Properties

Label 690.2.i.f.47.3
Level $690$
Weight $2$
Character 690.47
Analytic conductor $5.510$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.i (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.3
Character \(\chi\) \(=\) 690.47
Dual form 690.2.i.f.323.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(-1.16628 - 1.28054i) q^{3} -1.00000i q^{4} +(-1.31868 - 1.80585i) q^{5} +(1.73017 + 0.0807905i) q^{6} +(1.43599 + 1.43599i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-0.279562 + 2.98695i) q^{9} +O(q^{10})\) \(q+(-0.707107 + 0.707107i) q^{2} +(-1.16628 - 1.28054i) q^{3} -1.00000i q^{4} +(-1.31868 - 1.80585i) q^{5} +(1.73017 + 0.0807905i) q^{6} +(1.43599 + 1.43599i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-0.279562 + 2.98695i) q^{9} +(2.20937 + 0.344476i) q^{10} +3.03746i q^{11} +(-1.28054 + 1.16628i) q^{12} +(-1.30218 + 1.30218i) q^{13} -2.03079 q^{14} +(-0.774498 + 3.79475i) q^{15} -1.00000 q^{16} +(0.0287275 - 0.0287275i) q^{17} +(-1.91441 - 2.30977i) q^{18} -2.41296i q^{19} +(-1.80585 + 1.31868i) q^{20} +(0.164069 - 3.51361i) q^{21} +(-2.14781 - 2.14781i) q^{22} +(-0.707107 - 0.707107i) q^{23} +(0.0807905 - 1.73017i) q^{24} +(-1.52216 + 4.76267i) q^{25} -1.84156i q^{26} +(4.15095 - 3.12564i) q^{27} +(1.43599 - 1.43599i) q^{28} +8.32611 q^{29} +(-2.13564 - 3.23095i) q^{30} +10.8038 q^{31} +(0.707107 - 0.707107i) q^{32} +(3.88958 - 3.54254i) q^{33} +0.0406269i q^{34} +(0.699560 - 4.48678i) q^{35} +(2.98695 + 0.279562i) q^{36} +(-0.399778 - 0.399778i) q^{37} +(1.70622 + 1.70622i) q^{38} +(3.18620 + 0.148780i) q^{39} +(0.344476 - 2.20937i) q^{40} +9.45696i q^{41} +(2.36848 + 2.60051i) q^{42} +(-0.108956 + 0.108956i) q^{43} +3.03746 q^{44} +(5.76262 - 3.43399i) q^{45} +1.00000 q^{46} +(0.341054 - 0.341054i) q^{47} +(1.16628 + 1.28054i) q^{48} -2.87588i q^{49} +(-2.29139 - 4.44404i) q^{50} +(-0.0702912 - 0.00328227i) q^{51} +(1.30218 + 1.30218i) q^{52} +(0.120552 + 0.120552i) q^{53} +(-0.725006 + 5.14532i) q^{54} +(5.48518 - 4.00544i) q^{55} +2.03079i q^{56} +(-3.08990 + 2.81420i) q^{57} +(-5.88745 + 5.88745i) q^{58} +2.10585 q^{59} +(3.79475 + 0.774498i) q^{60} +10.7626 q^{61} +(-7.63947 + 7.63947i) q^{62} +(-4.69066 + 3.88777i) q^{63} +1.00000i q^{64} +(4.06869 + 0.634373i) q^{65} +(-0.245398 + 5.25530i) q^{66} +(-6.68856 - 6.68856i) q^{67} +(-0.0287275 - 0.0287275i) q^{68} +(-0.0807905 + 1.73017i) q^{69} +(2.67797 + 3.66730i) q^{70} +5.69670i q^{71} +(-2.30977 + 1.91441i) q^{72} +(6.43032 - 6.43032i) q^{73} +0.565371 q^{74} +(7.87405 - 3.60545i) q^{75} -2.41296 q^{76} +(-4.36175 + 4.36175i) q^{77} +(-2.35818 + 2.14778i) q^{78} +5.14788i q^{79} +(1.31868 + 1.80585i) q^{80} +(-8.84369 - 1.67007i) q^{81} +(-6.68708 - 6.68708i) q^{82} +(-3.07224 - 3.07224i) q^{83} +(-3.51361 - 0.164069i) q^{84} +(-0.0897600 - 0.0139950i) q^{85} -0.154087i q^{86} +(-9.71061 - 10.6619i) q^{87} +(-2.14781 + 2.14781i) q^{88} +12.0540 q^{89} +(-1.64659 + 6.50298i) q^{90} -3.73982 q^{91} +(-0.707107 + 0.707107i) q^{92} +(-12.6004 - 13.8347i) q^{93} +0.482323i q^{94} +(-4.35744 + 3.18193i) q^{95} +(-1.73017 - 0.0807905i) q^{96} +(7.38166 + 7.38166i) q^{97} +(2.03356 + 2.03356i) q^{98} +(-9.07272 - 0.849157i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 4q^{3} + 12q^{6} + 8q^{7} + O(q^{10}) \) \( 32q + 4q^{3} + 12q^{6} + 8q^{7} - 4q^{12} - 12q^{15} - 32q^{16} + 8q^{18} - 40q^{22} + 32q^{25} + 4q^{27} + 8q^{28} - 20q^{30} + 8q^{31} + 8q^{33} + 20q^{36} - 16q^{37} + 8q^{40} - 8q^{42} - 80q^{43} - 4q^{45} + 32q^{46} - 4q^{48} + 36q^{51} + 12q^{57} - 16q^{58} - 4q^{60} + 8q^{61} + 44q^{63} + 52q^{66} + 64q^{67} + 64q^{70} - 8q^{72} - 56q^{73} - 68q^{75} - 8q^{76} + 60q^{78} - 44q^{81} - 48q^{85} - 60q^{87} - 40q^{88} - 64q^{90} + 40q^{91} + 92q^{93} - 12q^{96} - 40q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) −1.16628 1.28054i −0.673355 0.739320i
\(4\) 1.00000i 0.500000i
\(5\) −1.31868 1.80585i −0.589733 0.807599i
\(6\) 1.73017 + 0.0807905i 0.706337 + 0.0329826i
\(7\) 1.43599 + 1.43599i 0.542752 + 0.542752i 0.924335 0.381583i \(-0.124621\pi\)
−0.381583 + 0.924335i \(0.624621\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) −0.279562 + 2.98695i −0.0931873 + 0.995649i
\(10\) 2.20937 + 0.344476i 0.698666 + 0.108933i
\(11\) 3.03746i 0.915827i 0.888997 + 0.457914i \(0.151403\pi\)
−0.888997 + 0.457914i \(0.848597\pi\)
\(12\) −1.28054 + 1.16628i −0.369660 + 0.336677i
\(13\) −1.30218 + 1.30218i −0.361159 + 0.361159i −0.864239 0.503081i \(-0.832200\pi\)
0.503081 + 0.864239i \(0.332200\pi\)
\(14\) −2.03079 −0.542752
\(15\) −0.774498 + 3.79475i −0.199974 + 0.979801i
\(16\) −1.00000 −0.250000
\(17\) 0.0287275 0.0287275i 0.00696745 0.00696745i −0.703614 0.710582i \(-0.748432\pi\)
0.710582 + 0.703614i \(0.248432\pi\)
\(18\) −1.91441 2.30977i −0.451231 0.544418i
\(19\) 2.41296i 0.553572i −0.960932 0.276786i \(-0.910731\pi\)
0.960932 0.276786i \(-0.0892693\pi\)
\(20\) −1.80585 + 1.31868i −0.403799 + 0.294866i
\(21\) 0.164069 3.51361i 0.0358028 0.766732i
\(22\) −2.14781 2.14781i −0.457914 0.457914i
\(23\) −0.707107 0.707107i −0.147442 0.147442i
\(24\) 0.0807905 1.73017i 0.0164913 0.353169i
\(25\) −1.52216 + 4.76267i −0.304431 + 0.952534i
\(26\) 1.84156i 0.361159i
\(27\) 4.15095 3.12564i 0.798851 0.601529i
\(28\) 1.43599 1.43599i 0.271376 0.271376i
\(29\) 8.32611 1.54612 0.773060 0.634333i \(-0.218725\pi\)
0.773060 + 0.634333i \(0.218725\pi\)
\(30\) −2.13564 3.23095i −0.389913 0.589888i
\(31\) 10.8038 1.94043 0.970214 0.242250i \(-0.0778854\pi\)
0.970214 + 0.242250i \(0.0778854\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 3.88958 3.54254i 0.677089 0.616676i
\(34\) 0.0406269i 0.00696745i
\(35\) 0.699560 4.48678i 0.118247 0.758405i
\(36\) 2.98695 + 0.279562i 0.497824 + 0.0465937i
\(37\) −0.399778 0.399778i −0.0657230 0.0657230i 0.673481 0.739204i \(-0.264798\pi\)
−0.739204 + 0.673481i \(0.764798\pi\)
\(38\) 1.70622 + 1.70622i 0.276786 + 0.276786i
\(39\) 3.18620 + 0.148780i 0.510200 + 0.0238239i
\(40\) 0.344476 2.20937i 0.0544665 0.349333i
\(41\) 9.45696i 1.47693i 0.674293 + 0.738464i \(0.264449\pi\)
−0.674293 + 0.738464i \(0.735551\pi\)
\(42\) 2.36848 + 2.60051i 0.365465 + 0.401267i
\(43\) −0.108956 + 0.108956i −0.0166156 + 0.0166156i −0.715366 0.698750i \(-0.753740\pi\)
0.698750 + 0.715366i \(0.253740\pi\)
\(44\) 3.03746 0.457914
\(45\) 5.76262 3.43399i 0.859040 0.511908i
\(46\) 1.00000 0.147442
\(47\) 0.341054 0.341054i 0.0497478 0.0497478i −0.681795 0.731543i \(-0.738801\pi\)
0.731543 + 0.681795i \(0.238801\pi\)
\(48\) 1.16628 + 1.28054i 0.168339 + 0.184830i
\(49\) 2.87588i 0.410840i
\(50\) −2.29139 4.44404i −0.324052 0.628483i
\(51\) −0.0702912 0.00328227i −0.00984274 0.000459609i
\(52\) 1.30218 + 1.30218i 0.180579 + 0.180579i
\(53\) 0.120552 + 0.120552i 0.0165590 + 0.0165590i 0.715338 0.698779i \(-0.246273\pi\)
−0.698779 + 0.715338i \(0.746273\pi\)
\(54\) −0.725006 + 5.14532i −0.0986608 + 0.700190i
\(55\) 5.48518 4.00544i 0.739621 0.540093i
\(56\) 2.03079i 0.271376i
\(57\) −3.08990 + 2.81420i −0.409267 + 0.372750i
\(58\) −5.88745 + 5.88745i −0.773060 + 0.773060i
\(59\) 2.10585 0.274159 0.137079 0.990560i \(-0.456228\pi\)
0.137079 + 0.990560i \(0.456228\pi\)
\(60\) 3.79475 + 0.774498i 0.489901 + 0.0999872i
\(61\) 10.7626 1.37801 0.689003 0.724758i \(-0.258049\pi\)
0.689003 + 0.724758i \(0.258049\pi\)
\(62\) −7.63947 + 7.63947i −0.970214 + 0.970214i
\(63\) −4.69066 + 3.88777i −0.590968 + 0.489813i
\(64\) 1.00000i 0.125000i
\(65\) 4.06869 + 0.634373i 0.504659 + 0.0786843i
\(66\) −0.245398 + 5.25530i −0.0302064 + 0.646883i
\(67\) −6.68856 6.68856i −0.817137 0.817137i 0.168555 0.985692i \(-0.446090\pi\)
−0.985692 + 0.168555i \(0.946090\pi\)
\(68\) −0.0287275 0.0287275i −0.00348373 0.00348373i
\(69\) −0.0807905 + 1.73017i −0.00972604 + 0.208287i
\(70\) 2.67797 + 3.66730i 0.320079 + 0.438326i
\(71\) 5.69670i 0.676074i 0.941133 + 0.338037i \(0.109763\pi\)
−0.941133 + 0.338037i \(0.890237\pi\)
\(72\) −2.30977 + 1.91441i −0.272209 + 0.225615i
\(73\) 6.43032 6.43032i 0.752612 0.752612i −0.222354 0.974966i \(-0.571374\pi\)
0.974966 + 0.222354i \(0.0713742\pi\)
\(74\) 0.565371 0.0657230
\(75\) 7.87405 3.60545i 0.909217 0.416321i
\(76\) −2.41296 −0.276786
\(77\) −4.36175 + 4.36175i −0.497067 + 0.497067i
\(78\) −2.35818 + 2.14778i −0.267012 + 0.243188i
\(79\) 5.14788i 0.579182i 0.957150 + 0.289591i \(0.0935193\pi\)
−0.957150 + 0.289591i \(0.906481\pi\)
\(80\) 1.31868 + 1.80585i 0.147433 + 0.201900i
\(81\) −8.84369 1.67007i −0.982632 0.185564i
\(82\) −6.68708 6.68708i −0.738464 0.738464i
\(83\) −3.07224 3.07224i −0.337223 0.337223i 0.518098 0.855321i \(-0.326640\pi\)
−0.855321 + 0.518098i \(0.826640\pi\)
\(84\) −3.51361 0.164069i −0.383366 0.0179014i
\(85\) −0.0897600 0.0139950i −0.00973584 0.00151797i
\(86\) 0.154087i 0.0166156i
\(87\) −9.71061 10.6619i −1.04109 1.14308i
\(88\) −2.14781 + 2.14781i −0.228957 + 0.228957i
\(89\) 12.0540 1.27773 0.638863 0.769320i \(-0.279405\pi\)
0.638863 + 0.769320i \(0.279405\pi\)
\(90\) −1.64659 + 6.50298i −0.173566 + 0.685474i
\(91\) −3.73982 −0.392040
\(92\) −0.707107 + 0.707107i −0.0737210 + 0.0737210i
\(93\) −12.6004 13.8347i −1.30660 1.43460i
\(94\) 0.482323i 0.0497478i
\(95\) −4.35744 + 3.18193i −0.447064 + 0.326459i
\(96\) −1.73017 0.0807905i −0.176584 0.00824565i
\(97\) 7.38166 + 7.38166i 0.749494 + 0.749494i 0.974384 0.224890i \(-0.0722023\pi\)
−0.224890 + 0.974384i \(0.572202\pi\)
\(98\) 2.03356 + 2.03356i 0.205420 + 0.205420i
\(99\) −9.07272 0.849157i −0.911842 0.0853435i
\(100\) 4.76267 + 1.52216i 0.476267 + 0.152216i
\(101\) 15.7509i 1.56727i 0.621222 + 0.783635i \(0.286637\pi\)
−0.621222 + 0.783635i \(0.713363\pi\)
\(102\) 0.0520243 0.0473825i 0.00515117 0.00469157i
\(103\) −9.94078 + 9.94078i −0.979494 + 0.979494i −0.999794 0.0202999i \(-0.993538\pi\)
0.0202999 + 0.999794i \(0.493538\pi\)
\(104\) −1.84156 −0.180579
\(105\) −6.56139 + 4.33705i −0.640326 + 0.423253i
\(106\) −0.170486 −0.0165590
\(107\) 8.28163 8.28163i 0.800616 0.800616i −0.182576 0.983192i \(-0.558444\pi\)
0.983192 + 0.182576i \(0.0584436\pi\)
\(108\) −3.12564 4.15095i −0.300765 0.399425i
\(109\) 5.16166i 0.494398i −0.968965 0.247199i \(-0.920490\pi\)
0.968965 0.247199i \(-0.0795101\pi\)
\(110\) −1.04633 + 6.71088i −0.0997638 + 0.639857i
\(111\) −0.0456766 + 0.978185i −0.00433543 + 0.0928452i
\(112\) −1.43599 1.43599i −0.135688 0.135688i
\(113\) 10.2943 + 10.2943i 0.968407 + 0.968407i 0.999516 0.0311086i \(-0.00990378\pi\)
−0.0311086 + 0.999516i \(0.509904\pi\)
\(114\) 0.194945 4.17483i 0.0182582 0.391008i
\(115\) −0.344476 + 2.20937i −0.0321226 + 0.206025i
\(116\) 8.32611i 0.773060i
\(117\) −3.52549 4.25357i −0.325932 0.393243i
\(118\) −1.48906 + 1.48906i −0.137079 + 0.137079i
\(119\) 0.0825048 0.00756320
\(120\) −3.23095 + 2.13564i −0.294944 + 0.194957i
\(121\) 1.77386 0.161260
\(122\) −7.61029 + 7.61029i −0.689003 + 0.689003i
\(123\) 12.1100 11.0295i 1.09192 0.994496i
\(124\) 10.8038i 0.970214i
\(125\) 10.6079 3.53167i 0.948798 0.315882i
\(126\) 0.567733 6.06587i 0.0505776 0.540390i
\(127\) −6.32534 6.32534i −0.561283 0.561283i 0.368389 0.929672i \(-0.379910\pi\)
−0.929672 + 0.368389i \(0.879910\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0.266596 + 0.0124488i 0.0234725 + 0.00109605i
\(130\) −3.32557 + 2.42843i −0.291671 + 0.212987i
\(131\) 8.57676i 0.749355i −0.927155 0.374677i \(-0.877753\pi\)
0.927155 0.374677i \(-0.122247\pi\)
\(132\) −3.54254 3.88958i −0.308338 0.338545i
\(133\) 3.46499 3.46499i 0.300452 0.300452i
\(134\) 9.45905 0.817137
\(135\) −11.1182 3.37425i −0.956902 0.290409i
\(136\) 0.0406269 0.00348373
\(137\) −11.6408 + 11.6408i −0.994543 + 0.994543i −0.999985 0.00544239i \(-0.998268\pi\)
0.00544239 + 0.999985i \(0.498268\pi\)
\(138\) −1.16628 1.28054i −0.0992807 0.109007i
\(139\) 0.224301i 0.0190250i −0.999955 0.00951249i \(-0.996972\pi\)
0.999955 0.00951249i \(-0.00302797\pi\)
\(140\) −4.48678 0.699560i −0.379202 0.0591236i
\(141\) −0.834498 0.0389671i −0.0702774 0.00328162i
\(142\) −4.02818 4.02818i −0.338037 0.338037i
\(143\) −3.95530 3.95530i −0.330759 0.330759i
\(144\) 0.279562 2.98695i 0.0232968 0.248912i
\(145\) −10.9795 15.0357i −0.911797 1.24864i
\(146\) 9.09384i 0.752612i
\(147\) −3.68268 + 3.35409i −0.303742 + 0.276641i
\(148\) −0.399778 + 0.399778i −0.0328615 + 0.0328615i
\(149\) 5.49620 0.450266 0.225133 0.974328i \(-0.427718\pi\)
0.225133 + 0.974328i \(0.427718\pi\)
\(150\) −3.01836 + 8.11724i −0.246448 + 0.662769i
\(151\) −9.44824 −0.768887 −0.384443 0.923149i \(-0.625607\pi\)
−0.384443 + 0.923149i \(0.625607\pi\)
\(152\) 1.70622 1.70622i 0.138393 0.138393i
\(153\) 0.0777765 + 0.0938387i 0.00628785 + 0.00758641i
\(154\) 6.16844i 0.497067i
\(155\) −14.2468 19.5101i −1.14433 1.56709i
\(156\) 0.148780 3.18620i 0.0119120 0.255100i
\(157\) 15.6517 + 15.6517i 1.24914 + 1.24914i 0.956100 + 0.293039i \(0.0946667\pi\)
0.293039 + 0.956100i \(0.405333\pi\)
\(158\) −3.64010 3.64010i −0.289591 0.289591i
\(159\) 0.0137736 0.294969i 0.00109232 0.0233925i
\(160\) −2.20937 0.344476i −0.174666 0.0272333i
\(161\) 2.03079i 0.160049i
\(162\) 7.43435 5.07251i 0.584098 0.398534i
\(163\) 2.69934 2.69934i 0.211429 0.211429i −0.593446 0.804874i \(-0.702233\pi\)
0.804874 + 0.593446i \(0.202233\pi\)
\(164\) 9.45696 0.738464
\(165\) −11.5264 2.35250i −0.897329 0.183142i
\(166\) 4.34481 0.337223
\(167\) −4.99243 + 4.99243i −0.386326 + 0.386326i −0.873375 0.487049i \(-0.838073\pi\)
0.487049 + 0.873375i \(0.338073\pi\)
\(168\) 2.60051 2.36848i 0.200634 0.182732i
\(169\) 9.60867i 0.739129i
\(170\) 0.0733659 0.0535739i 0.00562690 0.00410893i
\(171\) 7.20739 + 0.674573i 0.551163 + 0.0515859i
\(172\) 0.108956 + 0.108956i 0.00830781 + 0.00830781i
\(173\) 5.07836 + 5.07836i 0.386101 + 0.386101i 0.873294 0.487193i \(-0.161979\pi\)
−0.487193 + 0.873294i \(0.661979\pi\)
\(174\) 14.4055 + 0.672671i 1.09208 + 0.0509950i
\(175\) −9.02493 + 4.65334i −0.682221 + 0.351760i
\(176\) 3.03746i 0.228957i
\(177\) −2.45602 2.69663i −0.184606 0.202691i
\(178\) −8.52350 + 8.52350i −0.638863 + 0.638863i
\(179\) 9.09915 0.680103 0.340051 0.940407i \(-0.389556\pi\)
0.340051 + 0.940407i \(0.389556\pi\)
\(180\) −3.43399 5.76262i −0.255954 0.429520i
\(181\) −25.4910 −1.89473 −0.947367 0.320150i \(-0.896267\pi\)
−0.947367 + 0.320150i \(0.896267\pi\)
\(182\) 2.64445 2.64445i 0.196020 0.196020i
\(183\) −12.5522 13.7819i −0.927887 1.01879i
\(184\) 1.00000i 0.0737210i
\(185\) −0.194757 + 1.24912i −0.0143188 + 0.0918368i
\(186\) 18.6924 + 0.872848i 1.37060 + 0.0640004i
\(187\) 0.0872586 + 0.0872586i 0.00638098 + 0.00638098i
\(188\) −0.341054 0.341054i −0.0248739 0.0248739i
\(189\) 10.4491 + 1.47234i 0.760059 + 0.107097i
\(190\) 0.831209 5.33114i 0.0603023 0.386762i
\(191\) 16.0457i 1.16103i −0.814250 0.580514i \(-0.802851\pi\)
0.814250 0.580514i \(-0.197149\pi\)
\(192\) 1.28054 1.16628i 0.0924150 0.0841693i
\(193\) −5.17234 + 5.17234i −0.372313 + 0.372313i −0.868319 0.496006i \(-0.834799\pi\)
0.496006 + 0.868319i \(0.334799\pi\)
\(194\) −10.4392 −0.749494
\(195\) −3.93291 5.94997i −0.281641 0.426086i
\(196\) −2.87588 −0.205420
\(197\) −14.5337 + 14.5337i −1.03548 + 1.03548i −0.0361361 + 0.999347i \(0.511505\pi\)
−0.999347 + 0.0361361i \(0.988495\pi\)
\(198\) 7.01582 5.81493i 0.498593 0.413249i
\(199\) 12.8549i 0.911262i 0.890169 + 0.455631i \(0.150586\pi\)
−0.890169 + 0.455631i \(0.849414\pi\)
\(200\) −4.44404 + 2.29139i −0.314241 + 0.162026i
\(201\) −0.764202 + 16.3657i −0.0539026 + 1.15435i
\(202\) −11.1375 11.1375i −0.783635 0.783635i
\(203\) 11.9562 + 11.9562i 0.839160 + 0.839160i
\(204\) −0.00328227 + 0.0702912i −0.000229805 + 0.00492137i
\(205\) 17.0778 12.4707i 1.19277 0.870993i
\(206\) 14.0584i 0.979494i
\(207\) 2.30977 1.91441i 0.160540 0.133061i
\(208\) 1.30218 1.30218i 0.0902897 0.0902897i
\(209\) 7.32927 0.506976
\(210\) 1.57284 7.70636i 0.108537 0.531789i
\(211\) −24.8100 −1.70799 −0.853996 0.520280i \(-0.825828\pi\)
−0.853996 + 0.520280i \(0.825828\pi\)
\(212\) 0.120552 0.120552i 0.00827952 0.00827952i
\(213\) 7.29485 6.64397i 0.499835 0.455238i
\(214\) 11.7120i 0.800616i
\(215\) 0.340436 + 0.0530793i 0.0232175 + 0.00361998i
\(216\) 5.14532 + 0.725006i 0.350095 + 0.0493304i
\(217\) 15.5142 + 15.5142i 1.05317 + 1.05317i
\(218\) 3.64985 + 3.64985i 0.247199 + 0.247199i
\(219\) −15.7338 0.734696i −1.06320 0.0496462i
\(220\) −4.00544 5.48518i −0.270047 0.369810i
\(221\) 0.0748167i 0.00503271i
\(222\) −0.659383 0.723980i −0.0442549 0.0485903i
\(223\) 6.63422 6.63422i 0.444260 0.444260i −0.449181 0.893441i \(-0.648284\pi\)
0.893441 + 0.449181i \(0.148284\pi\)
\(224\) 2.03079 0.135688
\(225\) −13.8003 5.87806i −0.920020 0.391870i
\(226\) −14.5584 −0.968407
\(227\) 4.95555 4.95555i 0.328911 0.328911i −0.523261 0.852172i \(-0.675285\pi\)
0.852172 + 0.523261i \(0.175285\pi\)
\(228\) 2.81420 + 3.08990i 0.186375 + 0.204633i
\(229\) 11.2747i 0.745053i −0.928021 0.372527i \(-0.878491\pi\)
0.928021 0.372527i \(-0.121509\pi\)
\(230\) −1.31868 1.80585i −0.0869513 0.119074i
\(231\) 10.6724 + 0.498352i 0.702194 + 0.0327891i
\(232\) 5.88745 + 5.88745i 0.386530 + 0.386530i
\(233\) −12.5504 12.5504i −0.822206 0.822206i 0.164218 0.986424i \(-0.447490\pi\)
−0.986424 + 0.164218i \(0.947490\pi\)
\(234\) 5.50063 + 0.514829i 0.359587 + 0.0336554i
\(235\) −1.06563 0.166149i −0.0695141 0.0108384i
\(236\) 2.10585i 0.137079i
\(237\) 6.59207 6.00390i 0.428201 0.389995i
\(238\) −0.0583397 + 0.0583397i −0.00378160 + 0.00378160i
\(239\) −1.23240 −0.0797173 −0.0398586 0.999205i \(-0.512691\pi\)
−0.0398586 + 0.999205i \(0.512691\pi\)
\(240\) 0.774498 3.79475i 0.0499936 0.244950i
\(241\) −10.0383 −0.646625 −0.323312 0.946292i \(-0.604796\pi\)
−0.323312 + 0.946292i \(0.604796\pi\)
\(242\) −1.25431 + 1.25431i −0.0806301 + 0.0806301i
\(243\) 8.17566 + 13.2725i 0.524469 + 0.851430i
\(244\) 10.7626i 0.689003i
\(245\) −5.19340 + 3.79237i −0.331794 + 0.242286i
\(246\) −0.764033 + 16.3621i −0.0487129 + 1.04321i
\(247\) 3.14211 + 3.14211i 0.199927 + 0.199927i
\(248\) 7.63947 + 7.63947i 0.485107 + 0.485107i
\(249\) −0.351019 + 7.51724i −0.0222450 + 0.476386i
\(250\) −5.00364 + 9.99818i −0.316458 + 0.632340i
\(251\) 11.1326i 0.702686i −0.936247 0.351343i \(-0.885725\pi\)
0.936247 0.351343i \(-0.114275\pi\)
\(252\) 3.88777 + 4.69066i 0.244906 + 0.295484i
\(253\) 2.14781 2.14781i 0.135031 0.135031i
\(254\) 8.94538 0.561283
\(255\) 0.0867645 + 0.131263i 0.00543340 + 0.00822003i
\(256\) 1.00000 0.0625000
\(257\) −0.426761 + 0.426761i −0.0266206 + 0.0266206i −0.720292 0.693671i \(-0.755992\pi\)
0.693671 + 0.720292i \(0.255992\pi\)
\(258\) −0.197314 + 0.179709i −0.0122843 + 0.0111882i
\(259\) 1.14815i 0.0713426i
\(260\) 0.634373 4.06869i 0.0393421 0.252329i
\(261\) −2.32766 + 24.8696i −0.144079 + 1.53939i
\(262\) 6.06468 + 6.06468i 0.374677 + 0.374677i
\(263\) −13.9902 13.9902i −0.862670 0.862670i 0.128977 0.991648i \(-0.458831\pi\)
−0.991648 + 0.128977i \(0.958831\pi\)
\(264\) 5.25530 + 0.245398i 0.323441 + 0.0151032i
\(265\) 0.0587283 0.376667i 0.00360765 0.0231385i
\(266\) 4.90023i 0.300452i
\(267\) −14.0584 15.4357i −0.860363 0.944649i
\(268\) −6.68856 + 6.68856i −0.408569 + 0.408569i
\(269\) 15.5476 0.947954 0.473977 0.880537i \(-0.342818\pi\)
0.473977 + 0.880537i \(0.342818\pi\)
\(270\) 10.2477 5.47580i 0.623656 0.333247i
\(271\) 3.09413 0.187955 0.0939775 0.995574i \(-0.470042\pi\)
0.0939775 + 0.995574i \(0.470042\pi\)
\(272\) −0.0287275 + 0.0287275i −0.00174186 + 0.00174186i
\(273\) 4.36169 + 4.78898i 0.263982 + 0.289843i
\(274\) 16.4626i 0.994543i
\(275\) −14.4664 4.62348i −0.872357 0.278806i
\(276\) 1.73017 + 0.0807905i 0.104144 + 0.00486302i
\(277\) 4.78402 + 4.78402i 0.287444 + 0.287444i 0.836069 0.548625i \(-0.184849\pi\)
−0.548625 + 0.836069i \(0.684849\pi\)
\(278\) 0.158605 + 0.158605i 0.00951249 + 0.00951249i
\(279\) −3.02034 + 32.2705i −0.180823 + 1.93198i
\(280\) 3.66730 2.67797i 0.219163 0.160039i
\(281\) 6.07800i 0.362583i 0.983429 + 0.181292i \(0.0580278\pi\)
−0.983429 + 0.181292i \(0.941972\pi\)
\(282\) 0.617633 0.562525i 0.0367795 0.0334979i
\(283\) 1.63214 1.63214i 0.0970206 0.0970206i −0.656931 0.753951i \(-0.728146\pi\)
0.753951 + 0.656931i \(0.228146\pi\)
\(284\) 5.69670 0.338037
\(285\) 9.15660 + 1.86884i 0.542390 + 0.110700i
\(286\) 5.59364 0.330759
\(287\) −13.5801 + 13.5801i −0.801606 + 0.801606i
\(288\) 1.91441 + 2.30977i 0.112808 + 0.136104i
\(289\) 16.9983i 0.999903i
\(290\) 18.3955 + 2.86815i 1.08022 + 0.168423i
\(291\) 0.843392 18.0616i 0.0494405 1.05879i
\(292\) −6.43032 6.43032i −0.376306 0.376306i
\(293\) −9.90593 9.90593i −0.578711 0.578711i 0.355837 0.934548i \(-0.384196\pi\)
−0.934548 + 0.355837i \(0.884196\pi\)
\(294\) 0.232344 4.97575i 0.0135506 0.290192i
\(295\) −2.77695 3.80284i −0.161680 0.221410i
\(296\) 0.565371i 0.0328615i
\(297\) 9.49399 + 12.6083i 0.550897 + 0.731609i
\(298\) −3.88640 + 3.88640i −0.225133 + 0.225133i
\(299\) 1.84156 0.106500
\(300\) −3.60545 7.87405i −0.208161 0.454609i
\(301\) −0.312919 −0.0180363
\(302\) 6.68091 6.68091i 0.384443 0.384443i
\(303\) 20.1696 18.3700i 1.15871 1.05533i
\(304\) 2.41296i 0.138393i
\(305\) −14.1924 19.4355i −0.812655 1.11288i
\(306\) −0.121350 0.0113577i −0.00693713 0.000649278i
\(307\) 22.4079 + 22.4079i 1.27889 + 1.27889i 0.941292 + 0.337594i \(0.109613\pi\)
0.337594 + 0.941292i \(0.390387\pi\)
\(308\) 4.36175 + 4.36175i 0.248534 + 0.248534i
\(309\) 24.3233 + 1.13578i 1.38371 + 0.0646125i
\(310\) 23.8697 + 3.72167i 1.35571 + 0.211377i
\(311\) 22.1020i 1.25329i 0.779304 + 0.626646i \(0.215573\pi\)
−0.779304 + 0.626646i \(0.784427\pi\)
\(312\) 2.14778 + 2.35818i 0.121594 + 0.133506i
\(313\) 3.23645 3.23645i 0.182935 0.182935i −0.609698 0.792633i \(-0.708709\pi\)
0.792633 + 0.609698i \(0.208709\pi\)
\(314\) −22.1348 −1.24914
\(315\) 13.2062 + 3.34388i 0.744085 + 0.188406i
\(316\) 5.14788 0.289591
\(317\) 11.0713 11.0713i 0.621826 0.621826i −0.324172 0.945998i \(-0.605086\pi\)
0.945998 + 0.324172i \(0.105086\pi\)
\(318\) 0.198835 + 0.218314i 0.0111501 + 0.0122424i
\(319\) 25.2902i 1.41598i
\(320\) 1.80585 1.31868i 0.100950 0.0737166i
\(321\) −20.2637 0.946218i −1.13101 0.0528128i
\(322\) 1.43599 + 1.43599i 0.0800244 + 0.0800244i
\(323\) −0.0693185 0.0693185i −0.00385699 0.00385699i
\(324\) −1.67007 + 8.84369i −0.0927818 + 0.491316i
\(325\) −4.21973 8.18396i −0.234068 0.453964i
\(326\) 3.81744i 0.211429i
\(327\) −6.60971 + 6.01997i −0.365518 + 0.332905i
\(328\) −6.68708 + 6.68708i −0.369232 + 0.369232i
\(329\) 0.979497 0.0540014
\(330\) 9.81386 6.48692i 0.540235 0.357093i
\(331\) 27.5838 1.51614 0.758070 0.652173i \(-0.226142\pi\)
0.758070 + 0.652173i \(0.226142\pi\)
\(332\) −3.07224 + 3.07224i −0.168611 + 0.168611i
\(333\) 1.30588 1.08235i 0.0715616 0.0593125i
\(334\) 7.06036i 0.386326i
\(335\) −3.25842 + 20.8986i −0.178026 + 1.14181i
\(336\) −0.164069 + 3.51361i −0.00895069 + 0.191683i
\(337\) 16.5924 + 16.5924i 0.903845 + 0.903845i 0.995766 0.0919212i \(-0.0293008\pi\)
−0.0919212 + 0.995766i \(0.529301\pi\)
\(338\) −6.79436 6.79436i −0.369564 0.369564i
\(339\) 1.17618 25.1884i 0.0638812 1.36804i
\(340\) −0.0139950 + 0.0897600i −0.000758986 + 0.00486792i
\(341\) 32.8162i 1.77710i
\(342\) −5.57339 + 4.61940i −0.301375 + 0.249789i
\(343\) 14.1816 14.1816i 0.765737 0.765737i
\(344\) −0.154087 −0.00830781
\(345\) 3.23095 2.13564i 0.173948 0.114979i
\(346\) −7.18189 −0.386101
\(347\) −9.47770 + 9.47770i −0.508789 + 0.508789i −0.914155 0.405365i \(-0.867144\pi\)
0.405365 + 0.914155i \(0.367144\pi\)
\(348\) −10.6619 + 9.71061i −0.571538 + 0.520543i
\(349\) 17.3941i 0.931085i −0.885025 0.465543i \(-0.845859\pi\)
0.885025 0.465543i \(-0.154141\pi\)
\(350\) 3.09118 9.67200i 0.165231 0.516990i
\(351\) −1.33514 + 9.47540i −0.0712644 + 0.505760i
\(352\) 2.14781 + 2.14781i 0.114478 + 0.114478i
\(353\) 21.9958 + 21.9958i 1.17072 + 1.17072i 0.982038 + 0.188681i \(0.0604212\pi\)
0.188681 + 0.982038i \(0.439579\pi\)
\(354\) 3.64347 + 0.170133i 0.193648 + 0.00904247i
\(355\) 10.2874 7.51214i 0.545997 0.398703i
\(356\) 12.0540i 0.638863i
\(357\) −0.0962240 0.105651i −0.00509271 0.00559162i
\(358\) −6.43407 + 6.43407i −0.340051 + 0.340051i
\(359\) −23.7395 −1.25292 −0.626461 0.779453i \(-0.715497\pi\)
−0.626461 + 0.779453i \(0.715497\pi\)
\(360\) 6.50298 + 1.64659i 0.342737 + 0.0867829i
\(361\) 13.1776 0.693558
\(362\) 18.0249 18.0249i 0.947367 0.947367i
\(363\) −2.06883 2.27150i −0.108585 0.119223i
\(364\) 3.73982i 0.196020i
\(365\) −20.0917 3.13261i −1.05165 0.163969i
\(366\) 18.6210 + 0.869514i 0.973337 + 0.0454502i
\(367\) 20.2624 + 20.2624i 1.05769 + 1.05769i 0.998231 + 0.0594601i \(0.0189379\pi\)
0.0594601 + 0.998231i \(0.481062\pi\)
\(368\) 0.707107 + 0.707107i 0.0368605 + 0.0368605i
\(369\) −28.2474 2.64381i −1.47050 0.137631i
\(370\) −0.745544 1.02097i −0.0387590 0.0530778i
\(371\) 0.346221i 0.0179749i
\(372\) −13.8347 + 12.6004i −0.717298 + 0.653298i
\(373\) 17.2579 17.2579i 0.893581 0.893581i −0.101277 0.994858i \(-0.532293\pi\)
0.994858 + 0.101277i \(0.0322930\pi\)
\(374\) −0.123402 −0.00638098
\(375\) −16.8943 9.46488i −0.872416 0.488764i
\(376\) 0.482323 0.0248739
\(377\) −10.8421 + 10.8421i −0.558395 + 0.558395i
\(378\) −8.42972 + 6.34752i −0.433578 + 0.326481i
\(379\) 15.5004i 0.796200i 0.917342 + 0.398100i \(0.130330\pi\)
−0.917342 + 0.398100i \(0.869670\pi\)
\(380\) 3.18193 + 4.35744i 0.163230 + 0.223532i
\(381\) −0.722702 + 15.4770i −0.0370252 + 0.792911i
\(382\) 11.3461 + 11.3461i 0.580514 + 0.580514i
\(383\) −24.7143 24.7143i −1.26284 1.26284i −0.949710 0.313131i \(-0.898622\pi\)
−0.313131 0.949710i \(-0.601378\pi\)
\(384\) −0.0807905 + 1.73017i −0.00412283 + 0.0882921i
\(385\) 13.6284 + 2.12488i 0.694568 + 0.108294i
\(386\) 7.31479i 0.372313i
\(387\) −0.294986 0.355906i −0.0149950 0.0180917i
\(388\) 7.38166 7.38166i 0.374747 0.374747i
\(389\) −12.7778 −0.647858 −0.323929 0.946081i \(-0.605004\pi\)
−0.323929 + 0.946081i \(0.605004\pi\)
\(390\) 6.98825 + 1.42628i 0.353864 + 0.0722226i
\(391\) −0.0406269 −0.00205459
\(392\) 2.03356 2.03356i 0.102710 0.102710i
\(393\) −10.9829 + 10.0029i −0.554013 + 0.504582i
\(394\) 20.5538i 1.03548i
\(395\) 9.29628 6.78842i 0.467747 0.341563i
\(396\) −0.849157 + 9.07272i −0.0426718 + 0.455921i
\(397\) −20.0396 20.0396i −1.00576 1.00576i −0.999983 0.00577503i \(-0.998162\pi\)
−0.00577503 0.999983i \(-0.501838\pi\)
\(398\) −9.08981 9.08981i −0.455631 0.455631i
\(399\) −8.47821 0.395892i −0.424441 0.0198194i
\(400\) 1.52216 4.76267i 0.0761078 0.238134i
\(401\) 3.91057i 0.195284i −0.995222 0.0976422i \(-0.968870\pi\)
0.995222 0.0976422i \(-0.0311301\pi\)
\(402\) −11.0319 12.1127i −0.550223 0.604126i
\(403\) −14.0685 + 14.0685i −0.700803 + 0.700803i
\(404\) 15.7509 0.783635
\(405\) 8.64612 + 18.1726i 0.429629 + 0.903005i
\(406\) −16.9086 −0.839160
\(407\) 1.21431 1.21431i 0.0601909 0.0601909i
\(408\) −0.0473825 0.0520243i −0.00234578 0.00257559i
\(409\) 8.76129i 0.433218i −0.976258 0.216609i \(-0.930500\pi\)
0.976258 0.216609i \(-0.0694996\pi\)
\(410\) −3.25770 + 20.8940i −0.160886 + 1.03188i
\(411\) 28.4830 + 1.33002i 1.40497 + 0.0656052i
\(412\) 9.94078 + 9.94078i 0.489747 + 0.489747i
\(413\) 3.02398 + 3.02398i 0.148800 + 0.148800i
\(414\) −0.279562 + 2.98695i −0.0137397 + 0.146800i
\(415\) −1.49668 + 9.59931i −0.0734693 + 0.471212i
\(416\) 1.84156i 0.0902897i
\(417\) −0.287227 + 0.261599i −0.0140655 + 0.0128106i
\(418\) −5.18258 + 5.18258i −0.253488 + 0.253488i
\(419\) 14.3441 0.700754 0.350377 0.936609i \(-0.386054\pi\)
0.350377 + 0.936609i \(0.386054\pi\)
\(420\) 4.33705 + 6.56139i 0.211626 + 0.320163i
\(421\) −8.54877 −0.416641 −0.208321 0.978061i \(-0.566800\pi\)
−0.208321 + 0.978061i \(0.566800\pi\)
\(422\) 17.5433 17.5433i 0.853996 0.853996i
\(423\) 0.923363 + 1.11405i 0.0448955 + 0.0541672i
\(424\) 0.170486i 0.00827952i
\(425\) 0.0930921 + 0.180548i 0.00451563 + 0.00875785i
\(426\) −0.460240 + 9.85624i −0.0222987 + 0.477536i
\(427\) 15.4549 + 15.4549i 0.747916 + 0.747916i
\(428\) −8.28163 8.28163i −0.400308 0.400308i
\(429\) −0.451914 + 9.67793i −0.0218186 + 0.467255i
\(430\) −0.278257 + 0.203192i −0.0134188 + 0.00979878i
\(431\) 34.3396i 1.65408i −0.562141 0.827041i \(-0.690022\pi\)
0.562141 0.827041i \(-0.309978\pi\)
\(432\) −4.15095 + 3.12564i −0.199713 + 0.150382i
\(433\) −12.5838 + 12.5838i −0.604740 + 0.604740i −0.941567 0.336827i \(-0.890646\pi\)
0.336827 + 0.941567i \(0.390646\pi\)
\(434\) −21.9404 −1.05317
\(435\) −6.44855 + 31.5955i −0.309184 + 1.51489i
\(436\) −5.16166 −0.247199
\(437\) −1.70622 + 1.70622i −0.0816197 + 0.0816197i
\(438\) 11.6450 10.6060i 0.556421 0.506774i
\(439\) 15.6542i 0.747133i −0.927603 0.373567i \(-0.878135\pi\)
0.927603 0.373567i \(-0.121865\pi\)
\(440\) 6.71088 + 1.04633i 0.319929 + 0.0498819i
\(441\) 8.59010 + 0.803987i 0.409052 + 0.0382851i
\(442\) −0.0529034 0.0529034i −0.00251636 0.00251636i
\(443\) −21.4453 21.4453i −1.01890 1.01890i −0.999818 0.0190784i \(-0.993927\pi\)
−0.0190784 0.999818i \(-0.506073\pi\)
\(444\) 0.978185 + 0.0456766i 0.0464226 + 0.00216772i
\(445\) −15.8955 21.7677i −0.753517 1.03189i
\(446\) 9.38220i 0.444260i
\(447\) −6.41013 7.03810i −0.303189 0.332891i
\(448\) −1.43599 + 1.43599i −0.0678440 + 0.0678440i
\(449\) 19.2237 0.907224 0.453612 0.891199i \(-0.350135\pi\)
0.453612 + 0.891199i \(0.350135\pi\)
\(450\) 13.9147 5.60188i 0.655945 0.264075i
\(451\) −28.7251 −1.35261
\(452\) 10.2943 10.2943i 0.484204 0.484204i
\(453\) 11.0193 + 12.0988i 0.517733 + 0.568453i
\(454\) 7.00820i 0.328911i
\(455\) 4.93163 + 6.75353i 0.231198 + 0.316611i
\(456\) −4.17483 0.194945i −0.195504 0.00912912i
\(457\) −11.6854 11.6854i −0.546620 0.546620i 0.378842 0.925461i \(-0.376322\pi\)
−0.925461 + 0.378842i \(0.876322\pi\)
\(458\) 7.97242 + 7.97242i 0.372527 + 0.372527i
\(459\) 0.0294547 0.209038i 0.00137483 0.00975708i
\(460\) 2.20937 + 0.344476i 0.103013 + 0.0160613i
\(461\) 30.4595i 1.41864i −0.704886 0.709320i \(-0.749002\pi\)
0.704886 0.709320i \(-0.250998\pi\)
\(462\) −7.89893 + 7.19416i −0.367492 + 0.334703i
\(463\) 9.14602 9.14602i 0.425052 0.425052i −0.461887 0.886939i \(-0.652827\pi\)
0.886939 + 0.461887i \(0.152827\pi\)
\(464\) −8.32611 −0.386530
\(465\) −8.36755 + 40.9979i −0.388036 + 1.90123i
\(466\) 17.7490 0.822206
\(467\) 27.1900 27.1900i 1.25820 1.25820i 0.306251 0.951951i \(-0.400925\pi\)
0.951951 0.306251i \(-0.0990745\pi\)
\(468\) −4.25357 + 3.52549i −0.196621 + 0.162966i
\(469\) 19.2094i 0.887006i
\(470\) 0.871000 0.636030i 0.0401762 0.0293379i
\(471\) 1.78828 38.2969i 0.0823998 1.76463i
\(472\) 1.48906 + 1.48906i 0.0685397 + 0.0685397i
\(473\) −0.330949 0.330949i −0.0152170 0.0152170i
\(474\) −0.415900 + 8.90669i −0.0191029 + 0.409098i
\(475\) 11.4922 + 3.67291i 0.527296 + 0.168524i
\(476\) 0.0825048i 0.00378160i
\(477\) −0.393783 + 0.326380i −0.0180301 + 0.0149439i
\(478\) 0.871438 0.871438i 0.0398586 0.0398586i
\(479\) 7.60429 0.347449 0.173724 0.984794i \(-0.444420\pi\)
0.173724 + 0.984794i \(0.444420\pi\)
\(480\) 2.13564 + 3.23095i 0.0974783 + 0.147472i
\(481\) 1.04116 0.0474729
\(482\) 7.09816 7.09816i 0.323312 0.323312i
\(483\) −2.60051 + 2.36848i −0.118327 + 0.107770i
\(484\) 1.77386i 0.0806301i
\(485\) 3.59607 23.0642i 0.163289 1.04729i
\(486\) −15.1661 3.60399i −0.687949 0.163480i
\(487\) 18.0300 + 18.0300i 0.817017 + 0.817017i 0.985675 0.168658i \(-0.0539433\pi\)
−0.168658 + 0.985675i \(0.553943\pi\)
\(488\) 7.61029 + 7.61029i 0.344502 + 0.344502i
\(489\) −6.60481 0.308413i −0.298680 0.0139469i
\(490\) 0.990673 6.35390i 0.0447541 0.287040i
\(491\) 4.29319i 0.193749i 0.995297 + 0.0968745i \(0.0308845\pi\)
−0.995297 + 0.0968745i \(0.969115\pi\)
\(492\) −11.0295 12.1100i −0.497248 0.545961i
\(493\) 0.239189 0.239189i 0.0107725 0.0107725i
\(494\) −4.44361 −0.199927
\(495\) 10.4306 + 17.5037i 0.468820 + 0.786732i
\(496\) −10.8038 −0.485107
\(497\) −8.18039 + 8.18039i −0.366941 + 0.366941i
\(498\) −5.06728 5.56370i −0.227070 0.249315i
\(499\) 11.6589i 0.521925i −0.965349 0.260963i \(-0.915960\pi\)
0.965349 0.260963i \(-0.0840399\pi\)
\(500\) −3.53167 10.6079i −0.157941 0.474399i
\(501\) 12.2156 + 0.570410i 0.545753 + 0.0254841i
\(502\) 7.87197 + 7.87197i 0.351343 + 0.351343i
\(503\) 21.7405 + 21.7405i 0.969360 + 0.969360i 0.999544 0.0301846i \(-0.00960952\pi\)
−0.0301846 + 0.999544i \(0.509610\pi\)
\(504\) −6.06587 0.567733i −0.270195 0.0252888i
\(505\) 28.4436 20.7704i 1.26572 0.924270i
\(506\) 3.03746i 0.135031i
\(507\) 12.3043 11.2064i 0.546452 0.497696i
\(508\) −6.32534 + 6.32534i −0.280642 + 0.280642i
\(509\) −36.4307 −1.61476 −0.807381 0.590031i \(-0.799116\pi\)
−0.807381 + 0.590031i \(0.799116\pi\)
\(510\) −0.154169 0.0314654i −0.00682672 0.00139331i
\(511\) 18.4677 0.816963
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) −7.54205 10.0161i −0.332990 0.442221i
\(514\) 0.603532i 0.0266206i
\(515\) 31.0602 + 4.84278i 1.36868 + 0.213398i
\(516\) 0.0124488 0.266596i 0.000548027 0.0117362i
\(517\) 1.03594 + 1.03594i 0.0455604 + 0.0455604i
\(518\) 0.811865 + 0.811865i 0.0356713 + 0.0356713i
\(519\) 0.580229 12.4259i 0.0254692 0.545435i
\(520\) 2.42843 + 3.32557i 0.106494 + 0.145836i
\(521\) 40.9950i 1.79602i −0.439972 0.898012i \(-0.645011\pi\)
0.439972 0.898012i \(-0.354989\pi\)
\(522\) −15.9396 19.2314i −0.697657 0.841735i
\(523\) −11.8550 + 11.8550i −0.518381 + 0.518381i −0.917081 0.398700i \(-0.869461\pi\)
0.398700 + 0.917081i \(0.369461\pi\)
\(524\) −8.57676 −0.374677
\(525\) 16.4844 + 6.12966i 0.719439 + 0.267520i
\(526\) 19.7851 0.862670
\(527\) 0.310368 0.310368i 0.0135198 0.0135198i
\(528\) −3.88958 + 3.54254i −0.169272 + 0.154169i
\(529\) 1.00000i 0.0434783i
\(530\) 0.224817 + 0.307871i 0.00976541 + 0.0133731i
\(531\) −0.588717 + 6.29007i −0.0255481 + 0.272966i
\(532\) −3.46499 3.46499i −0.150226 0.150226i
\(533\) −12.3146 12.3146i −0.533406 0.533406i
\(534\) 20.8555 + 0.973853i 0.902506 + 0.0421427i
\(535\) −25.8762 4.03451i −1.11872 0.174427i
\(536\) 9.45905i 0.408569i
\(537\) −10.6122 11.6518i −0.457950 0.502813i
\(538\) −10.9938 + 10.9938i −0.473977 + 0.473977i
\(539\) 8.73536 0.376259
\(540\) −3.37425 + 11.1182i −0.145205 + 0.478451i
\(541\) −18.7415 −0.805758 −0.402879 0.915253i \(-0.631991\pi\)
−0.402879 + 0.915253i \(0.631991\pi\)
\(542\) −2.18788 + 2.18788i −0.0939775 + 0.0939775i
\(543\) 29.7298 + 32.6423i 1.27583 + 1.40081i
\(544\) 0.0406269i 0.00174186i
\(545\) −9.32117 + 6.80659i −0.399275 + 0.291562i
\(546\) −6.47051 0.302142i −0.276912 0.0129305i
\(547\) 3.00042 + 3.00042i 0.128288 + 0.128288i 0.768336 0.640047i \(-0.221085\pi\)
−0.640047 + 0.768336i \(0.721085\pi\)
\(548\) 11.6408 + 11.6408i 0.497271 + 0.497271i
\(549\) −3.00881 + 32.1472i −0.128413 + 1.37201i
\(550\) 13.4986 6.96000i 0.575582 0.296775i
\(551\) 20.0906i 0.855888i
\(552\) −1.28054 + 1.16628i −0.0545034 + 0.0496404i
\(553\) −7.39230 + 7.39230i −0.314352 + 0.314352i
\(554\) −6.76562 −0.287444
\(555\) 1.82668 1.20743i 0.0775384 0.0512526i
\(556\) −0.224301 −0.00951249
\(557\) −21.5167 + 21.5167i −0.911692 + 0.911692i −0.996405 0.0847134i \(-0.973003\pi\)
0.0847134 + 0.996405i \(0.473003\pi\)
\(558\) −20.6830 24.9544i −0.875580 1.05640i
\(559\) 0.283760i 0.0120018i
\(560\) −0.699560 + 4.48678i −0.0295618 + 0.189601i
\(561\) 0.00996974 0.213506i 0.000420923 0.00901425i
\(562\) −4.29779 4.29779i −0.181292 0.181292i
\(563\) −5.98181 5.98181i −0.252103 0.252103i 0.569729 0.821832i \(-0.307048\pi\)
−0.821832 + 0.569729i \(0.807048\pi\)
\(564\) −0.0389671 + 0.834498i −0.00164081 + 0.0351387i
\(565\) 5.01501 32.1649i 0.210983 1.35319i
\(566\) 2.30819i 0.0970206i
\(567\) −10.3012 15.0976i −0.432611 0.634041i
\(568\) −4.02818 + 4.02818i −0.169019 + 0.169019i
\(569\) 20.4479 0.857222 0.428611 0.903489i \(-0.359003\pi\)
0.428611 + 0.903489i \(0.359003\pi\)
\(570\) −7.79616 + 5.15323i −0.326545 + 0.215845i
\(571\) −24.0739 −1.00746 −0.503730 0.863861i \(-0.668039\pi\)
−0.503730 + 0.863861i \(0.668039\pi\)
\(572\) −3.95530 + 3.95530i −0.165380 + 0.165380i
\(573\) −20.5472 + 18.7139i −0.858372 + 0.781784i
\(574\) 19.2051i 0.801606i
\(575\) 4.44404 2.29139i 0.185329 0.0955576i
\(576\) −2.98695 0.279562i −0.124456 0.0116484i
\(577\) −8.20948 8.20948i −0.341765 0.341765i 0.515266 0.857031i \(-0.327693\pi\)
−0.857031 + 0.515266i \(0.827693\pi\)
\(578\) −12.0196 12.0196i −0.499951 0.499951i
\(579\) 12.6558 + 0.590966i 0.525957 + 0.0245597i
\(580\) −15.0357 + 10.9795i −0.624322 + 0.455899i
\(581\) 8.82341i 0.366057i
\(582\) 12.1751 + 13.3679i 0.504675 + 0.554116i
\(583\) −0.366170 + 0.366170i −0.0151652 + 0.0151652i
\(584\) 9.09384 0.376306
\(585\) −3.03229 + 11.9756i −0.125370 + 0.495130i
\(586\) 14.0091 0.578711
\(587\) 29.6663 29.6663i 1.22446 1.22446i 0.258426 0.966031i \(-0.416796\pi\)
0.966031 0.258426i \(-0.0832039\pi\)
\(588\) 3.35409 + 3.68268i 0.138321 + 0.151871i
\(589\) 26.0693i 1.07417i
\(590\) 4.65262 + 0.725417i 0.191545 + 0.0298649i
\(591\) 35.5614 + 1.66055i 1.46280 + 0.0683058i
\(592\) 0.399778 + 0.399778i 0.0164308 + 0.0164308i
\(593\) 28.7282 + 28.7282i 1.17972 + 1.17972i 0.979814 + 0.199911i \(0.0640652\pi\)
0.199911 + 0.979814i \(0.435935\pi\)
\(594\) −15.6287 2.20217i −0.641253 0.0903562i
\(595\) −0.108798 0.148991i −0.00446026 0.00610803i
\(596\) 5.49620i 0.225133i
\(597\) 16.4613 14.9925i 0.673714 0.613603i
\(598\) −1.30218 + 1.30218i −0.0532500 + 0.0532500i
\(599\) −46.9570 −1.91861 −0.959305 0.282371i \(-0.908879\pi\)
−0.959305 + 0.282371i \(0.908879\pi\)
\(600\) 8.11724 + 3.01836i 0.331385 + 0.123224i
\(601\) −18.4761 −0.753656 −0.376828 0.926283i \(-0.622985\pi\)
−0.376828 + 0.926283i \(0.622985\pi\)
\(602\) 0.221267 0.221267i 0.00901817 0.00901817i
\(603\) 21.8482 18.1085i 0.889728 0.737435i
\(604\) 9.44824i 0.384443i
\(605\) −2.33916 3.20332i −0.0951004 0.130234i
\(606\) −1.27252 + 27.2516i −0.0516926 + 1.10702i
\(607\) −29.6024 29.6024i −1.20152 1.20152i −0.973703 0.227821i \(-0.926840\pi\)
−0.227821 0.973703i \(-0.573160\pi\)
\(608\) −1.70622 1.70622i −0.0691965 0.0691965i
\(609\) 1.36606 29.2547i 0.0553553 1.18546i
\(610\) 23.7786 + 3.70745i 0.962766 + 0.150110i
\(611\) 0.888224i 0.0359337i
\(612\) 0.0938387 0.0777765i 0.00379321 0.00314393i
\(613\) −26.0428 + 26.0428i −1.05186 + 1.05186i −0.0532791 + 0.998580i \(0.516967\pi\)
−0.998580 + 0.0532791i \(0.983033\pi\)
\(614\) −31.6895 −1.27889
\(615\) −35.8868 7.32439i −1.44710 0.295348i
\(616\) −6.16844 −0.248534
\(617\) 9.82533 9.82533i 0.395553 0.395553i −0.481108 0.876661i \(-0.659766\pi\)
0.876661 + 0.481108i \(0.159766\pi\)
\(618\) −18.0023 + 16.3961i −0.724159 + 0.659547i
\(619\) 11.5924i 0.465937i −0.972484 0.232968i \(-0.925156\pi\)
0.972484 0.232968i \(-0.0748438\pi\)
\(620\) −19.5101 + 14.2468i −0.783543 + 0.572167i
\(621\) −5.14532 0.725006i −0.206475 0.0290935i
\(622\) −15.6285 15.6285i −0.626646 0.626646i
\(623\) 17.3095 + 17.3095i 0.693489 + 0.693489i
\(624\) −3.18620 0.148780i −0.127550 0.00595598i
\(625\) −20.3661 14.4991i −0.814644 0.579962i
\(626\) 4.57703i 0.182935i
\(627\) −8.54801 9.38542i −0.341375 0.374818i
\(628\) 15.6517 15.6517i 0.624570 0.624570i
\(629\) −0.0229693 −0.000915844
\(630\) −11.7027 + 6.97371i −0.466246 + 0.277839i
\(631\) −24.8506 −0.989288 −0.494644 0.869096i \(-0.664702\pi\)
−0.494644 + 0.869096i \(0.664702\pi\)
\(632\) −3.64010 + 3.64010i −0.144796 + 0.144796i
\(633\) 28.9355 + 31.7702i 1.15008 + 1.26275i
\(634\) 15.6572i 0.621826i
\(635\) −3.08147 + 19.7637i −0.122285 + 0.784299i
\(636\) −0.294969 0.0137736i −0.0116963 0.000546160i
\(637\) 3.74491 + 3.74491i 0.148379 + 0.148379i
\(638\) −17.8829 17.8829i −0.707989 0.707989i
\(639\) −17.0157 1.59258i −0.673132 0.0630016i
\(640\) −0.344476 + 2.20937i −0.0136166 + 0.0873332i
\(641\) 43.6697i 1.72485i −0.506186 0.862424i \(-0.668945\pi\)
0.506186 0.862424i \(-0.331055\pi\)
\(642\) 14.9977 13.6595i 0.591911 0.539098i
\(643\) 4.13381 4.13381i 0.163021 0.163021i −0.620882 0.783904i \(-0.713226\pi\)
0.783904 + 0.620882i \(0.213226\pi\)
\(644\) −2.03079 −0.0800244
\(645\) −0.329075 0.497847i −0.0129573 0.0196027i
\(646\) 0.0980312 0.00385699
\(647\) 24.4013 24.4013i 0.959316 0.959316i −0.0398886 0.999204i \(-0.512700\pi\)
0.999204 + 0.0398886i \(0.0127003\pi\)
\(648\) −5.07251 7.43435i −0.199267 0.292049i
\(649\) 6.39644i 0.251082i
\(650\) 8.77073 + 2.80313i 0.344016 + 0.109948i
\(651\) 1.77257 37.9605i 0.0694727 1.48779i
\(652\) −2.69934 2.69934i −0.105714 0.105714i
\(653\) 3.78364 + 3.78364i 0.148065 + 0.148065i 0.777253 0.629188i \(-0.216612\pi\)
−0.629188 + 0.777253i \(0.716612\pi\)
\(654\) 0.417014 8.93053i 0.0163065 0.349211i
\(655\) −15.4883 + 11.3100i −0.605178 + 0.441919i
\(656\) 9.45696i 0.369232i
\(657\) 17.4093 + 21.0047i 0.679203 + 0.819471i
\(658\) −0.692609 + 0.692609i −0.0270007 + 0.0270007i
\(659\) −21.1564 −0.824137 −0.412069 0.911153i \(-0.635194\pi\)
−0.412069 + 0.911153i \(0.635194\pi\)
\(660\) −2.35250 + 11.5264i −0.0915711 + 0.448664i
\(661\) −13.6642 −0.531475 −0.265737 0.964045i \(-0.585615\pi\)
−0.265737 + 0.964045i \(0.585615\pi\)
\(662\) −19.5047 + 19.5047i −0.758070 + 0.758070i
\(663\) 0.0958057 0.0872575i 0.00372078 0.00338880i
\(664\) 4.34481i 0.168611i
\(665\) −10.8264 1.68801i −0.419831 0.0654584i
\(666\) −0.158056 + 1.68873i −0.00612455 + 0.0654370i
\(667\) −5.88745 5.88745i −0.227963 0.227963i
\(668\) 4.99243 + 4.99243i 0.193163 + 0.193163i
\(669\) −16.2328 0.757993i −0.627595 0.0293057i
\(670\) −12.4735 17.0816i −0.481892 0.659919i
\(671\) 32.6908i 1.26202i
\(672\) −2.36848 2.60051i −0.0913662 0.100317i
\(673\) −17.2276 + 17.2276i −0.664074 + 0.664074i −0.956338 0.292264i \(-0.905592\pi\)
0.292264 + 0.956338i \(0.405592\pi\)
\(674\) −23.4652 −0.903845
\(675\) 8.56800 + 24.5273i 0.329782 + 0.944057i
\(676\) 9.60867 0.369564
\(677\) −8.11519 + 8.11519i −0.311892 + 0.311892i −0.845642 0.533750i \(-0.820782\pi\)
0.533750 + 0.845642i \(0.320782\pi\)
\(678\) 16.9792 + 18.6425i 0.652082 + 0.715963i
\(679\) 21.1999i 0.813579i
\(680\) −0.0535739 0.0733659i −0.00205447 0.00281345i
\(681\) −12.1253 0.566196i −0.464644 0.0216967i
\(682\) −23.2046 23.2046i −0.888548 0.888548i
\(683\) 14.2948 + 14.2948i 0.546975 + 0.546975i 0.925565 0.378589i \(-0.123591\pi\)
−0.378589 + 0.925565i \(0.623591\pi\)
\(684\) 0.674573 7.20739i 0.0257929 0.275582i
\(685\) 36.3721 + 5.67098i 1.38971 + 0.216677i
\(686\) 20.0559i 0.765737i
\(687\) −14.4377 + 13.1495i −0.550833 + 0.501685i
\(688\) 0.108956 0.108956i 0.00415391 0.00415391i
\(689\) −0.313959 −0.0119609
\(690\) −0.774498 + 3.79475i −0.0294846 + 0.144464i
\(691\) 5.32354 0.202517 0.101258 0.994860i \(-0.467713\pi\)
0.101258 + 0.994860i \(0.467713\pi\)
\(692\) 5.07836 5.07836i 0.193050 0.193050i
\(693\) −11.8089 14.2477i −0.448584 0.541225i
\(694\) 13.4035i 0.508789i
\(695\) −0.405053 + 0.295782i −0.0153646 + 0.0112197i
\(696\) 0.672671 14.4055i 0.0254975 0.546041i
\(697\) 0.271675 + 0.271675i 0.0102904 + 0.0102904i
\(698\) 12.2995 + 12.2995i 0.465543 + 0.465543i
\(699\) −1.43395 + 30.7087i −0.0542370 + 1.16151i
\(700\) 4.65334 + 9.02493i 0.175880 + 0.341110i
\(701\) 37.7240i 1.42482i 0.701765 + 0.712408i \(0.252396\pi\)
−0.701765 + 0.712408i \(0.747604\pi\)
\(702\) −5.75604 7.64421i −0.217248 0.288512i
\(703\) −0.964649 + 0.964649i −0.0363824 + 0.0363824i
\(704\) −3.03746 −0.114478
\(705\) 1.03007 + 1.55836i 0.0387947 + 0.0586912i
\(706\) −31.1068 −1.17072
\(707\) −22.6180 + 22.6180i −0.850639 + 0.850639i
\(708\) −2.69663 + 2.45602i −0.101345 + 0.0923030i
\(709\) 17.6180i 0.661657i −0.943691 0.330828i \(-0.892672\pi\)
0.943691 0.330828i \(-0.107328\pi\)
\(710\) −1.96238 + 12.5862i −0.0736468 + 0.472350i
\(711\) −15.3764 1.43915i −0.576662 0.0539724i
\(712\) 8.52350 + 8.52350i 0.319432 + 0.319432i
\(713\) −7.63947 7.63947i −0.286100 0.286100i
\(714\) 0.142747 + 0.00666560i 0.00534217 + 0.000249454i
\(715\) −1.92688 + 12.3585i −0.0720612 + 0.462180i
\(716\) 9.09915i 0.340051i
\(717\) 1.43733 + 1.57814i 0.0536780 + 0.0589366i
\(718\) 16.7863 16.7863i 0.626461 0.626461i
\(719\) −23.4101 −0.873050 −0.436525 0.899692i \(-0.643791\pi\)
−0.436525 + 0.899692i \(0.643791\pi\)
\(720\) −5.76262 + 3.43399i −0.214760 + 0.127977i
\(721\) −28.5497 −1.06325
\(722\) −9.31797 + 9.31797i −0.346779 + 0.346779i
\(723\) 11.7075 + 12.8545i 0.435408 + 0.478062i
\(724\) 25.4910i 0.947367i
\(725\) −12.6736 + 39.6545i −0.470687 + 1.47273i
\(726\) 3.06908 + 0.143311i 0.113904 + 0.00531878i
\(727\) −1.31281 1.31281i −0.0486893 0.0486893i 0.682343 0.731032i \(-0.260961\pi\)
−0.731032 + 0.682343i \(0.760961\pi\)
\(728\) −2.64445 2.64445i −0.0980099 0.0980099i
\(729\) 7.46078 25.9487i 0.276325 0.961064i
\(730\) 16.4221 11.9919i 0.607808 0.443840i
\(731\) 0.00626007i 0.000231537i
\(732\) −13.7819 + 12.5522i −0.509394 + 0.463944i
\(733\) 33.1490 33.1490i 1.22439 1.22439i 0.258332 0.966056i \(-0.416827\pi\)
0.966056 0.258332i \(-0.0831728\pi\)
\(734\) −28.6554 −1.05769
\(735\) 10.9133 + 2.22736i 0.402542 + 0.0821576i
\(736\) −1.00000 −0.0368605
\(737\) 20.3162 20.3162i 0.748357 0.748357i
\(738\) 21.8434 18.1045i 0.804066 0.666435i
\(739\) 20.5449i 0.755758i 0.925855 + 0.377879i \(0.123346\pi\)
−0.925855 + 0.377879i \(0.876654\pi\)
\(740\) 1.24912 + 0.194757i 0.0459184 + 0.00715941i
\(741\) 0.359002 7.68818i 0.0131883 0.282432i
\(742\) −0.244815 0.244815i −0.00898746 0.00898746i
\(743\) −23.4804 23.4804i −0.861411 0.861411i 0.130091 0.991502i \(-0.458473\pi\)
−0.991502 + 0.130091i \(0.958473\pi\)
\(744\) 0.872848 18.6924i 0.0320002 0.685298i
\(745\) −7.24774 9.92529i −0.265537 0.363635i
\(746\) 24.4064i 0.893581i
\(747\) 10.0355 8.31774i 0.367180 0.304330i
\(748\) 0.0872586 0.0872586i 0.00319049 0.00319049i
\(749\) 23.7846 0.869072
\(750\) 18.6387 5.25336i 0.680590 0.191826i
\(751\) 9.33331 0.340577 0.170289 0.985394i \(-0.445530\pi\)
0.170289 + 0.985394i \(0.445530\pi\)
\(752\) −0.341054 + 0.341054i −0.0124369 + 0.0124369i
\(753\) −14.2558 + 12.9838i −0.519510 + 0.473157i
\(754\) 15.3330i 0.558395i
\(755\) 12.4592 + 17.0621i 0.453437 + 0.620952i
\(756\) 1.47234 10.4491i 0.0535483 0.380030i
\(757\) −7.70849 7.70849i −0.280170 0.280170i 0.553007 0.833177i \(-0.313480\pi\)
−0.833177 + 0.553007i \(0.813480\pi\)
\(758\) −10.9604 10.9604i −0.398100 0.398100i
\(759\) −5.25530 0.245398i −0.190755 0.00890737i
\(760\) −5.33114 0.831209i −0.193381 0.0301511i
\(761\) 5.80591i 0.210464i 0.994448 + 0.105232i \(0.0335586\pi\)
−0.994448 + 0.105232i \(0.966441\pi\)
\(762\) −10.4329 11.4549i −0.377943 0.414968i
\(763\) 7.41208 7.41208i 0.268335 0.268335i
\(764\) −16.0457 −0.580514
\(765\) 0.0668958 0.264196i 0.00241862 0.00955202i
\(766\) 34.9513 1.26284
\(767\) −2.74219 + 2.74219i −0.0990148 + 0.0990148i
\(768\) −1.16628 1.28054i −0.0420847 0.0462075i
\(769\) 9.81402i 0.353903i −0.984220 0.176951i \(-0.943376\pi\)
0.984220 0.176951i \(-0.0566235\pi\)
\(770\) −11.1393 + 8.13422i −0.401431 + 0.293137i
\(771\) 1.04421 + 0.0487597i 0.0376063 + 0.00175604i
\(772\) 5.17234 + 5.17234i 0.186156 + 0.186156i
\(773\) −4.72645 4.72645i −0.169999 0.169999i 0.616980 0.786979i \(-0.288356\pi\)
−0.786979 + 0.616980i \(0.788356\pi\)
\(774\) 0.460250 + 0.0430769i 0.0165433 + 0.00154837i
\(775\) −16.4451 + 51.4552i −0.590726 + 1.84832i
\(776\) 10.4392i 0.374747i
\(777\) −1.47025 + 1.33907i −0.0527450 + 0.0480389i