Properties

Label 690.2.i.f.47.13
Level $690$
Weight $2$
Character 690.47
Analytic conductor $5.510$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.i (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.13
Character \(\chi\) \(=\) 690.47
Dual form 690.2.i.f.323.13

$q$-expansion

\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(1.28054 + 1.16628i) q^{3} -1.00000i q^{4} +(1.31868 + 1.80585i) q^{5} +(1.73017 - 0.0807905i) q^{6} +(1.43599 + 1.43599i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(0.279562 + 2.98695i) q^{9} +O(q^{10})\) \(q+(0.707107 - 0.707107i) q^{2} +(1.28054 + 1.16628i) q^{3} -1.00000i q^{4} +(1.31868 + 1.80585i) q^{5} +(1.73017 - 0.0807905i) q^{6} +(1.43599 + 1.43599i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(0.279562 + 2.98695i) q^{9} +(2.20937 + 0.344476i) q^{10} -3.03746i q^{11} +(1.16628 - 1.28054i) q^{12} +(-1.30218 + 1.30218i) q^{13} +2.03079 q^{14} +(-0.417505 + 3.85041i) q^{15} -1.00000 q^{16} +(-0.0287275 + 0.0287275i) q^{17} +(2.30977 + 1.91441i) q^{18} -2.41296i q^{19} +(1.80585 - 1.31868i) q^{20} +(0.164069 + 3.51361i) q^{21} +(-2.14781 - 2.14781i) q^{22} +(0.707107 + 0.707107i) q^{23} +(-0.0807905 - 1.73017i) q^{24} +(-1.52216 + 4.76267i) q^{25} +1.84156i q^{26} +(-3.12564 + 4.15095i) q^{27} +(1.43599 - 1.43599i) q^{28} -8.32611 q^{29} +(2.42743 + 3.01787i) q^{30} +10.8038 q^{31} +(-0.707107 + 0.707107i) q^{32} +(3.54254 - 3.88958i) q^{33} +0.0406269i q^{34} +(-0.699560 + 4.48678i) q^{35} +(2.98695 - 0.279562i) q^{36} +(-0.399778 - 0.399778i) q^{37} +(-1.70622 - 1.70622i) q^{38} +(-3.18620 + 0.148780i) q^{39} +(0.344476 - 2.20937i) q^{40} -9.45696i q^{41} +(2.60051 + 2.36848i) q^{42} +(-0.108956 + 0.108956i) q^{43} -3.03746 q^{44} +(-5.02531 + 4.44368i) q^{45} +1.00000 q^{46} +(-0.341054 + 0.341054i) q^{47} +(-1.28054 - 1.16628i) q^{48} -2.87588i q^{49} +(2.29139 + 4.44404i) q^{50} +(-0.0702912 + 0.00328227i) q^{51} +(1.30218 + 1.30218i) q^{52} +(-0.120552 - 0.120552i) q^{53} +(0.725006 + 5.14532i) q^{54} +(5.48518 - 4.00544i) q^{55} -2.03079i q^{56} +(2.81420 - 3.08990i) q^{57} +(-5.88745 + 5.88745i) q^{58} -2.10585 q^{59} +(3.85041 + 0.417505i) q^{60} +10.7626 q^{61} +(7.63947 - 7.63947i) q^{62} +(-3.88777 + 4.69066i) q^{63} +1.00000i q^{64} +(-4.06869 - 0.634373i) q^{65} +(-0.245398 - 5.25530i) q^{66} +(-6.68856 - 6.68856i) q^{67} +(0.0287275 + 0.0287275i) q^{68} +(0.0807905 + 1.73017i) q^{69} +(2.67797 + 3.66730i) q^{70} -5.69670i q^{71} +(1.91441 - 2.30977i) q^{72} +(6.43032 - 6.43032i) q^{73} -0.565371 q^{74} +(-7.50381 + 4.32352i) q^{75} -2.41296 q^{76} +(4.36175 - 4.36175i) q^{77} +(-2.14778 + 2.35818i) q^{78} +5.14788i q^{79} +(-1.31868 - 1.80585i) q^{80} +(-8.84369 + 1.67007i) q^{81} +(-6.68708 - 6.68708i) q^{82} +(3.07224 + 3.07224i) q^{83} +(3.51361 - 0.164069i) q^{84} +(-0.0897600 - 0.0139950i) q^{85} +0.154087i q^{86} +(-10.6619 - 9.71061i) q^{87} +(-2.14781 + 2.14781i) q^{88} -12.0540 q^{89} +(-0.411275 + 6.69558i) q^{90} -3.73982 q^{91} +(0.707107 - 0.707107i) q^{92} +(13.8347 + 12.6004i) q^{93} +0.482323i q^{94} +(4.35744 - 3.18193i) q^{95} +(-1.73017 + 0.0807905i) q^{96} +(7.38166 + 7.38166i) q^{97} +(-2.03356 - 2.03356i) q^{98} +(9.07272 - 0.849157i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 4q^{3} + 12q^{6} + 8q^{7} + O(q^{10}) \) \( 32q + 4q^{3} + 12q^{6} + 8q^{7} - 4q^{12} - 12q^{15} - 32q^{16} + 8q^{18} - 40q^{22} + 32q^{25} + 4q^{27} + 8q^{28} - 20q^{30} + 8q^{31} + 8q^{33} + 20q^{36} - 16q^{37} + 8q^{40} - 8q^{42} - 80q^{43} - 4q^{45} + 32q^{46} - 4q^{48} + 36q^{51} + 12q^{57} - 16q^{58} - 4q^{60} + 8q^{61} + 44q^{63} + 52q^{66} + 64q^{67} + 64q^{70} - 8q^{72} - 56q^{73} - 68q^{75} - 8q^{76} + 60q^{78} - 44q^{81} - 48q^{85} - 60q^{87} - 40q^{88} - 64q^{90} + 40q^{91} + 92q^{93} - 12q^{96} - 40q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 1.28054 + 1.16628i 0.739320 + 0.673355i
\(4\) 1.00000i 0.500000i
\(5\) 1.31868 + 1.80585i 0.589733 + 0.807599i
\(6\) 1.73017 0.0807905i 0.706337 0.0329826i
\(7\) 1.43599 + 1.43599i 0.542752 + 0.542752i 0.924335 0.381583i \(-0.124621\pi\)
−0.381583 + 0.924335i \(0.624621\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0.279562 + 2.98695i 0.0931873 + 0.995649i
\(10\) 2.20937 + 0.344476i 0.698666 + 0.108933i
\(11\) 3.03746i 0.915827i −0.888997 0.457914i \(-0.848597\pi\)
0.888997 0.457914i \(-0.151403\pi\)
\(12\) 1.16628 1.28054i 0.336677 0.369660i
\(13\) −1.30218 + 1.30218i −0.361159 + 0.361159i −0.864239 0.503081i \(-0.832200\pi\)
0.503081 + 0.864239i \(0.332200\pi\)
\(14\) 2.03079 0.542752
\(15\) −0.417505 + 3.85041i −0.107799 + 0.994173i
\(16\) −1.00000 −0.250000
\(17\) −0.0287275 + 0.0287275i −0.00696745 + 0.00696745i −0.710582 0.703614i \(-0.751568\pi\)
0.703614 + 0.710582i \(0.251568\pi\)
\(18\) 2.30977 + 1.91441i 0.544418 + 0.451231i
\(19\) 2.41296i 0.553572i −0.960932 0.276786i \(-0.910731\pi\)
0.960932 0.276786i \(-0.0892693\pi\)
\(20\) 1.80585 1.31868i 0.403799 0.294866i
\(21\) 0.164069 + 3.51361i 0.0358028 + 0.766732i
\(22\) −2.14781 2.14781i −0.457914 0.457914i
\(23\) 0.707107 + 0.707107i 0.147442 + 0.147442i
\(24\) −0.0807905 1.73017i −0.0164913 0.353169i
\(25\) −1.52216 + 4.76267i −0.304431 + 0.952534i
\(26\) 1.84156i 0.361159i
\(27\) −3.12564 + 4.15095i −0.601529 + 0.798851i
\(28\) 1.43599 1.43599i 0.271376 0.271376i
\(29\) −8.32611 −1.54612 −0.773060 0.634333i \(-0.781275\pi\)
−0.773060 + 0.634333i \(0.781275\pi\)
\(30\) 2.42743 + 3.01787i 0.443187 + 0.550986i
\(31\) 10.8038 1.94043 0.970214 0.242250i \(-0.0778854\pi\)
0.970214 + 0.242250i \(0.0778854\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 3.54254 3.88958i 0.616676 0.677089i
\(34\) 0.0406269i 0.00696745i
\(35\) −0.699560 + 4.48678i −0.118247 + 0.758405i
\(36\) 2.98695 0.279562i 0.497824 0.0465937i
\(37\) −0.399778 0.399778i −0.0657230 0.0657230i 0.673481 0.739204i \(-0.264798\pi\)
−0.739204 + 0.673481i \(0.764798\pi\)
\(38\) −1.70622 1.70622i −0.276786 0.276786i
\(39\) −3.18620 + 0.148780i −0.510200 + 0.0238239i
\(40\) 0.344476 2.20937i 0.0544665 0.349333i
\(41\) 9.45696i 1.47693i −0.674293 0.738464i \(-0.735551\pi\)
0.674293 0.738464i \(-0.264449\pi\)
\(42\) 2.60051 + 2.36848i 0.401267 + 0.365465i
\(43\) −0.108956 + 0.108956i −0.0166156 + 0.0166156i −0.715366 0.698750i \(-0.753740\pi\)
0.698750 + 0.715366i \(0.253740\pi\)
\(44\) −3.03746 −0.457914
\(45\) −5.02531 + 4.44368i −0.749129 + 0.662424i
\(46\) 1.00000 0.147442
\(47\) −0.341054 + 0.341054i −0.0497478 + 0.0497478i −0.731543 0.681795i \(-0.761199\pi\)
0.681795 + 0.731543i \(0.261199\pi\)
\(48\) −1.28054 1.16628i −0.184830 0.168339i
\(49\) 2.87588i 0.410840i
\(50\) 2.29139 + 4.44404i 0.324052 + 0.628483i
\(51\) −0.0702912 + 0.00328227i −0.00984274 + 0.000459609i
\(52\) 1.30218 + 1.30218i 0.180579 + 0.180579i
\(53\) −0.120552 0.120552i −0.0165590 0.0165590i 0.698779 0.715338i \(-0.253727\pi\)
−0.715338 + 0.698779i \(0.753727\pi\)
\(54\) 0.725006 + 5.14532i 0.0986608 + 0.700190i
\(55\) 5.48518 4.00544i 0.739621 0.540093i
\(56\) 2.03079i 0.271376i
\(57\) 2.81420 3.08990i 0.372750 0.409267i
\(58\) −5.88745 + 5.88745i −0.773060 + 0.773060i
\(59\) −2.10585 −0.274159 −0.137079 0.990560i \(-0.543772\pi\)
−0.137079 + 0.990560i \(0.543772\pi\)
\(60\) 3.85041 + 0.417505i 0.497086 + 0.0538996i
\(61\) 10.7626 1.37801 0.689003 0.724758i \(-0.258049\pi\)
0.689003 + 0.724758i \(0.258049\pi\)
\(62\) 7.63947 7.63947i 0.970214 0.970214i
\(63\) −3.88777 + 4.69066i −0.489813 + 0.590968i
\(64\) 1.00000i 0.125000i
\(65\) −4.06869 0.634373i −0.504659 0.0786843i
\(66\) −0.245398 5.25530i −0.0302064 0.646883i
\(67\) −6.68856 6.68856i −0.817137 0.817137i 0.168555 0.985692i \(-0.446090\pi\)
−0.985692 + 0.168555i \(0.946090\pi\)
\(68\) 0.0287275 + 0.0287275i 0.00348373 + 0.00348373i
\(69\) 0.0807905 + 1.73017i 0.00972604 + 0.208287i
\(70\) 2.67797 + 3.66730i 0.320079 + 0.438326i
\(71\) 5.69670i 0.676074i −0.941133 0.338037i \(-0.890237\pi\)
0.941133 0.338037i \(-0.109763\pi\)
\(72\) 1.91441 2.30977i 0.225615 0.272209i
\(73\) 6.43032 6.43032i 0.752612 0.752612i −0.222354 0.974966i \(-0.571374\pi\)
0.974966 + 0.222354i \(0.0713742\pi\)
\(74\) −0.565371 −0.0657230
\(75\) −7.50381 + 4.32352i −0.866465 + 0.499237i
\(76\) −2.41296 −0.276786
\(77\) 4.36175 4.36175i 0.497067 0.497067i
\(78\) −2.14778 + 2.35818i −0.243188 + 0.267012i
\(79\) 5.14788i 0.579182i 0.957150 + 0.289591i \(0.0935193\pi\)
−0.957150 + 0.289591i \(0.906481\pi\)
\(80\) −1.31868 1.80585i −0.147433 0.201900i
\(81\) −8.84369 + 1.67007i −0.982632 + 0.185564i
\(82\) −6.68708 6.68708i −0.738464 0.738464i
\(83\) 3.07224 + 3.07224i 0.337223 + 0.337223i 0.855321 0.518098i \(-0.173360\pi\)
−0.518098 + 0.855321i \(0.673360\pi\)
\(84\) 3.51361 0.164069i 0.383366 0.0179014i
\(85\) −0.0897600 0.0139950i −0.00973584 0.00151797i
\(86\) 0.154087i 0.0166156i
\(87\) −10.6619 9.71061i −1.14308 1.04109i
\(88\) −2.14781 + 2.14781i −0.228957 + 0.228957i
\(89\) −12.0540 −1.27773 −0.638863 0.769320i \(-0.720595\pi\)
−0.638863 + 0.769320i \(0.720595\pi\)
\(90\) −0.411275 + 6.69558i −0.0433522 + 0.705777i
\(91\) −3.73982 −0.392040
\(92\) 0.707107 0.707107i 0.0737210 0.0737210i
\(93\) 13.8347 + 12.6004i 1.43460 + 1.30660i
\(94\) 0.482323i 0.0497478i
\(95\) 4.35744 3.18193i 0.447064 0.326459i
\(96\) −1.73017 + 0.0807905i −0.176584 + 0.00824565i
\(97\) 7.38166 + 7.38166i 0.749494 + 0.749494i 0.974384 0.224890i \(-0.0722023\pi\)
−0.224890 + 0.974384i \(0.572202\pi\)
\(98\) −2.03356 2.03356i −0.205420 0.205420i
\(99\) 9.07272 0.849157i 0.911842 0.0853435i
\(100\) 4.76267 + 1.52216i 0.476267 + 0.152216i
\(101\) 15.7509i 1.56727i −0.621222 0.783635i \(-0.713363\pi\)
0.621222 0.783635i \(-0.286637\pi\)
\(102\) −0.0473825 + 0.0520243i −0.00469157 + 0.00515117i
\(103\) −9.94078 + 9.94078i −0.979494 + 0.979494i −0.999794 0.0202999i \(-0.993538\pi\)
0.0202999 + 0.999794i \(0.493538\pi\)
\(104\) 1.84156 0.180579
\(105\) −6.12868 + 4.92961i −0.598098 + 0.481081i
\(106\) −0.170486 −0.0165590
\(107\) −8.28163 + 8.28163i −0.800616 + 0.800616i −0.983192 0.182576i \(-0.941556\pi\)
0.182576 + 0.983192i \(0.441556\pi\)
\(108\) 4.15095 + 3.12564i 0.399425 + 0.300765i
\(109\) 5.16166i 0.494398i −0.968965 0.247199i \(-0.920490\pi\)
0.968965 0.247199i \(-0.0795101\pi\)
\(110\) 1.04633 6.71088i 0.0997638 0.639857i
\(111\) −0.0456766 0.978185i −0.00433543 0.0928452i
\(112\) −1.43599 1.43599i −0.135688 0.135688i
\(113\) −10.2943 10.2943i −0.968407 0.968407i 0.0311086 0.999516i \(-0.490096\pi\)
−0.999516 + 0.0311086i \(0.990096\pi\)
\(114\) −0.194945 4.17483i −0.0182582 0.391008i
\(115\) −0.344476 + 2.20937i −0.0321226 + 0.206025i
\(116\) 8.32611i 0.773060i
\(117\) −4.25357 3.52549i −0.393243 0.325932i
\(118\) −1.48906 + 1.48906i −0.137079 + 0.137079i
\(119\) −0.0825048 −0.00756320
\(120\) 3.01787 2.42743i 0.275493 0.221593i
\(121\) 1.77386 0.161260
\(122\) 7.61029 7.61029i 0.689003 0.689003i
\(123\) 11.0295 12.1100i 0.994496 1.09192i
\(124\) 10.8038i 0.970214i
\(125\) −10.6079 + 3.53167i −0.948798 + 0.315882i
\(126\) 0.567733 + 6.06587i 0.0505776 + 0.540390i
\(127\) −6.32534 6.32534i −0.561283 0.561283i 0.368389 0.929672i \(-0.379910\pi\)
−0.929672 + 0.368389i \(0.879910\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) −0.266596 + 0.0124488i −0.0234725 + 0.00109605i
\(130\) −3.32557 + 2.42843i −0.291671 + 0.212987i
\(131\) 8.57676i 0.749355i 0.927155 + 0.374677i \(0.122247\pi\)
−0.927155 + 0.374677i \(0.877753\pi\)
\(132\) −3.88958 3.54254i −0.338545 0.308338i
\(133\) 3.46499 3.46499i 0.300452 0.300452i
\(134\) −9.45905 −0.817137
\(135\) −11.6177 0.170634i −0.999892 0.0146859i
\(136\) 0.0406269 0.00348373
\(137\) 11.6408 11.6408i 0.994543 0.994543i −0.00544239 0.999985i \(-0.501732\pi\)
0.999985 + 0.00544239i \(0.00173237\pi\)
\(138\) 1.28054 + 1.16628i 0.109007 + 0.0992807i
\(139\) 0.224301i 0.0190250i −0.999955 0.00951249i \(-0.996972\pi\)
0.999955 0.00951249i \(-0.00302797\pi\)
\(140\) 4.48678 + 0.699560i 0.379202 + 0.0591236i
\(141\) −0.834498 + 0.0389671i −0.0702774 + 0.00328162i
\(142\) −4.02818 4.02818i −0.338037 0.338037i
\(143\) 3.95530 + 3.95530i 0.330759 + 0.330759i
\(144\) −0.279562 2.98695i −0.0232968 0.248912i
\(145\) −10.9795 15.0357i −0.911797 1.24864i
\(146\) 9.09384i 0.752612i
\(147\) 3.35409 3.68268i 0.276641 0.303742i
\(148\) −0.399778 + 0.399778i −0.0328615 + 0.0328615i
\(149\) −5.49620 −0.450266 −0.225133 0.974328i \(-0.572282\pi\)
−0.225133 + 0.974328i \(0.572282\pi\)
\(150\) −2.24880 + 8.36319i −0.183614 + 0.682851i
\(151\) −9.44824 −0.768887 −0.384443 0.923149i \(-0.625607\pi\)
−0.384443 + 0.923149i \(0.625607\pi\)
\(152\) −1.70622 + 1.70622i −0.138393 + 0.138393i
\(153\) −0.0938387 0.0777765i −0.00758641 0.00628785i
\(154\) 6.16844i 0.497067i
\(155\) 14.2468 + 19.5101i 1.14433 + 1.56709i
\(156\) 0.148780 + 3.18620i 0.0119120 + 0.255100i
\(157\) 15.6517 + 15.6517i 1.24914 + 1.24914i 0.956100 + 0.293039i \(0.0946667\pi\)
0.293039 + 0.956100i \(0.405333\pi\)
\(158\) 3.64010 + 3.64010i 0.289591 + 0.289591i
\(159\) −0.0137736 0.294969i −0.00109232 0.0233925i
\(160\) −2.20937 0.344476i −0.174666 0.0272333i
\(161\) 2.03079i 0.160049i
\(162\) −5.07251 + 7.43435i −0.398534 + 0.584098i
\(163\) 2.69934 2.69934i 0.211429 0.211429i −0.593446 0.804874i \(-0.702233\pi\)
0.804874 + 0.593446i \(0.202233\pi\)
\(164\) −9.45696 −0.738464
\(165\) 11.6955 + 1.26815i 0.910491 + 0.0987255i
\(166\) 4.34481 0.337223
\(167\) 4.99243 4.99243i 0.386326 0.386326i −0.487049 0.873375i \(-0.661927\pi\)
0.873375 + 0.487049i \(0.161927\pi\)
\(168\) 2.36848 2.60051i 0.182732 0.200634i
\(169\) 9.60867i 0.739129i
\(170\) −0.0733659 + 0.0535739i −0.00562690 + 0.00410893i
\(171\) 7.20739 0.674573i 0.551163 0.0515859i
\(172\) 0.108956 + 0.108956i 0.00830781 + 0.00830781i
\(173\) −5.07836 5.07836i −0.386101 0.386101i 0.487193 0.873294i \(-0.338021\pi\)
−0.873294 + 0.487193i \(0.838021\pi\)
\(174\) −14.4055 + 0.672671i −1.09208 + 0.0509950i
\(175\) −9.02493 + 4.65334i −0.682221 + 0.351760i
\(176\) 3.03746i 0.228957i
\(177\) −2.69663 2.45602i −0.202691 0.184606i
\(178\) −8.52350 + 8.52350i −0.638863 + 0.638863i
\(179\) −9.09915 −0.680103 −0.340051 0.940407i \(-0.610444\pi\)
−0.340051 + 0.940407i \(0.610444\pi\)
\(180\) 4.44368 + 5.02531i 0.331212 + 0.374564i
\(181\) −25.4910 −1.89473 −0.947367 0.320150i \(-0.896267\pi\)
−0.947367 + 0.320150i \(0.896267\pi\)
\(182\) −2.64445 + 2.64445i −0.196020 + 0.196020i
\(183\) 13.7819 + 12.5522i 1.01879 + 0.927887i
\(184\) 1.00000i 0.0737210i
\(185\) 0.194757 1.24912i 0.0143188 0.0918368i
\(186\) 18.6924 0.872848i 1.37060 0.0640004i
\(187\) 0.0872586 + 0.0872586i 0.00638098 + 0.00638098i
\(188\) 0.341054 + 0.341054i 0.0248739 + 0.0248739i
\(189\) −10.4491 + 1.47234i −0.760059 + 0.107097i
\(190\) 0.831209 5.33114i 0.0603023 0.386762i
\(191\) 16.0457i 1.16103i 0.814250 + 0.580514i \(0.197149\pi\)
−0.814250 + 0.580514i \(0.802851\pi\)
\(192\) −1.16628 + 1.28054i −0.0841693 + 0.0924150i
\(193\) −5.17234 + 5.17234i −0.372313 + 0.372313i −0.868319 0.496006i \(-0.834799\pi\)
0.496006 + 0.868319i \(0.334799\pi\)
\(194\) 10.4392 0.749494
\(195\) −4.47026 5.55758i −0.320122 0.397987i
\(196\) −2.87588 −0.205420
\(197\) 14.5337 14.5337i 1.03548 1.03548i 0.0361361 0.999347i \(-0.488495\pi\)
0.999347 0.0361361i \(-0.0115050\pi\)
\(198\) 5.81493 7.01582i 0.413249 0.498593i
\(199\) 12.8549i 0.911262i 0.890169 + 0.455631i \(0.150586\pi\)
−0.890169 + 0.455631i \(0.849414\pi\)
\(200\) 4.44404 2.29139i 0.314241 0.162026i
\(201\) −0.764202 16.3657i −0.0539026 1.15435i
\(202\) −11.1375 11.1375i −0.783635 0.783635i
\(203\) −11.9562 11.9562i −0.839160 0.839160i
\(204\) 0.00328227 + 0.0702912i 0.000229805 + 0.00492137i
\(205\) 17.0778 12.4707i 1.19277 0.870993i
\(206\) 14.0584i 0.979494i
\(207\) −1.91441 + 2.30977i −0.133061 + 0.160540i
\(208\) 1.30218 1.30218i 0.0902897 0.0902897i
\(209\) −7.32927 −0.506976
\(210\) −0.847866 + 7.81939i −0.0585083 + 0.539589i
\(211\) −24.8100 −1.70799 −0.853996 0.520280i \(-0.825828\pi\)
−0.853996 + 0.520280i \(0.825828\pi\)
\(212\) −0.120552 + 0.120552i −0.00827952 + 0.00827952i
\(213\) 6.64397 7.29485i 0.455238 0.499835i
\(214\) 11.7120i 0.800616i
\(215\) −0.340436 0.0530793i −0.0232175 0.00361998i
\(216\) 5.14532 0.725006i 0.350095 0.0493304i
\(217\) 15.5142 + 15.5142i 1.05317 + 1.05317i
\(218\) −3.64985 3.64985i −0.247199 0.247199i
\(219\) 15.7338 0.734696i 1.06320 0.0496462i
\(220\) −4.00544 5.48518i −0.270047 0.369810i
\(221\) 0.0748167i 0.00503271i
\(222\) −0.723980 0.659383i −0.0485903 0.0442549i
\(223\) 6.63422 6.63422i 0.444260 0.444260i −0.449181 0.893441i \(-0.648284\pi\)
0.893441 + 0.449181i \(0.148284\pi\)
\(224\) −2.03079 −0.135688
\(225\) −14.6514 3.21513i −0.976759 0.214342i
\(226\) −14.5584 −0.968407
\(227\) −4.95555 + 4.95555i −0.328911 + 0.328911i −0.852172 0.523261i \(-0.824715\pi\)
0.523261 + 0.852172i \(0.324715\pi\)
\(228\) −3.08990 2.81420i −0.204633 0.186375i
\(229\) 11.2747i 0.745053i −0.928021 0.372527i \(-0.878491\pi\)
0.928021 0.372527i \(-0.121509\pi\)
\(230\) 1.31868 + 1.80585i 0.0869513 + 0.119074i
\(231\) 10.6724 0.498352i 0.702194 0.0327891i
\(232\) 5.88745 + 5.88745i 0.386530 + 0.386530i
\(233\) 12.5504 + 12.5504i 0.822206 + 0.822206i 0.986424 0.164218i \(-0.0525099\pi\)
−0.164218 + 0.986424i \(0.552510\pi\)
\(234\) −5.50063 + 0.514829i −0.359587 + 0.0336554i
\(235\) −1.06563 0.166149i −0.0695141 0.0108384i
\(236\) 2.10585i 0.137079i
\(237\) −6.00390 + 6.59207i −0.389995 + 0.428201i
\(238\) −0.0583397 + 0.0583397i −0.00378160 + 0.00378160i
\(239\) 1.23240 0.0797173 0.0398586 0.999205i \(-0.487309\pi\)
0.0398586 + 0.999205i \(0.487309\pi\)
\(240\) 0.417505 3.85041i 0.0269498 0.248543i
\(241\) −10.0383 −0.646625 −0.323312 0.946292i \(-0.604796\pi\)
−0.323312 + 0.946292i \(0.604796\pi\)
\(242\) 1.25431 1.25431i 0.0806301 0.0806301i
\(243\) −13.2725 8.17566i −0.851430 0.524469i
\(244\) 10.7626i 0.689003i
\(245\) 5.19340 3.79237i 0.331794 0.242286i
\(246\) −0.764033 16.3621i −0.0487129 1.04321i
\(247\) 3.14211 + 3.14211i 0.199927 + 0.199927i
\(248\) −7.63947 7.63947i −0.485107 0.485107i
\(249\) 0.351019 + 7.51724i 0.0222450 + 0.476386i
\(250\) −5.00364 + 9.99818i −0.316458 + 0.632340i
\(251\) 11.1326i 0.702686i 0.936247 + 0.351343i \(0.114275\pi\)
−0.936247 + 0.351343i \(0.885725\pi\)
\(252\) 4.69066 + 3.88777i 0.295484 + 0.244906i
\(253\) 2.14781 2.14781i 0.135031 0.135031i
\(254\) −8.94538 −0.561283
\(255\) −0.0986190 0.122607i −0.00617576 0.00767794i
\(256\) 1.00000 0.0625000
\(257\) 0.426761 0.426761i 0.0266206 0.0266206i −0.693671 0.720292i \(-0.744008\pi\)
0.720292 + 0.693671i \(0.244008\pi\)
\(258\) −0.179709 + 0.197314i −0.0111882 + 0.0122843i
\(259\) 1.14815i 0.0713426i
\(260\) −0.634373 + 4.06869i −0.0393421 + 0.252329i
\(261\) −2.32766 24.8696i −0.144079 1.53939i
\(262\) 6.06468 + 6.06468i 0.374677 + 0.374677i
\(263\) 13.9902 + 13.9902i 0.862670 + 0.862670i 0.991648 0.128977i \(-0.0411694\pi\)
−0.128977 + 0.991648i \(0.541169\pi\)
\(264\) −5.25530 + 0.245398i −0.323441 + 0.0151032i
\(265\) 0.0587283 0.376667i 0.00360765 0.0231385i
\(266\) 4.90023i 0.300452i
\(267\) −15.4357 14.0584i −0.944649 0.860363i
\(268\) −6.68856 + 6.68856i −0.408569 + 0.408569i
\(269\) −15.5476 −0.947954 −0.473977 0.880537i \(-0.657182\pi\)
−0.473977 + 0.880537i \(0.657182\pi\)
\(270\) −8.33561 + 8.09430i −0.507289 + 0.492603i
\(271\) 3.09413 0.187955 0.0939775 0.995574i \(-0.470042\pi\)
0.0939775 + 0.995574i \(0.470042\pi\)
\(272\) 0.0287275 0.0287275i 0.00174186 0.00174186i
\(273\) −4.78898 4.36169i −0.289843 0.263982i
\(274\) 16.4626i 0.994543i
\(275\) 14.4664 + 4.62348i 0.872357 + 0.278806i
\(276\) 1.73017 0.0807905i 0.104144 0.00486302i
\(277\) 4.78402 + 4.78402i 0.287444 + 0.287444i 0.836069 0.548625i \(-0.184849\pi\)
−0.548625 + 0.836069i \(0.684849\pi\)
\(278\) −0.158605 0.158605i −0.00951249 0.00951249i
\(279\) 3.02034 + 32.2705i 0.180823 + 1.93198i
\(280\) 3.66730 2.67797i 0.219163 0.160039i
\(281\) 6.07800i 0.362583i −0.983429 0.181292i \(-0.941972\pi\)
0.983429 0.181292i \(-0.0580278\pi\)
\(282\) −0.562525 + 0.617633i −0.0334979 + 0.0367795i
\(283\) 1.63214 1.63214i 0.0970206 0.0970206i −0.656931 0.753951i \(-0.728146\pi\)
0.753951 + 0.656931i \(0.228146\pi\)
\(284\) −5.69670 −0.338037
\(285\) 9.29091 + 1.00742i 0.550346 + 0.0596746i
\(286\) 5.59364 0.330759
\(287\) 13.5801 13.5801i 0.801606 0.801606i
\(288\) −2.30977 1.91441i −0.136104 0.112808i
\(289\) 16.9983i 0.999903i
\(290\) −18.3955 2.86815i −1.08022 0.168423i
\(291\) 0.843392 + 18.0616i 0.0494405 + 1.05879i
\(292\) −6.43032 6.43032i −0.376306 0.376306i
\(293\) 9.90593 + 9.90593i 0.578711 + 0.578711i 0.934548 0.355837i \(-0.115804\pi\)
−0.355837 + 0.934548i \(0.615804\pi\)
\(294\) −0.232344 4.97575i −0.0135506 0.290192i
\(295\) −2.77695 3.80284i −0.161680 0.221410i
\(296\) 0.565371i 0.0328615i
\(297\) 12.6083 + 9.49399i 0.731609 + 0.550897i
\(298\) −3.88640 + 3.88640i −0.225133 + 0.225133i
\(299\) −1.84156 −0.106500
\(300\) 4.32352 + 7.50381i 0.249619 + 0.433233i
\(301\) −0.312919 −0.0180363
\(302\) −6.68091 + 6.68091i −0.384443 + 0.384443i
\(303\) 18.3700 20.1696i 1.05533 1.15871i
\(304\) 2.41296i 0.138393i
\(305\) 14.1924 + 19.4355i 0.812655 + 1.11288i
\(306\) −0.121350 + 0.0113577i −0.00693713 + 0.000649278i
\(307\) 22.4079 + 22.4079i 1.27889 + 1.27889i 0.941292 + 0.337594i \(0.109613\pi\)
0.337594 + 0.941292i \(0.390387\pi\)
\(308\) −4.36175 4.36175i −0.248534 0.248534i
\(309\) −24.3233 + 1.13578i −1.38371 + 0.0646125i
\(310\) 23.8697 + 3.72167i 1.35571 + 0.211377i
\(311\) 22.1020i 1.25329i −0.779304 0.626646i \(-0.784427\pi\)
0.779304 0.626646i \(-0.215573\pi\)
\(312\) 2.35818 + 2.14778i 0.133506 + 0.121594i
\(313\) 3.23645 3.23645i 0.182935 0.182935i −0.609698 0.792633i \(-0.708709\pi\)
0.792633 + 0.609698i \(0.208709\pi\)
\(314\) 22.1348 1.24914
\(315\) −13.5973 0.835215i −0.766124 0.0470590i
\(316\) 5.14788 0.289591
\(317\) −11.0713 + 11.0713i −0.621826 + 0.621826i −0.945998 0.324172i \(-0.894914\pi\)
0.324172 + 0.945998i \(0.394914\pi\)
\(318\) −0.218314 0.198835i −0.0122424 0.0111501i
\(319\) 25.2902i 1.41598i
\(320\) −1.80585 + 1.31868i −0.100950 + 0.0737166i
\(321\) −20.2637 + 0.946218i −1.13101 + 0.0528128i
\(322\) 1.43599 + 1.43599i 0.0800244 + 0.0800244i
\(323\) 0.0693185 + 0.0693185i 0.00385699 + 0.00385699i
\(324\) 1.67007 + 8.84369i 0.0927818 + 0.491316i
\(325\) −4.21973 8.18396i −0.234068 0.453964i
\(326\) 3.81744i 0.211429i
\(327\) 6.01997 6.60971i 0.332905 0.365518i
\(328\) −6.68708 + 6.68708i −0.369232 + 0.369232i
\(329\) −0.979497 −0.0540014
\(330\) 9.16666 7.37322i 0.504608 0.405883i
\(331\) 27.5838 1.51614 0.758070 0.652173i \(-0.226142\pi\)
0.758070 + 0.652173i \(0.226142\pi\)
\(332\) 3.07224 3.07224i 0.168611 0.168611i
\(333\) 1.08235 1.30588i 0.0593125 0.0715616i
\(334\) 7.06036i 0.386326i
\(335\) 3.25842 20.8986i 0.178026 1.14181i
\(336\) −0.164069 3.51361i −0.00895069 0.191683i
\(337\) 16.5924 + 16.5924i 0.903845 + 0.903845i 0.995766 0.0919212i \(-0.0293008\pi\)
−0.0919212 + 0.995766i \(0.529301\pi\)
\(338\) 6.79436 + 6.79436i 0.369564 + 0.369564i
\(339\) −1.17618 25.1884i −0.0638812 1.36804i
\(340\) −0.0139950 + 0.0897600i −0.000758986 + 0.00486792i
\(341\) 32.8162i 1.77710i
\(342\) 4.61940 5.57339i 0.249789 0.301375i
\(343\) 14.1816 14.1816i 0.765737 0.765737i
\(344\) 0.154087 0.00830781
\(345\) −3.01787 + 2.42743i −0.162477 + 0.130689i
\(346\) −7.18189 −0.386101
\(347\) 9.47770 9.47770i 0.508789 0.508789i −0.405365 0.914155i \(-0.632856\pi\)
0.914155 + 0.405365i \(0.132856\pi\)
\(348\) −9.71061 + 10.6619i −0.520543 + 0.571538i
\(349\) 17.3941i 0.931085i −0.885025 0.465543i \(-0.845859\pi\)
0.885025 0.465543i \(-0.154141\pi\)
\(350\) −3.09118 + 9.67200i −0.165231 + 0.516990i
\(351\) −1.33514 9.47540i −0.0712644 0.505760i
\(352\) 2.14781 + 2.14781i 0.114478 + 0.114478i
\(353\) −21.9958 21.9958i −1.17072 1.17072i −0.982038 0.188681i \(-0.939579\pi\)
−0.188681 0.982038i \(-0.560421\pi\)
\(354\) −3.64347 + 0.170133i −0.193648 + 0.00904247i
\(355\) 10.2874 7.51214i 0.545997 0.398703i
\(356\) 12.0540i 0.638863i
\(357\) −0.105651 0.0962240i −0.00559162 0.00509271i
\(358\) −6.43407 + 6.43407i −0.340051 + 0.340051i
\(359\) 23.7395 1.25292 0.626461 0.779453i \(-0.284503\pi\)
0.626461 + 0.779453i \(0.284503\pi\)
\(360\) 6.69558 + 0.411275i 0.352888 + 0.0216761i
\(361\) 13.1776 0.693558
\(362\) −18.0249 + 18.0249i −0.947367 + 0.947367i
\(363\) 2.27150 + 2.06883i 0.119223 + 0.108585i
\(364\) 3.73982i 0.196020i
\(365\) 20.0917 + 3.13261i 1.05165 + 0.163969i
\(366\) 18.6210 0.869514i 0.973337 0.0454502i
\(367\) 20.2624 + 20.2624i 1.05769 + 1.05769i 0.998231 + 0.0594601i \(0.0189379\pi\)
0.0594601 + 0.998231i \(0.481062\pi\)
\(368\) −0.707107 0.707107i −0.0368605 0.0368605i
\(369\) 28.2474 2.64381i 1.47050 0.137631i
\(370\) −0.745544 1.02097i −0.0387590 0.0530778i
\(371\) 0.346221i 0.0179749i
\(372\) 12.6004 13.8347i 0.653298 0.717298i
\(373\) 17.2579 17.2579i 0.893581 0.893581i −0.101277 0.994858i \(-0.532293\pi\)
0.994858 + 0.101277i \(0.0322930\pi\)
\(374\) 0.123402 0.00638098
\(375\) −17.7028 7.84937i −0.914166 0.405340i
\(376\) 0.482323 0.0248739
\(377\) 10.8421 10.8421i 0.558395 0.558395i
\(378\) −6.34752 + 8.42972i −0.326481 + 0.433578i
\(379\) 15.5004i 0.796200i 0.917342 + 0.398100i \(0.130330\pi\)
−0.917342 + 0.398100i \(0.869670\pi\)
\(380\) −3.18193 4.35744i −0.163230 0.223532i
\(381\) −0.722702 15.4770i −0.0370252 0.792911i
\(382\) 11.3461 + 11.3461i 0.580514 + 0.580514i
\(383\) 24.7143 + 24.7143i 1.26284 + 1.26284i 0.949710 + 0.313131i \(0.101378\pi\)
0.313131 + 0.949710i \(0.398622\pi\)
\(384\) 0.0807905 + 1.73017i 0.00412283 + 0.0882921i
\(385\) 13.6284 + 2.12488i 0.694568 + 0.108294i
\(386\) 7.31479i 0.372313i
\(387\) −0.355906 0.294986i −0.0180917 0.0149950i
\(388\) 7.38166 7.38166i 0.374747 0.374747i
\(389\) 12.7778 0.647858 0.323929 0.946081i \(-0.394996\pi\)
0.323929 + 0.946081i \(0.394996\pi\)
\(390\) −7.09075 0.768858i −0.359054 0.0389327i
\(391\) −0.0406269 −0.00205459
\(392\) −2.03356 + 2.03356i −0.102710 + 0.102710i
\(393\) −10.0029 + 10.9829i −0.504582 + 0.554013i
\(394\) 20.5538i 1.03548i
\(395\) −9.29628 + 6.78842i −0.467747 + 0.341563i
\(396\) −0.849157 9.07272i −0.0426718 0.455921i
\(397\) −20.0396 20.0396i −1.00576 1.00576i −0.999983 0.00577503i \(-0.998162\pi\)
−0.00577503 0.999983i \(-0.501838\pi\)
\(398\) 9.08981 + 9.08981i 0.455631 + 0.455631i
\(399\) 8.47821 0.395892i 0.424441 0.0198194i
\(400\) 1.52216 4.76267i 0.0761078 0.238134i
\(401\) 3.91057i 0.195284i 0.995222 + 0.0976422i \(0.0311301\pi\)
−0.995222 + 0.0976422i \(0.968870\pi\)
\(402\) −12.1127 11.0319i −0.604126 0.550223i
\(403\) −14.0685 + 14.0685i −0.700803 + 0.700803i
\(404\) −15.7509 −0.783635
\(405\) −14.6779 13.7680i −0.729351 0.684139i
\(406\) −16.9086 −0.839160
\(407\) −1.21431 + 1.21431i −0.0601909 + 0.0601909i
\(408\) 0.0520243 + 0.0473825i 0.00257559 + 0.00234578i
\(409\) 8.76129i 0.433218i −0.976258 0.216609i \(-0.930500\pi\)
0.976258 0.216609i \(-0.0694996\pi\)
\(410\) 3.25770 20.8940i 0.160886 1.03188i
\(411\) 28.4830 1.33002i 1.40497 0.0656052i
\(412\) 9.94078 + 9.94078i 0.489747 + 0.489747i
\(413\) −3.02398 3.02398i −0.148800 0.148800i
\(414\) 0.279562 + 2.98695i 0.0137397 + 0.146800i
\(415\) −1.49668 + 9.59931i −0.0734693 + 0.471212i
\(416\) 1.84156i 0.0902897i
\(417\) 0.261599 0.287227i 0.0128106 0.0140655i
\(418\) −5.18258 + 5.18258i −0.253488 + 0.253488i
\(419\) −14.3441 −0.700754 −0.350377 0.936609i \(-0.613946\pi\)
−0.350377 + 0.936609i \(0.613946\pi\)
\(420\) 4.92961 + 6.12868i 0.240541 + 0.299049i
\(421\) −8.54877 −0.416641 −0.208321 0.978061i \(-0.566800\pi\)
−0.208321 + 0.978061i \(0.566800\pi\)
\(422\) −17.5433 + 17.5433i −0.853996 + 0.853996i
\(423\) −1.11405 0.923363i −0.0541672 0.0448955i
\(424\) 0.170486i 0.00827952i
\(425\) −0.0930921 0.180548i −0.00451563 0.00875785i
\(426\) −0.460240 9.85624i −0.0222987 0.477536i
\(427\) 15.4549 + 15.4549i 0.747916 + 0.747916i
\(428\) 8.28163 + 8.28163i 0.400308 + 0.400308i
\(429\) 0.451914 + 9.67793i 0.0218186 + 0.467255i
\(430\) −0.278257 + 0.203192i −0.0134188 + 0.00979878i
\(431\) 34.3396i 1.65408i 0.562141 + 0.827041i \(0.309978\pi\)
−0.562141 + 0.827041i \(0.690022\pi\)
\(432\) 3.12564 4.15095i 0.150382 0.199713i
\(433\) −12.5838 + 12.5838i −0.604740 + 0.604740i −0.941567 0.336827i \(-0.890646\pi\)
0.336827 + 0.941567i \(0.390646\pi\)
\(434\) 21.9404 1.05317
\(435\) 3.47619 32.0590i 0.166671 1.53711i
\(436\) −5.16166 −0.247199
\(437\) 1.70622 1.70622i 0.0816197 0.0816197i
\(438\) 10.6060 11.6450i 0.506774 0.556421i
\(439\) 15.6542i 0.747133i −0.927603 0.373567i \(-0.878135\pi\)
0.927603 0.373567i \(-0.121865\pi\)
\(440\) −6.71088 1.04633i −0.319929 0.0498819i
\(441\) 8.59010 0.803987i 0.409052 0.0382851i
\(442\) −0.0529034 0.0529034i −0.00251636 0.00251636i
\(443\) 21.4453 + 21.4453i 1.01890 + 1.01890i 0.999818 + 0.0190784i \(0.00607322\pi\)
0.0190784 + 0.999818i \(0.493927\pi\)
\(444\) −0.978185 + 0.0456766i −0.0464226 + 0.00216772i
\(445\) −15.8955 21.7677i −0.753517 1.03189i
\(446\) 9.38220i 0.444260i
\(447\) −7.03810 6.41013i −0.332891 0.303189i
\(448\) −1.43599 + 1.43599i −0.0678440 + 0.0678440i
\(449\) −19.2237 −0.907224 −0.453612 0.891199i \(-0.649865\pi\)
−0.453612 + 0.891199i \(0.649865\pi\)
\(450\) −12.6335 + 8.08665i −0.595550 + 0.381208i
\(451\) −28.7251 −1.35261
\(452\) −10.2943 + 10.2943i −0.484204 + 0.484204i
\(453\) −12.0988 11.0193i −0.568453 0.517733i
\(454\) 7.00820i 0.328911i
\(455\) −4.93163 6.75353i −0.231198 0.316611i
\(456\) −4.17483 + 0.194945i −0.195504 + 0.00912912i
\(457\) −11.6854 11.6854i −0.546620 0.546620i 0.378842 0.925461i \(-0.376322\pi\)
−0.925461 + 0.378842i \(0.876322\pi\)
\(458\) −7.97242 7.97242i −0.372527 0.372527i
\(459\) −0.0294547 0.209038i −0.00137483 0.00975708i
\(460\) 2.20937 + 0.344476i 0.103013 + 0.0160613i
\(461\) 30.4595i 1.41864i 0.704886 + 0.709320i \(0.250998\pi\)
−0.704886 + 0.709320i \(0.749002\pi\)
\(462\) 7.19416 7.89893i 0.334703 0.367492i
\(463\) 9.14602 9.14602i 0.425052 0.425052i −0.461887 0.886939i \(-0.652827\pi\)
0.886939 + 0.461887i \(0.152827\pi\)
\(464\) 8.32611 0.386530
\(465\) −4.51066 + 41.5993i −0.209177 + 1.92912i
\(466\) 17.7490 0.822206
\(467\) −27.1900 + 27.1900i −1.25820 + 1.25820i −0.306251 + 0.951951i \(0.599075\pi\)
−0.951951 + 0.306251i \(0.900925\pi\)
\(468\) −3.52549 + 4.25357i −0.162966 + 0.196621i
\(469\) 19.2094i 0.887006i
\(470\) −0.871000 + 0.636030i −0.0401762 + 0.0293379i
\(471\) 1.78828 + 38.2969i 0.0823998 + 1.76463i
\(472\) 1.48906 + 1.48906i 0.0685397 + 0.0685397i
\(473\) 0.330949 + 0.330949i 0.0152170 + 0.0152170i
\(474\) 0.415900 + 8.90669i 0.0191029 + 0.409098i
\(475\) 11.4922 + 3.67291i 0.527296 + 0.168524i
\(476\) 0.0825048i 0.00378160i
\(477\) 0.326380 0.393783i 0.0149439 0.0180301i
\(478\) 0.871438 0.871438i 0.0398586 0.0398586i
\(479\) −7.60429 −0.347449 −0.173724 0.984794i \(-0.555580\pi\)
−0.173724 + 0.984794i \(0.555580\pi\)
\(480\) −2.42743 3.01787i −0.110797 0.137746i
\(481\) 1.04116 0.0474729
\(482\) −7.09816 + 7.09816i −0.323312 + 0.323312i
\(483\) −2.36848 + 2.60051i −0.107770 + 0.118327i
\(484\) 1.77386i 0.0806301i
\(485\) −3.59607 + 23.0642i −0.163289 + 1.04729i
\(486\) −15.1661 + 3.60399i −0.687949 + 0.163480i
\(487\) 18.0300 + 18.0300i 0.817017 + 0.817017i 0.985675 0.168658i \(-0.0539433\pi\)
−0.168658 + 0.985675i \(0.553943\pi\)
\(488\) −7.61029 7.61029i −0.344502 0.344502i
\(489\) 6.60481 0.308413i 0.298680 0.0139469i
\(490\) 0.990673 6.35390i 0.0447541 0.287040i
\(491\) 4.29319i 0.193749i −0.995297 0.0968745i \(-0.969115\pi\)
0.995297 0.0968745i \(-0.0308845\pi\)
\(492\) −12.1100 11.0295i −0.545961 0.497248i
\(493\) 0.239189 0.239189i 0.0107725 0.0107725i
\(494\) 4.44361 0.199927
\(495\) 13.4975 + 15.2642i 0.606666 + 0.686073i
\(496\) −10.8038 −0.485107
\(497\) 8.18039 8.18039i 0.366941 0.366941i
\(498\) 5.56370 + 5.06728i 0.249315 + 0.227070i
\(499\) 11.6589i 0.521925i −0.965349 0.260963i \(-0.915960\pi\)
0.965349 0.260963i \(-0.0840399\pi\)
\(500\) 3.53167 + 10.6079i 0.157941 + 0.474399i
\(501\) 12.2156 0.570410i 0.545753 0.0254841i
\(502\) 7.87197 + 7.87197i 0.351343 + 0.351343i
\(503\) −21.7405 21.7405i −0.969360 0.969360i 0.0301846 0.999544i \(-0.490390\pi\)
−0.999544 + 0.0301846i \(0.990390\pi\)
\(504\) 6.06587 0.567733i 0.270195 0.0252888i
\(505\) 28.4436 20.7704i 1.26572 0.924270i
\(506\) 3.03746i 0.135031i
\(507\) −11.2064 + 12.3043i −0.497696 + 0.546452i
\(508\) −6.32534 + 6.32534i −0.280642 + 0.280642i
\(509\) 36.4307 1.61476 0.807381 0.590031i \(-0.200884\pi\)
0.807381 + 0.590031i \(0.200884\pi\)
\(510\) −0.156430 0.0169619i −0.00692685 0.000751086i
\(511\) 18.4677 0.816963
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 10.0161 + 7.54205i 0.442221 + 0.332990i
\(514\) 0.603532i 0.0266206i
\(515\) −31.0602 4.84278i −1.36868 0.213398i
\(516\) 0.0124488 + 0.266596i 0.000548027 + 0.0117362i
\(517\) 1.03594 + 1.03594i 0.0455604 + 0.0455604i
\(518\) −0.811865 0.811865i −0.0356713 0.0356713i
\(519\) −0.580229 12.4259i −0.0254692 0.545435i
\(520\) 2.42843 + 3.32557i 0.106494 + 0.145836i
\(521\) 40.9950i 1.79602i 0.439972 + 0.898012i \(0.354989\pi\)
−0.439972 + 0.898012i \(0.645011\pi\)
\(522\) −19.2314 15.9396i −0.841735 0.697657i
\(523\) −11.8550 + 11.8550i −0.518381 + 0.518381i −0.917081 0.398700i \(-0.869461\pi\)
0.398700 + 0.917081i \(0.369461\pi\)
\(524\) 8.57676 0.374677
\(525\) −16.9839 4.56685i −0.741238 0.199314i
\(526\) 19.7851 0.862670
\(527\) −0.310368 + 0.310368i −0.0135198 + 0.0135198i
\(528\) −3.54254 + 3.88958i −0.154169 + 0.169272i
\(529\) 1.00000i 0.0434783i
\(530\) −0.224817 0.307871i −0.00976541 0.0133731i
\(531\) −0.588717 6.29007i −0.0255481 0.272966i
\(532\) −3.46499 3.46499i −0.150226 0.150226i
\(533\) 12.3146 + 12.3146i 0.533406 + 0.533406i
\(534\) −20.8555 + 0.973853i −0.902506 + 0.0421427i
\(535\) −25.8762 4.03451i −1.11872 0.174427i
\(536\) 9.45905i 0.408569i
\(537\) −11.6518 10.6122i −0.502813 0.457950i
\(538\) −10.9938 + 10.9938i −0.473977 + 0.473977i
\(539\) −8.73536 −0.376259
\(540\) −0.170634 + 11.6177i −0.00734294 + 0.499946i
\(541\) −18.7415 −0.805758 −0.402879 0.915253i \(-0.631991\pi\)
−0.402879 + 0.915253i \(0.631991\pi\)
\(542\) 2.18788 2.18788i 0.0939775 0.0939775i
\(543\) −32.6423 29.7298i −1.40081 1.27583i
\(544\) 0.0406269i 0.00174186i
\(545\) 9.32117 6.80659i 0.399275 0.291562i
\(546\) −6.47051 + 0.302142i −0.276912 + 0.0129305i
\(547\) 3.00042 + 3.00042i 0.128288 + 0.128288i 0.768336 0.640047i \(-0.221085\pi\)
−0.640047 + 0.768336i \(0.721085\pi\)
\(548\) −11.6408 11.6408i −0.497271 0.497271i
\(549\) 3.00881 + 32.1472i 0.128413 + 1.37201i
\(550\) 13.4986 6.96000i 0.575582 0.296775i
\(551\) 20.0906i 0.855888i
\(552\) 1.16628 1.28054i 0.0496404 0.0545034i
\(553\) −7.39230 + 7.39230i −0.314352 + 0.314352i
\(554\) 6.76562 0.287444
\(555\) 1.70622 1.37240i 0.0724249 0.0582551i
\(556\) −0.224301 −0.00951249
\(557\) 21.5167 21.5167i 0.911692 0.911692i −0.0847134 0.996405i \(-0.526997\pi\)
0.996405 + 0.0847134i \(0.0269975\pi\)
\(558\) 24.9544 + 20.6830i 1.05640 + 0.875580i
\(559\) 0.283760i 0.0120018i
\(560\) 0.699560 4.48678i 0.0295618 0.189601i
\(561\) 0.00996974 + 0.213506i 0.000420923 + 0.00901425i
\(562\) −4.29779 4.29779i −0.181292 0.181292i
\(563\) 5.98181 + 5.98181i 0.252103 + 0.252103i 0.821832 0.569729i \(-0.192952\pi\)
−0.569729 + 0.821832i \(0.692952\pi\)
\(564\) 0.0389671 + 0.834498i 0.00164081 + 0.0351387i
\(565\) 5.01501 32.1649i 0.210983 1.35319i
\(566\) 2.30819i 0.0970206i
\(567\) −15.0976 10.3012i −0.634041 0.432611i
\(568\) −4.02818 + 4.02818i −0.169019 + 0.169019i
\(569\) −20.4479 −0.857222 −0.428611 0.903489i \(-0.640997\pi\)
−0.428611 + 0.903489i \(0.640997\pi\)
\(570\) 7.28202 5.85731i 0.305010 0.245336i
\(571\) −24.0739 −1.00746 −0.503730 0.863861i \(-0.668039\pi\)
−0.503730 + 0.863861i \(0.668039\pi\)
\(572\) 3.95530 3.95530i 0.165380 0.165380i
\(573\) −18.7139 + 20.5472i −0.781784 + 0.858372i
\(574\) 19.2051i 0.801606i
\(575\) −4.44404 + 2.29139i −0.185329 + 0.0955576i
\(576\) −2.98695 + 0.279562i −0.124456 + 0.0116484i
\(577\) −8.20948 8.20948i −0.341765 0.341765i 0.515266 0.857031i \(-0.327693\pi\)
−0.857031 + 0.515266i \(0.827693\pi\)
\(578\) 12.0196 + 12.0196i 0.499951 + 0.499951i
\(579\) −12.6558 + 0.590966i −0.525957 + 0.0245597i
\(580\) −15.0357 + 10.9795i −0.624322 + 0.455899i
\(581\) 8.82341i 0.366057i
\(582\) 13.3679 + 12.1751i 0.554116 + 0.504675i
\(583\) −0.366170 + 0.366170i −0.0151652 + 0.0151652i
\(584\) −9.09384 −0.376306
\(585\) 0.757387 12.3303i 0.0313141 0.509795i
\(586\) 14.0091 0.578711
\(587\) −29.6663 + 29.6663i −1.22446 + 1.22446i −0.258426 + 0.966031i \(0.583204\pi\)
−0.966031 + 0.258426i \(0.916796\pi\)
\(588\) −3.68268 3.35409i −0.151871 0.138321i
\(589\) 26.0693i 1.07417i
\(590\) −4.65262 0.725417i −0.191545 0.0298649i
\(591\) 35.5614 1.66055i 1.46280 0.0683058i
\(592\) 0.399778 + 0.399778i 0.0164308 + 0.0164308i
\(593\) −28.7282 28.7282i −1.17972 1.17972i −0.979814 0.199911i \(-0.935935\pi\)
−0.199911 0.979814i \(-0.564065\pi\)
\(594\) 15.6287 2.20217i 0.641253 0.0903562i
\(595\) −0.108798 0.148991i −0.00446026 0.00610803i
\(596\) 5.49620i 0.225133i
\(597\) −14.9925 + 16.4613i −0.613603 + 0.673714i
\(598\) −1.30218 + 1.30218i −0.0532500 + 0.0532500i
\(599\) 46.9570 1.91861 0.959305 0.282371i \(-0.0911211\pi\)
0.959305 + 0.282371i \(0.0911211\pi\)
\(600\) 8.36319 + 2.24880i 0.341426 + 0.0918069i
\(601\) −18.4761 −0.753656 −0.376828 0.926283i \(-0.622985\pi\)
−0.376828 + 0.926283i \(0.622985\pi\)
\(602\) −0.221267 + 0.221267i −0.00901817 + 0.00901817i
\(603\) 18.1085 21.8482i 0.737435 0.889728i
\(604\) 9.44824i 0.384443i
\(605\) 2.33916 + 3.20332i 0.0951004 + 0.130234i
\(606\) −1.27252 27.2516i −0.0516926 1.10702i
\(607\) −29.6024 29.6024i −1.20152 1.20152i −0.973703 0.227821i \(-0.926840\pi\)
−0.227821 0.973703i \(-0.573160\pi\)
\(608\) 1.70622 + 1.70622i 0.0691965 + 0.0691965i
\(609\) −1.36606 29.2547i −0.0553553 1.18546i
\(610\) 23.7786 + 3.70745i 0.962766 + 0.150110i
\(611\) 0.888224i 0.0359337i
\(612\) −0.0777765 + 0.0938387i −0.00314393 + 0.00379321i
\(613\) −26.0428 + 26.0428i −1.05186 + 1.05186i −0.0532791 + 0.998580i \(0.516967\pi\)
−0.998580 + 0.0532791i \(0.983033\pi\)
\(614\) 31.6895 1.27889
\(615\) 36.4132 + 3.94832i 1.46832 + 0.159212i
\(616\) −6.16844 −0.248534
\(617\) −9.82533 + 9.82533i −0.395553 + 0.395553i −0.876661 0.481108i \(-0.840234\pi\)
0.481108 + 0.876661i \(0.340234\pi\)
\(618\) −16.3961 + 18.0023i −0.659547 + 0.724159i
\(619\) 11.5924i 0.465937i −0.972484 0.232968i \(-0.925156\pi\)
0.972484 0.232968i \(-0.0748438\pi\)
\(620\) 19.5101 14.2468i 0.783543 0.572167i
\(621\) −5.14532 + 0.725006i −0.206475 + 0.0290935i
\(622\) −15.6285 15.6285i −0.626646 0.626646i
\(623\) −17.3095 17.3095i −0.693489 0.693489i
\(624\) 3.18620 0.148780i 0.127550 0.00595598i
\(625\) −20.3661 14.4991i −0.814644 0.579962i
\(626\) 4.57703i 0.182935i
\(627\) −9.38542 8.54801i −0.374818 0.341375i
\(628\) 15.6517 15.6517i 0.624570 0.624570i
\(629\) 0.0229693 0.000915844
\(630\) −10.2054 + 9.02419i −0.406591 + 0.359532i
\(631\) −24.8506 −0.989288 −0.494644 0.869096i \(-0.664702\pi\)
−0.494644 + 0.869096i \(0.664702\pi\)
\(632\) 3.64010 3.64010i 0.144796 0.144796i
\(633\) −31.7702 28.9355i −1.26275 1.15008i
\(634\) 15.6572i 0.621826i
\(635\) 3.08147 19.7637i 0.122285 0.784299i
\(636\) −0.294969 + 0.0137736i −0.0116963 + 0.000546160i
\(637\) 3.74491 + 3.74491i 0.148379 + 0.148379i
\(638\) 17.8829 + 17.8829i 0.707989 + 0.707989i
\(639\) 17.0157 1.59258i 0.673132 0.0630016i
\(640\) −0.344476 + 2.20937i −0.0136166 + 0.0873332i
\(641\) 43.6697i 1.72485i 0.506186 + 0.862424i \(0.331055\pi\)
−0.506186 + 0.862424i \(0.668945\pi\)
\(642\) −13.6595 + 14.9977i −0.539098 + 0.591911i
\(643\) 4.13381 4.13381i 0.163021 0.163021i −0.620882 0.783904i \(-0.713226\pi\)
0.783904 + 0.620882i \(0.213226\pi\)
\(644\) 2.03079 0.0800244
\(645\) −0.374036 0.465015i −0.0147277 0.0183100i
\(646\) 0.0980312 0.00385699
\(647\) −24.4013 + 24.4013i −0.959316 + 0.959316i −0.999204 0.0398886i \(-0.987300\pi\)
0.0398886 + 0.999204i \(0.487300\pi\)
\(648\) 7.43435 + 5.07251i 0.292049 + 0.199267i
\(649\) 6.39644i 0.251082i
\(650\) −8.77073 2.80313i −0.344016 0.109948i
\(651\) 1.77257 + 37.9605i 0.0694727 + 1.48779i
\(652\) −2.69934 2.69934i −0.105714 0.105714i
\(653\) −3.78364 3.78364i −0.148065 0.148065i 0.629188 0.777253i \(-0.283388\pi\)
−0.777253 + 0.629188i \(0.783388\pi\)
\(654\) −0.417014 8.93053i −0.0163065 0.349211i
\(655\) −15.4883 + 11.3100i −0.605178 + 0.441919i
\(656\) 9.45696i 0.369232i
\(657\) 21.0047 + 17.4093i 0.819471 + 0.679203i
\(658\) −0.692609 + 0.692609i −0.0270007 + 0.0270007i
\(659\) 21.1564 0.824137 0.412069 0.911153i \(-0.364806\pi\)
0.412069 + 0.911153i \(0.364806\pi\)
\(660\) 1.26815 11.6955i 0.0493628 0.455245i
\(661\) −13.6642 −0.531475 −0.265737 0.964045i \(-0.585615\pi\)
−0.265737 + 0.964045i \(0.585615\pi\)
\(662\) 19.5047 19.5047i 0.758070 0.758070i
\(663\) 0.0872575 0.0958057i 0.00338880 0.00372078i
\(664\) 4.34481i 0.168611i
\(665\) 10.8264 + 1.68801i 0.419831 + 0.0654584i
\(666\) −0.158056 1.68873i −0.00612455 0.0654370i
\(667\) −5.88745 5.88745i −0.227963 0.227963i
\(668\) −4.99243 4.99243i −0.193163 0.193163i
\(669\) 16.2328 0.757993i 0.627595 0.0293057i
\(670\) −12.4735 17.0816i −0.481892 0.659919i
\(671\) 32.6908i 1.26202i
\(672\) −2.60051 2.36848i −0.100317 0.0913662i
\(673\) −17.2276 + 17.2276i −0.664074 + 0.664074i −0.956338 0.292264i \(-0.905592\pi\)
0.292264 + 0.956338i \(0.405592\pi\)
\(674\) 23.4652 0.903845
\(675\) −15.0119 21.2048i −0.577809 0.816172i
\(676\) 9.60867 0.369564
\(677\) 8.11519 8.11519i 0.311892 0.311892i −0.533750 0.845642i \(-0.679218\pi\)
0.845642 + 0.533750i \(0.179218\pi\)
\(678\) −18.6425 16.9792i −0.715963 0.652082i
\(679\) 21.1999i 0.813579i
\(680\) 0.0535739 + 0.0733659i 0.00205447 + 0.00281345i
\(681\) −12.1253 + 0.566196i −0.464644 + 0.0216967i
\(682\) −23.2046 23.2046i −0.888548 0.888548i
\(683\) −14.2948 14.2948i −0.546975 0.546975i 0.378589 0.925565i \(-0.376409\pi\)
−0.925565 + 0.378589i \(0.876409\pi\)
\(684\) −0.674573 7.20739i −0.0257929 0.275582i
\(685\) 36.3721 + 5.67098i 1.38971 + 0.216677i
\(686\) 20.0559i 0.765737i
\(687\) 13.1495 14.4377i 0.501685 0.550833i
\(688\) 0.108956 0.108956i 0.00415391 0.00415391i
\(689\) 0.313959 0.0119609
\(690\) −0.417505 + 3.85041i −0.0158941 + 0.146583i
\(691\) 5.32354 0.202517 0.101258 0.994860i \(-0.467713\pi\)
0.101258 + 0.994860i \(0.467713\pi\)
\(692\) −5.07836 + 5.07836i −0.193050 + 0.193050i
\(693\) 14.2477 + 11.8089i 0.541225 + 0.448584i
\(694\) 13.4035i 0.508789i
\(695\) 0.405053 0.295782i 0.0153646 0.0112197i
\(696\) 0.672671 + 14.4055i 0.0254975 + 0.546041i
\(697\) 0.271675 + 0.271675i 0.0102904 + 0.0102904i
\(698\) −12.2995 12.2995i −0.465543 0.465543i
\(699\) 1.43395 + 30.7087i 0.0542370 + 1.16151i
\(700\) 4.65334 + 9.02493i 0.175880 + 0.341110i
\(701\) 37.7240i 1.42482i −0.701765 0.712408i \(-0.747604\pi\)
0.701765 0.712408i \(-0.252396\pi\)
\(702\) −7.64421 5.75604i −0.288512 0.217248i
\(703\) −0.964649 + 0.964649i −0.0363824 + 0.0363824i
\(704\) 3.03746 0.114478
\(705\) −1.17081 1.45559i −0.0440951 0.0548207i
\(706\) −31.1068 −1.17072
\(707\) 22.6180 22.6180i 0.850639 0.850639i
\(708\) −2.45602 + 2.69663i −0.0923030 + 0.101345i
\(709\) 17.6180i 0.661657i −0.943691 0.330828i \(-0.892672\pi\)
0.943691 0.330828i \(-0.107328\pi\)
\(710\) 1.96238 12.5862i 0.0736468 0.472350i
\(711\) −15.3764 + 1.43915i −0.576662 + 0.0539724i
\(712\) 8.52350 + 8.52350i 0.319432 + 0.319432i
\(713\) 7.63947 + 7.63947i 0.286100 + 0.286100i
\(714\) −0.142747 + 0.00666560i −0.00534217 + 0.000249454i
\(715\) −1.92688 + 12.3585i −0.0720612 + 0.462180i
\(716\) 9.09915i 0.340051i
\(717\) 1.57814 + 1.43733i 0.0589366 + 0.0536780i
\(718\) 16.7863 16.7863i 0.626461 0.626461i
\(719\) 23.4101 0.873050 0.436525 0.899692i \(-0.356209\pi\)
0.436525 + 0.899692i \(0.356209\pi\)
\(720\) 5.02531 4.44368i 0.187282 0.165606i
\(721\) −28.5497 −1.06325
\(722\) 9.31797 9.31797i 0.346779 0.346779i
\(723\) −12.8545 11.7075i −0.478062 0.435408i
\(724\) 25.4910i 0.947367i
\(725\) 12.6736 39.6545i 0.470687 1.47273i
\(726\) 3.06908 0.143311i 0.113904 0.00531878i
\(727\) −1.31281 1.31281i −0.0486893 0.0486893i 0.682343 0.731032i \(-0.260961\pi\)
−0.731032 + 0.682343i \(0.760961\pi\)
\(728\) 2.64445 + 2.64445i 0.0980099 + 0.0980099i
\(729\) −7.46078 25.9487i −0.276325 0.961064i
\(730\) 16.4221 11.9919i 0.607808 0.443840i
\(731\) 0.00626007i 0.000231537i
\(732\) 12.5522 13.7819i 0.463944 0.509394i
\(733\) 33.1490 33.1490i 1.22439 1.22439i 0.258332 0.966056i \(-0.416827\pi\)
0.966056 0.258332i \(-0.0831728\pi\)
\(734\) 28.6554 1.05769
\(735\) 11.0733 + 1.20069i 0.408446 + 0.0442883i
\(736\) −1.00000 −0.0368605
\(737\) −20.3162 + 20.3162i −0.748357 + 0.748357i
\(738\) 18.1045 21.8434i 0.666435 0.804066i
\(739\) 20.5449i 0.755758i 0.925855 + 0.377879i \(0.123346\pi\)
−0.925855 + 0.377879i \(0.876654\pi\)
\(740\) −1.24912 0.194757i −0.0459184 0.00715941i
\(741\) 0.359002 + 7.68818i 0.0131883 + 0.282432i
\(742\) −0.244815 0.244815i −0.00898746 0.00898746i
\(743\) 23.4804 + 23.4804i 0.861411 + 0.861411i 0.991502 0.130091i \(-0.0415269\pi\)
−0.130091 + 0.991502i \(0.541527\pi\)
\(744\) −0.872848 18.6924i −0.0320002 0.685298i
\(745\) −7.24774 9.92529i −0.265537 0.363635i
\(746\) 24.4064i 0.893581i
\(747\) −8.31774 + 10.0355i −0.304330 + 0.367180i
\(748\) 0.0872586 0.0872586i 0.00319049 0.00319049i
\(749\) −23.7846 −0.869072
\(750\) −18.0681 + 6.96740i −0.659753 + 0.254413i
\(751\) 9.33331 0.340577 0.170289 0.985394i \(-0.445530\pi\)
0.170289 + 0.985394i \(0.445530\pi\)
\(752\) 0.341054 0.341054i 0.0124369 0.0124369i
\(753\) −12.9838 + 14.2558i −0.473157 + 0.519510i
\(754\) 15.3330i 0.558395i
\(755\) −12.4592 17.0621i −0.453437 0.620952i
\(756\) 1.47234 + 10.4491i 0.0535483 + 0.380030i
\(757\) −7.70849 7.70849i −0.280170 0.280170i 0.553007 0.833177i \(-0.313480\pi\)
−0.833177 + 0.553007i \(0.813480\pi\)
\(758\) 10.9604 + 10.9604i 0.398100 + 0.398100i
\(759\) 5.25530 0.245398i 0.190755 0.00890737i
\(760\) −5.33114 0.831209i −0.193381 0.0301511i
\(761\) 5.80591i 0.210464i −0.994448 0.105232i \(-0.966441\pi\)
0.994448 0.105232i \(-0.0335586\pi\)
\(762\) −11.4549 10.4329i −0.414968 0.377943i
\(763\) 7.41208 7.41208i 0.268335 0.268335i
\(764\) 16.0457 0.580514
\(765\) 0.0167088 0.272021i 0.000604109 0.00983493i
\(766\) 34.9513 1.26284
\(767\) 2.74219 2.74219i 0.0990148 0.0990148i
\(768\) 1.28054 + 1.16628i 0.0462075 + 0.0420847i
\(769\) 9.81402i 0.353903i −0.984220 0.176951i \(-0.943376\pi\)
0.984220 0.176951i \(-0.0566235\pi\)
\(770\) 11.1393 8.13422i 0.401431 0.293137i
\(771\) 1.04421 0.0487597i 0.0376063 0.00175604i
\(772\) 5.17234 + 5.17234i 0.186156 + 0.186156i
\(773\) 4.72645 + 4.72645i 0.169999 + 0.169999i 0.786979 0.616980i \(-0.211644\pi\)
−0.616980 + 0.786979i \(0.711644\pi\)
\(774\) −0.460250 + 0.0430769i −0.0165433 + 0.00154837i
\(775\) −16.4451 + 51.4552i −0.590726 + 1.84832i
\(776\) 10.4392i 0.374747i
\(777\) 1.33907 1.47025i 0.0480389