0.586602 + 0.676975i
\(87\) 3.96250 2.54655i 0.424825 0.273018i
\(88\) 3.04041 + 3.50882i 0.324109 + 0.374041i
\(89\) 2.72265 + 0.799443i 0.288601 + 0.0847408i 0.422829 0.906210i \(-0.361037\pi\)
−0.134228 + 0.990950i \(0.542855\pi\)
\(90\) 0.415415 0.909632i 0.0437886 0.0958836i
\(91\) −2.58785 −0.271281
\(92\) −3.91571 2.76898i −0.408241 0.288686i
\(93\) 4.52520 0.469241
\(94\) −2.14663 + 4.70046i −0.221408 + 0.484816i
\(95\) 1.45412 + 0.426968i 0.149190 + 0.0438060i
\(96\) 0.654861 + 0.755750i 0.0668364 + 0.0771334i
\(97\) 5.73275 3.68422i 0.582073 0.374075i −0.216220 0.976345i \(-0.569373\pi\)
0.798293 + 0.602269i \(0.205737\pi\)
\(98\) 4.32026 4.98585i 0.436412 0.503647i
\(99\) 0.660744 4.59558i 0.0664073 0.461873i
\(100\) −0.959493 + 0.281733i −0.0959493 + 0.0281733i
\(101\) −11.7359 7.54218i −1.16776 0.750474i −0.194664 0.980870i \(-0.562362\pi\)
−0.973097 + 0.230396i \(0.925998\pi\)
\(102\) 0.178510 + 1.24157i 0.0176752 + 0.122933i
\(103\) −0.422105 0.924280i −0.0415912 0.0910720i 0.887696 0.460430i \(-0.152305\pi\)
−0.929287 + 0.369358i \(0.879578\pi\)
\(104\) 1.69390 + 3.70913i 0.166101 + 0.363710i
\(105\) −0.0903198 0.628188i −0.00881431 0.0613048i
\(106\) −1.46229 0.939759i −0.142030 0.0912775i
\(107\) 3.99701 1.17363i 0.386406 0.113459i −0.0827590 0.996570i \(-0.526373\pi\)
0.469165 + 0.883111i \(0.344555\pi\)
\(108\) 0.142315 0.989821i 0.0136943 0.0952456i
\(109\) −12.2888 + 14.1821i −1.17706 + 1.35840i −0.257098 + 0.966385i \(0.582766\pi\)
−0.919960 + 0.392012i \(0.871779\pi\)
\(110\) −3.90580 + 2.51011i −0.372403 + 0.239329i
\(111\) 6.76204 + 7.80381i 0.641824 + 0.740704i
\(112\) 0.608940 + 0.178801i 0.0575394 + 0.0168951i
\(113\) −2.44726 + 5.35875i −0.230219 + 0.504109i −0.989122 0.147094i \(-0.953008\pi\)
0.758904 + 0.651203i \(0.225735\pi\)
\(114\) 1.51551 0.141940
\(115\) 3.29806 3.48178i 0.307545 0.324678i
\(116\) −4.71024 −0.437334
\(117\) 1.69390 3.70913i 0.156602 0.342909i
\(118\) 0.760285 + 0.223240i 0.0699899 + 0.0205509i
\(119\) 0.521309 + 0.601622i 0.0477883 + 0.0551506i
\(120\) −0.841254 + 0.540641i −0.0767956 + 0.0493535i
\(121\) −6.91265 + 7.97762i −0.628423 + 0.725239i
\(122\) −1.44411 + 10.0440i −0.130744 + 0.909344i
\(123\) −8.81714 + 2.58895i −0.795014 + 0.233437i
\(124\) −3.80684 2.44651i −0.341864 0.219703i
\(125\) −0.142315 0.989821i −0.0127290 0.0885323i
\(126\) −0.263642 0.577296i −0.0234871 0.0514296i
\(127\) 6.38105 + 13.9726i 0.566227 + 1.23986i 0.948782 + 0.315931i \(0.102317\pi\)
−0.382555 + 0.923933i \(0.624956\pi\)
\(128\) −0.142315 0.989821i −0.0125790 0.0874887i
\(129\) −6.98829 4.49110i −0.615284 0.395419i
\(130\) −3.91245 + 1.14880i −0.343144 + 0.100756i
\(131\) 2.42640 16.8760i 0.211996 1.47446i −0.554485 0.832194i \(-0.687085\pi\)
0.766481 0.642268i \(-0.222006\pi\)
\(132\) −3.04041 + 3.50882i −0.264634 + 0.305404i
\(133\) 0.809129 0.519996i 0.0701604 0.0450893i
\(134\) 0.145036 + 0.167380i 0.0125292 + 0.0144595i
\(135\) 0.959493 + 0.281733i 0.0825800 + 0.0242477i
\(136\) 0.521069 1.14098i 0.0446813 0.0978384i
\(137\) 5.52659 0.472169 0.236084 0.971733i \(-0.424136\pi\)
0.236084 + 0.971733i \(0.424136\pi\)
\(138\) 2.18353 4.26992i 0.185875 0.363479i
\(139\) 0.415639 0.0352540 0.0176270 0.999845i \(-0.494389\pi\)
0.0176270 + 0.999845i \(0.494389\pi\)
\(140\) −0.263642 + 0.577296i −0.0222818 + 0.0487904i
\(141\) −4.95812 1.45583i −0.417549 0.122603i
\(142\) −3.95957 4.56959i −0.332280 0.383471i
\(143\) −15.9264 + 10.2353i −1.33183 + 0.855915i
\(144\) −0.654861 + 0.755750i −0.0545717 + 0.0629791i
\(145\) 0.670337 4.66229i 0.0556684 0.387182i
\(146\) 15.6451 4.59381i 1.29480 0.380186i
\(147\) 5.54994 + 3.56673i 0.457751 + 0.294179i
\(148\) −1.46953 10.2208i −0.120795 0.840146i
\(149\) 2.16320 + 4.73674i 0.177216 + 0.388049i 0.977306 0.211831i \(-0.0679425\pi\)
−0.800090 + 0.599879i \(0.795215\pi\)
\(150\) −0.415415 0.909632i −0.0339185 0.0742711i
\(151\) 2.91493 + 20.2738i 0.237213 + 1.64985i 0.665636 + 0.746277i \(0.268160\pi\)
−0.428423 + 0.903578i \(0.640931\pi\)
\(152\) −1.27493 0.819346i −0.103410 0.0664577i
\(153\) −1.20352 + 0.353387i −0.0972992 + 0.0285696i
\(154\) −0.419340 + 2.91657i −0.0337914 + 0.235024i
\(155\) 2.96338 3.41992i 0.238024 0.274694i
\(156\) −3.43031 + 2.20453i −0.274645 + 0.176503i
\(157\) 12.1505 + 14.0224i 0.969714 + 1.11911i 0.992849 + 0.119377i \(0.0380897\pi\)
−0.0231352 + 0.999732i \(0.507365\pi\)
\(158\) 12.7258 + 3.73664i 1.01241 + 0.297271i
\(159\) 0.722088 1.58115i 0.0572653 0.125393i
\(160\) 1.00000 0.0790569
\(161\) −0.299292 3.02891i −0.0235875 0.238712i
\(162\) 1.00000 0.0785674
\(163\) 7.35041 16.0952i 0.575729 1.26067i −0.367962 0.929841i \(-0.619944\pi\)
0.943691 0.330829i \(-0.107328\pi\)
\(164\) 8.81714 + 2.58895i 0.688503 + 0.202163i
\(165\) −3.04041 3.50882i −0.236696 0.273161i
\(166\) 0.774423 0.497691i 0.0601069 0.0386283i
\(167\) 6.82003 7.87074i 0.527750 0.609056i −0.427804 0.903871i \(-0.640713\pi\)
0.955554 + 0.294815i \(0.0952582\pi\)
\(168\) −0.0903198 + 0.628188i −0.00696832 + 0.0484657i
\(169\) −3.48006 + 1.02184i −0.267697 + 0.0786030i
\(170\) 1.05521 + 0.678144i 0.0809312 + 0.0520113i
\(171\) 0.215679 + 1.50008i 0.0164934 + 0.114714i
\(172\) 3.45085 + 7.55631i 0.263125 + 0.576163i
\(173\) 6.13672 + 13.4375i 0.466566 + 1.02164i 0.985941 + 0.167091i \(0.0534375\pi\)
−0.519375 + 0.854546i \(0.673835\pi\)
\(174\) −0.670337 4.66229i −0.0508181 0.353448i
\(175\) −0.533899 0.343116i −0.0403590 0.0259372i
\(176\) 4.45477 1.30804i 0.335791 0.0985970i
\(177\) −0.112768 + 0.784317i −0.00847614 + 0.0589529i
\(178\) 1.85823 2.14451i 0.139280 0.160738i
\(179\) −7.79833 + 5.01168i −0.582874 + 0.374591i −0.798599 0.601864i \(-0.794425\pi\)
0.215725 + 0.976454i \(0.430789\pi\)
\(180\) −0.654861 0.755750i −0.0488104 0.0563302i
\(181\) 2.25536 + 0.662234i 0.167640 + 0.0492234i 0.364475 0.931213i \(-0.381248\pi\)
−0.196836 + 0.980436i \(0.563067\pi\)
\(182\) −1.07503 + 2.35399i −0.0796867 + 0.174490i
\(183\) −10.1473 −0.750111
\(184\) −4.14539 + 2.41158i −0.305603 + 0.177784i
\(185\) 10.3259 0.759176
\(186\) 1.87984 4.11627i 0.137836 0.301819i
\(187\) 5.58777 + 1.64072i 0.408618 + 0.119981i
\(188\) 3.38395 + 3.90529i 0.246800 + 0.284822i
\(189\) 0.533899 0.343116i 0.0388355 0.0249580i
\(190\) 0.992447 1.14534i 0.0719997 0.0830920i
\(191\) 2.20839 15.3597i 0.159793 1.11139i −0.739220 0.673465i \(-0.764805\pi\)
0.899013 0.437922i \(-0.144286\pi\)
\(192\) 0.959493 0.281733i 0.0692454 0.0203323i
\(193\) 12.2985 + 7.90377i 0.885266 + 0.568926i 0.902387 0.430927i \(-0.141814\pi\)
−0.0171204 + 0.999853i \(0.505450\pi\)
\(194\) −0.969809 6.74517i −0.0696283 0.484275i
\(195\) −1.69390 3.70913i −0.121303 0.265617i
\(196\) −2.74059 6.00104i −0.195756 0.428646i
\(197\) 1.40666 + 9.78356i 0.100221 + 0.697049i 0.976543 + 0.215324i \(0.0690807\pi\)
−0.876322 + 0.481726i \(0.840010\pi\)
\(198\) −3.90580 2.51011i −0.277573 0.178385i
\(199\) −0.653037 + 0.191749i −0.0462926 + 0.0135927i −0.304797 0.952417i \(-0.598589\pi\)
0.258504 + 0.966010i \(0.416770\pi\)
\(200\) −0.142315 + 0.989821i −0.0100632 + 0.0699909i
\(201\) −0.145036 + 0.167380i −0.0102300 + 0.0118061i
\(202\) −11.7359 + 7.54218i −0.825732 + 0.530666i
\(203\) −1.95760 2.25919i −0.137397 0.158564i
\(204\) 1.20352 + 0.353387i 0.0842636 + 0.0247420i
\(205\) −3.81740 + 8.35895i −0.266619 + 0.583814i
\(206\) −1.01610 −0.0707953
\(207\) 4.53720 + 1.55363i 0.315357 + 0.107985i
\(208\) 4.07762 0.282732
\(209\) 2.92297 6.40040i 0.202186 0.442725i
\(210\) −0.608940 0.178801i −0.0420208 0.0123384i
\(211\) −11.1605 12.8799i −0.768321 0.886689i 0.227888 0.973687i \(-0.426818\pi\)
−0.996208 + 0.0869981i \(0.972273\pi\)
\(212\) −1.46229 + 0.939759i −0.100431 + 0.0645429i
\(213\) 3.95957 4.56959i 0.271305 0.313103i
\(214\) 0.592849 4.12335i 0.0405263 0.281867i
\(215\) −7.97050 + 2.34035i −0.543584 + 0.159611i
\(216\) −0.841254 0.540641i −0.0572401 0.0367859i
\(217\) −0.408715 2.84268i −0.0277454 0.192973i
\(218\) 7.79551 + 17.0698i 0.527978 + 1.15611i
\(219\) 6.77358 + 14.8321i 0.457716 + 1.00226i
\(220\) 0.660744 + 4.59558i 0.0445474 + 0.309834i
\(221\) 4.30276 + 2.76521i 0.289435 + 0.186008i
\(222\) 9.90764 2.90915i 0.664957 0.195249i
\(223\) 0.292102 2.03161i 0.0195606 0.136047i −0.977701 0.210002i \(-0.932653\pi\)
0.997262 + 0.0739549i \(0.0235621\pi\)
\(224\) 0.415606 0.479635i 0.0277688 0.0320469i
\(225\) 0.841254 0.540641i 0.0560836 0.0360427i
\(226\) 3.85786 + 4.45221i 0.256621 + 0.296156i
\(227\) −10.1046 2.96697i −0.670664 0.196925i −0.0713651 0.997450i \(-0.522736\pi\)
−0.599298 + 0.800526i \(0.704554\pi\)
\(228\) 0.629565 1.37855i 0.0416939 0.0912970i
\(229\) −13.4818 −0.890903 −0.445452 0.895306i \(-0.646957\pi\)
−0.445452 + 0.895306i \(0.646957\pi\)
\(230\) −1.79708 4.44640i −0.118496 0.293187i
\(231\) −2.94656 −0.193870
\(232\) −1.95670 + 4.28458i −0.128464 + 0.281297i
\(233\) 19.8322 + 5.82327i 1.29925 + 0.381495i 0.856963 0.515377i \(-0.172348\pi\)
0.442289 + 0.896872i \(0.354166\pi\)
\(234\) −2.67027 3.08166i −0.174561 0.201454i
\(235\) −4.34712 + 2.79373i −0.283575 + 0.182243i
\(236\) 0.518900 0.598842i 0.0337775 0.0389813i
\(237\) −1.88753 + 13.1281i −0.122608 + 0.852760i
\(238\) 0.763814 0.224276i 0.0495107 0.0145377i
\(239\) −19.9411 12.8153i −1.28988 0.828955i −0.297807 0.954626i \(-0.596255\pi\)
−0.992072 + 0.125671i \(0.959892\pi\)
\(240\) 0.142315 + 0.989821i 0.00918638 + 0.0638927i
\(241\) −10.8214 23.6955i −0.697066 1.52636i −0.843493 0.537140i \(-0.819505\pi\)
0.146428 0.989221i \(-0.453222\pi\)
\(242\) 4.38508 + 9.60199i 0.281884 + 0.617239i
\(243\) 0.142315 + 0.989821i 0.00912950 + 0.0634971i
\(244\) 8.53646 + 5.48605i 0.546491 + 0.351209i
\(245\) 6.32999 1.85865i 0.404408 0.118745i
\(246\) −1.30778 + 9.09584i −0.0833813 + 0.579929i
\(247\) 4.04682 4.67028i 0.257493 0.297163i
\(248\) −3.80684 + 2.44651i −0.241735 + 0.155353i
\(249\) 0.602837 + 0.695711i 0.0382033 + 0.0440889i
\(250\) −0.959493 0.281733i −0.0606837 0.0178183i
\(251\) −1.14910 + 2.51618i −0.0725307 + 0.158820i −0.942425 0.334419i \(-0.891460\pi\)
0.869894 + 0.493239i \(0.164187\pi\)
\(252\) −0.634648 −0.0399790
\(253\) −13.8216 17.4570i −0.868958 1.09752i
\(254\) 15.3607 0.963814
\(255\) −0.521069 + 1.14098i −0.0326306 + 0.0714511i
\(256\) −0.959493 0.281733i −0.0599683 0.0176083i
\(257\) 3.54282 + 4.08863i 0.220995 + 0.255042i 0.855411 0.517950i \(-0.173305\pi\)
−0.634416 + 0.772992i \(0.718759\pi\)
\(258\) −6.98829 + 4.49110i −0.435072 + 0.279604i
\(259\) 4.29151 4.95267i 0.266661 0.307744i
\(260\) −0.580306 + 4.03612i −0.0359890 + 0.250309i
\(261\) 4.51944 1.32703i 0.279746 0.0821409i
\(262\) −14.3430 9.21767i −0.886112 0.569469i
\(263\) −0.702621 4.88684i −0.0433255 0.301335i −0.999950 0.0100111i \(-0.996813\pi\)
0.956624 0.291324i \(-0.0940958\pi\)
\(264\) 1.92870 + 4.22327i 0.118703 + 0.259924i
\(265\) −0.722088 1.58115i −0.0443575 0.0971293i
\(266\) −0.136880 0.952024i −0.00839267 0.0583723i
\(267\) 2.38714 + 1.53412i 0.146091 + 0.0938867i
\(268\) 0.212505 0.0623970i 0.0129808 0.00381150i
\(269\) −0.977048 + 6.79552i −0.0595717 + 0.414330i 0.938113 + 0.346328i \(0.112572\pi\)
−0.997685 + 0.0680021i \(0.978338\pi\)
\(270\) 0.654861 0.755750i 0.0398536 0.0459935i
\(271\) 3.50106 2.25000i 0.212674 0.136678i −0.429967 0.902845i \(-0.641475\pi\)
0.642641 + 0.766167i \(0.277838\pi\)
\(272\) −0.821414 0.947963i −0.0498056 0.0574787i
\(273\) −2.48303 0.729082i −0.150280 0.0441260i
\(274\) 2.29583 5.02717i 0.138696 0.303702i
\(275\) −4.64283 −0.279973
\(276\) −2.97698 3.76000i −0.179193 0.226325i
\(277\) 23.7731 1.42839 0.714193 0.699948i \(-0.246794\pi\)
0.714193 + 0.699948i \(0.246794\pi\)
\(278\) 0.172663 0.378078i 0.0103556 0.0226756i
\(279\) 4.34190 + 1.27490i 0.259943 + 0.0763260i
\(280\) 0.415606 + 0.479635i 0.0248372 + 0.0286637i
\(281\) −11.0316 + 7.08959i −0.658091 + 0.422929i −0.826615 0.562768i \(-0.809736\pi\)
0.168524 + 0.985698i \(0.446100\pi\)
\(282\) −3.38395 + 3.90529i −0.201511 + 0.232556i
\(283\) −0.578738 + 4.02521i −0.0344024 + 0.239274i −0.999766 0.0216346i \(-0.993113\pi\)
0.965364 + 0.260908i \(0.0840221\pi\)
\(284\) −5.80151 + 1.70348i −0.344256 + 0.101083i
\(285\) 1.27493 + 0.819346i 0.0755201 + 0.0485338i
\(286\) 2.69426 + 18.7390i 0.159315 + 1.10806i
\(287\) 2.42271 + 5.30498i 0.143008 + 0.313143i
\(288\) 0.415415 + 0.909632i 0.0244786 + 0.0536006i
\(289\) 2.19544 + 15.2696i 0.129144 + 0.898213i
\(290\) −3.96250 2.54655i −0.232686 0.149538i
\(291\) 6.53850 1.91988i 0.383294 0.112545i
\(292\) 2.32052 16.1396i 0.135798 0.944498i
\(293\) −19.3798 + 22.3655i −1.13218 + 1.30660i −0.186150 + 0.982521i \(0.559601\pi\)
−0.946029 + 0.324083i \(0.894944\pi\)
\(294\) 5.54994 3.56673i 0.323679 0.208016i
\(295\) 0.518900 + 0.598842i 0.0302115 + 0.0348660i
\(296\) −9.90764 2.90915i −0.575870 0.169091i
\(297\) 1.92870 4.22327i 0.111915 0.245059i
\(298\) 5.20731 0.301652
\(299\) −7.32780 18.1307i −0.423778 1.04853i
\(300\) −1.00000 −0.0577350
\(301\) −2.19007 + 4.79559i −0.126234 + 0.276413i
\(302\) 19.6526 + 5.77051i 1.13088 + 0.332056i
\(303\) −9.13559 10.5430i −0.524826 0.605682i
\(304\) −1.27493 + 0.819346i −0.0731221 + 0.0469927i
\(305\) −6.64508 + 7.66883i −0.380496 + 0.439116i
\(306\) −0.178510 + 1.24157i −0.0102048 + 0.0709757i
\(307\) 16.0476 4.71199i 0.915883 0.268928i 0.210368 0.977622i \(-0.432534\pi\)
0.705515 + 0.708695i \(0.250716\pi\)
\(308\) 2.47881 + 1.59303i 0.141243 + 0.0907714i
\(309\) −0.144607 1.00576i −0.00822638 0.0572158i
\(310\) −1.87984 4.11627i −0.106768 0.233788i
\(311\) −12.8962 28.2387i −0.731274 1.60127i −0.797397 0.603456i \(-0.793790\pi\)
0.0661225 0.997812i \(-0.478937\pi\)
\(312\) 0.580306 + 4.03612i 0.0328533 + 0.228500i
\(313\) −16.2299 10.4303i −0.917367 0.589556i −0.00547422 0.999985i \(-0.501743\pi\)
−0.911892 + 0.410429i \(0.865379\pi\)
\(314\) 17.8027 5.22735i 1.00467 0.294996i
\(315\) 0.0903198 0.628188i 0.00508894 0.0353944i
\(316\) 8.68547 10.0236i 0.488596 0.563870i
\(317\) 21.6010 13.8821i 1.21323 0.779696i 0.232034 0.972708i \(-0.425462\pi\)
0.981196 + 0.193012i \(0.0618256\pi\)
\(318\) −1.13830 1.31367i −0.0638327 0.0736668i
\(319\) −20.9830 6.16117i −1.17482 0.344959i
\(320\) 0.415415 0.909632i 0.0232224 0.0508500i
\(321\) 4.16576 0.232510
\(322\) −2.87953 0.986010i −0.160470 0.0549482i
\(323\) −1.90095 −0.105772
\(324\) 0.415415 0.909632i 0.0230786 0.0505351i
\(325\) −3.91245 1.14880i −0.217024 0.0637239i
\(326\) −11.5872 13.3723i −0.641755 0.740625i
\(327\) −15.7866 + 10.1454i −0.873002 + 0.561044i
\(328\) 6.01776 6.94486i 0.332275 0.383466i
\(329\) −0.466722 + 3.24612i −0.0257312 + 0.178964i
\(330\) −4.45477 + 1.30804i −0.245227 + 0.0720051i
\(331\) −20.2940 13.0422i −1.11546 0.716863i −0.152984 0.988229i \(-0.548888\pi\)
−0.962476 + 0.271366i \(0.912525\pi\)
\(332\) −0.131009 0.911188i −0.00719006 0.0500079i
\(333\) 4.28954 + 9.39278i 0.235065 + 0.514721i
\(334\) −4.32633 9.47334i −0.236726 0.518358i
\(335\) 0.0315193 + 0.219222i 0.00172208 + 0.0119774i
\(336\) 0.533899 + 0.343116i 0.0291266 + 0.0187185i
\(337\) −10.7411 + 3.15388i −0.585106 + 0.171803i −0.560870 0.827904i \(-0.689533\pi\)
−0.0242357 + 0.999706i \(0.507715\pi\)
\(338\) −0.516173 + 3.59006i −0.0280761 + 0.195274i
\(339\) −3.85786 + 4.45221i −0.209530 + 0.241811i
\(340\) 1.05521 0.678144i 0.0572270 0.0367775i
\(341\) −13.7585 15.8781i −0.745063 0.859848i
\(342\) 1.45412 + 0.426968i 0.0786298 + 0.0230878i
\(343\) 3.58480 7.84962i 0.193561 0.423840i
\(344\) 8.30699 0.447883
\(345\) 4.14539 2.41158i 0.223181 0.129835i
\(346\) 14.7725 0.794175
\(347\) −3.80652 + 8.33512i −0.204345 + 0.447453i −0.983862 0.178928i \(-0.942737\pi\)
0.779517 + 0.626381i \(0.215464\pi\)
\(348\) −4.51944 1.32703i −0.242267 0.0711361i
\(349\) 1.69993 + 1.96182i 0.0909950 + 0.105014i 0.799421 0.600771i \(-0.205140\pi\)
−0.708426 + 0.705785i \(0.750594\pi\)
\(350\) −0.533899 + 0.343116i −0.0285381 + 0.0183403i
\(351\) 2.67027 3.08166i 0.142529 0.164487i
\(352\) 0.660744 4.59558i 0.0352178 0.244945i
\(353\) 0.0427256 0.0125454i 0.00227406 0.000667723i −0.280595 0.959826i \(-0.590532\pi\)
0.282869 + 0.959158i \(0.408714\pi\)
\(354\) 0.666594 + 0.428394i 0.0354291 + 0.0227689i
\(355\) −0.860497 5.98489i −0.0456704 0.317645i
\(356\) −1.17878 2.58117i −0.0624752 0.136802i
\(357\) 0.330695 + 0.724122i 0.0175023 + 0.0383246i
\(358\) 1.31924 + 9.17553i 0.0697241 + 0.484942i
\(359\) −12.2268 7.85768i −0.645305 0.414713i 0.176643 0.984275i \(-0.443476\pi\)
−0.821948 + 0.569562i \(0.807113\pi\)
\(360\) −0.959493 + 0.281733i −0.0505697 + 0.0148486i
\(361\) 2.37712 16.5332i 0.125111 0.870169i
\(362\) 1.53930 1.77645i 0.0809038 0.0933680i
\(363\) −8.88020 + 5.70696i −0.466089 + 0.299537i
\(364\) 1.69468 + 1.95577i 0.0888255 + 0.102510i
\(365\) 15.6451 + 4.59381i 0.818901 + 0.240451i
\(366\) −4.21535 + 9.23032i −0.220340 + 0.482477i
\(367\) −12.1296 −0.633161 −0.316581 0.948566i \(-0.602535\pi\)
−0.316581 + 0.948566i \(0.602535\pi\)
\(368\) 0.471588 + 4.77259i 0.0245832 + 0.248788i
\(369\) −9.18937 −0.478380
\(370\) 4.28954 9.39278i 0.223003 0.488307i
\(371\) −1.05848 0.310797i −0.0549535 0.0161358i
\(372\) −2.96338 3.41992i −0.153644 0.177314i
\(373\) −9.69647 + 6.23154i −0.502064 + 0.322657i −0.767041 0.641598i \(-0.778272\pi\)
0.264977 + 0.964255i \(0.414636\pi\)
\(374\) 3.81369 4.40123i 0.197201 0.227582i
\(375\) 0.142315 0.989821i 0.00734911 0.0511142i
\(376\) 4.95812 1.45583i 0.255695 0.0750790i
\(377\) −16.1576 10.3838i −0.832158 0.534795i
\(378\) −0.0903198 0.628188i −0.00464555 0.0323105i
\(379\) −8.76485 19.1923i −0.450220 0.985844i −0.989609 0.143787i \(-0.954072\pi\)
0.539389 0.842057i \(-0.318655\pi\)
\(380\) −0.629565 1.37855i −0.0322960 0.0707184i
\(381\) 2.18605 + 15.2043i 0.111995 + 0.778941i
\(382\) −13.0543 8.38946i −0.667914 0.429242i
\(383\) −18.1179 + 5.31989i −0.925780 + 0.271834i −0.709669 0.704535i \(-0.751156\pi\)
−0.216111 + 0.976369i \(0.569337\pi\)
\(384\) 0.142315 0.989821i 0.00726247 0.0505116i
\(385\) −1.92959 + 2.22686i −0.0983409 + 0.113491i
\(386\) 12.2985 7.90377i 0.625978 0.402291i
\(387\) −5.43992 6.27801i −0.276527 0.319129i
\(388\) −6.53850 1.91988i −0.331942 0.0974669i
\(389\) 5.33480 11.6816i 0.270485 0.592280i −0.724834 0.688924i \(-0.758083\pi\)
0.995319 + 0.0966437i \(0.0308107\pi\)
\(390\) −4.07762 −0.206478
\(391\) −2.73888 + 5.35590i −0.138511 + 0.270860i
\(392\) −6.59722 −0.333210
\(393\) 7.08263 15.5088i 0.357271 0.782315i
\(394\) 9.48378 + 2.78469i 0.477786 + 0.140291i
\(395\) 8.68547 + 10.0236i 0.437013 + 0.504340i
\(396\) −3.90580 + 2.51011i −0.196274 + 0.126138i
\(397\) 17.5657 20.2719i 0.881598 1.01742i −0.118104 0.993001i \(-0.537682\pi\)
0.999702 0.0244169i \(-0.00777292\pi\)
\(398\) −0.0968604 + 0.673679i −0.00485517 + 0.0337685i
\(399\) 0.922853 0.270974i 0.0462005 0.0135657i
\(400\) 0.841254 + 0.540641i 0.0420627 + 0.0270320i
\(401\) 0.137366 + 0.955401i 0.00685973 + 0.0477105i 0.992964 0.118418i \(-0.0377824\pi\)
−0.986104 + 0.166129i \(0.946873\pi\)
\(402\) 0.0920044 + 0.201462i 0.00458876 + 0.0100480i
\(403\) −7.66526 16.7846i −0.381834 0.836099i
\(404\) 1.98535 + 13.8084i 0.0987751 + 0.686996i
\(405\) 0.841254 + 0.540641i 0.0418022 + 0.0268647i
\(406\) −2.86825 + 0.842194i −0.142349 + 0.0417974i
\(407\) 6.82279 47.4535i 0.338193 2.35218i
\(408\) 0.821414 0.947963i 0.0406661 0.0469311i
\(409\) 15.0330 9.66114i 0.743335 0.477712i −0.113348 0.993555i \(-0.536158\pi\)
0.856683 + 0.515843i \(0.172521\pi\)
\(410\) 6.01776 + 6.94486i 0.297196 + 0.342982i
\(411\) 5.30273 + 1.55702i 0.261564 + 0.0768022i
\(412\) −0.422105 + 0.924280i −0.0207956 + 0.0455360i
\(413\) 0.502883 0.0247453
\(414\) 3.29806 3.48178i 0.162091 0.171120i
\(415\) 0.920558 0.0451884
\(416\) 1.69390 3.70913i 0.0830505 0.181855i
\(417\) 0.398803 + 0.117099i 0.0195294 + 0.00573436i
\(418\) −4.60777 5.31765i −0.225373 0.260095i
\(419\) −2.45829 + 1.57985i −0.120095 + 0.0771806i −0.599309 0.800517i \(-0.704558\pi\)
0.479214 + 0.877698i \(0.340922\pi\)
\(420\) −0.415606 + 0.479635i −0.0202795 + 0.0234038i
\(421\) 0.196990 1.37010i 0.00960071 0.0667744i −0.984458 0.175621i \(-0.943807\pi\)
0.994059 + 0.108847i \(0.0347158\pi\)
\(422\) −16.3522 + 4.80144i −0.796013 + 0.233731i
\(423\) −4.34712 2.79373i −0.211364 0.135836i
\(424\) 0.247376 + 1.72054i 0.0120136 + 0.0835568i
\(425\) 0.521069 + 1.14098i 0.0252756 + 0.0553458i
\(426\) −2.51178 5.50003i −0.121696 0.266477i
\(427\) 0.916503 + 6.37442i 0.0443527 + 0.308480i
\(428\) −3.50446 2.25218i −0.169394 0.108863i
\(429\) −18.1648 + 5.33368i −0.877007 + 0.257512i
\(430\) −1.18221 + 8.22244i −0.0570111 + 0.396521i
\(431\) −19.2651 + 22.2331i −0.927966 + 1.07093i 0.0693413 + 0.997593i \(0.477910\pi\)
−0.997307 + 0.0733368i \(0.976635\pi\)
\(432\) −0.841254 + 0.540641i −0.0404748 + 0.0260116i
\(433\) −9.05181 10.4463i −0.435002 0.502019i 0.495346 0.868696i \(-0.335041\pi\)
−0.930349 + 0.366676i \(0.880496\pi\)
\(434\) −2.75557 0.809110i −0.132272 0.0388385i
\(435\) 1.95670 4.28458i 0.0938167 0.205430i
\(436\) 18.7656 0.898709
\(437\) 5.93429 + 4.19641i 0.283875 + 0.200742i
\(438\) 16.3056 0.779110
\(439\) −2.97658 + 6.51780i −0.142064 + 0.311078i −0.967268 0.253758i \(-0.918333\pi\)
0.825203 + 0.564836i \(0.191061\pi\)
\(440\) 4.45477 + 1.30804i 0.212373 + 0.0623582i
\(441\) 4.32026 + 4.98585i 0.205727 + 0.237421i
\(442\) 4.30276 2.76521i 0.204661 0.131528i
\(443\) −0.764927 + 0.882773i −0.0363428 + 0.0419418i −0.773630 0.633638i \(-0.781561\pi\)
0.737287 + 0.675579i \(0.236106\pi\)
\(444\) 1.46953 10.2208i 0.0697408 0.485058i
\(445\) 2.72265 0.799443i 0.129066 0.0378973i
\(446\) −1.72668 1.10967i −0.0817605 0.0525443i
\(447\) 0.741078 + 5.15431i 0.0350518 + 0.243790i
\(448\) −0.263642 0.577296i −0.0124559 0.0272747i
\(449\) 13.0187 + 28.5071i 0.614392 + 1.34533i 0.919529 + 0.393023i \(0.128571\pi\)
−0.305136 + 0.952309i \(0.598702\pi\)
\(450\) −0.142315 0.989821i −0.00670879 0.0466606i
\(451\) 35.8919 + 23.0663i 1.69008 + 1.08615i
\(452\) 5.65248 1.65972i 0.265870 0.0780666i
\(453\) −2.91493 + 20.2738i −0.136955 + 0.952544i
\(454\) −6.89644 + 7.95891i −0.323666 + 0.373530i
\(455\) −2.17704 + 1.39910i −0.102061 + 0.0655907i
\(456\) −0.992447 1.14534i −0.0464756 0.0536357i
\(457\) −21.9219 6.43685i −1.02546 0.301103i −0.274598 0.961559i \(-0.588545\pi\)
−0.750865 + 0.660456i \(0.770363\pi\)
\(458\) −5.60055 + 12.2635i −0.261696 + 0.573035i
\(459\) −1.25433 −0.0585473
\(460\) −4.79112 0.212422i −0.223387 0.00990424i
\(461\) 8.22119 0.382899 0.191450 0.981502i \(-0.438681\pi\)
0.191450 + 0.981502i \(0.438681\pi\)
\(462\) −1.22405 + 2.68029i −0.0569478 + 0.124698i
\(463\) 3.37475 + 0.990915i 0.156838 + 0.0460517i 0.359209 0.933257i \(-0.383047\pi\)
−0.202371 + 0.979309i \(0.564865\pi\)
\(464\) 3.08455 + 3.55976i 0.143197 + 0.165258i
\(465\) 3.80684 2.44651i 0.176538 0.113454i
\(466\) 13.5356 15.6210i 0.627026 0.723627i
\(467\) 2.92102 20.3161i 0.135169 0.940118i −0.803502 0.595302i \(-0.797032\pi\)
0.938670 0.344816i \(-0.112059\pi\)
\(468\) −3.91245 + 1.14880i −0.180853 + 0.0531032i
\(469\) 0.118246 + 0.0759920i 0.00546009 + 0.00350899i
\(470\) 0.735403 + 5.11484i 0.0339216 + 0.235930i
\(471\) 7.70773 + 16.8776i 0.355154 + 0.777678i
\(472\) −0.329167 0.720776i −0.0151512 0.0331764i
\(473\) 5.48880 + 38.1754i 0.252375 + 1.75531i
\(474\) 11.1576 + 7.17056i 0.512486 + 0.329355i
\(475\) 1.45412 0.426968i 0.0667196 0.0195906i
\(476\) 0.113291 0.787957i 0.00519269 0.0361160i
\(477\) 1.13830 1.31367i 0.0521192 0.0601487i
\(478\) −19.9411 + 12.8153i −0.912082 + 0.586160i
\(479\) 18.8025 + 21.6993i 0.859110 + 0.991465i 0.999999 + 0.00143991i \(0.000458337\pi\)
−0.140889 + 0.990025i \(0.544996\pi\)
\(480\) 0.959493 + 0.281733i 0.0437947 + 0.0128593i
\(481\) 17.4911 38.3002i 0.797526 1.74634i
\(482\) −26.0495 −1.18652
\(483\) 0.566174 2.99054i 0.0257618 0.136074i
\(484\) 10.5559 0.479814
\(485\) 2.83086 6.19872i 0.128543 0.281469i
\(486\) 0.959493 + 0.281733i 0.0435235 + 0.0127796i
\(487\) −12.0282 13.8813i −0.545051 0.629022i 0.414672 0.909971i \(-0.363896\pi\)
−0.959723 + 0.280949i \(0.909351\pi\)
\(488\) 8.53646 5.48605i 0.386428 0.248342i
\(489\) 11.5872 13.3723i 0.523991 0.604718i
\(490\) 0.938883 6.53007i 0.0424144 0.294999i
\(491\) 24.6127 7.22694i 1.11075 0.326147i 0.325638 0.945495i \(-0.394421\pi\)
0.785117 + 0.619347i \(0.212603\pi\)
\(492\) 7.73059 + 4.96815i 0.348522 + 0.223981i
\(493\) 0.840826 + 5.84807i 0.0378689 + 0.263384i
\(494\) −2.56713 5.62122i −0.115500 0.252911i
\(495\) −1.92870 4.22327i −0.0866888 0.189822i
\(496\) 0.644003 + 4.47914i 0.0289166 + 0.201119i
\(497\) −3.22819 2.07463i −0.144804 0.0930598i
\(498\) 0.883269 0.259351i 0.0395802 0.0116218i
\(499\) 2.12257 14.7628i 0.0950193 0.660874i −0.885527 0.464587i \(-0.846203\pi\)
0.980547 0.196286i \(-0.0628883\pi\)
\(500\) −0.654861 + 0.755750i −0.0292863 + 0.0337981i
\(501\) 8.76122 5.63049i 0.391422 0.251552i
\(502\) 1.81145 + 2.09052i 0.0808488 + 0.0933045i
\(503\) 30.1016 + 8.83863i 1.34216 + 0.394095i 0.872441 0.488719i \(-0.162536\pi\)
0.469723 + 0.882814i \(0.344354\pi\)
\(504\) −0.263642 + 0.577296i −0.0117436 + 0.0257148i
\(505\) −13.9504 −0.620786
\(506\) −21.6212 + 5.32068i −0.961180 + 0.236533i
\(507\) −3.62698 −0.161080
\(508\) 6.38105 13.9726i 0.283113 0.619932i
\(509\) −20.2277 5.93938i −0.896575 0.263258i −0.199195 0.979960i \(-0.563833\pi\)
−0.697380 + 0.716701i \(0.745651\pi\)
\(510\) 0.821414 + 0.947963i 0.0363728 + 0.0419765i
\(511\) 8.70553 5.59471i 0.385110 0.247495i
\(512\) −0.654861 + 0.755750i −0.0289410 + 0.0333997i
\(513\) −0.215679 + 1.50008i −0.00952247 + 0.0662303i
\(514\) 5.19089 1.52418i 0.228960 0.0672288i
\(515\) −0.854801 0.549347i −0.0376670 0.0242071i
\(516\) 1.18221 + 8.22244i 0.0520438 + 0.361973i
\(517\) 9.96645 + 21.8235i 0.438324 + 0.959796i
\(518\) −2.72235 5.96111i −0.119613 0.261916i
\(519\) 2.10235 + 14.6221i 0.0922828 + 0.641841i
\(520\) 3.43031 + 2.20453i 0.150429 + 0.0966749i
\(521\) −20.3503 + 5.97539i −0.891563 + 0.261787i −0.695261 0.718757i \(-0.744711\pi\)
−0.196302 + 0.980544i \(0.562893\pi\)
\(522\) 0.670337 4.66229i 0.0293398 0.204063i
\(523\) 8.68322 10.0210i 0.379691 0.438187i −0.533449 0.845832i \(-0.679105\pi\)
0.913140 + 0.407645i \(0.133650\pi\)
\(524\) −14.3430 + 9.21767i −0.626575 + 0.402676i
\(525\) −0.415606 0.479635i −0.0181385 0.0209330i
\(526\) −4.73710 1.39094i −0.206547 0.0606478i
\(527\) −2.35794 + 5.16317i −0.102714 + 0.224911i
\(528\) 4.64283 0.202053
\(529\) 20.3734 10.6736i 0.885799 0.464069i
\(530\) −1.73823 −0.0755040
\(531\) −0.329167 + 0.720776i −0.0142846 + 0.0312790i
\(532\) −0.922853 0.270974i −0.0400108 0.0117482i
\(533\) 24.5381 + 28.3185i 1.06286 + 1.22661i
\(534\) 2.38714 1.53412i 0.103302 0.0663879i
\(535\) 2.72799 3.14827i 0.117941 0.136111i
\(536\) 0.0315193 0.219222i 0.00136143 0.00946893i
\(537\) −8.89439 + 2.61163i −0.383821 + 0.112700i
\(538\) 5.77554 + 3.71171i 0.249001 + 0.160023i
\(539\) −4.35908 30.3180i −0.187759 1.30589i
\(540\) −0.415415 0.909632i −0.0178766 0.0391443i
\(541\) 5.73338 + 12.5544i 0.246497 + 0.539754i 0.991924 0.126834i \(-0.0404815\pi\)
−0.745427 + 0.666588i \(0.767754\pi\)
\(542\) −0.592275 4.11936i −0.0254404 0.176942i
\(543\) 1.97743 + 1.27082i 0.0848596 + 0.0545360i
\(544\) −1.20352 + 0.353387i −0.0516007 + 0.0151513i
\(545\) −2.67062 + 18.5746i −0.114397 + 0.795648i
\(546\) −1.69468 + 1.95577i −0.0725257 + 0.0836991i
\(547\) 13.2660 8.52553i 0.567213 0.364525i −0.225386 0.974270i \(-0.572364\pi\)
0.792598 + 0.609744i \(0.208728\pi\)
\(548\) −3.61915 4.17672i −0.154602 0.178421i
\(549\) −9.73628 2.85883i −0.415534 0.122012i
\(550\) −1.92870 + 4.22327i −0.0822402 + 0.180081i
\(551\) 7.13840 0.304106
\(552\) −4.65690 + 1.14600i −0.198211 + 0.0487769i
\(553\) 8.41738 0.357943
\(554\) 9.87570 21.6248i 0.419578 0.918748i
\(555\) 9.90764 + 2.90915i 0.420556 + 0.123486i
\(556\) −0.272186 0.314119i −0.0115432 0.0133216i
\(557\) −36.0032 + 23.1378i −1.52550 + 0.980381i −0.534704 + 0.845040i \(0.679577\pi\)
−0.990799 + 0.135341i \(0.956787\pi\)
\(558\) 2.96338 3.41992i 0.125450 0.144777i
\(559\) −4.82060 + 33.5280i −0.203889 + 1.41808i
\(560\) 0.608940 0.178801i 0.0257324 0.00755572i
\(561\) 4.89918 + 3.14851i 0.206844 + 0.132930i
\(562\) 1.86622 + 12.9798i 0.0787216 + 0.547521i
\(563\) −9.62893 21.0844i −0.405811 0.888602i −0.996648 0.0818113i \(-0.973930\pi\)
0.590837 0.806791i \(-0.298798\pi\)
\(564\) 2.14663 + 4.70046i 0.0903894 + 0.197925i
\(565\) 0.838393 + 5.83115i 0.0352715 + 0.245318i
\(566\) 3.42104 + 2.19857i 0.143797 + 0.0924128i
\(567\) 0.608940 0.178801i 0.0255731 0.00750893i
\(568\) −0.860497 + 5.98489i −0.0361056 + 0.251120i
\(569\) −13.8040 + 15.9307i −0.578695 + 0.667850i −0.967324 0.253545i \(-0.918404\pi\)
0.388628 + 0.921395i \(0.372949\pi\)
\(570\) 1.27493 0.819346i 0.0534008 0.0343186i
\(571\) 14.3126 + 16.5176i 0.598962 + 0.691239i 0.971571 0.236749i \(-0.0760820\pi\)
−0.372608 + 0.927989i \(0.621537\pi\)
\(572\) 18.1648 + 5.33368i 0.759510 + 0.223012i
\(573\) 6.44625 14.1153i 0.269296 0.589676i
\(574\) 5.83201 0.243423
\(575\) 0.892108 4.71213i 0.0372035 0.196509i
\(576\) 1.00000 0.0416667
\(577\) 6.95792 15.2357i 0.289662 0.634271i −0.707727 0.706486i \(-0.750279\pi\)
0.997389 + 0.0722148i \(0.0230067\pi\)
\(578\) 14.8018 + 4.34619i 0.615672 + 0.180778i
\(579\) 9.57358 + 11.0485i 0.397865 + 0.459160i
\(580\) −3.96250 + 2.54655i −0.164534 + 0.105740i
\(581\) 0.382589 0.441531i 0.0158725 0.0183178i
\(582\) 0.969809 6.74517i 0.0401999 0.279596i
\(583\) −7.74342 + 2.27367i −0.320700 + 0.0941659i
\(584\) −13.7171 8.81545i −0.567618 0.364786i
\(585\) −0.580306 4.03612i −0.0239927 0.166873i
\(586\) 12.2937 + 26.9194i 0.507847 + 1.11203i
\(587\) −11.5142 25.2125i −0.475240 1.04063i −0.983745 0.179572i \(-0.942529\pi\)
0.508504 0.861059i \(-0.330199\pi\)
\(588\) −0.938883 6.53007i −0.0387189 0.269296i
\(589\) 5.76930 + 3.70770i 0.237720 + 0.152773i
\(590\) 0.760285 0.223240i 0.0313004 0.00919064i
\(591\) −1.40666 + 9.78356i −0.0578624 + 0.402442i
\(592\) −6.76204 + 7.80381i −0.277918 + 0.320734i
\(593\) −36.3331 + 23.3499i −1.49202 + 0.958865i −0.496138 + 0.868244i \(0.665249\pi\)
−0.995885 + 0.0906211i \(0.971115\pi\)
\(594\) −3.04041 3.50882i −0.124750 0.143969i
\(595\) 0.763814 + 0.224276i 0.0313133 + 0.00919442i
\(596\) 2.16320 4.73674i 0.0886080 0.194024i
\(597\) −0.680607 −0.0278554
\(598\) −19.5364 0.866177i −0.798902 0.0354206i
\(599\) −28.5126 −1.16499 −0.582496 0.812834i \(-0.697924\pi\)
−0.582496 + 0.812834i \(0.697924\pi\)
\(600\) −0.415415 + 0.909632i −0.0169592 + 0.0371356i
\(601\) 4.55155 + 1.33646i 0.185662 + 0.0545152i 0.373242 0.927734i \(-0.378246\pi\)
−0.187580 + 0.982249i \(0.560064\pi\)
\(602\) 3.45243 + 3.98432i 0.140711 + 0.162389i
\(603\) −0.186317 + 0.119739i −0.00758743 + 0.00487615i
\(604\) 13.4130 15.4794i 0.545768 0.629850i
\(605\) −1.50226 + 10.4485i −0.0610757 + 0.424791i
\(606\) −13.3853 + 3.93029i −0.543742 + 0.159657i
\(607\) 14.7705 + 9.49245i 0.599518 + 0.385287i 0.804913 0.593392i \(-0.202212\pi\)
−0.205396 + 0.978679i \(0.565848\pi\)
\(608\) 0.215679 + 1.50008i 0.00874695 + 0.0608364i
\(609\) −1.24182 2.71920i −0.0503210 0.110188i
\(610\) 4.21535 + 9.23032i 0.170674 + 0.373725i
\(611\) 2.99869 + 20.8564i 0.121314 + 0.843758i
\(612\) 1.05521 + 0.678144i 0.0426545 + 0.0274124i
\(613\) 35.1406 10.3182i 1.41932 0.416749i 0.520044 0.854139i \(-0.325915\pi\)
0.899272 + 0.437391i \(0.144097\pi\)
\(614\) 2.38022 16.5548i 0.0960580 0.668098i
\(615\) −6.01776 + 6.94486i −0.242659 + 0.280044i
\(616\) 2.47881 1.59303i 0.0998740 0.0641851i
\(617\) 4.38651 + 5.06230i 0.176594 + 0.203800i 0.837145 0.546980i \(-0.184223\pi\)
−0.660551 + 0.750781i \(0.729677\pi\)
\(618\) −0.974944 0.286269i −0.0392180 0.0115154i
\(619\) 5.43286 11.8963i 0.218365 0.478153i −0.768469 0.639887i \(-0.778981\pi\)
0.986834 + 0.161734i \(0.0517085\pi\)
\(620\) −4.52520 −0.181736
\(621\) 3.91571 + 2.76898i 0.157132 + 0.111115i
\(622\) −31.0440 −1.24475
\(623\) 0.748110 1.63813i 0.0299724 0.0656304i
\(624\) 3.91245 + 1.14880i 0.156623 + 0.0459887i
\(625\) −0.654861 0.755750i −0.0261944 0.0302300i
\(626\) −16.2299 + 10.4303i −0.648676 + 0.416879i
\(627\) 4.60777 5.31765i 0.184016 0.212366i
\(628\) 2.64055 18.3654i 0.105369 0.732861i
\(629\) −12.4275 + 3.64904i −0.495517 + 0.145497i
\(630\) −0.533899 0.343116i −0.0212711 0.0136701i
\(631\) 5.54580 + 38.5719i 0.220775 + 1.53552i 0.735118 + 0.677939i \(0.237127\pi\)
−0.514343 + 0.857584i \(0.671964\pi\)
\(632\) −5.50968 12.0645i −0.219163 0.479901i
\(633\) −7.07973 15.5025i −0.281394 0.616167i
\(634\) −3.65423 25.4157i −0.145128 1.00939i
\(635\) 12.9222 + 8.30460i 0.512803 + 0.329558i
\(636\) −1.66782 + 0.489716i −0.0661334 + 0.0194185i
\(637\) 3.82841 26.6272i 0.151687 1.05501i
\(638\) −14.3210 + 16.5274i −0.566976 + 0.654325i
\(639\) 5.08658 3.26895i 0.201222 0.129318i
\(640\) −0.654861 0.755750i −0.0258856 0.0298736i
\(641\) 12.5748 + 3.69231i 0.496676 + 0.145837i 0.520471 0.853880i \(-0.325757\pi\)
−0.0237944 + 0.999717i \(0.507575\pi\)
\(642\) 1.73052 3.78930i 0.0682981 0.149552i
\(643\) −47.2323 −1.86266 −0.931330 0.364177i \(-0.881350\pi\)
−0.931330 + 0.364177i \(0.881350\pi\)
\(644\) −2.09310 + 2.20971i −0.0824799 + 0.0870746i
\(645\) −8.30699 −0.327088
\(646\) −0.789685 + 1.72917i −0.0310697 + 0.0680332i
\(647\) 8.13751 + 2.38939i 0.319919 + 0.0939366i 0.437749 0.899097i \(-0.355776\pi\)
−0.117831 + 0.993034i \(0.537594\pi\)
\(648\) −0.654861 0.755750i −0.0257254 0.0296886i
\(649\) 3.09489 1.98896i 0.121485 0.0780736i
\(650\) −2.67027 + 3.08166i −0.104737 + 0.120873i
\(651\) 0.408715 2.84268i 0.0160188 0.111413i
\(652\) −16.9774 + 4.98501i −0.664886 + 0.195228i
\(653\) 29.2716 + 18.8117i 1.14549 + 0.736159i 0.968735 0.248096i \(-0.0798050\pi\)
0.176751 + 0.984256i \(0.443441\pi\)
\(654\) 2.67062 + 18.5746i 0.104430 + 0.726324i
\(655\) −7.08263 15.5088i −0.276741 0.605979i
\(656\) −3.81740 8.35895i −0.149045 0.326362i
\(657\) 2.32052 + 16.1396i 0.0905322 + 0.629666i
\(658\) 2.75889 + 1.77303i 0.107553 + 0.0691200i
\(659\) 44.2875 13.0040i 1.72520 0.506564i 0.739223 0.673461i \(-0.235193\pi\)
0.985974 + 0.166898i \(0.0533749\pi\)
\(660\) −0.660744 + 4.59558i −0.0257194 + 0.178883i
\(661\) −30.3754 + 35.0551i −1.18147 + 1.36348i −0.264566 + 0.964368i \(0.585229\pi\)
−0.916900 + 0.399117i \(0.869317\pi\)
\(662\) −20.2940 + 13.0422i −0.788750 + 0.506899i
\(663\) 3.34941 + 3.86543i 0.130080 + 0.150121i
\(664\) −0.883269 0.259351i −0.0342775 0.0100648i
\(665\) 0.399552 0.874896i 0.0154940 0.0339270i
\(666\) 10.3259 0.400121
\(667\) 10.2849 20.1123i 0.398235 0.778752i
\(668\) −10.4145 −0.402948
\(669\) 0.852642 1.86702i 0.0329650 0.0721833i
\(670\) 0.212505 + 0.0623970i 0.00820977 + 0.00241061i
\(671\) 30.8520 + 35.6051i 1.19103 + 1.37452i
\(672\) 0.533899 0.343116i 0.0205956 0.0132360i
\(673\) 25.0481 28.9070i 0.965533 1.11428i −0.0278705 0.999612i \(-0.508873\pi\)
0.993403 0.114673i \(-0.0365819\pi\)
\(674\) −1.59315 + 11.0806i −0.0613660 + 0.426810i
\(675\) 0.959493 0.281733i 0.0369309 0.0108439i
\(676\) 3.05121 + 1.96089i 0.117354 + 0.0754190i
\(677\) 0.243339 + 1.69246i 0.00935229 + 0.0650466i 0.993963 0.109715i \(-0.0349937\pi\)
−0.984611 + 0.174761i \(0.944085\pi\)
\(678\) 2.44726 + 5.35875i 0.0939864 + 0.205801i
\(679\) −1.79660 3.93400i −0.0689471 0.150973i
\(680\) −0.178510 1.24157i −0.00684556 0.0476119i
\(681\) −8.85937 5.69357i −0.339492 0.218178i
\(682\) −20.1587 + 5.91913i −0.771917 + 0.226655i
\(683\) −2.52837 + 17.5852i −0.0967454 + 0.672879i 0.882517 + 0.470281i \(0.155848\pi\)
−0.979262 + 0.202598i \(0.935062\pi\)
\(684\) 0.992447 1.14534i 0.0379472 0.0437933i
\(685\) 4.64927 2.98790i 0.177639 0.114162i
\(686\) −5.65108 6.52170i −0.215759 0.249000i
\(687\) −12.9357 3.79827i −0.493528 0.144913i
\(688\) 3.45085 7.55631i 0.131562 0.288081i
\(689\) −7.08785 −0.270025
\(690\) −0.471588 4.77259i −0.0179530 0.181689i
\(691\) −5.60823 −0.213347 −0.106674 0.994294i \(-0.534020\pi\)
−0.106674 + 0.994294i \(0.534020\pi\)
\(692\) 6.13672 13.4375i 0.233283 0.510819i
\(693\) −2.82721 0.830143i −0.107397 0.0315345i
\(694\) 6.00061 + 6.92507i 0.227780 + 0.262872i
\(695\) 0.349658 0.224711i 0.0132633 0.00852379i
\(696\) −3.08455 + 3.55976i −0.116920 + 0.134932i
\(697\) 1.64040 11.4092i 0.0621345 0.432155i
\(698\) 2.49071 0.731338i 0.0942747 0.0276816i
\(699\) 17.3883 + 11.1748i 0.657685 + 0.422669i
\(700\) 0.0903198 + 0.628188i 0.00341377 + 0.0237433i
\(701\) 3.23513 + 7.08395i 0.122189 + 0.267557i 0.960836 0.277119i \(-0.0893797\pi\)
−0.838646 + 0.544676i \(0.816652\pi\)
\(702\) −1.69390 3.70913i −0.0639323 0.139992i
\(703\) 2.22709 + 15.4897i 0.0839961 + 0.584206i
\(704\) −3.90580 2.51011i −0.147205 0.0946032i
\(705\) −4.95812 + 1.45583i −0.186734 + 0.0548299i
\(706\) 0.00633719 0.0440761i 0.000238503 0.00165883i
\(707\) −5.79788 + 6.69111i −0.218052 + 0.251645i
\(708\) 0.666594 0.428394i 0.0250521 0.0161000i
\(709\) −0.982644 1.13403i −0.0369040 0.0425895i 0.736998 0.675895i \(-0.236243\pi\)
−0.773901 + 0.633306i \(0.781697\pi\)
\(710\) −5.80151 1.70348i −0.217727 0.0639303i
\(711\) −5.50968 + 12.0645i −0.206629 + 0.452455i
\(712\) −2.83760 −0.106343
\(713\) 18.7587 10.9129i 0.702520 0.408690i
\(714\) 0.796060 0.0297918
\(715\) −7.86452 + 17.2209i −0.294116 + 0.644025i
\(716\) 8.89439 + 2.61163i 0.332399 + 0.0976012i
\(717\) −15.5228 17.9143i −0.579710 0.669021i
\(718\) −12.2268 + 7.85768i −0.456300 + 0.293246i
\(719\) −34.7050 + 40.0517i −1.29428 + 1.49368i −0.531427 + 0.847104i \(0.678344\pi\)
−0.762852 + 0.646574i \(0.776201\pi\)
\(720\) −0.142315 + 0.989821i −0.00530376 + 0.0368885i
\(721\) −0.618746 + 0.181680i −0.0230433 + 0.00676612i
\(722\) −14.0517 9.03045i −0.522948 0.336079i
\(723\) −3.70724 25.7844i −0.137874 0.958932i
\(724\) −0.976464 2.13816i −0.0362900 0.0794640i
\(725\) −1.95670 4.28458i −0.0726701 0.159125i
\(726\) 1.50226 + 10.4485i 0.0557542 + 0.387779i
\(727\) 17.1945 + 11.0502i 0.637708 + 0.409830i 0.819156 0.573570i \(-0.194442\pi\)
−0.181448 + 0.983400i \(0.558078\pi\)
\(728\) 2.48303 0.729082i 0.0920270 0.0270216i
\(729\) −0.142315 + 0.989821i −0.00527092 + 0.0366601i
\(730\) 10.6779 12.3229i 0.395206 0.456092i
\(731\) 8.76565 5.63334i 0.324209 0.208357i
\(732\) 6.64508 + 7.66883i 0.245609 + 0.283448i
\(733\) −22.9686 6.74420i −0.848366 0.249103i −0.171477 0.985188i \(-0.554854\pi\)
−0.676889 + 0.736085i \(0.736672\pi\)
\(734\) −5.03883 + 11.0335i −0.185987 + 0.407254i
\(735\) 6.59722 0.243342
\(736\) 4.53720 + 1.55363i 0.167244 + 0.0572677i
\(737\) 1.02828 0.0378770
\(738\) −3.81740 + 8.35895i −0.140521 + 0.307697i
\(739\) −3.24418 0.952577i −0.119339 0.0350411i 0.221518 0.975156i \(-0.428899\pi\)
−0.340857 + 0.940115i \(0.610717\pi\)
\(740\) −6.76204 7.80381i −0.248577 0.286874i
\(741\) 5.19867 3.34098i 0.190978 0.122734i
\(742\) −0.722419 + 0.833716i −0.0265208 + 0.0306067i
\(743\) 0.431420 3.00059i 0.0158272 0.110081i −0.980376 0.197135i \(-0.936836\pi\)
0.996204 + 0.0870542i \(0.0277453\pi\)
\(744\) −4.34190 + 1.27490i −0.159182 + 0.0467400i
\(745\) 4.38067 + 2.81529i 0.160495 + 0.103144i
\(746\) 1.64035 + 11.4089i 0.0600575 + 0.417709i
\(747\) 0.382414 + 0.837369i 0.0139918 + 0.0306377i
\(748\) −2.41924 5.29739i −0.0884561 0.193692i
\(749\) −0.376250 2.61688i −0.0137479 0.0956186i
\(750\) −0.841254 0.540641i −0.0307182 0.0197414i
\(751\) −14.4623 + 4.24650i −0.527735 + 0.154957i −0.534737 0.845018i \(-0.679589\pi\)
0.00700200 + 0.999975i \(0.497771\pi\)
\(752\) 0.735403 5.11484i 0.0268174 0.186519i
\(753\) −1.81145 + 2.09052i −0.0660128 + 0.0761828i
\(754\) −16.1576 + 10.3838i −0.588424 + 0.378157i
\(755\) 13.4130 + 15.4794i 0.488150 + 0.563355i
\(756\) −0.608940 0.178801i −0.0221469 0.00650292i
\(757\) 8.64045 18.9199i 0.314042 0.687657i −0.685126 0.728424i \(-0.740253\pi\)
0.999169 + 0.0407675i \(0.0129803\pi\)
\(758\) −21.0990 −0.766351
\(759\) −8.34354 20.6439i −0.302851 0.749327i
\(760\) −1.51551 −0.0549733
\(761\) 16.1754 35.4192i 0.586358 1.28394i −0.351260 0.936278i \(-0.614247\pi\)
0.937618 0.347667i \(-0.113026\pi\)
\(762\) 14.7385 + 4.32760i 0.533918 + 0.156772i
\(763\) 7.79909 + 9.00063i 0.282346 + 0.325845i
\(764\) −13.0543 + 8.38946i −0.472286 + 0.303520i
\(765\) −0.821414 + 0.947963i −0.0296983 + 0.0342737i
\(766\) −2.68730 + 18.6906i −0.0970960 + 0.675318i
\(767\) 3.10015 0.910287i 0.111940 0.0328686i
\(768\) −0.841254 0.540641i −0.0303561 0.0195087i
\(769\) 7.10462