# Properties

 Label 690.2.i.f.47.15 Level $690$ Weight $2$ Character 690.47 Analytic conductor $5.510$ Analytic rank $0$ Dimension $32$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$690 = 2 \cdot 3 \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 690.i (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$5.50967773947$$ Analytic rank: $$0$$ Dimension: $$32$$ Relative dimension: $$16$$ over $$\Q(i)$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## Embedding invariants

 Embedding label 47.15 Character $$\chi$$ $$=$$ 690.47 Dual form 690.2.i.f.323.15

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.707107 - 0.707107i) q^{2} +(1.72601 + 0.144577i) q^{3} -1.00000i q^{4} +(-1.25275 - 1.85219i) q^{5} +(1.32270 - 1.11824i) q^{6} +(-2.31531 - 2.31531i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(2.95819 + 0.499082i) q^{9} +O(q^{10})$$ $$q+(0.707107 - 0.707107i) q^{2} +(1.72601 + 0.144577i) q^{3} -1.00000i q^{4} +(-1.25275 - 1.85219i) q^{5} +(1.32270 - 1.11824i) q^{6} +(-2.31531 - 2.31531i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(2.95819 + 0.499082i) q^{9} +(-2.19553 - 0.423868i) q^{10} +0.0826422i q^{11} +(0.144577 - 1.72601i) q^{12} +(-2.92164 + 2.92164i) q^{13} -3.27434 q^{14} +(-1.89447 - 3.37801i) q^{15} -1.00000 q^{16} +(5.30247 - 5.30247i) q^{17} +(2.44466 - 1.73886i) q^{18} -6.47652i q^{19} +(-1.85219 + 1.25275i) q^{20} +(-3.66150 - 4.33098i) q^{21} +(0.0584368 + 0.0584368i) q^{22} +(0.707107 + 0.707107i) q^{23} +(-1.11824 - 1.32270i) q^{24} +(-1.86123 + 4.64067i) q^{25} +4.13182i q^{26} +(5.03371 + 1.28911i) q^{27} +(-2.31531 + 2.31531i) q^{28} -1.98555 q^{29} +(-3.72821 - 1.04902i) q^{30} -4.16017 q^{31} +(-0.707107 + 0.707107i) q^{32} +(-0.0119482 + 0.142641i) q^{33} -7.49883i q^{34} +(-1.38789 + 7.18891i) q^{35} +(0.499082 - 2.95819i) q^{36} +(4.80467 + 4.80467i) q^{37} +(-4.57959 - 4.57959i) q^{38} +(-5.46517 + 4.62037i) q^{39} +(-0.423868 + 2.19553i) q^{40} +0.882958i q^{41} +(-5.65154 - 0.473395i) q^{42} +(-1.69981 + 1.69981i) q^{43} +0.0826422 q^{44} +(-2.78149 - 6.10437i) q^{45} +1.00000 q^{46} +(7.63231 - 7.63231i) q^{47} +(-1.72601 - 0.144577i) q^{48} +3.72133i q^{49} +(1.96536 + 4.59754i) q^{50} +(9.91872 - 8.38549i) q^{51} +(2.92164 + 2.92164i) q^{52} +(7.26221 + 7.26221i) q^{53} +(4.47090 - 2.64783i) q^{54} +(0.153069 - 0.103530i) q^{55} +3.27434i q^{56} +(0.936357 - 11.1785i) q^{57} +(-1.40400 + 1.40400i) q^{58} +10.0777 q^{59} +(-3.37801 + 1.89447i) q^{60} -0.876183 q^{61} +(-2.94168 + 2.94168i) q^{62} +(-5.69361 - 8.00467i) q^{63} +1.00000i q^{64} +(9.07153 + 1.75135i) q^{65} +(0.0924137 + 0.109311i) q^{66} +(0.768241 + 0.768241i) q^{67} +(-5.30247 - 5.30247i) q^{68} +(1.11824 + 1.32270i) q^{69} +(4.10194 + 6.06471i) q^{70} -1.70346i q^{71} +(-1.73886 - 2.44466i) q^{72} +(-0.265720 + 0.265720i) q^{73} +6.79483 q^{74} +(-3.88342 + 7.74074i) q^{75} -6.47652 q^{76} +(0.191342 - 0.191342i) q^{77} +(-0.597367 + 7.13155i) q^{78} +16.8063i q^{79} +(1.25275 + 1.85219i) q^{80} +(8.50183 + 2.95276i) q^{81} +(0.624346 + 0.624346i) q^{82} +(8.84618 + 8.84618i) q^{83} +(-4.33098 + 3.66150i) q^{84} +(-16.4639 - 3.17852i) q^{85} +2.40390i q^{86} +(-3.42708 - 0.287065i) q^{87} +(0.0584368 - 0.0584368i) q^{88} -5.65142 q^{89} +(-6.28325 - 2.34963i) q^{90} +13.5290 q^{91} +(0.707107 - 0.707107i) q^{92} +(-7.18048 - 0.601465i) q^{93} -10.7937i q^{94} +(-11.9958 + 8.11347i) q^{95} +(-1.32270 + 1.11824i) q^{96} +(-7.30890 - 7.30890i) q^{97} +(2.63138 + 2.63138i) q^{98} +(-0.0412452 + 0.244472i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$32q + 4q^{3} + 12q^{6} + 8q^{7} + O(q^{10})$$ $$32q + 4q^{3} + 12q^{6} + 8q^{7} - 4q^{12} - 12q^{15} - 32q^{16} + 8q^{18} - 40q^{22} + 32q^{25} + 4q^{27} + 8q^{28} - 20q^{30} + 8q^{31} + 8q^{33} + 20q^{36} - 16q^{37} + 8q^{40} - 8q^{42} - 80q^{43} - 4q^{45} + 32q^{46} - 4q^{48} + 36q^{51} + 12q^{57} - 16q^{58} - 4q^{60} + 8q^{61} + 44q^{63} + 52q^{66} + 64q^{67} + 64q^{70} - 8q^{72} - 56q^{73} - 68q^{75} - 8q^{76} + 60q^{78} - 44q^{81} - 48q^{85} - 60q^{87} - 40q^{88} - 64q^{90} + 40q^{91} + 92q^{93} - 12q^{96} - 40q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/690\mathbb{Z}\right)^\times$$.

 $$n$$ $$277$$ $$461$$ $$511$$ $$\chi(n)$$ $$e\left(\frac{1}{4}\right)$$ $$-1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.707107 0.707107i 0.500000 0.500000i
$$3$$ 1.72601 + 0.144577i 0.996510 + 0.0834716i
$$4$$ 1.00000i 0.500000i
$$5$$ −1.25275 1.85219i −0.560247 0.828325i
$$6$$ 1.32270 1.11824i 0.539991 0.456519i
$$7$$ −2.31531 2.31531i −0.875106 0.875106i 0.117918 0.993023i $$-0.462378\pi$$
−0.993023 + 0.117918i $$0.962378\pi$$
$$8$$ −0.707107 0.707107i −0.250000 0.250000i
$$9$$ 2.95819 + 0.499082i 0.986065 + 0.166361i
$$10$$ −2.19553 0.423868i −0.694286 0.134039i
$$11$$ 0.0826422i 0.0249176i 0.999922 + 0.0124588i $$0.00396585\pi$$
−0.999922 + 0.0124588i $$0.996034\pi$$
$$12$$ 0.144577 1.72601i 0.0417358 0.498255i
$$13$$ −2.92164 + 2.92164i −0.810317 + 0.810317i −0.984681 0.174364i $$-0.944213\pi$$
0.174364 + 0.984681i $$0.444213\pi$$
$$14$$ −3.27434 −0.875106
$$15$$ −1.89447 3.37801i −0.489151 0.872199i
$$16$$ −1.00000 −0.250000
$$17$$ 5.30247 5.30247i 1.28604 1.28604i 0.348866 0.937172i $$-0.386567\pi$$
0.937172 0.348866i $$-0.113433\pi$$
$$18$$ 2.44466 1.73886i 0.576213 0.409852i
$$19$$ 6.47652i 1.48582i −0.669393 0.742908i $$-0.733446\pi$$
0.669393 0.742908i $$-0.266554\pi$$
$$20$$ −1.85219 + 1.25275i −0.414163 + 0.280124i
$$21$$ −3.66150 4.33098i −0.799005 0.945098i
$$22$$ 0.0584368 + 0.0584368i 0.0124588 + 0.0124588i
$$23$$ 0.707107 + 0.707107i 0.147442 + 0.147442i
$$24$$ −1.11824 1.32270i −0.228260 0.269995i
$$25$$ −1.86123 + 4.64067i −0.372246 + 0.928134i
$$26$$ 4.13182i 0.810317i
$$27$$ 5.03371 + 1.28911i 0.968737 + 0.248088i
$$28$$ −2.31531 + 2.31531i −0.437553 + 0.437553i
$$29$$ −1.98555 −0.368708 −0.184354 0.982860i $$-0.559019\pi$$
−0.184354 + 0.982860i $$0.559019\pi$$
$$30$$ −3.72821 1.04902i −0.680675 0.191524i
$$31$$ −4.16017 −0.747188 −0.373594 0.927592i $$-0.621875\pi$$
−0.373594 + 0.927592i $$0.621875\pi$$
$$32$$ −0.707107 + 0.707107i −0.125000 + 0.125000i
$$33$$ −0.0119482 + 0.142641i −0.00207991 + 0.0248306i
$$34$$ 7.49883i 1.28604i
$$35$$ −1.38789 + 7.18891i −0.234596 + 1.21515i
$$36$$ 0.499082 2.95819i 0.0831803 0.493032i
$$37$$ 4.80467 + 4.80467i 0.789883 + 0.789883i 0.981475 0.191591i $$-0.0613649\pi$$
−0.191591 + 0.981475i $$0.561365\pi$$
$$38$$ −4.57959 4.57959i −0.742908 0.742908i
$$39$$ −5.46517 + 4.62037i −0.875128 + 0.739851i
$$40$$ −0.423868 + 2.19553i −0.0670194 + 0.347143i
$$41$$ 0.882958i 0.137895i 0.997620 + 0.0689474i $$0.0219641\pi$$
−0.997620 + 0.0689474i $$0.978036\pi$$
$$42$$ −5.65154 0.473395i −0.872052 0.0730465i
$$43$$ −1.69981 + 1.69981i −0.259219 + 0.259219i −0.824736 0.565518i $$-0.808676\pi$$
0.565518 + 0.824736i $$0.308676\pi$$
$$44$$ 0.0826422 0.0124588
$$45$$ −2.78149 6.10437i −0.414640 0.909986i
$$46$$ 1.00000 0.147442
$$47$$ 7.63231 7.63231i 1.11329 1.11329i 0.120584 0.992703i $$-0.461523\pi$$
0.992703 0.120584i $$-0.0384769\pi$$
$$48$$ −1.72601 0.144577i −0.249128 0.0208679i
$$49$$ 3.72133i 0.531619i
$$50$$ 1.96536 + 4.59754i 0.277944 + 0.650190i
$$51$$ 9.91872 8.38549i 1.38890 1.17420i
$$52$$ 2.92164 + 2.92164i 0.405159 + 0.405159i
$$53$$ 7.26221 + 7.26221i 0.997541 + 0.997541i 0.999997 0.00245571i $$-0.000781677\pi$$
−0.00245571 + 0.999997i $$0.500782\pi$$
$$54$$ 4.47090 2.64783i 0.608413 0.360324i
$$55$$ 0.153069 0.103530i 0.0206398 0.0139600i
$$56$$ 3.27434i 0.437553i
$$57$$ 0.936357 11.1785i 0.124023 1.48063i
$$58$$ −1.40400 + 1.40400i −0.184354 + 0.184354i
$$59$$ 10.0777 1.31201 0.656003 0.754759i $$-0.272246\pi$$
0.656003 + 0.754759i $$0.272246\pi$$
$$60$$ −3.37801 + 1.89447i −0.436100 + 0.244575i
$$61$$ −0.876183 −0.112184 −0.0560919 0.998426i $$-0.517864\pi$$
−0.0560919 + 0.998426i $$0.517864\pi$$
$$62$$ −2.94168 + 2.94168i −0.373594 + 0.373594i
$$63$$ −5.69361 8.00467i −0.717328 1.00849i
$$64$$ 1.00000i 0.125000i
$$65$$ 9.07153 + 1.75135i 1.12518 + 0.217228i
$$66$$ 0.0924137 + 0.109311i 0.0113753 + 0.0134553i
$$67$$ 0.768241 + 0.768241i 0.0938556 + 0.0938556i 0.752476 0.658620i $$-0.228860\pi$$
−0.658620 + 0.752476i $$0.728860\pi$$
$$68$$ −5.30247 5.30247i −0.643019 0.643019i
$$69$$ 1.11824 + 1.32270i 0.134620 + 0.159235i
$$70$$ 4.10194 + 6.06471i 0.490276 + 0.724872i
$$71$$ 1.70346i 0.202163i −0.994878 0.101082i $$-0.967770\pi$$
0.994878 0.101082i $$-0.0322303\pi$$
$$72$$ −1.73886 2.44466i −0.204926 0.288106i
$$73$$ −0.265720 + 0.265720i −0.0311002 + 0.0311002i −0.722486 0.691386i $$-0.757001\pi$$
0.691386 + 0.722486i $$0.257001\pi$$
$$74$$ 6.79483 0.789883
$$75$$ −3.88342 + 7.74074i −0.448419 + 0.893823i
$$76$$ −6.47652 −0.742908
$$77$$ 0.191342 0.191342i 0.0218055 0.0218055i
$$78$$ −0.597367 + 7.13155i −0.0676385 + 0.807490i
$$79$$ 16.8063i 1.89085i 0.325834 + 0.945427i $$0.394355\pi$$
−0.325834 + 0.945427i $$0.605645\pi$$
$$80$$ 1.25275 + 1.85219i 0.140062 + 0.207081i
$$81$$ 8.50183 + 2.95276i 0.944648 + 0.328085i
$$82$$ 0.624346 + 0.624346i 0.0689474 + 0.0689474i
$$83$$ 8.84618 + 8.84618i 0.970994 + 0.970994i 0.999591 0.0285970i $$-0.00910394\pi$$
−0.0285970 + 0.999591i $$0.509104\pi$$
$$84$$ −4.33098 + 3.66150i −0.472549 + 0.399503i
$$85$$ −16.4639 3.17852i −1.78576 0.344758i
$$86$$ 2.40390i 0.259219i
$$87$$ −3.42708 0.287065i −0.367421 0.0307766i
$$88$$ 0.0584368 0.0584368i 0.00622939 0.00622939i
$$89$$ −5.65142 −0.599049 −0.299525 0.954089i $$-0.596828\pi$$
−0.299525 + 0.954089i $$0.596828\pi$$
$$90$$ −6.28325 2.34963i −0.662313 0.247673i
$$91$$ 13.5290 1.41823
$$92$$ 0.707107 0.707107i 0.0737210 0.0737210i
$$93$$ −7.18048 0.601465i −0.744581 0.0623690i
$$94$$ 10.7937i 1.11329i
$$95$$ −11.9958 + 8.11347i −1.23074 + 0.832425i
$$96$$ −1.32270 + 1.11824i −0.134998 + 0.114130i
$$97$$ −7.30890 7.30890i −0.742107 0.742107i 0.230876 0.972983i $$-0.425841\pi$$
−0.972983 + 0.230876i $$0.925841\pi$$
$$98$$ 2.63138 + 2.63138i 0.265810 + 0.265810i
$$99$$ −0.0412452 + 0.244472i −0.00414530 + 0.0245703i
$$100$$ 4.64067 + 1.86123i 0.464067 + 0.186123i
$$101$$ 2.99650i 0.298163i 0.988825 + 0.149082i $$0.0476317\pi$$
−0.988825 + 0.149082i $$0.952368\pi$$
$$102$$ 1.08416 12.9430i 0.107348 1.28155i
$$103$$ 7.92493 7.92493i 0.780866 0.780866i −0.199111 0.979977i $$-0.563805\pi$$
0.979977 + 0.199111i $$0.0638053\pi$$
$$104$$ 4.13182 0.405159
$$105$$ −3.43486 + 12.2074i −0.335208 + 1.19132i
$$106$$ 10.2703 0.997541
$$107$$ 5.54562 5.54562i 0.536115 0.536115i −0.386270 0.922386i $$-0.626237\pi$$
0.922386 + 0.386270i $$0.126237\pi$$
$$108$$ 1.28911 5.03371i 0.124044 0.484369i
$$109$$ 14.3159i 1.37121i −0.727974 0.685605i $$-0.759538\pi$$
0.727974 0.685605i $$-0.240462\pi$$
$$110$$ 0.0350294 0.181443i 0.00333992 0.0172999i
$$111$$ 7.59825 + 8.98754i 0.721194 + 0.853060i
$$112$$ 2.31531 + 2.31531i 0.218776 + 0.218776i
$$113$$ −1.54977 1.54977i −0.145791 0.145791i 0.630444 0.776235i $$-0.282873\pi$$
−0.776235 + 0.630444i $$0.782873\pi$$
$$114$$ −7.24230 8.56651i −0.678304 0.802327i
$$115$$ 0.423868 2.19553i 0.0395259 0.204734i
$$116$$ 1.98555i 0.184354i
$$117$$ −10.1009 + 7.18465i −0.933831 + 0.664221i
$$118$$ 7.12601 7.12601i 0.656003 0.656003i
$$119$$ −24.5538 −2.25084
$$120$$ −1.04902 + 3.72821i −0.0957622 + 0.340337i
$$121$$ 10.9932 0.999379
$$122$$ −0.619555 + 0.619555i −0.0560919 + 0.0560919i
$$123$$ −0.127655 + 1.52399i −0.0115103 + 0.137414i
$$124$$ 4.16017i 0.373594i
$$125$$ 10.9271 2.36626i 0.977347 0.211645i
$$126$$ −9.68615 1.63417i −0.862911 0.145583i
$$127$$ −2.65907 2.65907i −0.235954 0.235954i 0.579218 0.815172i $$-0.303358\pi$$
−0.815172 + 0.579218i $$0.803358\pi$$
$$128$$ 0.707107 + 0.707107i 0.0625000 + 0.0625000i
$$129$$ −3.17964 + 2.68813i −0.279952 + 0.236677i
$$130$$ 7.65293 5.17615i 0.671206 0.453978i
$$131$$ 12.0048i 1.04887i 0.851452 + 0.524433i $$0.175723\pi$$
−0.851452 + 0.524433i $$0.824277\pi$$
$$132$$ 0.142641 + 0.0119482i 0.0124153 + 0.00103995i
$$133$$ −14.9952 + 14.9952i −1.30025 + 1.30025i
$$134$$ 1.08646 0.0938556
$$135$$ −3.91831 10.9383i −0.337235 0.941421i
$$136$$ −7.49883 −0.643019
$$137$$ −4.13246 + 4.13246i −0.353060 + 0.353060i −0.861247 0.508187i $$-0.830316\pi$$
0.508187 + 0.861247i $$0.330316\pi$$
$$138$$ 1.72601 + 0.144577i 0.146927 + 0.0123072i
$$139$$ 0.433456i 0.0367652i 0.999831 + 0.0183826i $$0.00585170\pi$$
−0.999831 + 0.0183826i $$0.994148\pi$$
$$140$$ 7.18891 + 1.38789i 0.607574 + 0.117298i
$$141$$ 14.2769 12.0700i 1.20233 1.01647i
$$142$$ −1.20453 1.20453i −0.101082 0.101082i
$$143$$ −0.241451 0.241451i −0.0201911 0.0201911i
$$144$$ −2.95819 0.499082i −0.246516 0.0415902i
$$145$$ 2.48740 + 3.67762i 0.206568 + 0.305410i
$$146$$ 0.375785i 0.0311002i
$$147$$ −0.538020 + 6.42305i −0.0443751 + 0.529764i
$$148$$ 4.80467 4.80467i 0.394942 0.394942i
$$149$$ −20.0239 −1.64042 −0.820212 0.572059i $$-0.806145\pi$$
−0.820212 + 0.572059i $$0.806145\pi$$
$$150$$ 2.72753 + 8.21952i 0.222702 + 0.671121i
$$151$$ −17.1989 −1.39963 −0.699814 0.714325i $$-0.746734\pi$$
−0.699814 + 0.714325i $$0.746734\pi$$
$$152$$ −4.57959 + 4.57959i −0.371454 + 0.371454i
$$153$$ 18.3321 13.0394i 1.48206 1.05417i
$$154$$ 0.270599i 0.0218055i
$$155$$ 5.21166 + 7.70543i 0.418610 + 0.618915i
$$156$$ 4.62037 + 5.46517i 0.369926 + 0.437564i
$$157$$ 16.4821 + 16.4821i 1.31542 + 1.31542i 0.917362 + 0.398054i $$0.130314\pi$$
0.398054 + 0.917362i $$0.369686\pi$$
$$158$$ 11.8838 + 11.8838i 0.945427 + 0.945427i
$$159$$ 11.4847 + 13.5846i 0.910794 + 1.07733i
$$160$$ 2.19553 + 0.423868i 0.173572 + 0.0335097i
$$161$$ 3.27434i 0.258055i
$$162$$ 8.09962 3.92379i 0.636367 0.308282i
$$163$$ 7.21629 7.21629i 0.565224 0.565224i −0.365563 0.930787i $$-0.619124\pi$$
0.930787 + 0.365563i $$0.119124\pi$$
$$164$$ 0.882958 0.0689474
$$165$$ 0.279166 0.156563i 0.0217331 0.0121884i
$$166$$ 12.5104 0.970994
$$167$$ −11.3314 + 11.3314i −0.876846 + 0.876846i −0.993207 0.116361i $$-0.962877\pi$$
0.116361 + 0.993207i $$0.462877\pi$$
$$168$$ −0.473395 + 5.65154i −0.0365232 + 0.436026i
$$169$$ 4.07197i 0.313229i
$$170$$ −13.8893 + 9.39417i −1.06526 + 0.720500i
$$171$$ 3.23232 19.1588i 0.247181 1.46511i
$$172$$ 1.69981 + 1.69981i 0.129609 + 0.129609i
$$173$$ 6.03766 + 6.03766i 0.459035 + 0.459035i 0.898339 0.439304i $$-0.144775\pi$$
−0.439304 + 0.898339i $$0.644775\pi$$
$$174$$ −2.62629 + 2.22032i −0.199099 + 0.168322i
$$175$$ 15.0539 6.43528i 1.13797 0.486461i
$$176$$ 0.0826422i 0.00622939i
$$177$$ 17.3942 + 1.45700i 1.30743 + 0.109515i
$$178$$ −3.99616 + 3.99616i −0.299525 + 0.299525i
$$179$$ −10.2241 −0.764188 −0.382094 0.924123i $$-0.624797\pi$$
−0.382094 + 0.924123i $$0.624797\pi$$
$$180$$ −6.10437 + 2.78149i −0.454993 + 0.207320i
$$181$$ −7.86650 −0.584712 −0.292356 0.956310i $$-0.594439\pi$$
−0.292356 + 0.956310i $$0.594439\pi$$
$$182$$ 9.56646 9.56646i 0.709113 0.709113i
$$183$$ −1.51230 0.126676i −0.111792 0.00936416i
$$184$$ 1.00000i 0.0737210i
$$185$$ 2.88011 14.9182i 0.211750 1.09681i
$$186$$ −5.50266 + 4.65206i −0.403475 + 0.341106i
$$187$$ 0.438208 + 0.438208i 0.0320449 + 0.0320449i
$$188$$ −7.63231 7.63231i −0.556644 0.556644i
$$189$$ −8.66992 14.6393i −0.630644 1.06485i
$$190$$ −2.74519 + 14.2194i −0.199157 + 1.03158i
$$191$$ 23.2816i 1.68460i −0.539009 0.842300i $$-0.681201\pi$$
0.539009 0.842300i $$-0.318799\pi$$
$$192$$ −0.144577 + 1.72601i −0.0104340 + 0.124564i
$$193$$ −13.3531 + 13.3531i −0.961176 + 0.961176i −0.999274 0.0380984i $$-0.987870\pi$$
0.0380984 + 0.999274i $$0.487870\pi$$
$$194$$ −10.3363 −0.742107
$$195$$ 15.4043 + 4.33437i 1.10313 + 0.310391i
$$196$$ 3.72133 0.265810
$$197$$ −3.92746 + 3.92746i −0.279820 + 0.279820i −0.833037 0.553217i $$-0.813400\pi$$
0.553217 + 0.833037i $$0.313400\pi$$
$$198$$ 0.143703 + 0.202032i 0.0102125 + 0.0143578i
$$199$$ 14.6406i 1.03784i −0.854822 0.518921i $$-0.826334\pi$$
0.854822 0.518921i $$-0.173666\pi$$
$$200$$ 4.59754 1.96536i 0.325095 0.138972i
$$201$$ 1.21492 + 1.43706i 0.0856937 + 0.101362i
$$202$$ 2.11885 + 2.11885i 0.149082 + 0.149082i
$$203$$ 4.59717 + 4.59717i 0.322658 + 0.322658i
$$204$$ −8.38549 9.91872i −0.587102 0.694449i
$$205$$ 1.63541 1.10613i 0.114222 0.0772553i
$$206$$ 11.2075i 0.780866i
$$207$$ 1.73886 + 2.44466i 0.120859 + 0.169916i
$$208$$ 2.92164 2.92164i 0.202579 0.202579i
$$209$$ 0.535234 0.0370229
$$210$$ 6.20316 + 11.0608i 0.428058 + 0.763266i
$$211$$ 1.39261 0.0958715 0.0479357 0.998850i $$-0.484736\pi$$
0.0479357 + 0.998850i $$0.484736\pi$$
$$212$$ 7.26221 7.26221i 0.498771 0.498771i
$$213$$ 0.246281 2.94018i 0.0168749 0.201458i
$$214$$ 7.84269i 0.536115i
$$215$$ 5.27782 + 1.01894i 0.359944 + 0.0694908i
$$216$$ −2.64783 4.47090i −0.180162 0.304206i
$$217$$ 9.63209 + 9.63209i 0.653869 + 0.653869i
$$218$$ −10.1228 10.1228i −0.685605 0.685605i
$$219$$ −0.497052 + 0.420218i −0.0335876 + 0.0283957i
$$220$$ −0.103530 0.153069i −0.00698000 0.0103199i
$$221$$ 30.9839i 2.08420i
$$222$$ 11.7279 + 0.982377i 0.787127 + 0.0659328i
$$223$$ 16.9943 16.9943i 1.13802 1.13802i 0.149216 0.988805i $$-0.452325\pi$$
0.988805 0.149216i $$-0.0476749\pi$$
$$224$$ 3.27434 0.218776
$$225$$ −7.82195 + 12.7991i −0.521463 + 0.853274i
$$226$$ −2.19171 −0.145791
$$227$$ 6.77558 6.77558i 0.449711 0.449711i −0.445547 0.895258i $$-0.646991\pi$$
0.895258 + 0.445547i $$0.146991\pi$$
$$228$$ −11.1785 0.936357i −0.740316 0.0620117i
$$229$$ 11.6200i 0.767870i 0.923360 + 0.383935i $$0.125431\pi$$
−0.923360 + 0.383935i $$0.874569\pi$$
$$230$$ −1.25275 1.85219i −0.0826040 0.122130i
$$231$$ 0.357922 0.302594i 0.0235495 0.0199093i
$$232$$ 1.40400 + 1.40400i 0.0921770 + 0.0921770i
$$233$$ 12.9668 + 12.9668i 0.849484 + 0.849484i 0.990069 0.140585i $$-0.0448983\pi$$
−0.140585 + 0.990069i $$0.544898\pi$$
$$234$$ −2.06212 + 12.2227i −0.134805 + 0.799026i
$$235$$ −23.6979 4.57512i −1.54588 0.298448i
$$236$$ 10.0777i 0.656003i
$$237$$ −2.42980 + 29.0077i −0.157833 + 1.88426i
$$238$$ −17.3621 + 17.3621i −1.12542 + 1.12542i
$$239$$ 6.05401 0.391602 0.195801 0.980644i $$-0.437269\pi$$
0.195801 + 0.980644i $$0.437269\pi$$
$$240$$ 1.89447 + 3.37801i 0.122288 + 0.218050i
$$241$$ −17.7288 −1.14201 −0.571007 0.820945i $$-0.693447\pi$$
−0.571007 + 0.820945i $$0.693447\pi$$
$$242$$ 7.77335 7.77335i 0.499690 0.499690i
$$243$$ 14.2473 + 6.32566i 0.913966 + 0.405791i
$$244$$ 0.876183i 0.0560919i
$$245$$ 6.89263 4.66191i 0.440354 0.297838i
$$246$$ 0.987358 + 1.16789i 0.0629517 + 0.0744620i
$$247$$ 18.9221 + 18.9221i 1.20398 + 1.20398i
$$248$$ 2.94168 + 2.94168i 0.186797 + 0.186797i
$$249$$ 13.9896 + 16.5475i 0.886555 + 1.04866i
$$250$$ 6.05341 9.39980i 0.382851 0.594496i
$$251$$ 22.3292i 1.40941i −0.709501 0.704705i $$-0.751079\pi$$
0.709501 0.704705i $$-0.248921\pi$$
$$252$$ −8.00467 + 5.69361i −0.504247 + 0.358664i
$$253$$ −0.0584368 + 0.0584368i −0.00367389 + 0.00367389i
$$254$$ −3.76049 −0.235954
$$255$$ −27.9572 7.86644i −1.75075 0.492615i
$$256$$ 1.00000 0.0625000
$$257$$ −3.75966 + 3.75966i −0.234521 + 0.234521i −0.814577 0.580056i $$-0.803031\pi$$
0.580056 + 0.814577i $$0.303031\pi$$
$$258$$ −0.347548 + 4.14914i −0.0216374 + 0.258314i
$$259$$ 22.2486i 1.38246i
$$260$$ 1.75135 9.07153i 0.108614 0.562592i
$$261$$ −5.87365 0.990953i −0.363570 0.0613385i
$$262$$ 8.48869 + 8.48869i 0.524433 + 0.524433i
$$263$$ 9.73597 + 9.73597i 0.600346 + 0.600346i 0.940404 0.340058i $$-0.110447\pi$$
−0.340058 + 0.940404i $$0.610447\pi$$
$$264$$ 0.109311 0.0924137i 0.00672763 0.00568767i
$$265$$ 4.35326 22.5487i 0.267419 1.38516i
$$266$$ 21.2064i 1.30025i
$$267$$ −9.75439 0.817066i −0.596959 0.0500036i
$$268$$ 0.768241 0.768241i 0.0469278 0.0469278i
$$269$$ 1.99991 0.121937 0.0609684 0.998140i $$-0.480581\pi$$
0.0609684 + 0.998140i $$0.480581\pi$$
$$270$$ −10.5052 4.96389i −0.639328 0.302093i
$$271$$ −7.75320 −0.470973 −0.235487 0.971878i $$-0.575668\pi$$
−0.235487 + 0.971878i $$0.575668\pi$$
$$272$$ −5.30247 + 5.30247i −0.321510 + 0.321510i
$$273$$ 23.3512 + 1.95599i 1.41328 + 0.118382i
$$274$$ 5.84419i 0.353060i
$$275$$ −0.383515 0.153816i −0.0231268 0.00927545i
$$276$$ 1.32270 1.11824i 0.0796173 0.0673101i
$$277$$ −8.36272 8.36272i −0.502467 0.502467i 0.409737 0.912204i $$-0.365621\pi$$
−0.912204 + 0.409737i $$0.865621\pi$$
$$278$$ 0.306500 + 0.306500i 0.0183826 + 0.0183826i
$$279$$ −12.3066 2.07627i −0.736776 0.124303i
$$280$$ 6.06471 4.10194i 0.362436 0.245138i
$$281$$ 10.4388i 0.622729i 0.950291 + 0.311365i $$0.100786\pi$$
−0.950291 + 0.311365i $$0.899214\pi$$
$$282$$ 1.56052 18.6300i 0.0929279 1.10940i
$$283$$ 9.18213 9.18213i 0.545821 0.545821i −0.379408 0.925229i $$-0.623872\pi$$
0.925229 + 0.379408i $$0.123872\pi$$
$$284$$ −1.70346 −0.101082
$$285$$ −21.8778 + 12.2696i −1.29593 + 0.726788i
$$286$$ −0.341463 −0.0201911
$$287$$ 2.04432 2.04432i 0.120673 0.120673i
$$288$$ −2.44466 + 1.73886i −0.144053 + 0.102463i
$$289$$ 39.2325i 2.30779i
$$290$$ 4.35933 + 0.841612i 0.255989 + 0.0494212i
$$291$$ −11.5585 13.6719i −0.677572 0.801462i
$$292$$ 0.265720 + 0.265720i 0.0155501 + 0.0155501i
$$293$$ −12.9233 12.9233i −0.754988 0.754988i 0.220418 0.975406i $$-0.429258\pi$$
−0.975406 + 0.220418i $$0.929258\pi$$
$$294$$ 4.16134 + 4.92222i 0.242694 + 0.287070i
$$295$$ −12.6249 18.6658i −0.735048 1.08677i
$$296$$ 6.79483i 0.394942i
$$297$$ −0.106534 + 0.415997i −0.00618176 + 0.0241386i
$$298$$ −14.1591 + 14.1591i −0.820212 + 0.820212i
$$299$$ −4.13182 −0.238950
$$300$$ 7.74074 + 3.88342i 0.446912 + 0.224210i
$$301$$ 7.87119 0.453688
$$302$$ −12.1615 + 12.1615i −0.699814 + 0.699814i
$$303$$ −0.433226 + 5.17198i −0.0248882 + 0.297123i
$$304$$ 6.47652i 0.371454i
$$305$$ 1.09764 + 1.62286i 0.0628507 + 0.0929246i
$$306$$ 3.74253 22.1830i 0.213946 1.26812i
$$307$$ −9.27023 9.27023i −0.529080 0.529080i 0.391218 0.920298i $$-0.372054\pi$$
−0.920298 + 0.391218i $$0.872054\pi$$
$$308$$ −0.191342 0.191342i −0.0109027 0.0109027i
$$309$$ 14.8242 12.5327i 0.843321 0.712961i
$$310$$ 9.13376 + 1.76336i 0.518763 + 0.100152i
$$311$$ 34.1062i 1.93399i 0.254804 + 0.966993i $$0.417989\pi$$
−0.254804 + 0.966993i $$0.582011\pi$$
$$312$$ 7.13155 + 0.597367i 0.403745 + 0.0338193i
$$313$$ −21.0097 + 21.0097i −1.18754 + 1.18754i −0.209795 + 0.977745i $$0.567280\pi$$
−0.977745 + 0.209795i $$0.932720\pi$$
$$314$$ 23.3092 1.31542
$$315$$ −7.69351 + 20.5735i −0.433480 + 1.15919i
$$316$$ 16.8063 0.945427
$$317$$ −1.88900 + 1.88900i −0.106097 + 0.106097i −0.758163 0.652066i $$-0.773903\pi$$
0.652066 + 0.758163i $$0.273903\pi$$
$$318$$ 17.7266 + 1.48485i 0.994060 + 0.0832664i
$$319$$ 0.164090i 0.00918730i
$$320$$ 1.85219 1.25275i 0.103541 0.0700309i
$$321$$ 10.3735 8.77000i 0.578995 0.489494i
$$322$$ −2.31531 2.31531i −0.129027 0.129027i
$$323$$ −34.3416 34.3416i −1.91082 1.91082i
$$324$$ 2.95276 8.50183i 0.164042 0.472324i
$$325$$ −8.12054 18.9962i −0.450446 1.05372i
$$326$$ 10.2054i 0.565224i
$$327$$ 2.06974 24.7092i 0.114457 1.36642i
$$328$$ 0.624346 0.624346i 0.0344737 0.0344737i
$$329$$ −35.3424 −1.94849
$$330$$ 0.0866935 0.308107i 0.00477232 0.0169608i
$$331$$ −18.4120 −1.01202 −0.506008 0.862529i $$-0.668879\pi$$
−0.506008 + 0.862529i $$0.668879\pi$$
$$332$$ 8.84618 8.84618i 0.485497 0.485497i
$$333$$ 11.8152 + 16.6111i 0.647471 + 0.910282i
$$334$$ 16.0250i 0.876846i
$$335$$ 0.460514 2.38534i 0.0251606 0.130325i
$$336$$ 3.66150 + 4.33098i 0.199751 + 0.236274i
$$337$$ −4.80586 4.80586i −0.261792 0.261792i 0.563990 0.825782i $$-0.309266\pi$$
−0.825782 + 0.563990i $$0.809266\pi$$
$$338$$ −2.87932 2.87932i −0.156614 0.156614i
$$339$$ −2.45086 2.89898i −0.133112 0.157451i
$$340$$ −3.17852 + 16.4639i −0.172379 + 0.892879i
$$341$$ 0.343805i 0.0186181i
$$342$$ −11.2617 15.8329i −0.608965 0.856146i
$$343$$ −7.59113 + 7.59113i −0.409883 + 0.409883i
$$344$$ 2.40390 0.129609
$$345$$ 1.04902 3.72821i 0.0564774 0.200720i
$$346$$ 8.53854 0.459035
$$347$$ 17.1222 17.1222i 0.919167 0.919167i −0.0778017 0.996969i $$-0.524790\pi$$
0.996969 + 0.0778017i $$0.0247901\pi$$
$$348$$ −0.287065 + 3.42708i −0.0153883 + 0.183711i
$$349$$ 2.01226i 0.107714i 0.998549 + 0.0538569i $$0.0171515\pi$$
−0.998549 + 0.0538569i $$0.982849\pi$$
$$350$$ 6.09430 15.1952i 0.325754 0.812215i
$$351$$ −18.4730 + 10.9404i −0.986015 + 0.583954i
$$352$$ −0.0584368 0.0584368i −0.00311469 0.00311469i
$$353$$ 23.0099 + 23.0099i 1.22469 + 1.22469i 0.965945 + 0.258749i $$0.0833102\pi$$
0.258749 + 0.965945i $$0.416690\pi$$
$$354$$ 13.3298 11.2693i 0.708471 0.598956i
$$355$$ −3.15513 + 2.13401i −0.167457 + 0.113261i
$$356$$ 5.65142i 0.299525i
$$357$$ −42.3799 3.54991i −2.24298 0.187881i
$$358$$ −7.22956 + 7.22956i −0.382094 + 0.382094i
$$359$$ −19.5535 −1.03199 −0.515996 0.856591i $$-0.672578\pi$$
−0.515996 + 0.856591i $$0.672578\pi$$
$$360$$ −2.34963 + 6.28325i −0.123836 + 0.331156i
$$361$$ −22.9454 −1.20765
$$362$$ −5.56245 + 5.56245i −0.292356 + 0.292356i
$$363$$ 18.9743 + 1.58936i 0.995891 + 0.0834198i
$$364$$ 13.5290i 0.709113i
$$365$$ 0.825046 + 0.159283i 0.0431849 + 0.00833727i
$$366$$ −1.15893 + 0.979782i −0.0605782 + 0.0512140i
$$367$$ 6.00838 + 6.00838i 0.313635 + 0.313635i 0.846316 0.532681i $$-0.178815\pi$$
−0.532681 + 0.846316i $$0.678815\pi$$
$$368$$ −0.707107 0.707107i −0.0368605 0.0368605i
$$369$$ −0.440668 + 2.61196i −0.0229403 + 0.135973i
$$370$$ −8.51224 12.5853i −0.442530 0.654280i
$$371$$ 33.6286i 1.74591i
$$372$$ −0.601465 + 7.18048i −0.0311845 + 0.372290i
$$373$$ −18.4696 + 18.4696i −0.956318 + 0.956318i −0.999085 0.0427675i $$-0.986383\pi$$
0.0427675 + 0.999085i $$0.486383\pi$$
$$374$$ 0.619720 0.0320449
$$375$$ 19.2023 2.50437i 0.991602 0.129325i
$$376$$ −10.7937 −0.556644
$$377$$ 5.80107 5.80107i 0.298770 0.298770i
$$378$$ −16.4821 4.22098i −0.847747 0.217104i
$$379$$ 2.21381i 0.113716i −0.998382 0.0568579i $$-0.981892\pi$$
0.998382 0.0568579i $$-0.0181082\pi$$
$$380$$ 8.11347 + 11.9958i 0.416212 + 0.615370i
$$381$$ −4.20513 4.97401i −0.215435 0.254826i
$$382$$ −16.4626 16.4626i −0.842300 0.842300i
$$383$$ −24.0015 24.0015i −1.22642 1.22642i −0.965308 0.261112i $$-0.915911\pi$$
−0.261112 0.965308i $$-0.584089\pi$$
$$384$$ 1.11824 + 1.32270i 0.0570649 + 0.0674989i
$$385$$ −0.594107 0.114698i −0.0302785 0.00584557i
$$386$$ 18.8841i 0.961176i
$$387$$ −5.87672 + 4.18003i −0.298730 + 0.212483i
$$388$$ −7.30890 + 7.30890i −0.371053 + 0.371053i
$$389$$ −8.89237 −0.450861 −0.225431 0.974259i $$-0.572379\pi$$
−0.225431 + 0.974259i $$0.572379\pi$$
$$390$$ 13.9574 7.82763i 0.706758 0.396367i
$$391$$ 7.49883 0.379232
$$392$$ 2.63138 2.63138i 0.132905 0.132905i
$$393$$ −1.73562 + 20.7204i −0.0875505 + 1.04521i
$$394$$ 5.55427i 0.279820i
$$395$$ 31.1284 21.0541i 1.56624 1.05935i
$$396$$ 0.244472 + 0.0412452i 0.0122852 + 0.00207265i
$$397$$ 21.4168 + 21.4168i 1.07488 + 1.07488i 0.996960 + 0.0779195i $$0.0248277\pi$$
0.0779195 + 0.996960i $$0.475172\pi$$
$$398$$ −10.3524 10.3524i −0.518921 0.518921i
$$399$$ −28.0497 + 23.7138i −1.40424 + 1.18717i
$$400$$ 1.86123 4.64067i 0.0930614 0.232034i
$$401$$ 32.8935i 1.64262i −0.570480 0.821312i $$-0.693243\pi$$
0.570480 0.821312i $$-0.306757\pi$$
$$402$$ 1.87523 + 0.157077i 0.0935280 + 0.00783428i
$$403$$ 12.1545 12.1545i 0.605460 0.605460i
$$404$$ 2.99650 0.149082
$$405$$ −5.18160 19.4461i −0.257476 0.966285i
$$406$$ 6.50138 0.322658
$$407$$ −0.397069 + 0.397069i −0.0196820 + 0.0196820i
$$408$$ −12.9430 1.08416i −0.640775 0.0536739i
$$409$$ 29.4036i 1.45392i 0.686682 + 0.726958i $$0.259066\pi$$
−0.686682 + 0.726958i $$0.740934\pi$$
$$410$$ 0.374258 1.93856i 0.0184833 0.0957385i
$$411$$ −7.73012 + 6.53520i −0.381299 + 0.322358i
$$412$$ −7.92493 7.92493i −0.390433 0.390433i
$$413$$ −23.3330 23.3330i −1.14814 1.14814i
$$414$$ 2.95819 + 0.499082i 0.145387 + 0.0245285i
$$415$$ 5.30275 27.4669i 0.260302 1.34830i
$$416$$ 4.13182i 0.202579i
$$417$$ −0.0626678 + 0.748148i −0.00306885 + 0.0366369i
$$418$$ 0.378468 0.378468i 0.0185115 0.0185115i
$$419$$ −4.84269 −0.236581 −0.118290 0.992979i $$-0.537741\pi$$
−0.118290 + 0.992979i $$0.537741\pi$$
$$420$$ 12.2074 + 3.43486i 0.595662 + 0.167604i
$$421$$ 19.4455 0.947714 0.473857 0.880602i $$-0.342861\pi$$
0.473857 + 0.880602i $$0.342861\pi$$
$$422$$ 0.984727 0.984727i 0.0479357 0.0479357i
$$423$$ 26.3870 18.7687i 1.28298 0.912567i
$$424$$ 10.2703i 0.498771i
$$425$$ 14.7379 + 34.4762i 0.714895 + 1.67234i
$$426$$ −1.90487 2.25317i −0.0922913 0.109166i
$$427$$ 2.02864 + 2.02864i 0.0981726 + 0.0981726i
$$428$$ −5.54562 5.54562i −0.268058 0.268058i
$$429$$ −0.381837 0.451654i −0.0184353 0.0218061i
$$430$$ 4.45248 3.01148i 0.214717 0.145227i
$$431$$ 23.4150i 1.12786i −0.825822 0.563932i $$-0.809288\pi$$
0.825822 0.563932i $$-0.190712\pi$$
$$432$$ −5.03371 1.28911i −0.242184 0.0620221i
$$433$$ −18.6129 + 18.6129i −0.894478 + 0.894478i −0.994941 0.100463i $$-0.967968\pi$$
0.100463 + 0.994941i $$0.467968\pi$$
$$434$$ 13.6218 0.653869
$$435$$ 3.76157 + 6.70722i 0.180354 + 0.321587i
$$436$$ −14.3159 −0.685605
$$437$$ 4.57959 4.57959i 0.219072 0.219072i
$$438$$ −0.0543299 + 0.648607i −0.00259598 + 0.0309917i
$$439$$ 2.74419i 0.130973i 0.997853 + 0.0654864i $$0.0208599\pi$$
−0.997853 + 0.0654864i $$0.979140\pi$$
$$440$$ −0.181443 0.0350294i −0.00864996 0.00166996i
$$441$$ −1.85725 + 11.0084i −0.0884405 + 0.524211i
$$442$$ 21.9089 + 21.9089i 1.04210 + 1.04210i
$$443$$ 5.24175 + 5.24175i 0.249043 + 0.249043i 0.820578 0.571535i $$-0.193652\pi$$
−0.571535 + 0.820578i $$0.693652\pi$$
$$444$$ 8.98754 7.59825i 0.426530 0.360597i
$$445$$ 7.07983 + 10.4675i 0.335616 + 0.496208i
$$446$$ 24.0335i 1.13802i
$$447$$ −34.5614 2.89500i −1.63470 0.136929i
$$448$$ 2.31531 2.31531i 0.109388 0.109388i
$$449$$ 4.17586 0.197071 0.0985356 0.995134i $$-0.468584\pi$$
0.0985356 + 0.995134i $$0.468584\pi$$
$$450$$ 3.51938 + 14.5813i 0.165905 + 0.687368i
$$451$$ −0.0729696 −0.00343600
$$452$$ −1.54977 + 1.54977i −0.0728953 + 0.0728953i
$$453$$ −29.6854 2.48657i −1.39474 0.116829i
$$454$$ 9.58212i 0.449711i
$$455$$ −16.9485 25.0583i −0.794558 1.17475i
$$456$$ −8.56651 + 7.24230i −0.401164 + 0.339152i
$$457$$ 3.72841 + 3.72841i 0.174408 + 0.174408i 0.788913 0.614505i $$-0.210644\pi$$
−0.614505 + 0.788913i $$0.710644\pi$$
$$458$$ 8.21656 + 8.21656i 0.383935 + 0.383935i
$$459$$ 33.5266 19.8557i 1.56489 0.926783i
$$460$$ −2.19553 0.423868i −0.102367 0.0197630i
$$461$$ 11.3512i 0.528680i −0.964430 0.264340i $$-0.914846\pi$$
0.964430 0.264340i $$-0.0851541\pi$$
$$462$$ 0.0391224 0.467056i 0.00182014 0.0217294i
$$463$$ 15.3561 15.3561i 0.713657 0.713657i −0.253641 0.967298i $$-0.581628\pi$$
0.967298 + 0.253641i $$0.0816282\pi$$
$$464$$ 1.98555 0.0921770
$$465$$ 7.88133 + 14.0531i 0.365488 + 0.651697i
$$466$$ 18.3378 0.849484
$$467$$ −5.99931 + 5.99931i −0.277615 + 0.277615i −0.832156 0.554541i $$-0.812894\pi$$
0.554541 + 0.832156i $$0.312894\pi$$
$$468$$ 7.18465 + 10.1009i 0.332110 + 0.466915i
$$469$$ 3.55743i 0.164267i
$$470$$ −19.9920 + 13.5219i −0.922164 + 0.623717i
$$471$$ 26.0653 + 30.8312i 1.20103 + 1.42063i
$$472$$ −7.12601 7.12601i −0.328001 0.328001i
$$473$$ −0.140476 0.140476i −0.00645910 0.00645910i
$$474$$ 18.7934 + 22.2297i 0.863211 + 1.02104i
$$475$$ 30.0554 + 12.0543i 1.37904 + 0.553088i
$$476$$ 24.5538i 1.12542i
$$477$$ 17.8586 + 25.1075i 0.817689 + 1.14959i
$$478$$ 4.28083 4.28083i 0.195801 0.195801i
$$479$$ 31.7615 1.45122 0.725611 0.688105i $$-0.241557\pi$$
0.725611 + 0.688105i $$0.241557\pi$$
$$480$$ 3.72821 + 1.04902i 0.170169 + 0.0478811i
$$481$$ −28.0751 −1.28011
$$482$$ −12.5362 + 12.5362i −0.571007 + 0.571007i
$$483$$ 0.473395 5.65154i 0.0215402 0.257154i
$$484$$ 10.9932i 0.499690i
$$485$$ −4.38125 + 22.6937i −0.198942 + 1.03047i
$$486$$ 14.5473 5.60146i 0.659878 0.254087i
$$487$$ 8.53395 + 8.53395i 0.386710 + 0.386710i 0.873512 0.486802i $$-0.161837\pi$$
−0.486802 + 0.873512i $$0.661837\pi$$
$$488$$ 0.619555 + 0.619555i 0.0280459 + 0.0280459i
$$489$$ 13.4987 11.4121i 0.610431 0.516071i
$$490$$ 1.57736 8.17029i 0.0712577 0.369096i
$$491$$ 15.5734i 0.702820i −0.936222 0.351410i $$-0.885702\pi$$
0.936222 0.351410i $$-0.114298\pi$$
$$492$$ 1.52399 + 0.127655i 0.0687068 + 0.00575515i
$$493$$ −10.5283 + 10.5283i −0.474173 + 0.474173i
$$494$$ 26.7599 1.20398
$$495$$ 0.504478 0.229868i 0.0226746 0.0103318i
$$496$$ 4.16017 0.186797
$$497$$ −3.94403 + 3.94403i −0.176914 + 0.176914i
$$498$$ 21.5930 + 1.80871i 0.967605 + 0.0810504i
$$499$$ 29.9183i 1.33933i 0.742664 + 0.669664i $$0.233562\pi$$
−0.742664 + 0.669664i $$0.766438\pi$$
$$500$$ −2.36626 10.9271i −0.105822 0.488673i
$$501$$ −21.1962 + 17.9197i −0.946978 + 0.800595i
$$502$$ −15.7892 15.7892i −0.704705 0.704705i
$$503$$ 3.60669 + 3.60669i 0.160814 + 0.160814i 0.782927 0.622113i $$-0.213726\pi$$
−0.622113 + 0.782927i $$0.713726\pi$$
$$504$$ −1.63417 + 9.68615i −0.0727915 + 0.431455i
$$505$$ 5.55010 3.75387i 0.246976 0.167045i
$$506$$ 0.0826422i 0.00367389i
$$507$$ 0.588714 7.02825i 0.0261457 0.312136i
$$508$$ −2.65907 + 2.65907i −0.117977 + 0.117977i
$$509$$ 28.7783 1.27558 0.637789 0.770211i $$-0.279849\pi$$
0.637789 + 0.770211i $$0.279849\pi$$
$$510$$ −25.3312 + 14.2063i −1.12168 + 0.629067i
$$511$$ 1.23045 0.0544319
$$512$$ 0.707107 0.707107i 0.0312500 0.0312500i
$$513$$ 8.34892 32.6009i 0.368614 1.43937i
$$514$$ 5.31696i 0.234521i
$$515$$ −24.6065 4.75052i −1.08429 0.209333i
$$516$$ 2.68813 + 3.17964i 0.118338 + 0.139976i
$$517$$ 0.630751 + 0.630751i 0.0277404 + 0.0277404i
$$518$$ −15.7322 15.7322i −0.691231 0.691231i
$$519$$ 9.54813 + 11.2939i 0.419116 + 0.495749i
$$520$$ −5.17615 7.65293i −0.226989 0.335603i
$$521$$ 10.8265i 0.474319i −0.971471 0.237159i $$-0.923784\pi$$
0.971471 0.237159i $$-0.0762164\pi$$
$$522$$ −4.85401 + 3.45259i −0.212454 + 0.151116i
$$523$$ 0.723443 0.723443i 0.0316339 0.0316339i −0.691113 0.722747i $$-0.742879\pi$$
0.722747 + 0.691113i $$0.242879\pi$$
$$524$$ 12.0048 0.524433
$$525$$ 26.9136 8.93088i 1.17460 0.389776i
$$526$$ 13.7687 0.600346
$$527$$ −22.0592 + 22.0592i −0.960913 + 0.960913i
$$528$$ 0.0119482 0.142641i 0.000519977 0.00620765i
$$529$$ 1.00000i 0.0434783i
$$530$$ −12.8662 19.0226i −0.558870 0.826289i
$$531$$ 29.8118 + 5.02960i 1.29372 + 0.218266i
$$532$$ 14.9952 + 14.9952i 0.650123 + 0.650123i
$$533$$ −2.57969 2.57969i −0.111739 0.111739i
$$534$$ −7.47515 + 6.31964i −0.323481 + 0.273478i
$$535$$ −17.2188 3.32427i −0.744435 0.143721i
$$536$$ 1.08646i 0.0469278i
$$537$$ −17.6469 1.47818i −0.761521 0.0637880i
$$538$$ 1.41415 1.41415i 0.0609684 0.0609684i
$$539$$ −0.307539 −0.0132467
$$540$$ −10.9383 + 3.91831i −0.470710 + 0.168617i
$$541$$ −1.29260 −0.0555732 −0.0277866 0.999614i $$-0.508846\pi$$
−0.0277866 + 0.999614i $$0.508846\pi$$
$$542$$ −5.48234 + 5.48234i −0.235487 + 0.235487i
$$543$$ −13.5776 1.13732i −0.582672 0.0488069i
$$544$$ 7.49883i 0.321510i
$$545$$ −26.5157 + 17.9342i −1.13581 + 0.768217i
$$546$$ 17.8949 15.1287i 0.765829 0.647448i
$$547$$ 2.94655 + 2.94655i 0.125985 + 0.125985i 0.767288 0.641303i $$-0.221606\pi$$
−0.641303 + 0.767288i $$0.721606\pi$$
$$548$$ 4.13246 + 4.13246i 0.176530 + 0.176530i
$$549$$ −2.59192 0.437287i −0.110620 0.0186630i
$$550$$ −0.379950 + 0.162422i −0.0162011 + 0.00692570i
$$551$$ 12.8595i 0.547832i
$$552$$ 0.144577 1.72601i 0.00615361 0.0734637i
$$553$$ 38.9118 38.9118i 1.65470 1.65470i
$$554$$ −11.8267 −0.502467
$$555$$ 7.12793 25.3326i 0.302564 1.07531i
$$556$$ 0.433456 0.0183826
$$557$$ −1.34754 + 1.34754i −0.0570969 + 0.0570969i −0.735079 0.677982i $$-0.762855\pi$$
0.677982 + 0.735079i $$0.262855\pi$$
$$558$$ −10.1702 + 7.23393i −0.430540 + 0.306237i
$$559$$ 9.93248i 0.420099i
$$560$$ 1.38789 7.18891i 0.0586491 0.303787i
$$561$$ 0.692995 + 0.819705i 0.0292583 + 0.0346080i
$$562$$ 7.38138 + 7.38138i 0.311365 + 0.311365i
$$563$$ −6.51282 6.51282i −0.274483 0.274483i 0.556419 0.830902i $$-0.312175\pi$$
−0.830902 + 0.556419i $$0.812175\pi$$
$$564$$ −12.0700 14.2769i −0.508237 0.601165i
$$565$$ −0.928997 + 4.81196i −0.0390832 + 0.202441i
$$566$$ 12.9855i 0.545821i
$$567$$ −12.8478 26.5210i −0.539558 1.11378i
$$568$$ −1.20453 + 1.20453i −0.0505408 + 0.0505408i
$$569$$ 11.6625 0.488917 0.244458 0.969660i $$-0.421390\pi$$
0.244458 + 0.969660i $$0.421390\pi$$
$$570$$ −6.79401 + 24.1458i −0.284570 + 1.01136i
$$571$$ −30.0173 −1.25619 −0.628093 0.778138i $$-0.716164\pi$$
−0.628093 + 0.778138i $$0.716164\pi$$
$$572$$ −0.241451 + 0.241451i −0.0100956 + 0.0100956i
$$573$$ 3.36599 40.1842i 0.140616 1.67872i
$$574$$ 2.89111i 0.120673i
$$575$$ −4.59754 + 1.96536i −0.191731 + 0.0819613i
$$576$$ −0.499082 + 2.95819i −0.0207951 + 0.123258i
$$577$$ 30.9222 + 30.9222i 1.28731 + 1.28731i 0.936415 + 0.350894i $$0.114122\pi$$
0.350894 + 0.936415i $$0.385878\pi$$
$$578$$ −27.7415 27.7415i −1.15390 1.15390i
$$579$$ −24.9780 + 21.1169i −1.03805 + 0.877590i
$$580$$ 3.67762 2.48740i 0.152705 0.103284i
$$581$$ 40.9633i 1.69944i
$$582$$ −17.8406 1.49440i −0.739517 0.0619448i
$$583$$ −0.600165 + 0.600165i −0.0248563 + 0.0248563i
$$584$$ 0.375785 0.0155501
$$585$$ 25.9613 + 9.70827i 1.07337 + 0.401387i
$$586$$ −18.2763 −0.754988
$$587$$ 22.4198 22.4198i 0.925363 0.925363i −0.0720385 0.997402i $$-0.522950\pi$$
0.997402 + 0.0720385i $$0.0229504\pi$$
$$588$$ 6.42305 + 0.538020i 0.264882 + 0.0221876i
$$589$$ 26.9434i 1.11018i
$$590$$ −22.1259 4.27162i −0.910907 0.175860i
$$591$$ −7.34664 + 6.21100i −0.302201 + 0.255486i
$$592$$ −4.80467 4.80467i −0.197471 0.197471i
$$593$$ 1.81620 + 1.81620i 0.0745825 + 0.0745825i 0.743414 0.668831i $$-0.233205\pi$$
−0.668831 + 0.743414i $$0.733205\pi$$
$$594$$ 0.218823 + 0.369485i 0.00897840 + 0.0151602i
$$595$$ 30.7598 + 45.4783i 1.26103 + 1.86443i
$$596$$ 20.0239i 0.820212i
$$597$$ 2.11669 25.2697i 0.0866304 1.03422i
$$598$$ −2.92164 + 2.92164i −0.119475 + 0.119475i
$$599$$ −8.91093 −0.364091 −0.182045 0.983290i $$-0.558272\pi$$
−0.182045 + 0.983290i $$0.558272\pi$$
$$600$$ 8.21952 2.72753i 0.335561 0.111351i
$$601$$ −45.6488 −1.86205 −0.931027 0.364951i $$-0.881086\pi$$
−0.931027 + 0.364951i $$0.881086\pi$$
$$602$$ 5.56577 5.56577i 0.226844 0.226844i
$$603$$ 1.88919 + 2.65602i 0.0769338 + 0.108162i
$$604$$ 17.1989i 0.699814i
$$605$$ −13.7717 20.3615i −0.559900 0.827811i
$$606$$ 3.35081 + 3.96348i 0.136117 + 0.161005i
$$607$$ −14.6214 14.6214i −0.593463 0.593463i 0.345102 0.938565i $$-0.387844\pi$$
−0.938565 + 0.345102i $$0.887844\pi$$
$$608$$ 4.57959 + 4.57959i 0.185727 + 0.185727i
$$609$$ 7.27010 + 8.59939i 0.294599 + 0.348465i
$$610$$ 1.92368 + 0.371386i 0.0778877 + 0.0150370i
$$611$$ 44.5978i 1.80423i
$$612$$ −13.0394 18.3321i −0.527086 0.741032i
$$613$$ 25.3682 25.3682i 1.02461 1.02461i 0.0249223 0.999689i $$-0.492066\pi$$
0.999689 0.0249223i $$-0.00793383\pi$$
$$614$$ −13.1101 −0.529080
$$615$$ 2.98264 1.67274i 0.120272 0.0674514i
$$616$$ −0.270599 −0.0109027
$$617$$ −15.8956 + 15.8956i −0.639931 + 0.639931i −0.950538 0.310607i $$-0.899468\pi$$
0.310607 + 0.950538i $$0.399468\pi$$
$$618$$ 1.62035 19.3443i 0.0651802 0.778141i
$$619$$ 40.8815i 1.64317i 0.570088 + 0.821584i $$0.306909\pi$$
−0.570088 + 0.821584i $$0.693091\pi$$
$$620$$ 7.70543 5.21166i 0.309458 0.209305i
$$621$$ 2.64783 + 4.47090i 0.106254 + 0.179411i
$$622$$ 24.1167 + 24.1167i 0.966993 + 0.966993i
$$623$$ 13.0848 + 13.0848i 0.524231 + 0.524231i
$$624$$ 5.46517 4.62037i 0.218782 0.184963i
$$625$$ −18.0717 17.2747i −0.722867 0.690988i
$$626$$ 29.7123i 1.18754i
$$627$$ 0.923817 + 0.0773826i 0.0368937 + 0.00309036i
$$628$$ 16.4821 16.4821i 0.657708 0.657708i
$$629$$ 50.9533 2.03164
$$630$$ 9.10755 + 19.9878i 0.362854 + 0.796333i
$$631$$ −0.512624 −0.0204072 −0.0102036 0.999948i $$-0.503248\pi$$
−0.0102036 + 0.999948i $$0.503248\pi$$
$$632$$ 11.8838 11.8838i 0.472714 0.472714i
$$633$$ 2.40366 + 0.201340i 0.0955369 + 0.00800255i
$$634$$ 2.67145i 0.106097i
$$635$$ −1.59395 + 8.25625i −0.0632540 + 0.327639i
$$636$$ 13.5846 11.4847i 0.538663 0.455397i
$$637$$ −10.8724 10.8724i −0.430780 0.430780i
$$638$$ −0.116029 0.116029i −0.00459365 0.00459365i
$$639$$ 0.850164 5.03916i 0.0336320 0.199346i
$$640$$ 0.423868 2.19553i 0.0167549 0.0867858i
$$641$$ 41.0820i 1.62264i 0.584600 + 0.811322i $$0.301251\pi$$
−0.584600 + 0.811322i $$0.698749\pi$$
$$642$$ 1.13387 13.5365i 0.0447504 0.534244i
$$643$$ −11.1338 + 11.1338i −0.439076 + 0.439076i −0.891701 0.452625i $$-0.850488\pi$$
0.452625 + 0.891701i $$0.350488\pi$$
$$644$$ −3.27434 −0.129027
$$645$$ 8.96223 + 2.52174i 0.352887 + 0.0992934i
$$646$$ −48.5664 −1.91082
$$647$$ 19.7653 19.7653i 0.777052 0.777052i −0.202276 0.979329i $$-0.564834\pi$$
0.979329 + 0.202276i $$0.0648338\pi$$
$$648$$ −3.92379 8.09962i −0.154141 0.318183i
$$649$$ 0.832843i 0.0326920i
$$650$$ −19.1744 7.69027i −0.752083 0.301637i
$$651$$ 15.2325 + 18.0176i 0.597007 + 0.706166i
$$652$$ −7.21629 7.21629i −0.282612 0.282612i
$$653$$ −1.85033 1.85033i −0.0724089 0.0724089i 0.669975 0.742384i $$-0.266305\pi$$
−0.742384 + 0.669975i $$0.766305\pi$$
$$654$$ −16.0085 18.9356i −0.625984 0.740441i
$$655$$ 22.2352 15.0391i 0.868802 0.587624i
$$656$$ 0.882958i 0.0344737i
$$657$$ −0.918668 + 0.653436i −0.0358406 + 0.0254930i
$$658$$ −24.9908 + 24.9908i −0.974244 + 0.974244i
$$659$$ 28.7705 1.12074 0.560370 0.828243i $$-0.310659\pi$$
0.560370 + 0.828243i $$0.310659\pi$$
$$660$$ −0.156563 0.279166i −0.00609422 0.0108665i
$$661$$ −10.2697 −0.399445 −0.199722 0.979853i $$-0.564004\pi$$
−0.199722 + 0.979853i $$0.564004\pi$$
$$662$$ −13.0193 + 13.0193i −0.506008 + 0.506008i
$$663$$ −4.47956 + 53.4783i −0.173972 + 2.07693i
$$664$$ 12.5104i 0.485497i
$$665$$ 46.5591 + 8.98871i 1.80549 + 0.348567i
$$666$$ 20.1004 + 3.39118i 0.778876 + 0.131405i
$$667$$ −1.40400 1.40400i −0.0543630 0.0543630i
$$668$$ 11.3314 + 11.3314i 0.438423 + 0.438423i
$$669$$ 31.7892 26.8752i 1.22904 1.03906i
$$670$$ −1.36106 2.01233i −0.0525823 0.0777429i
$$671$$ 0.0724097i 0.00279535i
$$672$$ 5.65154 + 0.473395i 0.218013 + 0.0182616i
$$673$$ 6.49107 6.49107i 0.250212 0.250212i −0.570845 0.821058i $$-0.693384\pi$$
0.821058 + 0.570845i $$0.193384\pi$$
$$674$$ −6.79651 −0.261792
$$675$$ −15.3512 + 20.9605i −0.590868 + 0.806769i
$$676$$ −4.07197 −0.156614
$$677$$ −11.6214 + 11.6214i −0.446646 + 0.446646i −0.894238 0.447592i $$-0.852282\pi$$
0.447592 + 0.894238i $$0.352282\pi$$
$$678$$ −3.78291 0.316871i −0.145282 0.0121694i
$$679$$ 33.8448i 1.29884i
$$680$$ 9.39417 + 13.8893i 0.360250 + 0.532629i
$$681$$ 12.6743 10.7151i 0.485680 0.410604i
$$682$$ −0.243107 0.243107i −0.00930906 0.00930906i
$$683$$ 13.1189 + 13.1189i 0.501983 + 0.501983i 0.912054 0.410071i $$-0.134496\pi$$
−0.410071 + 0.912054i $$0.634496\pi$$
$$684$$ −19.1588 3.23232i −0.732556 0.123591i
$$685$$ 12.8311 + 2.47716i 0.490250 + 0.0946476i
$$686$$ 10.7355i 0.409883i
$$687$$ −1.67998 + 20.0561i −0.0640953 + 0.765190i
$$688$$ 1.69981 1.69981i 0.0648047 0.0648047i
$$689$$ −42.4351 −1.61665
$$690$$ −1.89447 3.37801i −0.0721213 0.128599i
$$691$$ 26.0545 0.991159 0.495580 0.868563i $$-0.334956\pi$$
0.495580 + 0.868563i $$0.334956\pi$$
$$692$$ 6.03766 6.03766i 0.229517 0.229517i
$$693$$ 0.661524 0.470533i 0.0251292 0.0178741i
$$694$$ 24.2144i 0.919167i
$$695$$ 0.802843 0.543012i 0.0304536 0.0205976i
$$696$$ 2.22032 + 2.62629i 0.0841611 + 0.0995494i
$$697$$ 4.68186 + 4.68186i 0.177338 + 0.177338i
$$698$$ 1.42288 + 1.42288i 0.0538569 + 0.0538569i
$$699$$ 20.5061 + 24.2555i 0.775611 + 0.917427i
$$700$$ −6.43528 15.0539i −0.243231 0.568985i
$$701$$ 39.5869i 1.49518i −0.664162 0.747588i $$-0.731212\pi$$
0.664162 0.747588i $$-0.268788\pi$$
$$702$$ −5.32636 + 20.7984i −0.201030 + 0.784985i
$$703$$ 31.1176 31.1176i 1.17362 1.17362i
$$704$$ −0.0826422 −0.00311469
$$705$$ −40.2413 11.3229i −1.51557 0.426443i
$$706$$ 32.5409 1.22469
$$707$$ 6.93784 6.93784i 0.260924 0.260924i
$$708$$ 1.45700 17.3942i 0.0547576 0.653713i
$$709$$ 0.0916175i 0.00344077i 0.999999 + 0.00172038i $$0.000547616\pi$$
−0.999999 + 0.00172038i $$0.999452\pi$$
$$710$$ −0.722041 + 3.73998i −0.0270977 + 0.140359i
$$711$$ −8.38771 + 49.7162i −0.314564 + 1.86450i
$$712$$ 3.99616 + 3.99616i 0.149762 + 0.149762i
$$713$$ −2.94168 2.94168i −0.110167 0.110167i
$$714$$ −32.4773 + 27.4570i −1.21543 + 1.02755i
$$715$$ −0.144735 + 0.749691i −0.00541279 + 0.0280369i
$$716$$ 10.2241i 0.382094i
$$717$$ 10.4493 + 0.875272i 0.390235 + 0.0326876i
$$718$$ −13.8264 + 13.8264i −0.515996 + 0.515996i
$$719$$ −9.47790 −0.353466 −0.176733 0.984259i $$-0.556553\pi$$
−0.176733 + 0.984259i $$0.556553\pi$$
$$720$$ 2.78149 + 6.10437i 0.103660 + 0.227496i
$$721$$ −36.6974 −1.36668
$$722$$ −16.2248 + 16.2248i −0.603825 + 0.603825i
$$723$$ −30.6001 2.56318i −1.13803 0.0953258i
$$724$$ 7.86650i 0.292356i
$$725$$ 3.69556 9.21430i 0.137250 0.342210i
$$726$$ 14.5407 12.2930i 0.539656 0.456236i
$$727$$ −16.4918 16.4918i −0.611648 0.611648i 0.331727 0.943375i $$-0.392369\pi$$
−0.943375 + 0.331727i $$0.892369\pi$$
$$728$$ −9.56646 9.56646i −0.354557 0.354557i
$$729$$ 23.6764 + 12.9780i 0.876904 + 0.480665i
$$730$$ 0.696026 0.470765i 0.0257611 0.0174238i
$$731$$ 18.0264i 0.666731i
$$732$$ −0.126676 + 1.51230i −0.00468208 + 0.0558961i
$$733$$ 14.5823 14.5823i 0.538610 0.538610i −0.384510 0.923121i $$-0.625630\pi$$
0.923121 + 0.384510i $$0.125630\pi$$
$$734$$ 8.49714 0.313635
$$735$$ 12.5707 7.04997i 0.463678 0.260042i
$$736$$ −1.00000 −0.0368605
$$737$$ −0.0634891 + 0.0634891i −0.00233865 + 0.00233865i
$$738$$ 1.53534 + 2.15854i 0.0565165 + 0.0794568i
$$739$$ 8.04723i 0.296022i 0.988986 + 0.148011i $$0.0472871\pi$$
−0.988986 + 0.148011i $$0.952713\pi$$
$$740$$ −14.9182 2.88011i −0.548405 0.105875i
$$741$$ 29.9239 + 35.3953i 1.09928 + 1.30028i
$$742$$ −23.7790 23.7790i −0.872954 0.872954i
$$743$$ 3.40804 + 3.40804i 0.125029 + 0.125029i 0.766852 0.641823i $$-0.221822\pi$$
−0.641823 + 0.766852i $$0.721822\pi$$
$$744$$ 4.65206 + 5.50266i 0.170553 + 0.201737i
$$745$$ 25.0850 + 37.0882i 0.919044 + 1.35881i
$$746$$ 26.1199i 0.956318i
$$747$$ 21.7537 + 30.5837i 0.795928 + 1.11900i
$$748$$ 0.438208 0.438208i 0.0160225 0.0160225i
$$749$$ −25.6797 −0.938315
$$750$$ 11.8072 15.3489i 0.431138 0.560464i
$$751$$ 40.5910 1.48119 0.740594 0.671953i $$-0.234544\pi$$
0.740594 + 0.671953i $$0.234544\pi$$
$$752$$ −7.63231 + 7.63231i −0.278322 + 0.278322i
$$753$$ 3.22830 38.5404i 0.117646 1.40449i
$$754$$ 8.20395i 0.298770i
$$755$$ 21.5460 + 31.8557i 0.784138 + 1.15935i
$$756$$ −14.6393 + 8.66992i −0.532426 + 0.315322i
$$757$$ 34.6920 + 34.6920i 1.26090 + 1.26090i 0.950657 + 0.310243i $$0.100411\pi$$
0.310243 + 0.950657i $$0.399589\pi$$
$$758$$ −1.56540 1.56540i −0.0568579 0.0568579i
$$759$$ −0.109311 + 0.0924137i −0.00396774 + 0.00335441i
$$760$$ 14.2194 + 2.74519i 0.515791 + 0.0995786i
$$761$$ 50.5466i 1.83231i 0.400823 + 0.916156i $$0.368724\pi$$
−0.400823 + 0.916156i $$0.631276\pi$$
$$762$$ −6.49063 0.543680i −0.235131 0.0196955i
$$763$$ −33.1457 + 33.1457i −1.19995 + 1.19995i
$$764$$ −23.2816 −0.842300
$$765$$ −47.1170 17.6195i −1.70352 0.637034i
$$766$$ −33.9433 −1.22642
$$767$$ −29.4434 + 29.4434i −1.06314 + 1.06314i
$$768$$ 1.72601 + 0.144577i 0.0622819 + 0.00521698i
$$769$$ 52.5084i 1.89350i −0.321969 0.946750i $$-0.604345\pi$$
0.321969 0.946750i $$-0.395655\pi$$
$$770$$ −0.501201 + 0.338993i −0.0180620 + 0.0122165i
$$771$$ −7.03275 + 5.94563i −0.253278 + 0.214127i
$$772$$ 13.3531 + 13.3531i 0.480588 + 0.480588i
$$773$$ 20.1139 + 20.1139i 0.723445 + 0.723445i 0.969305 0.245860i $$-0.0790704\pi$$
−0.245860 + 0.969305i $$0.579070\pi$$
$$774$$ −1.19974 + 7.11119i −0.0431238 + 0.255607i
$$775$$ 7.74302 19.3060i 0.278138 0.693491i
$$776$$ 10.3363i 0.371053i
$$777$$ 3.21664 38.4013i 0.115396 1.37764i