Properties

Label 690.2.m.c.121.1
Level $690$
Weight $2$
Character 690.121
Analytic conductor $5.510$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \( x^{20} - 4 x^{19} - 3 x^{18} + 66 x^{17} - 163 x^{16} - 52 x^{15} + 1567 x^{14} - 6182 x^{13} + 17043 x^{12} - 35832 x^{11} + 60906 x^{10} - 87666 x^{9} + 106197 x^{8} - 102542 x^{7} + \cdots + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 121.1
Root \(-0.608732 + 1.33294i\) of defining polynomial
Character \(\chi\) \(=\) 690.121
Dual form 690.2.m.c.211.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.415415 - 0.909632i) q^{2} +(0.959493 + 0.281733i) q^{3} +(-0.654861 - 0.755750i) q^{4} +(0.841254 - 0.540641i) q^{5} +(0.654861 - 0.755750i) q^{6} +(-0.668052 + 4.64640i) q^{7} +(-0.959493 + 0.281733i) q^{8} +(0.841254 + 0.540641i) q^{9} +O(q^{10})\) \(q+(0.415415 - 0.909632i) q^{2} +(0.959493 + 0.281733i) q^{3} +(-0.654861 - 0.755750i) q^{4} +(0.841254 - 0.540641i) q^{5} +(0.654861 - 0.755750i) q^{6} +(-0.668052 + 4.64640i) q^{7} +(-0.959493 + 0.281733i) q^{8} +(0.841254 + 0.540641i) q^{9} +(-0.142315 - 0.989821i) q^{10} +(0.596110 + 1.30530i) q^{11} +(-0.415415 - 0.909632i) q^{12} +(0.659144 + 4.58445i) q^{13} +(3.94900 + 2.53787i) q^{14} +(0.959493 - 0.281733i) q^{15} +(-0.142315 + 0.989821i) q^{16} +(2.16545 - 2.49906i) q^{17} +(0.841254 - 0.540641i) q^{18} +(2.75889 + 3.18393i) q^{19} +(-0.959493 - 0.281733i) q^{20} +(-1.95003 + 4.26998i) q^{21} +1.43497 q^{22} +(-2.66976 - 3.98402i) q^{23} -1.00000 q^{24} +(0.415415 - 0.909632i) q^{25} +(4.44398 + 1.30487i) q^{26} +(0.654861 + 0.755750i) q^{27} +(3.94900 - 2.53787i) q^{28} +(-2.01362 + 2.32384i) q^{29} +(0.142315 - 0.989821i) q^{30} +(9.43317 - 2.76983i) q^{31} +(0.841254 + 0.540641i) q^{32} +(0.204218 + 1.42037i) q^{33} +(-1.37367 - 3.00791i) q^{34} +(1.95003 + 4.26998i) q^{35} +(-0.142315 - 0.989821i) q^{36} +(-9.64008 - 6.19530i) q^{37} +(4.04228 - 1.18692i) q^{38} +(-0.659144 + 4.58445i) q^{39} +(-0.654861 + 0.755750i) q^{40} +(2.56811 - 1.65043i) q^{41} +(3.07404 + 3.54763i) q^{42} +(-4.11868 - 1.20935i) q^{43} +(0.596110 - 1.30530i) q^{44} +1.00000 q^{45} +(-4.73305 + 0.773476i) q^{46} +0.295107 q^{47} +(-0.415415 + 0.909632i) q^{48} +(-14.4263 - 4.23595i) q^{49} +(-0.654861 - 0.755750i) q^{50} +(2.78180 - 1.78775i) q^{51} +(3.03305 - 3.50032i) q^{52} +(1.91236 - 13.3007i) q^{53} +(0.959493 - 0.281733i) q^{54} +(1.20718 + 0.775805i) q^{55} +(-0.668052 - 4.64640i) q^{56} +(1.75012 + 3.83222i) q^{57} +(1.27735 + 2.79701i) q^{58} +(2.09506 + 14.5715i) q^{59} +(-0.841254 - 0.540641i) q^{60} +(8.12938 - 2.38700i) q^{61} +(1.39916 - 9.73134i) q^{62} +(-3.07404 + 3.54763i) q^{63} +(0.841254 - 0.540641i) q^{64} +(3.03305 + 3.50032i) q^{65} +(1.37685 + 0.404279i) q^{66} +(-4.93976 + 10.8166i) q^{67} -3.30673 q^{68} +(-1.43919 - 4.57479i) q^{69} +4.69418 q^{70} +(4.97324 - 10.8899i) q^{71} +(-0.959493 - 0.281733i) q^{72} +(5.60463 + 6.46809i) q^{73} +(-9.64008 + 6.19530i) q^{74} +(0.654861 - 0.755750i) q^{75} +(0.599564 - 4.17006i) q^{76} +(-6.46318 + 1.89776i) q^{77} +(3.89634 + 2.50403i) q^{78} +(-1.95489 - 13.5966i) q^{79} +(0.415415 + 0.909632i) q^{80} +(0.415415 + 0.909632i) q^{81} +(-0.434447 - 3.02165i) q^{82} +(7.86619 + 5.05530i) q^{83} +(4.50404 - 1.32250i) q^{84} +(0.470597 - 3.27307i) q^{85} +(-2.81103 + 3.24410i) q^{86} +(-2.58675 + 1.66240i) q^{87} +(-0.939708 - 1.08448i) q^{88} +(-5.33745 - 1.56722i) q^{89} +(0.415415 - 0.909632i) q^{90} -21.7415 q^{91} +(-1.26260 + 4.62664i) q^{92} +9.83141 q^{93} +(0.122592 - 0.268439i) q^{94} +(4.04228 + 1.18692i) q^{95} +(0.654861 + 0.755750i) q^{96} +(-8.67436 + 5.57468i) q^{97} +(-9.84608 + 11.3630i) q^{98} +(-0.204218 + 1.42037i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 2 q^{2} + 2 q^{3} - 2 q^{4} - 2 q^{5} + 2 q^{6} + 2 q^{7} - 2 q^{8} - 2 q^{9} - 2 q^{10} - 24 q^{11} + 2 q^{12} - 4 q^{13} + 2 q^{14} + 2 q^{15} - 2 q^{16} + 16 q^{17} - 2 q^{18} + 14 q^{19} - 2 q^{20} - 13 q^{21} - 2 q^{22} - 2 q^{23} - 20 q^{24} - 2 q^{25} + 7 q^{26} + 2 q^{27} + 2 q^{28} + 18 q^{29} + 2 q^{30} + 22 q^{31} - 2 q^{32} + 2 q^{33} - 17 q^{34} + 13 q^{35} - 2 q^{36} - 16 q^{37} + 3 q^{38} + 4 q^{39} - 2 q^{40} + 29 q^{41} + 9 q^{42} - 22 q^{43} - 24 q^{44} + 20 q^{45} - 2 q^{46} - 94 q^{47} + 2 q^{48} - 22 q^{49} - 2 q^{50} - 5 q^{51} - 4 q^{52} + 58 q^{53} + 2 q^{54} + 9 q^{55} + 2 q^{56} - 25 q^{57} - 4 q^{58} + 45 q^{59} + 2 q^{60} + q^{61} - 9 q^{63} - 2 q^{64} - 4 q^{65} - 9 q^{66} + 16 q^{67} - 6 q^{68} + 24 q^{69} + 2 q^{70} + 59 q^{71} - 2 q^{72} + 3 q^{73} - 16 q^{74} + 2 q^{75} - 8 q^{76} - 19 q^{77} - 18 q^{78} - 20 q^{79} - 2 q^{80} - 2 q^{81} - 37 q^{82} + 13 q^{83} + 9 q^{84} + 5 q^{85} - 22 q^{86} + 4 q^{87} + 9 q^{88} - 97 q^{89} - 2 q^{90} - 18 q^{91} + 9 q^{92} + 22 q^{93} + 27 q^{94} + 3 q^{95} + 2 q^{96} - 17 q^{97} - 11 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{9}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.415415 0.909632i 0.293743 0.643207i
\(3\) 0.959493 + 0.281733i 0.553964 + 0.162658i
\(4\) −0.654861 0.755750i −0.327430 0.377875i
\(5\) 0.841254 0.540641i 0.376220 0.241782i
\(6\) 0.654861 0.755750i 0.267346 0.308533i
\(7\) −0.668052 + 4.64640i −0.252500 + 1.75618i 0.330596 + 0.943772i \(0.392750\pi\)
−0.583096 + 0.812404i \(0.698159\pi\)
\(8\) −0.959493 + 0.281733i −0.339232 + 0.0996075i
\(9\) 0.841254 + 0.540641i 0.280418 + 0.180214i
\(10\) −0.142315 0.989821i −0.0450039 0.313009i
\(11\) 0.596110 + 1.30530i 0.179734 + 0.393562i 0.977959 0.208797i \(-0.0669548\pi\)
−0.798225 + 0.602359i \(0.794228\pi\)
\(12\) −0.415415 0.909632i −0.119920 0.262588i
\(13\) 0.659144 + 4.58445i 0.182814 + 1.27150i 0.850070 + 0.526669i \(0.176559\pi\)
−0.667257 + 0.744828i \(0.732532\pi\)
\(14\) 3.94900 + 2.53787i 1.05541 + 0.678274i
\(15\) 0.959493 0.281733i 0.247740 0.0727430i
\(16\) −0.142315 + 0.989821i −0.0355787 + 0.247455i
\(17\) 2.16545 2.49906i 0.525198 0.606111i −0.429727 0.902959i \(-0.641390\pi\)
0.954925 + 0.296848i \(0.0959355\pi\)
\(18\) 0.841254 0.540641i 0.198285 0.127430i
\(19\) 2.75889 + 3.18393i 0.632932 + 0.730443i 0.978109 0.208095i \(-0.0667264\pi\)
−0.345176 + 0.938538i \(0.612181\pi\)
\(20\) −0.959493 0.281733i −0.214549 0.0629973i
\(21\) −1.95003 + 4.26998i −0.425533 + 0.931786i
\(22\) 1.43497 0.305937
\(23\) −2.66976 3.98402i −0.556683 0.830725i
\(24\) −1.00000 −0.204124
\(25\) 0.415415 0.909632i 0.0830830 0.181926i
\(26\) 4.44398 + 1.30487i 0.871536 + 0.255906i
\(27\) 0.654861 + 0.755750i 0.126028 + 0.145444i
\(28\) 3.94900 2.53787i 0.746291 0.479612i
\(29\) −2.01362 + 2.32384i −0.373919 + 0.431526i −0.911255 0.411843i \(-0.864885\pi\)
0.537336 + 0.843368i \(0.319431\pi\)
\(30\) 0.142315 0.989821i 0.0259830 0.180716i
\(31\) 9.43317 2.76983i 1.69425 0.497476i 0.714826 0.699302i \(-0.246506\pi\)
0.979421 + 0.201826i \(0.0646876\pi\)
\(32\) 0.841254 + 0.540641i 0.148714 + 0.0955727i
\(33\) 0.204218 + 1.42037i 0.0355498 + 0.247254i
\(34\) −1.37367 3.00791i −0.235582 0.515852i
\(35\) 1.95003 + 4.26998i 0.329616 + 0.721758i
\(36\) −0.142315 0.989821i −0.0237191 0.164970i
\(37\) −9.64008 6.19530i −1.58482 1.01850i −0.973948 0.226772i \(-0.927183\pi\)
−0.610871 0.791730i \(-0.709181\pi\)
\(38\) 4.04228 1.18692i 0.655745 0.192544i
\(39\) −0.659144 + 4.58445i −0.105548 + 0.734099i
\(40\) −0.654861 + 0.755750i −0.103543 + 0.119494i
\(41\) 2.56811 1.65043i 0.401072 0.257753i −0.324520 0.945879i \(-0.605203\pi\)
0.725591 + 0.688126i \(0.241566\pi\)
\(42\) 3.07404 + 3.54763i 0.474334 + 0.547411i
\(43\) −4.11868 1.20935i −0.628092 0.184425i −0.0478318 0.998855i \(-0.515231\pi\)
−0.580261 + 0.814431i \(0.697049\pi\)
\(44\) 0.596110 1.30530i 0.0898669 0.196781i
\(45\) 1.00000 0.149071
\(46\) −4.73305 + 0.773476i −0.697850 + 0.114043i
\(47\) 0.295107 0.0430457 0.0215229 0.999768i \(-0.493149\pi\)
0.0215229 + 0.999768i \(0.493149\pi\)
\(48\) −0.415415 + 0.909632i −0.0599600 + 0.131294i
\(49\) −14.4263 4.23595i −2.06090 0.605136i
\(50\) −0.654861 0.755750i −0.0926113 0.106879i
\(51\) 2.78180 1.78775i 0.389530 0.250336i
\(52\) 3.03305 3.50032i 0.420608 0.485407i
\(53\) 1.91236 13.3007i 0.262683 1.82700i −0.249796 0.968298i \(-0.580364\pi\)
0.512479 0.858700i \(-0.328727\pi\)
\(54\) 0.959493 0.281733i 0.130570 0.0383389i
\(55\) 1.20718 + 0.775805i 0.162776 + 0.104610i
\(56\) −0.668052 4.64640i −0.0892722 0.620902i
\(57\) 1.75012 + 3.83222i 0.231809 + 0.507590i
\(58\) 1.27735 + 2.79701i 0.167724 + 0.367265i
\(59\) 2.09506 + 14.5715i 0.272754 + 1.89705i 0.419309 + 0.907844i \(0.362272\pi\)
−0.146555 + 0.989203i \(0.546819\pi\)
\(60\) −0.841254 0.540641i −0.108605 0.0697964i
\(61\) 8.12938 2.38700i 1.04086 0.305624i 0.283741 0.958901i \(-0.408424\pi\)
0.757119 + 0.653277i \(0.226606\pi\)
\(62\) 1.39916 9.73134i 0.177693 1.23588i
\(63\) −3.07404 + 3.54763i −0.387292 + 0.446959i
\(64\) 0.841254 0.540641i 0.105157 0.0675801i
\(65\) 3.03305 + 3.50032i 0.376203 + 0.434162i
\(66\) 1.37685 + 0.404279i 0.169478 + 0.0497633i
\(67\) −4.93976 + 10.8166i −0.603488 + 1.32145i 0.323453 + 0.946244i \(0.395156\pi\)
−0.926940 + 0.375209i \(0.877571\pi\)
\(68\) −3.30673 −0.401000
\(69\) −1.43919 4.57479i −0.173258 0.550741i
\(70\) 4.69418 0.561062
\(71\) 4.97324 10.8899i 0.590215 1.29239i −0.345097 0.938567i \(-0.612154\pi\)
0.935312 0.353823i \(-0.115119\pi\)
\(72\) −0.959493 0.281733i −0.113077 0.0332025i
\(73\) 5.60463 + 6.46809i 0.655972 + 0.757033i 0.982114 0.188288i \(-0.0602940\pi\)
−0.326141 + 0.945321i \(0.605749\pi\)
\(74\) −9.64008 + 6.19530i −1.12064 + 0.720189i
\(75\) 0.654861 0.755750i 0.0756168 0.0872664i
\(76\) 0.599564 4.17006i 0.0687747 0.478338i
\(77\) −6.46318 + 1.89776i −0.736547 + 0.216270i
\(78\) 3.89634 + 2.50403i 0.441174 + 0.283525i
\(79\) −1.95489 13.5966i −0.219943 1.52974i −0.738242 0.674536i \(-0.764344\pi\)
0.518299 0.855200i \(-0.326566\pi\)
\(80\) 0.415415 + 0.909632i 0.0464448 + 0.101700i
\(81\) 0.415415 + 0.909632i 0.0461572 + 0.101070i
\(82\) −0.434447 3.02165i −0.0479767 0.333685i
\(83\) 7.86619 + 5.05530i 0.863427 + 0.554891i 0.895736 0.444587i \(-0.146650\pi\)
−0.0323087 + 0.999478i \(0.510286\pi\)
\(84\) 4.50404 1.32250i 0.491431 0.144297i
\(85\) 0.470597 3.27307i 0.0510434 0.355015i
\(86\) −2.81103 + 3.24410i −0.303121 + 0.349820i
\(87\) −2.58675 + 1.66240i −0.277329 + 0.178228i
\(88\) −0.939708 1.08448i −0.100173 0.115606i
\(89\) −5.33745 1.56722i −0.565768 0.166125i −0.0136745 0.999906i \(-0.504353\pi\)
−0.552094 + 0.833782i \(0.686171\pi\)
\(90\) 0.415415 0.909632i 0.0437886 0.0958836i
\(91\) −21.7415 −2.27913
\(92\) −1.26260 + 4.62664i −0.131635 + 0.482361i
\(93\) 9.83141 1.01947
\(94\) 0.122592 0.268439i 0.0126444 0.0276873i
\(95\) 4.04228 + 1.18692i 0.414730 + 0.121776i
\(96\) 0.654861 + 0.755750i 0.0668364 + 0.0771334i
\(97\) −8.67436 + 5.57468i −0.880748 + 0.566023i −0.901023 0.433772i \(-0.857182\pi\)
0.0202745 + 0.999794i \(0.493546\pi\)
\(98\) −9.84608 + 11.3630i −0.994604 + 1.14783i
\(99\) −0.204218 + 1.42037i −0.0205247 + 0.142752i
\(100\) −0.959493 + 0.281733i −0.0959493 + 0.0281733i
\(101\) −1.92412 1.23656i −0.191457 0.123042i 0.441400 0.897310i \(-0.354482\pi\)
−0.632858 + 0.774268i \(0.718118\pi\)
\(102\) −0.470597 3.27307i −0.0465960 0.324082i
\(103\) −0.0449425 0.0984103i −0.00442831 0.00969665i 0.907405 0.420257i \(-0.138060\pi\)
−0.911833 + 0.410561i \(0.865333\pi\)
\(104\) −1.92403 4.21304i −0.188667 0.413123i
\(105\) 0.668052 + 4.64640i 0.0651952 + 0.453443i
\(106\) −11.3044 7.26487i −1.09798 0.705627i
\(107\) 11.6565 3.42266i 1.12688 0.330881i 0.335398 0.942077i \(-0.391129\pi\)
0.791479 + 0.611196i \(0.209311\pi\)
\(108\) 0.142315 0.989821i 0.0136943 0.0952456i
\(109\) −0.552043 + 0.637092i −0.0528762 + 0.0610223i −0.781572 0.623816i \(-0.785582\pi\)
0.728695 + 0.684838i \(0.240127\pi\)
\(110\) 1.20718 0.775805i 0.115100 0.0739701i
\(111\) −7.50417 8.66027i −0.712264 0.821997i
\(112\) −4.50404 1.32250i −0.425592 0.124965i
\(113\) −5.19756 + 11.3811i −0.488945 + 1.07064i 0.490961 + 0.871182i \(0.336646\pi\)
−0.979906 + 0.199459i \(0.936082\pi\)
\(114\) 4.21294 0.394578
\(115\) −4.39987 1.90819i −0.410290 0.177940i
\(116\) 3.07488 0.285495
\(117\) −1.92403 + 4.21304i −0.177877 + 0.389496i
\(118\) 14.1250 + 4.14748i 1.30031 + 0.381806i
\(119\) 10.1650 + 11.7310i 0.931825 + 1.07538i
\(120\) −0.841254 + 0.540641i −0.0767956 + 0.0493535i
\(121\) 5.85501 6.75704i 0.532274 0.614277i
\(122\) 1.20577 8.38634i 0.109166 0.759264i
\(123\) 2.92906 0.860051i 0.264105 0.0775482i
\(124\) −8.27071 5.31526i −0.742732 0.477325i
\(125\) −0.142315 0.989821i −0.0127290 0.0885323i
\(126\) 1.95003 + 4.26998i 0.173723 + 0.380400i
\(127\) −3.46102 7.57857i −0.307116 0.672490i 0.691646 0.722237i \(-0.256886\pi\)
−0.998762 + 0.0497469i \(0.984159\pi\)
\(128\) −0.142315 0.989821i −0.0125790 0.0874887i
\(129\) −3.61113 2.32073i −0.317942 0.204329i
\(130\) 4.44398 1.30487i 0.389763 0.114445i
\(131\) 2.23897 15.5724i 0.195620 1.36056i −0.621191 0.783659i \(-0.713351\pi\)
0.816811 0.576906i \(-0.195740\pi\)
\(132\) 0.939708 1.08448i 0.0817911 0.0943919i
\(133\) −16.6369 + 10.6919i −1.44260 + 0.927104i
\(134\) 7.78704 + 8.98673i 0.672698 + 0.776335i
\(135\) 0.959493 + 0.281733i 0.0825800 + 0.0242477i
\(136\) −1.37367 + 3.00791i −0.117791 + 0.257926i
\(137\) −4.08410 −0.348928 −0.174464 0.984664i \(-0.555819\pi\)
−0.174464 + 0.984664i \(0.555819\pi\)
\(138\) −4.75924 0.591308i −0.405133 0.0503355i
\(139\) −4.37740 −0.371286 −0.185643 0.982617i \(-0.559437\pi\)
−0.185643 + 0.982617i \(0.559437\pi\)
\(140\) 1.95003 4.26998i 0.164808 0.360879i
\(141\) 0.283153 + 0.0831412i 0.0238458 + 0.00700175i
\(142\) −7.83982 9.04763i −0.657903 0.759261i
\(143\) −5.59115 + 3.59321i −0.467555 + 0.300480i
\(144\) −0.654861 + 0.755750i −0.0545717 + 0.0629791i
\(145\) −0.437601 + 3.04358i −0.0363407 + 0.252755i
\(146\) 8.21183 2.41121i 0.679616 0.199553i
\(147\) −12.6486 8.12874i −1.04324 0.670447i
\(148\) 1.63081 + 11.3425i 0.134052 + 0.932352i
\(149\) −6.31785 13.8342i −0.517579 1.13334i −0.970348 0.241712i \(-0.922291\pi\)
0.452769 0.891628i \(-0.350436\pi\)
\(150\) −0.415415 0.909632i −0.0339185 0.0742711i
\(151\) 1.54818 + 10.7678i 0.125989 + 0.876273i 0.950566 + 0.310523i \(0.100504\pi\)
−0.824577 + 0.565750i \(0.808587\pi\)
\(152\) −3.54415 2.27769i −0.287468 0.184745i
\(153\) 3.17278 0.931613i 0.256504 0.0753165i
\(154\) −0.958637 + 6.66747i −0.0772492 + 0.537280i
\(155\) 6.43821 7.43009i 0.517129 0.596799i
\(156\) 3.89634 2.50403i 0.311957 0.200483i
\(157\) −10.2246 11.7998i −0.816011 0.941727i 0.183133 0.983088i \(-0.441376\pi\)
−0.999144 + 0.0413610i \(0.986831\pi\)
\(158\) −13.1800 3.86999i −1.04854 0.307880i
\(159\) 5.58215 12.2232i 0.442693 0.969363i
\(160\) 1.00000 0.0790569
\(161\) 20.2949 9.74324i 1.59946 0.767875i
\(162\) 1.00000 0.0785674
\(163\) 4.17031 9.13171i 0.326644 0.715251i −0.673060 0.739588i \(-0.735020\pi\)
0.999704 + 0.0243373i \(0.00774756\pi\)
\(164\) −2.92906 0.860051i −0.228721 0.0671587i
\(165\) 0.939708 + 1.08448i 0.0731562 + 0.0844267i
\(166\) 7.86619 5.05530i 0.610535 0.392367i
\(167\) −7.34209 + 8.47322i −0.568148 + 0.655678i −0.965014 0.262199i \(-0.915552\pi\)
0.396866 + 0.917877i \(0.370098\pi\)
\(168\) 0.668052 4.64640i 0.0515413 0.358478i
\(169\) −8.10929 + 2.38110i −0.623791 + 0.183162i
\(170\) −2.78180 1.78775i −0.213354 0.137114i
\(171\) 0.599564 + 4.17006i 0.0458498 + 0.318892i
\(172\) 1.78319 + 3.90465i 0.135967 + 0.297726i
\(173\) 4.37809 + 9.58667i 0.332860 + 0.728861i 0.999869 0.0161882i \(-0.00515308\pi\)
−0.667009 + 0.745050i \(0.732426\pi\)
\(174\) 0.437601 + 3.04358i 0.0331744 + 0.230733i
\(175\) 3.94900 + 2.53787i 0.298516 + 0.191845i
\(176\) −1.37685 + 0.404279i −0.103784 + 0.0304737i
\(177\) −2.09506 + 14.5715i −0.157475 + 1.09526i
\(178\) −3.64285 + 4.20407i −0.273043 + 0.315108i
\(179\) 11.5446 7.41928i 0.862886 0.554543i −0.0326832 0.999466i \(-0.510405\pi\)
0.895569 + 0.444923i \(0.146769\pi\)
\(180\) −0.654861 0.755750i −0.0488104 0.0563302i
\(181\) −6.07936 1.78506i −0.451875 0.132683i 0.0478725 0.998853i \(-0.484756\pi\)
−0.499748 + 0.866171i \(0.666574\pi\)
\(182\) −9.03176 + 19.7768i −0.669479 + 1.46595i
\(183\) 8.47258 0.626311
\(184\) 3.68404 + 3.07048i 0.271591 + 0.226359i
\(185\) −11.4592 −0.842496
\(186\) 4.08412 8.94297i 0.299462 0.655730i
\(187\) 4.55286 + 1.33684i 0.332938 + 0.0977595i
\(188\) −0.193254 0.223027i −0.0140945 0.0162659i
\(189\) −3.94900 + 2.53787i −0.287247 + 0.184603i
\(190\) 2.75889 3.18393i 0.200151 0.230986i
\(191\) −1.84961 + 12.8643i −0.133833 + 0.930830i 0.806660 + 0.591016i \(0.201273\pi\)
−0.940493 + 0.339814i \(0.889636\pi\)
\(192\) 0.959493 0.281733i 0.0692454 0.0203323i
\(193\) −7.52332 4.83494i −0.541541 0.348027i 0.241101 0.970500i \(-0.422492\pi\)
−0.782641 + 0.622473i \(0.786128\pi\)
\(194\) 1.46744 + 10.2063i 0.105356 + 0.732768i
\(195\) 1.92403 + 4.21304i 0.137783 + 0.301702i
\(196\) 6.24592 + 13.6767i 0.446137 + 0.976904i
\(197\) 1.51397 + 10.5299i 0.107866 + 0.750222i 0.969923 + 0.243412i \(0.0782665\pi\)
−0.862057 + 0.506811i \(0.830824\pi\)
\(198\) 1.20718 + 0.775805i 0.0857903 + 0.0551341i
\(199\) −24.3900 + 7.16156i −1.72896 + 0.507670i −0.986716 0.162455i \(-0.948059\pi\)
−0.742248 + 0.670125i \(0.766241\pi\)
\(200\) −0.142315 + 0.989821i −0.0100632 + 0.0699909i
\(201\) −7.78704 + 8.98673i −0.549256 + 0.633875i
\(202\) −1.92412 + 1.23656i −0.135381 + 0.0870039i
\(203\) −9.45228 10.9085i −0.663420 0.765628i
\(204\) −3.17278 0.931613i −0.222139 0.0652260i
\(205\) 1.26815 2.77685i 0.0885712 0.193944i
\(206\) −0.108187 −0.00753774
\(207\) −0.0920206 4.79495i −0.00639587 0.333272i
\(208\) −4.63159 −0.321143
\(209\) −2.51137 + 5.49914i −0.173715 + 0.380383i
\(210\) 4.50404 + 1.32250i 0.310808 + 0.0912615i
\(211\) 2.56520 + 2.96040i 0.176596 + 0.203803i 0.837146 0.546979i \(-0.184222\pi\)
−0.660550 + 0.750782i \(0.729677\pi\)
\(212\) −11.3044 + 7.26487i −0.776387 + 0.498954i
\(213\) 7.83982 9.04763i 0.537176 0.619934i
\(214\) 1.72893 12.0250i 0.118187 0.822009i
\(215\) −4.11868 + 1.20935i −0.280891 + 0.0824772i
\(216\) −0.841254 0.540641i −0.0572401 0.0367859i
\(217\) 6.56790 + 45.6807i 0.445858 + 3.10101i
\(218\) 0.350192 + 0.766814i 0.0237180 + 0.0519352i
\(219\) 3.55533 + 7.78509i 0.240247 + 0.526068i
\(220\) −0.204218 1.42037i −0.0137684 0.0957612i
\(221\) 12.8842 + 8.28014i 0.866682 + 0.556983i
\(222\) −10.9950 + 3.22843i −0.737937 + 0.216678i
\(223\) 2.27890 15.8501i 0.152606 1.06140i −0.759223 0.650831i \(-0.774421\pi\)
0.911829 0.410569i \(-0.134670\pi\)
\(224\) −3.07404 + 3.54763i −0.205393 + 0.237036i
\(225\) 0.841254 0.540641i 0.0560836 0.0360427i
\(226\) 8.19344 + 9.45573i 0.545019 + 0.628986i
\(227\) 9.45746 + 2.77696i 0.627714 + 0.184313i 0.580090 0.814552i \(-0.303017\pi\)
0.0476231 + 0.998865i \(0.484835\pi\)
\(228\) 1.75012 3.83222i 0.115904 0.253795i
\(229\) 9.28423 0.613519 0.306760 0.951787i \(-0.400755\pi\)
0.306760 + 0.951787i \(0.400755\pi\)
\(230\) −3.56352 + 3.20957i −0.234972 + 0.211633i
\(231\) −6.73603 −0.443198
\(232\) 1.27735 2.79701i 0.0838621 0.183632i
\(233\) −22.5586 6.62380i −1.47786 0.433940i −0.559217 0.829021i \(-0.688898\pi\)
−0.918646 + 0.395082i \(0.870716\pi\)
\(234\) 3.03305 + 3.50032i 0.198277 + 0.228823i
\(235\) 0.248260 0.159547i 0.0161947 0.0104077i
\(236\) 9.64042 11.1256i 0.627538 0.724217i
\(237\) 1.95489 13.5966i 0.126984 0.883194i
\(238\) 14.8936 4.37317i 0.965411 0.283470i
\(239\) 2.07543 + 1.33380i 0.134248 + 0.0862762i 0.606041 0.795433i \(-0.292757\pi\)
−0.471793 + 0.881709i \(0.656393\pi\)
\(240\) 0.142315 + 0.989821i 0.00918638 + 0.0638927i
\(241\) −2.77875 6.08462i −0.178995 0.391945i 0.798773 0.601632i \(-0.205483\pi\)
−0.977769 + 0.209687i \(0.932755\pi\)
\(242\) −3.71416 8.13288i −0.238755 0.522802i
\(243\) 0.142315 + 0.989821i 0.00912950 + 0.0634971i
\(244\) −7.12759 4.58062i −0.456297 0.293244i
\(245\) −14.4263 + 4.23595i −0.921665 + 0.270625i
\(246\) 0.434447 3.02165i 0.0276994 0.192653i
\(247\) −12.7780 + 14.7466i −0.813047 + 0.938306i
\(248\) −8.27071 + 5.31526i −0.525191 + 0.337520i
\(249\) 6.12332 + 7.06668i 0.388049 + 0.447833i
\(250\) −0.959493 0.281733i −0.0606837 0.0178183i
\(251\) −4.02365 + 8.81056i −0.253970 + 0.556118i −0.993076 0.117472i \(-0.962521\pi\)
0.739106 + 0.673589i \(0.235248\pi\)
\(252\) 4.69418 0.295706
\(253\) 3.60886 5.85974i 0.226887 0.368399i
\(254\) −8.33147 −0.522763
\(255\) 1.37367 3.00791i 0.0860223 0.188362i
\(256\) −0.959493 0.281733i −0.0599683 0.0176083i
\(257\) −0.979816 1.13077i −0.0611192 0.0705354i 0.724367 0.689415i \(-0.242132\pi\)
−0.785486 + 0.618880i \(0.787587\pi\)
\(258\) −3.61113 + 2.32073i −0.224819 + 0.144482i
\(259\) 35.2260 40.6529i 2.18883 2.52605i
\(260\) 0.659144 4.58445i 0.0408784 0.284315i
\(261\) −2.95032 + 0.866293i −0.182620 + 0.0536222i
\(262\) −13.2350 8.50564i −0.817663 0.525480i
\(263\) −2.76936 19.2614i −0.170766 1.18771i −0.877270 0.479997i \(-0.840638\pi\)
0.706504 0.707709i \(-0.250271\pi\)
\(264\) −0.596110 1.30530i −0.0366880 0.0803355i
\(265\) −5.58215 12.2232i −0.342909 0.750865i
\(266\) 2.81446 + 19.5750i 0.172566 + 1.20022i
\(267\) −4.67971 3.00747i −0.286394 0.184054i
\(268\) 11.4095 3.35012i 0.696944 0.204641i
\(269\) 4.63641 32.2469i 0.282687 1.96613i 0.0258878 0.999665i \(-0.491759\pi\)
0.256799 0.966465i \(-0.417332\pi\)
\(270\) 0.654861 0.755750i 0.0398536 0.0459935i
\(271\) 18.9683 12.1902i 1.15224 0.740501i 0.182157 0.983269i \(-0.441692\pi\)
0.970084 + 0.242769i \(0.0780556\pi\)
\(272\) 2.16545 + 2.49906i 0.131300 + 0.151528i
\(273\) −20.8609 6.12530i −1.26256 0.370720i
\(274\) −1.69659 + 3.71502i −0.102495 + 0.224433i
\(275\) 1.43497 0.0865322
\(276\) −2.51493 + 4.08352i −0.151381 + 0.245799i
\(277\) 12.6591 0.760612 0.380306 0.924861i \(-0.375819\pi\)
0.380306 + 0.924861i \(0.375819\pi\)
\(278\) −1.81844 + 3.98182i −0.109063 + 0.238814i
\(279\) 9.43317 + 2.76983i 0.564749 + 0.165825i
\(280\) −3.07404 3.54763i −0.183709 0.212011i
\(281\) 7.70029 4.94867i 0.459361 0.295213i −0.290420 0.956899i \(-0.593795\pi\)
0.749781 + 0.661686i \(0.230159\pi\)
\(282\) 0.193254 0.223027i 0.0115081 0.0132811i
\(283\) 0.403864 2.80894i 0.0240072 0.166974i −0.974291 0.225295i \(-0.927666\pi\)
0.998298 + 0.0583208i \(0.0185746\pi\)
\(284\) −11.4868 + 3.37283i −0.681616 + 0.200141i
\(285\) 3.54415 + 2.27769i 0.209937 + 0.134918i
\(286\) 0.945855 + 6.57856i 0.0559296 + 0.388999i
\(287\) 5.95291 + 13.0351i 0.351389 + 0.769435i
\(288\) 0.415415 + 0.909632i 0.0244786 + 0.0536006i
\(289\) 0.863216 + 6.00380i 0.0507774 + 0.353165i
\(290\) 2.58675 + 1.66240i 0.151899 + 0.0976197i
\(291\) −9.89356 + 2.90501i −0.579971 + 0.170295i
\(292\) 1.21800 8.47140i 0.0712782 0.495751i
\(293\) −7.91301 + 9.13210i −0.462283 + 0.533503i −0.938249 0.345961i \(-0.887553\pi\)
0.475966 + 0.879464i \(0.342098\pi\)
\(294\) −12.6486 + 8.12874i −0.737679 + 0.474078i
\(295\) 9.64042 + 11.1256i 0.561287 + 0.647760i
\(296\) 10.9950 + 3.22843i 0.639072 + 0.187648i
\(297\) −0.596110 + 1.30530i −0.0345898 + 0.0757411i
\(298\) −15.2085 −0.881007
\(299\) 16.5048 14.8654i 0.954495 0.859689i
\(300\) −1.00000 −0.0577350
\(301\) 8.37063 18.3291i 0.482475 1.05647i
\(302\) 10.4379 + 3.06484i 0.600633 + 0.176362i
\(303\) −1.49780 1.72856i −0.0860465 0.0993030i
\(304\) −3.54415 + 2.27769i −0.203271 + 0.130634i
\(305\) 5.54836 6.40315i 0.317698 0.366643i
\(306\) 0.470597 3.27307i 0.0269022 0.187109i
\(307\) 6.16998 1.81167i 0.352140 0.103398i −0.100879 0.994899i \(-0.532165\pi\)
0.453018 + 0.891501i \(0.350347\pi\)
\(308\) 5.66671 + 3.64177i 0.322891 + 0.207509i
\(309\) −0.0153966 0.107086i −0.000875882 0.00609189i
\(310\) −4.08412 8.94297i −0.231962 0.507926i
\(311\) 2.22162 + 4.86466i 0.125976 + 0.275850i 0.962103 0.272687i \(-0.0879124\pi\)
−0.836126 + 0.548537i \(0.815185\pi\)
\(312\) −0.659144 4.58445i −0.0373167 0.259543i
\(313\) 19.8143 + 12.7339i 1.11997 + 0.719763i 0.963444 0.267911i \(-0.0863332\pi\)
0.156529 + 0.987673i \(0.449970\pi\)
\(314\) −14.9809 + 4.39880i −0.845423 + 0.248239i
\(315\) −0.668052 + 4.64640i −0.0376405 + 0.261795i
\(316\) −8.99543 + 10.3813i −0.506033 + 0.583993i
\(317\) −9.76031 + 6.27257i −0.548194 + 0.352303i −0.785236 0.619197i \(-0.787458\pi\)
0.237042 + 0.971499i \(0.423822\pi\)
\(318\) −8.79971 10.1554i −0.493463 0.569487i
\(319\) −4.23363 1.24311i −0.237038 0.0696007i
\(320\) 0.415415 0.909632i 0.0232224 0.0508500i
\(321\) 12.1486 0.678069
\(322\) −0.431961 22.5084i −0.0240723 1.25434i
\(323\) 13.9310 0.775144
\(324\) 0.415415 0.909632i 0.0230786 0.0505351i
\(325\) 4.44398 + 1.30487i 0.246508 + 0.0723812i
\(326\) −6.57409 7.58690i −0.364105 0.420200i
\(327\) −0.709171 + 0.455757i −0.0392173 + 0.0252034i
\(328\) −1.99911 + 2.30709i −0.110382 + 0.127388i
\(329\) −0.197147 + 1.37119i −0.0108690 + 0.0755959i
\(330\) 1.37685 0.404279i 0.0757929 0.0222548i
\(331\) 16.6020 + 10.6695i 0.912529 + 0.586447i 0.910481 0.413551i \(-0.135712\pi\)
0.00204816 + 0.999998i \(0.499348\pi\)
\(332\) −1.33072 9.25539i −0.0730329 0.507955i
\(333\) −4.76032 10.4236i −0.260864 0.571212i
\(334\) 4.65750 + 10.1985i 0.254847 + 0.558037i
\(335\) 1.69229 + 11.7701i 0.0924595 + 0.643070i
\(336\) −3.94900 2.53787i −0.215436 0.138452i
\(337\) −4.79352 + 1.40750i −0.261120 + 0.0766717i −0.409672 0.912233i \(-0.634357\pi\)
0.148552 + 0.988905i \(0.452539\pi\)
\(338\) −1.20279 + 8.36561i −0.0654233 + 0.455029i
\(339\) −8.19344 + 9.45573i −0.445006 + 0.513565i
\(340\) −2.78180 + 1.78775i −0.150864 + 0.0969545i
\(341\) 9.23866 + 10.6620i 0.500301 + 0.577379i
\(342\) 4.04228 + 1.18692i 0.218582 + 0.0641814i
\(343\) 15.6693 34.3109i 0.846060 1.85261i
\(344\) 4.29256 0.231439
\(345\) −3.68404 3.07048i −0.198342 0.165309i
\(346\) 10.5391 0.566584
\(347\) 7.10506 15.5579i 0.381419 0.835192i −0.617402 0.786648i \(-0.711815\pi\)
0.998821 0.0485439i \(-0.0154581\pi\)
\(348\) 2.95032 + 0.866293i 0.158154 + 0.0464382i
\(349\) 6.22054 + 7.17889i 0.332978 + 0.384277i 0.897406 0.441205i \(-0.145449\pi\)
−0.564428 + 0.825482i \(0.690903\pi\)
\(350\) 3.94900 2.53787i 0.211083 0.135655i
\(351\) −3.03305 + 3.50032i −0.161892 + 0.186833i
\(352\) −0.204218 + 1.42037i −0.0108849 + 0.0757059i
\(353\) −4.17976 + 1.22729i −0.222466 + 0.0653220i −0.391066 0.920363i \(-0.627894\pi\)
0.168600 + 0.985685i \(0.446075\pi\)
\(354\) 12.3844 + 7.95895i 0.658222 + 0.423013i
\(355\) −1.70376 11.8499i −0.0904260 0.628926i
\(356\) 2.31086 + 5.06008i 0.122475 + 0.268184i
\(357\) 6.44824 + 14.1197i 0.341277 + 0.747292i
\(358\) −1.95300 13.5834i −0.103219 0.717907i
\(359\) −11.3677 7.30559i −0.599965 0.385574i 0.205117 0.978737i \(-0.434243\pi\)
−0.805082 + 0.593163i \(0.797879\pi\)
\(360\) −0.959493 + 0.281733i −0.0505697 + 0.0148486i
\(361\) 0.178058 1.23842i 0.00937148 0.0651800i
\(362\) −4.14921 + 4.78844i −0.218078 + 0.251675i
\(363\) 7.52152 4.83379i 0.394778 0.253708i
\(364\) 14.2377 + 16.4312i 0.746257 + 0.861227i
\(365\) 8.21183 + 2.41121i 0.429827 + 0.126209i
\(366\) 3.51964 7.70693i 0.183974 0.402848i
\(367\) 21.8299 1.13951 0.569755 0.821814i \(-0.307038\pi\)
0.569755 + 0.821814i \(0.307038\pi\)
\(368\) 4.32341 2.07560i 0.225373 0.108198i
\(369\) 3.05272 0.158918
\(370\) −4.76032 + 10.4236i −0.247477 + 0.541899i
\(371\) 60.5231 + 17.7712i 3.14220 + 0.922634i
\(372\) −6.43821 7.43009i −0.333805 0.385232i
\(373\) 4.98037 3.20069i 0.257874 0.165725i −0.405316 0.914177i \(-0.632839\pi\)
0.663190 + 0.748451i \(0.269202\pi\)
\(374\) 3.10736 3.58608i 0.160678 0.185432i
\(375\) 0.142315 0.989821i 0.00734911 0.0511142i
\(376\) −0.283153 + 0.0831412i −0.0146025 + 0.00428768i
\(377\) −11.9808 7.69957i −0.617041 0.396548i
\(378\) 0.668052 + 4.64640i 0.0343609 + 0.238985i
\(379\) 5.57525 + 12.2081i 0.286381 + 0.627087i 0.997076 0.0764129i \(-0.0243467\pi\)
−0.710695 + 0.703500i \(0.751619\pi\)
\(380\) −1.75012 3.83222i −0.0897791 0.196589i
\(381\) −1.18569 8.24667i −0.0607448 0.422490i
\(382\) 10.9334 + 7.02650i 0.559404 + 0.359507i
\(383\) 19.6524 5.77045i 1.00419 0.294856i 0.262015 0.965064i \(-0.415613\pi\)
0.742174 + 0.670207i \(0.233795\pi\)
\(384\) 0.142315 0.989821i 0.00726247 0.0505116i
\(385\) −4.41116 + 5.09075i −0.224814 + 0.259449i
\(386\) −7.52332 + 4.83494i −0.382927 + 0.246092i
\(387\) −2.81103 3.24410i −0.142892 0.164907i
\(388\) 9.89356 + 2.90501i 0.502269 + 0.147480i
\(389\) 5.13476 11.2435i 0.260343 0.570071i −0.733649 0.679529i \(-0.762184\pi\)
0.993991 + 0.109458i \(0.0349116\pi\)
\(390\) 4.63159 0.234530
\(391\) −15.7375 1.95530i −0.795880 0.0988836i
\(392\) 15.0354 0.759401
\(393\) 6.53552 14.3108i 0.329673 0.721884i
\(394\) 10.2072 + 2.99711i 0.514233 + 0.150992i
\(395\) −8.99543 10.3813i −0.452609 0.522339i
\(396\) 1.20718 0.775805i 0.0606629 0.0389857i
\(397\) −2.77121 + 3.19814i −0.139083 + 0.160510i −0.821018 0.570903i \(-0.806593\pi\)
0.681935 + 0.731413i \(0.261139\pi\)
\(398\) −3.61760 + 25.1610i −0.181334 + 1.26121i
\(399\) −18.9752 + 5.57163i −0.949950 + 0.278930i
\(400\) 0.841254 + 0.540641i 0.0420627 + 0.0270320i
\(401\) −4.12020 28.6566i −0.205753 1.43104i −0.786817 0.617186i \(-0.788273\pi\)
0.581064 0.813858i \(-0.302636\pi\)
\(402\) 4.93976 + 10.8166i 0.246373 + 0.539481i
\(403\) 18.9160 + 41.4202i 0.942271 + 2.06329i
\(404\) 0.325504 + 2.26393i 0.0161944 + 0.112635i
\(405\) 0.841254 + 0.540641i 0.0418022 + 0.0268647i
\(406\) −13.8494 + 4.06654i −0.687332 + 0.201819i
\(407\) 2.34017 16.2763i 0.115998 0.806784i
\(408\) −2.16545 + 2.49906i −0.107206 + 0.123722i
\(409\) 10.7850 6.93110i 0.533284 0.342721i −0.246123 0.969239i \(-0.579157\pi\)
0.779407 + 0.626518i \(0.215520\pi\)
\(410\) −1.99911 2.30709i −0.0987289 0.113939i
\(411\) −3.91866 1.15062i −0.193293 0.0567560i
\(412\) −0.0449425 + 0.0984103i −0.00221416 + 0.00484833i
\(413\) −69.1046 −3.40042
\(414\) −4.39987 1.90819i −0.216242 0.0937824i
\(415\) 9.35056 0.459001
\(416\) −1.92403 + 4.21304i −0.0943335 + 0.206561i
\(417\) −4.20008 1.23326i −0.205679 0.0603928i
\(418\) 3.95893 + 4.56885i 0.193638 + 0.223470i
\(419\) −1.99134 + 1.27976i −0.0972835 + 0.0625203i −0.588378 0.808586i \(-0.700233\pi\)
0.491095 + 0.871106i \(0.336597\pi\)
\(420\) 3.07404 3.54763i 0.149998 0.173107i
\(421\) −3.47036 + 24.1369i −0.169135 + 1.17636i 0.711542 + 0.702644i \(0.247997\pi\)
−0.880677 + 0.473717i \(0.842912\pi\)
\(422\) 3.75850 1.10360i 0.182961 0.0537222i
\(423\) 0.248260 + 0.159547i 0.0120708 + 0.00775743i
\(424\) 1.91236 + 13.3007i 0.0928724 + 0.645941i
\(425\) −1.37367 3.00791i −0.0666325 0.145905i
\(426\) −4.97324 10.8899i −0.240954 0.527616i
\(427\) 5.66013 + 39.3670i 0.273913 + 1.90510i
\(428\) −10.2201 6.56803i −0.494005 0.317478i
\(429\) −6.37699 + 1.87245i −0.307884 + 0.0904029i
\(430\) −0.610894 + 4.24886i −0.0294599 + 0.204898i
\(431\) −6.14310 + 7.08952i −0.295903 + 0.341490i −0.884160 0.467184i \(-0.845269\pi\)
0.588258 + 0.808674i \(0.299814\pi\)
\(432\) −0.841254 + 0.540641i −0.0404748 + 0.0260116i
\(433\) 8.42055 + 9.71783i 0.404666 + 0.467009i 0.921105 0.389315i \(-0.127288\pi\)
−0.516439 + 0.856324i \(0.672743\pi\)
\(434\) 44.2811 + 13.0021i 2.12556 + 0.624120i
\(435\) −1.27735 + 2.79701i −0.0612442 + 0.134106i
\(436\) 0.842993 0.0403721
\(437\) 5.31926 19.4918i 0.254454 0.932418i
\(438\) 8.55851 0.408941
\(439\) −3.53332 + 7.73689i −0.168636 + 0.369261i −0.975015 0.222137i \(-0.928697\pi\)
0.806379 + 0.591399i \(0.201424\pi\)
\(440\) −1.37685 0.404279i −0.0656386 0.0192732i
\(441\) −9.84608 11.3630i −0.468861 0.541094i
\(442\) 12.8842 8.28014i 0.612837 0.393846i
\(443\) −5.05439 + 5.83307i −0.240141 + 0.277138i −0.863008 0.505190i \(-0.831422\pi\)
0.622867 + 0.782328i \(0.285968\pi\)
\(444\) −1.63081 + 11.3425i −0.0773949 + 0.538293i
\(445\) −5.33745 + 1.56722i −0.253019 + 0.0742932i
\(446\) −13.4711 8.65732i −0.637873 0.409936i
\(447\) −2.16440 15.0537i −0.102373 0.712017i
\(448\) 1.95003 + 4.26998i 0.0921305 + 0.201738i
\(449\) −11.6378 25.4832i −0.549221 1.20263i −0.957145 0.289610i \(-0.906474\pi\)
0.407924 0.913016i \(-0.366253\pi\)
\(450\) −0.142315 0.989821i −0.00670879 0.0466606i
\(451\) 3.68517 + 2.36832i 0.173528 + 0.111520i
\(452\) 12.0049 3.52496i 0.564664 0.165800i
\(453\) −1.54818 + 10.7678i −0.0727398 + 0.505917i
\(454\) 6.45478 7.44922i 0.302938 0.349609i
\(455\) −18.2902 + 11.7544i −0.857456 + 0.551053i
\(456\) −2.75889 3.18393i −0.129197 0.149101i
\(457\) −12.3929 3.63887i −0.579714 0.170219i −0.0212874 0.999773i \(-0.506777\pi\)
−0.558426 + 0.829554i \(0.688595\pi\)
\(458\) 3.85681 8.44523i 0.180217 0.394620i
\(459\) 3.30673 0.154345
\(460\) 1.43919 + 4.57479i 0.0671024 + 0.213301i
\(461\) −12.0148 −0.559585 −0.279792 0.960060i \(-0.590266\pi\)
−0.279792 + 0.960060i \(0.590266\pi\)
\(462\) −2.79825 + 6.12731i −0.130186 + 0.285068i
\(463\) −0.686756 0.201650i −0.0319162 0.00937145i 0.265735 0.964046i \(-0.414385\pi\)
−0.297652 + 0.954675i \(0.596203\pi\)
\(464\) −2.01362 2.32384i −0.0934798 0.107881i
\(465\) 8.27071 5.31526i 0.383545 0.246489i
\(466\) −15.3964 + 17.7684i −0.713225 + 0.823105i
\(467\) 0.466386 3.24379i 0.0215818 0.150104i −0.976181 0.216957i \(-0.930387\pi\)
0.997763 + 0.0668529i \(0.0212958\pi\)
\(468\) 4.44398 1.30487i 0.205423 0.0603176i
\(469\) −46.9581 30.1781i −2.16832 1.39350i
\(470\) −0.0419981 0.292103i −0.00193723 0.0134737i
\(471\) −6.48603 14.2024i −0.298861 0.654413i
\(472\) −6.11546 13.3910i −0.281487 0.616370i
\(473\) −0.876617 6.09701i −0.0403069 0.280341i
\(474\) −11.5558 7.42646i −0.530776 0.341109i
\(475\) 4.04228 1.18692i 0.185473 0.0544597i
\(476\) 2.20907 15.3644i 0.101252 0.704226i
\(477\) 8.79971 10.1554i 0.402911 0.464984i
\(478\) 2.07543 1.33380i 0.0949279 0.0610065i
\(479\) 8.22471 + 9.49182i 0.375796 + 0.433692i 0.911870 0.410479i \(-0.134638\pi\)
−0.536074 + 0.844171i \(0.680093\pi\)
\(480\) 0.959493 + 0.281733i 0.0437947 + 0.0128593i
\(481\) 22.0478 48.2780i 1.00530 2.20129i
\(482\) −6.68910 −0.304680
\(483\) 22.2178 3.63084i 1.01094 0.165209i
\(484\) −8.94085 −0.406402
\(485\) −4.28344 + 9.37943i −0.194501 + 0.425898i
\(486\) 0.959493 + 0.281733i 0.0435235 + 0.0127796i
\(487\) −0.713730 0.823688i −0.0323422 0.0373249i 0.739348 0.673323i \(-0.235134\pi\)
−0.771690 + 0.635999i \(0.780588\pi\)
\(488\) −7.12759 + 4.58062i −0.322651 + 0.207355i
\(489\) 6.57409 7.58690i 0.297290 0.343092i
\(490\) −2.13976 + 14.8823i −0.0966644 + 0.672315i
\(491\) 16.1781 4.75032i 0.730107 0.214379i 0.104509 0.994524i \(-0.466673\pi\)
0.625599 + 0.780145i \(0.284855\pi\)
\(492\) −2.56811 1.65043i −0.115779 0.0744069i
\(493\) 1.44703 + 10.0643i 0.0651708 + 0.453273i
\(494\) 8.10583 + 17.7493i 0.364699 + 0.798578i
\(495\) 0.596110 + 1.30530i 0.0267931 + 0.0586688i
\(496\) 1.39916 + 9.73134i 0.0628240 + 0.436950i
\(497\) 47.2764 + 30.3827i 2.12064 + 1.36285i
\(498\) 8.97180 2.63436i 0.402036 0.118048i
\(499\) −5.69078 + 39.5803i −0.254754 + 1.77186i 0.314073 + 0.949399i \(0.398306\pi\)
−0.568828 + 0.822457i \(0.692603\pi\)
\(500\) −0.654861 + 0.755750i −0.0292863 + 0.0337981i
\(501\) −9.43186 + 6.06149i −0.421385 + 0.270807i
\(502\) 6.34289 + 7.32008i 0.283097 + 0.326711i
\(503\) −6.23722 1.83141i −0.278104 0.0816587i 0.139706 0.990193i \(-0.455384\pi\)
−0.417810 + 0.908534i \(0.637202\pi\)
\(504\) 1.95003 4.26998i 0.0868615 0.190200i
\(505\) −2.28721 −0.101779
\(506\) −3.83103 5.71696i −0.170310 0.254150i
\(507\) −8.45164 −0.375350
\(508\) −3.46102 + 7.57857i −0.153558 + 0.336245i
\(509\) 10.4018 + 3.05425i 0.461053 + 0.135377i 0.504007 0.863700i \(-0.331859\pi\)
−0.0429538 + 0.999077i \(0.513677\pi\)
\(510\) −2.16545 2.49906i −0.0958876 0.110660i
\(511\) −33.7975 + 21.7204i −1.49512 + 0.960852i
\(512\) −0.654861 + 0.755750i −0.0289410 + 0.0333997i
\(513\) −0.599564 + 4.17006i −0.0264714 + 0.184112i
\(514\) −1.43561 + 0.421534i −0.0633222 + 0.0185931i
\(515\) −0.0910126 0.0584902i −0.00401049 0.00257739i
\(516\) 0.610894 + 4.24886i 0.0268931 + 0.187046i
\(517\) 0.175916 + 0.385202i 0.00773678 + 0.0169412i
\(518\) −22.3458 48.9305i −0.981818 2.14988i
\(519\) 1.49987 + 10.4318i 0.0658368 + 0.457905i
\(520\) −3.89634 2.50403i −0.170866 0.109809i
\(521\) −1.79668 + 0.527553i −0.0787139 + 0.0231125i −0.320852 0.947129i \(-0.603969\pi\)
0.242138 + 0.970242i \(0.422151\pi\)
\(522\) −0.437601 + 3.04358i −0.0191533 + 0.133214i
\(523\) −15.4425 + 17.8216i −0.675255 + 0.779286i −0.985189 0.171472i \(-0.945148\pi\)
0.309934 + 0.950758i \(0.399693\pi\)
\(524\) −13.2350 + 8.50564i −0.578175 + 0.371571i
\(525\) 3.07404 + 3.54763i 0.134162 + 0.154831i
\(526\) −18.6712 5.48235i −0.814102 0.239042i
\(527\) 13.5051 29.5720i 0.588290 1.28818i
\(528\) −1.43497 −0.0624492
\(529\) −8.74479 + 21.2727i −0.380208 + 0.924901i
\(530\) −13.4375 −0.583689
\(531\) −6.11546 + 13.3910i −0.265388 + 0.581120i
\(532\) 18.9752 + 5.57163i 0.822681 + 0.241561i
\(533\) 9.25905 + 10.6855i 0.401054 + 0.462841i
\(534\) −4.67971 + 3.00747i −0.202511 + 0.130146i
\(535\) 7.95565 9.18131i 0.343953 0.396943i
\(536\) 1.69229 11.7701i 0.0730956 0.508391i
\(537\) 13.1672 3.86625i 0.568208 0.166841i
\(538\) −27.4068 17.6133i −1.18159 0.759362i
\(539\) −3.07049 21.3558i −0.132256 0.919858i
\(540\) −0.415415 0.909632i −0.0178766 0.0391443i
\(541\) −2.89286 6.33447i −0.124374 0.272340i 0.837195 0.546904i \(-0.184194\pi\)
−0.961569 + 0.274564i \(0.911466\pi\)
\(542\) −3.20886 22.3181i −0.137833 0.958646i
\(543\) −5.33020 3.42551i −0.228741 0.147003i
\(544\) 3.17278 0.931613i 0.136032 0.0399426i
\(545\) −0.119970 + 0.834413i −0.00513897 + 0.0357423i
\(546\) −14.2377 + 16.4312i −0.609317 + 0.703189i
\(547\) −16.9113 + 10.8682i −0.723075 + 0.464692i −0.849705 0.527258i \(-0.823220\pi\)
0.126630 + 0.991950i \(0.459584\pi\)
\(548\) 2.67451 + 3.08655i 0.114250 + 0.131851i
\(549\) 8.12938 + 2.38700i 0.346954 + 0.101875i
\(550\) 0.596110 1.30530i 0.0254182 0.0556581i
\(551\) −12.9543 −0.551870
\(552\) 2.66976 + 3.98402i 0.113632 + 0.169571i
\(553\) 64.4812 2.74202
\(554\) 5.25878 11.5151i 0.223424 0.489231i
\(555\) −10.9950 3.22843i −0.466712 0.137039i
\(556\) 2.86659 + 3.30822i 0.121570 + 0.140300i
\(557\) −25.4637 + 16.3645i −1.07893 + 0.693386i −0.954310 0.298818i \(-0.903408\pi\)
−0.124620 + 0.992205i \(0.539771\pi\)
\(558\) 6.43821 7.43009i 0.272551 0.314541i
\(559\) 2.82941 19.6790i 0.119671 0.832333i
\(560\) −4.50404 + 1.32250i −0.190330 + 0.0558860i
\(561\) 3.99181 + 2.56538i 0.168534 + 0.108310i
\(562\) −1.30266 9.06018i −0.0549493 0.382181i
\(563\) 1.48002 + 3.24078i 0.0623752 + 0.136583i 0.938252 0.345951i \(-0.112444\pi\)
−0.875877 + 0.482534i \(0.839716\pi\)
\(564\) −0.122592 0.268439i −0.00516204 0.0113033i
\(565\) 1.78060 + 12.3844i 0.0749106 + 0.521014i
\(566\) −2.38733 1.53424i −0.100347 0.0644890i
\(567\) −4.50404 + 1.32250i −0.189152 + 0.0555400i
\(568\) −1.70376 + 11.8499i −0.0714880 + 0.497210i
\(569\) −21.4803 + 24.7895i −0.900499 + 1.03923i 0.0985282 + 0.995134i \(0.468587\pi\)
−0.999027 + 0.0440971i \(0.985959\pi\)
\(570\) 3.54415 2.27769i 0.148448 0.0954018i
\(571\) −22.2792 25.7115i −0.932354 1.07599i −0.996947 0.0780825i \(-0.975120\pi\)
0.0645926 0.997912i \(-0.479425\pi\)
\(572\) 6.37699 + 1.87245i 0.266636 + 0.0782912i
\(573\) −5.39899 + 11.8221i −0.225546 + 0.493877i
\(574\) 14.3300 0.598124
\(575\) −4.73305 + 0.773476i −0.197382 + 0.0322562i
\(576\) 1.00000 0.0416667
\(577\) −8.41135 + 18.4183i −0.350169 + 0.766764i 0.649809 + 0.760098i \(0.274849\pi\)
−0.999978 + 0.00666577i \(0.997878\pi\)
\(578\) 5.81984 + 1.70886i 0.242073 + 0.0710792i
\(579\) −5.85641 6.75866i −0.243384 0.280880i
\(580\) 2.58675 1.66240i 0.107409 0.0690276i
\(581\) −28.7440 + 33.1723i −1.19250 + 1.37622i
\(582\) −1.46744 + 10.2063i −0.0608274 + 0.423064i
\(583\) 18.5014 5.43251i 0.766250 0.224991i
\(584\) −7.19988 4.62708i −0.297933 0.191470i
\(585\) 0.659144 + 4.58445i 0.0272523 + 0.189544i
\(586\) 5.01967 + 10.9915i 0.207361 + 0.454056i
\(587\) 3.46741 + 7.59257i 0.143115 + 0.313379i 0.967593 0.252516i \(-0.0812581\pi\)
−0.824477 + 0.565895i \(0.808531\pi\)
\(588\) 2.13976 + 14.8823i 0.0882421 + 0.613737i
\(589\) 34.8440 + 22.3929i 1.43572 + 0.922682i
\(590\) 14.1250 4.14748i 0.581518 0.170749i
\(591\) −1.51397 + 10.5299i −0.0622763 + 0.433141i
\(592\) 7.50417 8.66027i 0.308419 0.355935i
\(593\) −21.4703 + 13.7981i −0.881680 + 0.566621i −0.901304 0.433186i \(-0.857389\pi\)
0.0196247 + 0.999807i \(0.493753\pi\)
\(594\) 0.939708 + 1.08448i 0.0385567 + 0.0444968i
\(595\) 14.8936 + 4.37317i 0.610580 + 0.179282i
\(596\) −6.31785 + 13.8342i −0.258789 + 0.566670i
\(597\) −25.4197 −1.04036
\(598\) −6.66572 21.1886i −0.272582 0.866465i
\(599\) −29.5317 −1.20663 −0.603317 0.797501i \(-0.706155\pi\)
−0.603317 + 0.797501i \(0.706155\pi\)
\(600\) −0.415415 + 0.909632i −0.0169592 + 0.0371356i
\(601\) −8.13090 2.38745i −0.331666 0.0973860i 0.111660 0.993747i \(-0.464383\pi\)
−0.443326 + 0.896360i \(0.646202\pi\)
\(602\) −13.1955 15.2284i −0.537808 0.620663i
\(603\) −10.0035 + 6.42884i −0.407373 + 0.261802i
\(604\) 7.12394 8.22146i 0.289869 0.334527i
\(605\) 1.27242 8.84985i 0.0517311 0.359797i
\(606\) −2.19456 + 0.644381i −0.0891479 + 0.0261762i
\(607\) 28.5036 + 18.3182i 1.15693 + 0.743511i 0.971006 0.239053i \(-0.0768371\pi\)
0.185920 + 0.982565i \(0.440473\pi\)
\(608\) 0.599564 + 4.17006i 0.0243155 + 0.169118i
\(609\) −5.99612 13.1297i −0.242975 0.532041i
\(610\) −3.51964 7.70693i −0.142506 0.312044i
\(611\) 0.194518 + 1.35290i 0.00786935 + 0.0547325i
\(612\) −2.78180 1.78775i −0.112448 0.0722656i
\(613\) −23.5402 + 6.91203i −0.950781 + 0.279174i −0.720112 0.693858i \(-0.755910\pi\)
−0.230669 + 0.973032i \(0.574091\pi\)
\(614\) 0.915150 6.36501i 0.0369325 0.256871i
\(615\) 1.99911 2.30709i 0.0806118 0.0930309i
\(616\) 5.66671 3.64177i 0.228318 0.146731i
\(617\) 4.00623 + 4.62344i 0.161285 + 0.186133i 0.830640 0.556810i \(-0.187975\pi\)
−0.669355 + 0.742943i \(0.733429\pi\)
\(618\) −0.103805 0.0304798i −0.00417563 0.00122608i
\(619\) 15.2937 33.4886i 0.614707 1.34602i −0.304601 0.952480i \(-0.598523\pi\)
0.919308 0.393540i \(-0.128750\pi\)
\(620\) −9.83141 −0.394839
\(621\) 1.26260 4.62664i 0.0506664 0.185661i
\(622\) 5.34794 0.214433
\(623\) 10.8476 23.7530i 0.434601 0.951643i
\(624\) −4.44398 1.30487i −0.177902 0.0522366i
\(625\) −0.654861 0.755750i −0.0261944 0.0302300i
\(626\) 19.8143 12.7339i 0.791940 0.508949i
\(627\) −3.95893 + 4.56885i −0.158104 + 0.182462i
\(628\) −2.22202 + 15.4545i −0.0886681 + 0.616700i
\(629\) −36.3575 + 10.6755i −1.44967 + 0.425661i
\(630\) 3.94900 + 2.53787i 0.157332 + 0.101111i
\(631\) 4.81059 + 33.4584i 0.191507 + 1.33196i 0.828022 + 0.560695i \(0.189466\pi\)
−0.636516 + 0.771264i \(0.719625\pi\)
\(632\) 5.70631 + 12.4951i 0.226985 + 0.497027i
\(633\) 1.62725 + 3.56319i 0.0646775 + 0.141624i
\(634\) 1.65115 + 11.4840i 0.0655756 + 0.456088i
\(635\) −7.00888 4.50433i −0.278139 0.178749i
\(636\) −12.8932 + 3.78579i −0.511249 + 0.150116i
\(637\) 9.91048 68.9289i 0.392667 2.73106i
\(638\) −2.88949 + 3.33464i −0.114396 + 0.132020i
\(639\) 10.0713 6.47241i 0.398413 0.256045i
\(640\) −0.654861 0.755750i −0.0258856 0.0298736i
\(641\) −20.9910 6.16352i −0.829095 0.243444i −0.160467 0.987041i \(-0.551300\pi\)
−0.668628 + 0.743597i \(0.733118\pi\)
\(642\) 5.04672 11.0508i 0.199178 0.436139i
\(643\) −40.5773 −1.60021 −0.800106 0.599859i \(-0.795223\pi\)
−0.800106 + 0.599859i \(0.795223\pi\)
\(644\) −20.6538 8.95739i −0.813873 0.352971i
\(645\) −4.29256 −0.169019
\(646\) 5.78717 12.6721i 0.227693 0.498578i
\(647\) 21.8834 + 6.42556i 0.860327 + 0.252615i 0.681996 0.731356i \(-0.261112\pi\)
0.178331 + 0.983971i \(0.442930\pi\)
\(648\) −0.654861 0.755750i −0.0257254 0.0296886i
\(649\) −17.7712 + 11.4209i −0.697582 + 0.448309i
\(650\) 3.03305 3.50032i 0.118966 0.137294i
\(651\) −6.56790 + 45.6807i −0.257416 + 1.79037i
\(652\) −9.63226 + 2.82829i −0.377229 + 0.110764i
\(653\) −12.0225 7.72640i −0.470478 0.302358i 0.283835 0.958873i \(-0.408393\pi\)
−0.754312 + 0.656516i \(0.772030\pi\)
\(654\) 0.119970 + 0.834413i 0.00469122 + 0.0326281i
\(655\) −6.53552 14.3108i −0.255364 0.559169i
\(656\) 1.26815 + 2.77685i 0.0495128 + 0.108418i
\(657\) 1.21800 + 8.47140i 0.0475188 + 0.330501i
\(658\) 1.16538 + 0.748942i 0.0454311 + 0.0291968i
\(659\) 18.7366 5.50155i 0.729873 0.214310i 0.104378 0.994538i \(-0.466715\pi\)
0.625496 + 0.780228i \(0.284897\pi\)
\(660\) 0.204218 1.42037i 0.00794918 0.0552877i
\(661\) −3.62174 + 4.17971i −0.140869 + 0.162572i −0.821800 0.569776i \(-0.807030\pi\)
0.680931 + 0.732348i \(0.261575\pi\)
\(662\) 16.6020 10.6695i 0.645256 0.414681i
\(663\) 10.0295 + 11.5746i 0.389512 + 0.449521i
\(664\) −8.97180 2.63436i −0.348173 0.102233i
\(665\) −8.21538 + 17.9892i −0.318579 + 0.697590i
\(666\) −11.4592 −0.444034
\(667\) 14.6341 + 1.81820i 0.566633 + 0.0704010i
\(668\) 11.2117 0.433793
\(669\) 6.65207 14.5660i 0.257184 0.563154i
\(670\) 11.4095 + 3.35012i 0.440786 + 0.129426i
\(671\) 7.96175 + 9.18835i 0.307360 + 0.354712i
\(672\) −3.94900 + 2.53787i −0.152336 + 0.0979004i
\(673\) 0.160246 0.184934i 0.00617705 0.00712869i −0.752653 0.658418i \(-0.771226\pi\)
0.758830 + 0.651289i \(0.225771\pi\)
\(674\) −0.710989 + 4.94504i −0.0273863 + 0.190476i
\(675\) 0.959493 0.281733i 0.0369309 0.0108439i
\(676\) 7.10997 + 4.56930i 0.273460 + 0.175742i
\(677\) 2.58348 + 17.9685i 0.0992914 + 0.690587i 0.977287 + 0.211919i \(0.0679712\pi\)
−0.877996 + 0.478668i \(0.841120\pi\)
\(678\) 5.19756 + 11.3811i 0.199611 + 0.437087i
\(679\) −20.1073 44.0288i −0.771646 1.68967i
\(680\) 0.470597 + 3.27307i 0.0180466 + 0.125517i
\(681\) 8.29201 + 5.32895i 0.317750 + 0.204206i
\(682\) 13.5364 3.97463i 0.518334 0.152197i
\(683\) 3.70090 25.7403i 0.141611 0.984925i −0.787814 0.615913i \(-0.788787\pi\)
0.929425 0.369012i \(-0.120304\pi\)
\(684\) 2.75889 3.18393i 0.105489 0.121740i
\(685\) −3.43576 + 2.20803i −0.131274 + 0.0843644i
\(686\) −24.7010 28.5065i −0.943090 1.08838i
\(687\) 8.90815 + 2.61567i 0.339867 + 0.0997940i
\(688\) 1.78319 3.90465i 0.0679836 0.148863i
\(689\) 62.2371 2.37105
\(690\) −4.32341 + 2.07560i −0.164589 + 0.0790167i
\(691\) −3.43481 −0.130666 −0.0653331 0.997864i \(-0.520811\pi\)
−0.0653331 + 0.997864i \(0.520811\pi\)
\(692\) 4.37809 9.58667i 0.166430 0.364431i
\(693\) −6.46318 1.89776i −0.245516 0.0720899i
\(694\) −11.2004 12.9260i −0.425162 0.490663i
\(695\) −3.68250 + 2.36660i −0.139685 + 0.0897703i
\(696\) 2.01362 2.32384i 0.0763259 0.0880848i
\(697\) 1.43660 9.99178i 0.0544151 0.378465i
\(698\) 9.11425 2.67619i 0.344980 0.101295i
\(699\) −19.7787 12.7110i −0.748098 0.480774i
\(700\) −0.668052 4.64640i −0.0252500 0.175618i
\(701\) 0.627306 + 1.37361i 0.0236930 + 0.0518805i 0.921109 0.389306i \(-0.127285\pi\)
−0.897416 + 0.441186i \(0.854558\pi\)
\(702\) 1.92403 + 4.21304i 0.0726179 + 0.159011i
\(703\) −6.87051 47.7854i −0.259126 1.80226i
\(704\) 1.20718 + 0.775805i 0.0454972 + 0.0292393i
\(705\) 0.283153 0.0831412i 0.0106642 0.00313128i
\(706\) −0.619954 + 4.31188i −0.0233323 + 0.162280i
\(707\) 7.03096 8.11416i 0.264427 0.305165i
\(708\) 12.3844 7.95895i 0.465433 0.299116i
\(709\) 27.6768 + 31.9407i 1.03942 + 1.19956i 0.979518 + 0.201355i \(0.0645345\pi\)
0.0599056 + 0.998204i \(0.480920\pi\)
\(710\) −11.4868 3.37283i −0.431092 0.126580i
\(711\) 5.70631 12.4951i 0.214003 0.468602i
\(712\) 5.56278 0.208474
\(713\) −36.2193 30.1871i −1.35642 1.13052i
\(714\) 15.5224 0.580911
\(715\) −2.76094 + 6.04561i −0.103253 + 0.226093i
\(716\) −13.1672 3.86625i −0.492083 0.144489i
\(717\) 1.61559 + 1.86448i 0.0603351 + 0.0696305i
\(718\) −11.3677 + 7.30559i −0.424240 + 0.272642i
\(719\) 14.1604 16.3420i 0.528094 0.609453i −0.427545 0.903994i \(-0.640621\pi\)
0.955639 + 0.294541i \(0.0951669\pi\)
\(720\) −0.142315 + 0.989821i −0.00530376 + 0.0368885i
\(721\) 0.487278 0.143078i 0.0181472 0.00532849i
\(722\) −1.05254 0.676426i −0.0391715 0.0251740i
\(723\) −0.951958 6.62102i −0.0354037 0.246238i
\(724\) 2.63208 + 5.76344i 0.0978203 + 0.214197i
\(725\) 1.27735 + 2.79701i 0.0474396 + 0.103878i
\(726\) −1.27242 8.84985i −0.0472238 0.328449i
\(727\) −30.6873 19.7215i −1.13813 0.731432i −0.170888 0.985290i \(-0.554664\pi\)
−0.967241 + 0.253859i \(0.918300\pi\)
\(728\) 20.8609 6.12530i 0.773155 0.227019i
\(729\) −0.142315 + 0.989821i −0.00527092 + 0.0366601i
\(730\) 5.60463 6.46809i 0.207437 0.239395i
\(731\) −11.9410 + 7.67403i −0.441655 + 0.283834i
\(732\) −5.54836 6.40315i −0.205073 0.236667i
\(733\) 10.9310 + 3.20963i 0.403745 + 0.118550i 0.477299 0.878741i \(-0.341616\pi\)
−0.0735539 + 0.997291i \(0.523434\pi\)
\(734\) 9.06846 19.8572i 0.334723 0.732941i
\(735\) −15.0354 −0.554588
\(736\) −0.0920206 4.79495i −0.00339192 0.176744i
\(737\) −17.0635 −0.628541
\(738\) 1.26815 2.77685i 0.0466811 0.102217i
\(739\) −6.66856 1.95806i −0.245307 0.0720286i 0.156768 0.987635i \(-0.449893\pi\)
−0.402075 + 0.915607i \(0.631711\pi\)
\(740\) 7.50417 + 8.66027i 0.275859 + 0.318358i
\(741\) −16.4150 + 10.5493i −0.603022 + 0.387539i
\(742\) 41.3074 47.6713i 1.51644 1.75007i
\(743\) −3.07917 + 21.4161i −0.112964 + 0.785679i 0.852046 + 0.523466i \(0.175361\pi\)
−0.965010 + 0.262213i \(0.915548\pi\)
\(744\) −9.43317 + 2.76983i −0.345837 + 0.101547i
\(745\) −12.7942 8.22235i −0.468744 0.301244i
\(746\) −0.842529 5.85992i −0.0308472 0.214547i
\(747\) 3.88436 + 8.50557i 0.142121 + 0.311203i
\(748\) −1.97117 4.31627i −0.0720732 0.157818i
\(749\) 8.11591 + 56.4474i 0.296549 + 2.06254i
\(750\) −0.841254 0.540641i −0.0307182 0.0197414i
\(751\) −43.3952 + 12.7420i −1.58351 + 0.464962i −0.950898 0.309504i \(-0.899837\pi\)
−0.632616 + 0.774466i \(0.718019\pi\)
\(752\) −0.0419981 + 0.292103i −0.00153151 + 0.0106519i
\(753\) −6.34289 + 7.32008i −0.231148 + 0.266759i
\(754\) −11.9808 + 7.69957i −0.436314 + 0.280402i
\(755\) 7.12394 + 8.22146i 0.259267 + 0.299210i
\(756\) 4.50404 + 1.32250i 0.163810 + 0.0480990i
\(757\) 14.9031 32.6332i 0.541662 1.18607i −0.418907 0.908029i \(-0.637587\pi\)
0.960568 0.278044i \(-0.0896862\pi\)
\(758\) 13.4209 0.487469
\(759\) 5.11356 4.60565i 0.185610 0.167174i
\(760\) −4.21294 −0.152819
\(761\) 9.81389 21.4894i 0.355753 0.778991i −0.644148 0.764901i \(-0.722788\pi\)
0.999901 0.0140895i \(-0.00448499\pi\)
\(762\) −7.99399 2.34725i −0.289592 0.0850318i
\(763\) −2.59139 2.99063i −0.0938147 0.108268i
\(764\) 10.9334 7.02650i 0.395558 0.254210i
\(765\) 2.16545 2.49906i 0.0782919 0.0903537i
\(766\) 2.91490 20.2736i 0.105319 0.732513i
\(767\) −65.4213 + 19.2094i −2.36223 + 0.693612i
\(768\) −0.841254 0.540641i −0.0303561 0.0195087i
\(769\) 2.57692 + 17.9229i 0.0929262 +