Properties

Label 690.2.i.f.323.13
Level $690$
Weight $2$
Character 690.323
Analytic conductor $5.510$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.i (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 323.13
Character \(\chi\) \(=\) 690.323
Dual form 690.2.i.f.47.13

$q$-expansion

\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +(1.28054 - 1.16628i) q^{3} +1.00000i q^{4} +(1.31868 - 1.80585i) q^{5} +(1.73017 + 0.0807905i) q^{6} +(1.43599 - 1.43599i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(0.279562 - 2.98695i) q^{9} +O(q^{10})\) \(q+(0.707107 + 0.707107i) q^{2} +(1.28054 - 1.16628i) q^{3} +1.00000i q^{4} +(1.31868 - 1.80585i) q^{5} +(1.73017 + 0.0807905i) q^{6} +(1.43599 - 1.43599i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(0.279562 - 2.98695i) q^{9} +(2.20937 - 0.344476i) q^{10} +3.03746i q^{11} +(1.16628 + 1.28054i) q^{12} +(-1.30218 - 1.30218i) q^{13} +2.03079 q^{14} +(-0.417505 - 3.85041i) q^{15} -1.00000 q^{16} +(-0.0287275 - 0.0287275i) q^{17} +(2.30977 - 1.91441i) q^{18} +2.41296i q^{19} +(1.80585 + 1.31868i) q^{20} +(0.164069 - 3.51361i) q^{21} +(-2.14781 + 2.14781i) q^{22} +(0.707107 - 0.707107i) q^{23} +(-0.0807905 + 1.73017i) q^{24} +(-1.52216 - 4.76267i) q^{25} -1.84156i q^{26} +(-3.12564 - 4.15095i) q^{27} +(1.43599 + 1.43599i) q^{28} -8.32611 q^{29} +(2.42743 - 3.01787i) q^{30} +10.8038 q^{31} +(-0.707107 - 0.707107i) q^{32} +(3.54254 + 3.88958i) q^{33} -0.0406269i q^{34} +(-0.699560 - 4.48678i) q^{35} +(2.98695 + 0.279562i) q^{36} +(-0.399778 + 0.399778i) q^{37} +(-1.70622 + 1.70622i) q^{38} +(-3.18620 - 0.148780i) q^{39} +(0.344476 + 2.20937i) q^{40} +9.45696i q^{41} +(2.60051 - 2.36848i) q^{42} +(-0.108956 - 0.108956i) q^{43} -3.03746 q^{44} +(-5.02531 - 4.44368i) q^{45} +1.00000 q^{46} +(-0.341054 - 0.341054i) q^{47} +(-1.28054 + 1.16628i) q^{48} +2.87588i q^{49} +(2.29139 - 4.44404i) q^{50} +(-0.0702912 - 0.00328227i) q^{51} +(1.30218 - 1.30218i) q^{52} +(-0.120552 + 0.120552i) q^{53} +(0.725006 - 5.14532i) q^{54} +(5.48518 + 4.00544i) q^{55} +2.03079i q^{56} +(2.81420 + 3.08990i) q^{57} +(-5.88745 - 5.88745i) q^{58} -2.10585 q^{59} +(3.85041 - 0.417505i) q^{60} +10.7626 q^{61} +(7.63947 + 7.63947i) q^{62} +(-3.88777 - 4.69066i) q^{63} -1.00000i q^{64} +(-4.06869 + 0.634373i) q^{65} +(-0.245398 + 5.25530i) q^{66} +(-6.68856 + 6.68856i) q^{67} +(0.0287275 - 0.0287275i) q^{68} +(0.0807905 - 1.73017i) q^{69} +(2.67797 - 3.66730i) q^{70} +5.69670i q^{71} +(1.91441 + 2.30977i) q^{72} +(6.43032 + 6.43032i) q^{73} -0.565371 q^{74} +(-7.50381 - 4.32352i) q^{75} -2.41296 q^{76} +(4.36175 + 4.36175i) q^{77} +(-2.14778 - 2.35818i) q^{78} -5.14788i q^{79} +(-1.31868 + 1.80585i) q^{80} +(-8.84369 - 1.67007i) q^{81} +(-6.68708 + 6.68708i) q^{82} +(3.07224 - 3.07224i) q^{83} +(3.51361 + 0.164069i) q^{84} +(-0.0897600 + 0.0139950i) q^{85} -0.154087i q^{86} +(-10.6619 + 9.71061i) q^{87} +(-2.14781 - 2.14781i) q^{88} -12.0540 q^{89} +(-0.411275 - 6.69558i) q^{90} -3.73982 q^{91} +(0.707107 + 0.707107i) q^{92} +(13.8347 - 12.6004i) q^{93} -0.482323i q^{94} +(4.35744 + 3.18193i) q^{95} +(-1.73017 - 0.0807905i) q^{96} +(7.38166 - 7.38166i) q^{97} +(-2.03356 + 2.03356i) q^{98} +(9.07272 + 0.849157i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 4q^{3} + 12q^{6} + 8q^{7} + O(q^{10}) \) \( 32q + 4q^{3} + 12q^{6} + 8q^{7} - 4q^{12} - 12q^{15} - 32q^{16} + 8q^{18} - 40q^{22} + 32q^{25} + 4q^{27} + 8q^{28} - 20q^{30} + 8q^{31} + 8q^{33} + 20q^{36} - 16q^{37} + 8q^{40} - 8q^{42} - 80q^{43} - 4q^{45} + 32q^{46} - 4q^{48} + 36q^{51} + 12q^{57} - 16q^{58} - 4q^{60} + 8q^{61} + 44q^{63} + 52q^{66} + 64q^{67} + 64q^{70} - 8q^{72} - 56q^{73} - 68q^{75} - 8q^{76} + 60q^{78} - 44q^{81} - 48q^{85} - 60q^{87} - 40q^{88} - 64q^{90} + 40q^{91} + 92q^{93} - 12q^{96} - 40q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 1.28054 1.16628i 0.739320 0.673355i
\(4\) 1.00000i 0.500000i
\(5\) 1.31868 1.80585i 0.589733 0.807599i
\(6\) 1.73017 + 0.0807905i 0.706337 + 0.0329826i
\(7\) 1.43599 1.43599i 0.542752 0.542752i −0.381583 0.924335i \(-0.624621\pi\)
0.924335 + 0.381583i \(0.124621\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0.279562 2.98695i 0.0931873 0.995649i
\(10\) 2.20937 0.344476i 0.698666 0.108933i
\(11\) 3.03746i 0.915827i 0.888997 + 0.457914i \(0.151403\pi\)
−0.888997 + 0.457914i \(0.848597\pi\)
\(12\) 1.16628 + 1.28054i 0.336677 + 0.369660i
\(13\) −1.30218 1.30218i −0.361159 0.361159i 0.503081 0.864239i \(-0.332200\pi\)
−0.864239 + 0.503081i \(0.832200\pi\)
\(14\) 2.03079 0.542752
\(15\) −0.417505 3.85041i −0.107799 0.994173i
\(16\) −1.00000 −0.250000
\(17\) −0.0287275 0.0287275i −0.00696745 0.00696745i 0.703614 0.710582i \(-0.251568\pi\)
−0.710582 + 0.703614i \(0.751568\pi\)
\(18\) 2.30977 1.91441i 0.544418 0.451231i
\(19\) 2.41296i 0.553572i 0.960932 + 0.276786i \(0.0892693\pi\)
−0.960932 + 0.276786i \(0.910731\pi\)
\(20\) 1.80585 + 1.31868i 0.403799 + 0.294866i
\(21\) 0.164069 3.51361i 0.0358028 0.766732i
\(22\) −2.14781 + 2.14781i −0.457914 + 0.457914i
\(23\) 0.707107 0.707107i 0.147442 0.147442i
\(24\) −0.0807905 + 1.73017i −0.0164913 + 0.353169i
\(25\) −1.52216 4.76267i −0.304431 0.952534i
\(26\) 1.84156i 0.361159i
\(27\) −3.12564 4.15095i −0.601529 0.798851i
\(28\) 1.43599 + 1.43599i 0.271376 + 0.271376i
\(29\) −8.32611 −1.54612 −0.773060 0.634333i \(-0.781275\pi\)
−0.773060 + 0.634333i \(0.781275\pi\)
\(30\) 2.42743 3.01787i 0.443187 0.550986i
\(31\) 10.8038 1.94043 0.970214 0.242250i \(-0.0778854\pi\)
0.970214 + 0.242250i \(0.0778854\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 3.54254 + 3.88958i 0.616676 + 0.677089i
\(34\) 0.0406269i 0.00696745i
\(35\) −0.699560 4.48678i −0.118247 0.758405i
\(36\) 2.98695 + 0.279562i 0.497824 + 0.0465937i
\(37\) −0.399778 + 0.399778i −0.0657230 + 0.0657230i −0.739204 0.673481i \(-0.764798\pi\)
0.673481 + 0.739204i \(0.264798\pi\)
\(38\) −1.70622 + 1.70622i −0.276786 + 0.276786i
\(39\) −3.18620 0.148780i −0.510200 0.0238239i
\(40\) 0.344476 + 2.20937i 0.0544665 + 0.349333i
\(41\) 9.45696i 1.47693i 0.674293 + 0.738464i \(0.264449\pi\)
−0.674293 + 0.738464i \(0.735551\pi\)
\(42\) 2.60051 2.36848i 0.401267 0.365465i
\(43\) −0.108956 0.108956i −0.0166156 0.0166156i 0.698750 0.715366i \(-0.253740\pi\)
−0.715366 + 0.698750i \(0.753740\pi\)
\(44\) −3.03746 −0.457914
\(45\) −5.02531 4.44368i −0.749129 0.662424i
\(46\) 1.00000 0.147442
\(47\) −0.341054 0.341054i −0.0497478 0.0497478i 0.681795 0.731543i \(-0.261199\pi\)
−0.731543 + 0.681795i \(0.761199\pi\)
\(48\) −1.28054 + 1.16628i −0.184830 + 0.168339i
\(49\) 2.87588i 0.410840i
\(50\) 2.29139 4.44404i 0.324052 0.628483i
\(51\) −0.0702912 0.00328227i −0.00984274 0.000459609i
\(52\) 1.30218 1.30218i 0.180579 0.180579i
\(53\) −0.120552 + 0.120552i −0.0165590 + 0.0165590i −0.715338 0.698779i \(-0.753727\pi\)
0.698779 + 0.715338i \(0.253727\pi\)
\(54\) 0.725006 5.14532i 0.0986608 0.700190i
\(55\) 5.48518 + 4.00544i 0.739621 + 0.540093i
\(56\) 2.03079i 0.271376i
\(57\) 2.81420 + 3.08990i 0.372750 + 0.409267i
\(58\) −5.88745 5.88745i −0.773060 0.773060i
\(59\) −2.10585 −0.274159 −0.137079 0.990560i \(-0.543772\pi\)
−0.137079 + 0.990560i \(0.543772\pi\)
\(60\) 3.85041 0.417505i 0.497086 0.0538996i
\(61\) 10.7626 1.37801 0.689003 0.724758i \(-0.258049\pi\)
0.689003 + 0.724758i \(0.258049\pi\)
\(62\) 7.63947 + 7.63947i 0.970214 + 0.970214i
\(63\) −3.88777 4.69066i −0.489813 0.590968i
\(64\) 1.00000i 0.125000i
\(65\) −4.06869 + 0.634373i −0.504659 + 0.0786843i
\(66\) −0.245398 + 5.25530i −0.0302064 + 0.646883i
\(67\) −6.68856 + 6.68856i −0.817137 + 0.817137i −0.985692 0.168555i \(-0.946090\pi\)
0.168555 + 0.985692i \(0.446090\pi\)
\(68\) 0.0287275 0.0287275i 0.00348373 0.00348373i
\(69\) 0.0807905 1.73017i 0.00972604 0.208287i
\(70\) 2.67797 3.66730i 0.320079 0.438326i
\(71\) 5.69670i 0.676074i 0.941133 + 0.338037i \(0.109763\pi\)
−0.941133 + 0.338037i \(0.890237\pi\)
\(72\) 1.91441 + 2.30977i 0.225615 + 0.272209i
\(73\) 6.43032 + 6.43032i 0.752612 + 0.752612i 0.974966 0.222354i \(-0.0713742\pi\)
−0.222354 + 0.974966i \(0.571374\pi\)
\(74\) −0.565371 −0.0657230
\(75\) −7.50381 4.32352i −0.866465 0.499237i
\(76\) −2.41296 −0.276786
\(77\) 4.36175 + 4.36175i 0.497067 + 0.497067i
\(78\) −2.14778 2.35818i −0.243188 0.267012i
\(79\) 5.14788i 0.579182i −0.957150 0.289591i \(-0.906481\pi\)
0.957150 0.289591i \(-0.0935193\pi\)
\(80\) −1.31868 + 1.80585i −0.147433 + 0.201900i
\(81\) −8.84369 1.67007i −0.982632 0.185564i
\(82\) −6.68708 + 6.68708i −0.738464 + 0.738464i
\(83\) 3.07224 3.07224i 0.337223 0.337223i −0.518098 0.855321i \(-0.673360\pi\)
0.855321 + 0.518098i \(0.173360\pi\)
\(84\) 3.51361 + 0.164069i 0.383366 + 0.0179014i
\(85\) −0.0897600 + 0.0139950i −0.00973584 + 0.00151797i
\(86\) 0.154087i 0.0166156i
\(87\) −10.6619 + 9.71061i −1.14308 + 1.04109i
\(88\) −2.14781 2.14781i −0.228957 0.228957i
\(89\) −12.0540 −1.27773 −0.638863 0.769320i \(-0.720595\pi\)
−0.638863 + 0.769320i \(0.720595\pi\)
\(90\) −0.411275 6.69558i −0.0433522 0.705777i
\(91\) −3.73982 −0.392040
\(92\) 0.707107 + 0.707107i 0.0737210 + 0.0737210i
\(93\) 13.8347 12.6004i 1.43460 1.30660i
\(94\) 0.482323i 0.0497478i
\(95\) 4.35744 + 3.18193i 0.447064 + 0.326459i
\(96\) −1.73017 0.0807905i −0.176584 0.00824565i
\(97\) 7.38166 7.38166i 0.749494 0.749494i −0.224890 0.974384i \(-0.572202\pi\)
0.974384 + 0.224890i \(0.0722023\pi\)
\(98\) −2.03356 + 2.03356i −0.205420 + 0.205420i
\(99\) 9.07272 + 0.849157i 0.911842 + 0.0853435i
\(100\) 4.76267 1.52216i 0.476267 0.152216i
\(101\) 15.7509i 1.56727i 0.621222 + 0.783635i \(0.286637\pi\)
−0.621222 + 0.783635i \(0.713363\pi\)
\(102\) −0.0473825 0.0520243i −0.00469157 0.00515117i
\(103\) −9.94078 9.94078i −0.979494 0.979494i 0.0202999 0.999794i \(-0.493538\pi\)
−0.999794 + 0.0202999i \(0.993538\pi\)
\(104\) 1.84156 0.180579
\(105\) −6.12868 4.92961i −0.598098 0.481081i
\(106\) −0.170486 −0.0165590
\(107\) −8.28163 8.28163i −0.800616 0.800616i 0.182576 0.983192i \(-0.441556\pi\)
−0.983192 + 0.182576i \(0.941556\pi\)
\(108\) 4.15095 3.12564i 0.399425 0.300765i
\(109\) 5.16166i 0.494398i 0.968965 + 0.247199i \(0.0795101\pi\)
−0.968965 + 0.247199i \(0.920490\pi\)
\(110\) 1.04633 + 6.71088i 0.0997638 + 0.639857i
\(111\) −0.0456766 + 0.978185i −0.00433543 + 0.0928452i
\(112\) −1.43599 + 1.43599i −0.135688 + 0.135688i
\(113\) −10.2943 + 10.2943i −0.968407 + 0.968407i −0.999516 0.0311086i \(-0.990096\pi\)
0.0311086 + 0.999516i \(0.490096\pi\)
\(114\) −0.194945 + 4.17483i −0.0182582 + 0.391008i
\(115\) −0.344476 2.20937i −0.0321226 0.206025i
\(116\) 8.32611i 0.773060i
\(117\) −4.25357 + 3.52549i −0.393243 + 0.325932i
\(118\) −1.48906 1.48906i −0.137079 0.137079i
\(119\) −0.0825048 −0.00756320
\(120\) 3.01787 + 2.42743i 0.275493 + 0.221593i
\(121\) 1.77386 0.161260
\(122\) 7.61029 + 7.61029i 0.689003 + 0.689003i
\(123\) 11.0295 + 12.1100i 0.994496 + 1.09192i
\(124\) 10.8038i 0.970214i
\(125\) −10.6079 3.53167i −0.948798 0.315882i
\(126\) 0.567733 6.06587i 0.0505776 0.540390i
\(127\) −6.32534 + 6.32534i −0.561283 + 0.561283i −0.929672 0.368389i \(-0.879910\pi\)
0.368389 + 0.929672i \(0.379910\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) −0.266596 0.0124488i −0.0234725 0.00109605i
\(130\) −3.32557 2.42843i −0.291671 0.212987i
\(131\) 8.57676i 0.749355i −0.927155 0.374677i \(-0.877753\pi\)
0.927155 0.374677i \(-0.122247\pi\)
\(132\) −3.88958 + 3.54254i −0.338545 + 0.308338i
\(133\) 3.46499 + 3.46499i 0.300452 + 0.300452i
\(134\) −9.45905 −0.817137
\(135\) −11.6177 + 0.170634i −0.999892 + 0.0146859i
\(136\) 0.0406269 0.00348373
\(137\) 11.6408 + 11.6408i 0.994543 + 0.994543i 0.999985 0.00544239i \(-0.00173237\pi\)
−0.00544239 + 0.999985i \(0.501732\pi\)
\(138\) 1.28054 1.16628i 0.109007 0.0992807i
\(139\) 0.224301i 0.0190250i 0.999955 + 0.00951249i \(0.00302797\pi\)
−0.999955 + 0.00951249i \(0.996972\pi\)
\(140\) 4.48678 0.699560i 0.379202 0.0591236i
\(141\) −0.834498 0.0389671i −0.0702774 0.00328162i
\(142\) −4.02818 + 4.02818i −0.338037 + 0.338037i
\(143\) 3.95530 3.95530i 0.330759 0.330759i
\(144\) −0.279562 + 2.98695i −0.0232968 + 0.248912i
\(145\) −10.9795 + 15.0357i −0.911797 + 1.24864i
\(146\) 9.09384i 0.752612i
\(147\) 3.35409 + 3.68268i 0.276641 + 0.303742i
\(148\) −0.399778 0.399778i −0.0328615 0.0328615i
\(149\) −5.49620 −0.450266 −0.225133 0.974328i \(-0.572282\pi\)
−0.225133 + 0.974328i \(0.572282\pi\)
\(150\) −2.24880 8.36319i −0.183614 0.682851i
\(151\) −9.44824 −0.768887 −0.384443 0.923149i \(-0.625607\pi\)
−0.384443 + 0.923149i \(0.625607\pi\)
\(152\) −1.70622 1.70622i −0.138393 0.138393i
\(153\) −0.0938387 + 0.0777765i −0.00758641 + 0.00628785i
\(154\) 6.16844i 0.497067i
\(155\) 14.2468 19.5101i 1.14433 1.56709i
\(156\) 0.148780 3.18620i 0.0119120 0.255100i
\(157\) 15.6517 15.6517i 1.24914 1.24914i 0.293039 0.956100i \(-0.405333\pi\)
0.956100 0.293039i \(-0.0946667\pi\)
\(158\) 3.64010 3.64010i 0.289591 0.289591i
\(159\) −0.0137736 + 0.294969i −0.00109232 + 0.0233925i
\(160\) −2.20937 + 0.344476i −0.174666 + 0.0272333i
\(161\) 2.03079i 0.160049i
\(162\) −5.07251 7.43435i −0.398534 0.584098i
\(163\) 2.69934 + 2.69934i 0.211429 + 0.211429i 0.804874 0.593446i \(-0.202233\pi\)
−0.593446 + 0.804874i \(0.702233\pi\)
\(164\) −9.45696 −0.738464
\(165\) 11.6955 1.26815i 0.910491 0.0987255i
\(166\) 4.34481 0.337223
\(167\) 4.99243 + 4.99243i 0.386326 + 0.386326i 0.873375 0.487049i \(-0.161927\pi\)
−0.487049 + 0.873375i \(0.661927\pi\)
\(168\) 2.36848 + 2.60051i 0.182732 + 0.200634i
\(169\) 9.60867i 0.739129i
\(170\) −0.0733659 0.0535739i −0.00562690 0.00410893i
\(171\) 7.20739 + 0.674573i 0.551163 + 0.0515859i
\(172\) 0.108956 0.108956i 0.00830781 0.00830781i
\(173\) −5.07836 + 5.07836i −0.386101 + 0.386101i −0.873294 0.487193i \(-0.838021\pi\)
0.487193 + 0.873294i \(0.338021\pi\)
\(174\) −14.4055 0.672671i −1.09208 0.0509950i
\(175\) −9.02493 4.65334i −0.682221 0.351760i
\(176\) 3.03746i 0.228957i
\(177\) −2.69663 + 2.45602i −0.202691 + 0.184606i
\(178\) −8.52350 8.52350i −0.638863 0.638863i
\(179\) −9.09915 −0.680103 −0.340051 0.940407i \(-0.610444\pi\)
−0.340051 + 0.940407i \(0.610444\pi\)
\(180\) 4.44368 5.02531i 0.331212 0.374564i
\(181\) −25.4910 −1.89473 −0.947367 0.320150i \(-0.896267\pi\)
−0.947367 + 0.320150i \(0.896267\pi\)
\(182\) −2.64445 2.64445i −0.196020 0.196020i
\(183\) 13.7819 12.5522i 1.01879 0.927887i
\(184\) 1.00000i 0.0737210i
\(185\) 0.194757 + 1.24912i 0.0143188 + 0.0918368i
\(186\) 18.6924 + 0.872848i 1.37060 + 0.0640004i
\(187\) 0.0872586 0.0872586i 0.00638098 0.00638098i
\(188\) 0.341054 0.341054i 0.0248739 0.0248739i
\(189\) −10.4491 1.47234i −0.760059 0.107097i
\(190\) 0.831209 + 5.33114i 0.0603023 + 0.386762i
\(191\) 16.0457i 1.16103i −0.814250 0.580514i \(-0.802851\pi\)
0.814250 0.580514i \(-0.197149\pi\)
\(192\) −1.16628 1.28054i −0.0841693 0.0924150i
\(193\) −5.17234 5.17234i −0.372313 0.372313i 0.496006 0.868319i \(-0.334799\pi\)
−0.868319 + 0.496006i \(0.834799\pi\)
\(194\) 10.4392 0.749494
\(195\) −4.47026 + 5.55758i −0.320122 + 0.397987i
\(196\) −2.87588 −0.205420
\(197\) 14.5337 + 14.5337i 1.03548 + 1.03548i 0.999347 + 0.0361361i \(0.0115050\pi\)
0.0361361 + 0.999347i \(0.488495\pi\)
\(198\) 5.81493 + 7.01582i 0.413249 + 0.498593i
\(199\) 12.8549i 0.911262i −0.890169 0.455631i \(-0.849414\pi\)
0.890169 0.455631i \(-0.150586\pi\)
\(200\) 4.44404 + 2.29139i 0.314241 + 0.162026i
\(201\) −0.764202 + 16.3657i −0.0539026 + 1.15435i
\(202\) −11.1375 + 11.1375i −0.783635 + 0.783635i
\(203\) −11.9562 + 11.9562i −0.839160 + 0.839160i
\(204\) 0.00328227 0.0702912i 0.000229805 0.00492137i
\(205\) 17.0778 + 12.4707i 1.19277 + 0.870993i
\(206\) 14.0584i 0.979494i
\(207\) −1.91441 2.30977i −0.133061 0.160540i
\(208\) 1.30218 + 1.30218i 0.0902897 + 0.0902897i
\(209\) −7.32927 −0.506976
\(210\) −0.847866 7.81939i −0.0585083 0.539589i
\(211\) −24.8100 −1.70799 −0.853996 0.520280i \(-0.825828\pi\)
−0.853996 + 0.520280i \(0.825828\pi\)
\(212\) −0.120552 0.120552i −0.00827952 0.00827952i
\(213\) 6.64397 + 7.29485i 0.455238 + 0.499835i
\(214\) 11.7120i 0.800616i
\(215\) −0.340436 + 0.0530793i −0.0232175 + 0.00361998i
\(216\) 5.14532 + 0.725006i 0.350095 + 0.0493304i
\(217\) 15.5142 15.5142i 1.05317 1.05317i
\(218\) −3.64985 + 3.64985i −0.247199 + 0.247199i
\(219\) 15.7338 + 0.734696i 1.06320 + 0.0496462i
\(220\) −4.00544 + 5.48518i −0.270047 + 0.369810i
\(221\) 0.0748167i 0.00503271i
\(222\) −0.723980 + 0.659383i −0.0485903 + 0.0442549i
\(223\) 6.63422 + 6.63422i 0.444260 + 0.444260i 0.893441 0.449181i \(-0.148284\pi\)
−0.449181 + 0.893441i \(0.648284\pi\)
\(224\) −2.03079 −0.135688
\(225\) −14.6514 + 3.21513i −0.976759 + 0.214342i
\(226\) −14.5584 −0.968407
\(227\) −4.95555 4.95555i −0.328911 0.328911i 0.523261 0.852172i \(-0.324715\pi\)
−0.852172 + 0.523261i \(0.824715\pi\)
\(228\) −3.08990 + 2.81420i −0.204633 + 0.186375i
\(229\) 11.2747i 0.745053i 0.928021 + 0.372527i \(0.121509\pi\)
−0.928021 + 0.372527i \(0.878491\pi\)
\(230\) 1.31868 1.80585i 0.0869513 0.119074i
\(231\) 10.6724 + 0.498352i 0.702194 + 0.0327891i
\(232\) 5.88745 5.88745i 0.386530 0.386530i
\(233\) 12.5504 12.5504i 0.822206 0.822206i −0.164218 0.986424i \(-0.552510\pi\)
0.986424 + 0.164218i \(0.0525099\pi\)
\(234\) −5.50063 0.514829i −0.359587 0.0336554i
\(235\) −1.06563 + 0.166149i −0.0695141 + 0.0108384i
\(236\) 2.10585i 0.137079i
\(237\) −6.00390 6.59207i −0.389995 0.428201i
\(238\) −0.0583397 0.0583397i −0.00378160 0.00378160i
\(239\) 1.23240 0.0797173 0.0398586 0.999205i \(-0.487309\pi\)
0.0398586 + 0.999205i \(0.487309\pi\)
\(240\) 0.417505 + 3.85041i 0.0269498 + 0.248543i
\(241\) −10.0383 −0.646625 −0.323312 0.946292i \(-0.604796\pi\)
−0.323312 + 0.946292i \(0.604796\pi\)
\(242\) 1.25431 + 1.25431i 0.0806301 + 0.0806301i
\(243\) −13.2725 + 8.17566i −0.851430 + 0.524469i
\(244\) 10.7626i 0.689003i
\(245\) 5.19340 + 3.79237i 0.331794 + 0.242286i
\(246\) −0.764033 + 16.3621i −0.0487129 + 1.04321i
\(247\) 3.14211 3.14211i 0.199927 0.199927i
\(248\) −7.63947 + 7.63947i −0.485107 + 0.485107i
\(249\) 0.351019 7.51724i 0.0222450 0.476386i
\(250\) −5.00364 9.99818i −0.316458 0.632340i
\(251\) 11.1326i 0.702686i −0.936247 0.351343i \(-0.885725\pi\)
0.936247 0.351343i \(-0.114275\pi\)
\(252\) 4.69066 3.88777i 0.295484 0.244906i
\(253\) 2.14781 + 2.14781i 0.135031 + 0.135031i
\(254\) −8.94538 −0.561283
\(255\) −0.0986190 + 0.122607i −0.00617576 + 0.00767794i
\(256\) 1.00000 0.0625000
\(257\) 0.426761 + 0.426761i 0.0266206 + 0.0266206i 0.720292 0.693671i \(-0.244008\pi\)
−0.693671 + 0.720292i \(0.744008\pi\)
\(258\) −0.179709 0.197314i −0.0111882 0.0122843i
\(259\) 1.14815i 0.0713426i
\(260\) −0.634373 4.06869i −0.0393421 0.252329i
\(261\) −2.32766 + 24.8696i −0.144079 + 1.53939i
\(262\) 6.06468 6.06468i 0.374677 0.374677i
\(263\) 13.9902 13.9902i 0.862670 0.862670i −0.128977 0.991648i \(-0.541169\pi\)
0.991648 + 0.128977i \(0.0411694\pi\)
\(264\) −5.25530 0.245398i −0.323441 0.0151032i
\(265\) 0.0587283 + 0.376667i 0.00360765 + 0.0231385i
\(266\) 4.90023i 0.300452i
\(267\) −15.4357 + 14.0584i −0.944649 + 0.860363i
\(268\) −6.68856 6.68856i −0.408569 0.408569i
\(269\) −15.5476 −0.947954 −0.473977 0.880537i \(-0.657182\pi\)
−0.473977 + 0.880537i \(0.657182\pi\)
\(270\) −8.33561 8.09430i −0.507289 0.492603i
\(271\) 3.09413 0.187955 0.0939775 0.995574i \(-0.470042\pi\)
0.0939775 + 0.995574i \(0.470042\pi\)
\(272\) 0.0287275 + 0.0287275i 0.00174186 + 0.00174186i
\(273\) −4.78898 + 4.36169i −0.289843 + 0.263982i
\(274\) 16.4626i 0.994543i
\(275\) 14.4664 4.62348i 0.872357 0.278806i
\(276\) 1.73017 + 0.0807905i 0.104144 + 0.00486302i
\(277\) 4.78402 4.78402i 0.287444 0.287444i −0.548625 0.836069i \(-0.684849\pi\)
0.836069 + 0.548625i \(0.184849\pi\)
\(278\) −0.158605 + 0.158605i −0.00951249 + 0.00951249i
\(279\) 3.02034 32.2705i 0.180823 1.93198i
\(280\) 3.66730 + 2.67797i 0.219163 + 0.160039i
\(281\) 6.07800i 0.362583i 0.983429 + 0.181292i \(0.0580278\pi\)
−0.983429 + 0.181292i \(0.941972\pi\)
\(282\) −0.562525 0.617633i −0.0334979 0.0367795i
\(283\) 1.63214 + 1.63214i 0.0970206 + 0.0970206i 0.753951 0.656931i \(-0.228146\pi\)
−0.656931 + 0.753951i \(0.728146\pi\)
\(284\) −5.69670 −0.338037
\(285\) 9.29091 1.00742i 0.550346 0.0596746i
\(286\) 5.59364 0.330759
\(287\) 13.5801 + 13.5801i 0.801606 + 0.801606i
\(288\) −2.30977 + 1.91441i −0.136104 + 0.112808i
\(289\) 16.9983i 0.999903i
\(290\) −18.3955 + 2.86815i −1.08022 + 0.168423i
\(291\) 0.843392 18.0616i 0.0494405 1.05879i
\(292\) −6.43032 + 6.43032i −0.376306 + 0.376306i
\(293\) 9.90593 9.90593i 0.578711 0.578711i −0.355837 0.934548i \(-0.615804\pi\)
0.934548 + 0.355837i \(0.115804\pi\)
\(294\) −0.232344 + 4.97575i −0.0135506 + 0.290192i
\(295\) −2.77695 + 3.80284i −0.161680 + 0.221410i
\(296\) 0.565371i 0.0328615i
\(297\) 12.6083 9.49399i 0.731609 0.550897i
\(298\) −3.88640 3.88640i −0.225133 0.225133i
\(299\) −1.84156 −0.106500
\(300\) 4.32352 7.50381i 0.249619 0.433233i
\(301\) −0.312919 −0.0180363
\(302\) −6.68091 6.68091i −0.384443 0.384443i
\(303\) 18.3700 + 20.1696i 1.05533 + 1.15871i
\(304\) 2.41296i 0.138393i
\(305\) 14.1924 19.4355i 0.812655 1.11288i
\(306\) −0.121350 0.0113577i −0.00693713 0.000649278i
\(307\) 22.4079 22.4079i 1.27889 1.27889i 0.337594 0.941292i \(-0.390387\pi\)
0.941292 0.337594i \(-0.109613\pi\)
\(308\) −4.36175 + 4.36175i −0.248534 + 0.248534i
\(309\) −24.3233 1.13578i −1.38371 0.0646125i
\(310\) 23.8697 3.72167i 1.35571 0.211377i
\(311\) 22.1020i 1.25329i 0.779304 + 0.626646i \(0.215573\pi\)
−0.779304 + 0.626646i \(0.784427\pi\)
\(312\) 2.35818 2.14778i 0.133506 0.121594i
\(313\) 3.23645 + 3.23645i 0.182935 + 0.182935i 0.792633 0.609698i \(-0.208709\pi\)
−0.609698 + 0.792633i \(0.708709\pi\)
\(314\) 22.1348 1.24914
\(315\) −13.5973 + 0.835215i −0.766124 + 0.0470590i
\(316\) 5.14788 0.289591
\(317\) −11.0713 11.0713i −0.621826 0.621826i 0.324172 0.945998i \(-0.394914\pi\)
−0.945998 + 0.324172i \(0.894914\pi\)
\(318\) −0.218314 + 0.198835i −0.0122424 + 0.0111501i
\(319\) 25.2902i 1.41598i
\(320\) −1.80585 1.31868i −0.100950 0.0737166i
\(321\) −20.2637 0.946218i −1.13101 0.0528128i
\(322\) 1.43599 1.43599i 0.0800244 0.0800244i
\(323\) 0.0693185 0.0693185i 0.00385699 0.00385699i
\(324\) 1.67007 8.84369i 0.0927818 0.491316i
\(325\) −4.21973 + 8.18396i −0.234068 + 0.453964i
\(326\) 3.81744i 0.211429i
\(327\) 6.01997 + 6.60971i 0.332905 + 0.365518i
\(328\) −6.68708 6.68708i −0.369232 0.369232i
\(329\) −0.979497 −0.0540014
\(330\) 9.16666 + 7.37322i 0.504608 + 0.405883i
\(331\) 27.5838 1.51614 0.758070 0.652173i \(-0.226142\pi\)
0.758070 + 0.652173i \(0.226142\pi\)
\(332\) 3.07224 + 3.07224i 0.168611 + 0.168611i
\(333\) 1.08235 + 1.30588i 0.0593125 + 0.0715616i
\(334\) 7.06036i 0.386326i
\(335\) 3.25842 + 20.8986i 0.178026 + 1.14181i
\(336\) −0.164069 + 3.51361i −0.00895069 + 0.191683i
\(337\) 16.5924 16.5924i 0.903845 0.903845i −0.0919212 0.995766i \(-0.529301\pi\)
0.995766 + 0.0919212i \(0.0293008\pi\)
\(338\) 6.79436 6.79436i 0.369564 0.369564i
\(339\) −1.17618 + 25.1884i −0.0638812 + 1.36804i
\(340\) −0.0139950 0.0897600i −0.000758986 0.00486792i
\(341\) 32.8162i 1.77710i
\(342\) 4.61940 + 5.57339i 0.249789 + 0.301375i
\(343\) 14.1816 + 14.1816i 0.765737 + 0.765737i
\(344\) 0.154087 0.00830781
\(345\) −3.01787 2.42743i −0.162477 0.130689i
\(346\) −7.18189 −0.386101
\(347\) 9.47770 + 9.47770i 0.508789 + 0.508789i 0.914155 0.405365i \(-0.132856\pi\)
−0.405365 + 0.914155i \(0.632856\pi\)
\(348\) −9.71061 10.6619i −0.520543 0.571538i
\(349\) 17.3941i 0.931085i 0.885025 + 0.465543i \(0.154141\pi\)
−0.885025 + 0.465543i \(0.845859\pi\)
\(350\) −3.09118 9.67200i −0.165231 0.516990i
\(351\) −1.33514 + 9.47540i −0.0712644 + 0.505760i
\(352\) 2.14781 2.14781i 0.114478 0.114478i
\(353\) −21.9958 + 21.9958i −1.17072 + 1.17072i −0.188681 + 0.982038i \(0.560421\pi\)
−0.982038 + 0.188681i \(0.939579\pi\)
\(354\) −3.64347 0.170133i −0.193648 0.00904247i
\(355\) 10.2874 + 7.51214i 0.545997 + 0.398703i
\(356\) 12.0540i 0.638863i
\(357\) −0.105651 + 0.0962240i −0.00559162 + 0.00509271i
\(358\) −6.43407 6.43407i −0.340051 0.340051i
\(359\) 23.7395 1.25292 0.626461 0.779453i \(-0.284503\pi\)
0.626461 + 0.779453i \(0.284503\pi\)
\(360\) 6.69558 0.411275i 0.352888 0.0216761i
\(361\) 13.1776 0.693558
\(362\) −18.0249 18.0249i −0.947367 0.947367i
\(363\) 2.27150 2.06883i 0.119223 0.108585i
\(364\) 3.73982i 0.196020i
\(365\) 20.0917 3.13261i 1.05165 0.163969i
\(366\) 18.6210 + 0.869514i 0.973337 + 0.0454502i
\(367\) 20.2624 20.2624i 1.05769 1.05769i 0.0594601 0.998231i \(-0.481062\pi\)
0.998231 0.0594601i \(-0.0189379\pi\)
\(368\) −0.707107 + 0.707107i −0.0368605 + 0.0368605i
\(369\) 28.2474 + 2.64381i 1.47050 + 0.137631i
\(370\) −0.745544 + 1.02097i −0.0387590 + 0.0530778i
\(371\) 0.346221i 0.0179749i
\(372\) 12.6004 + 13.8347i 0.653298 + 0.717298i
\(373\) 17.2579 + 17.2579i 0.893581 + 0.893581i 0.994858 0.101277i \(-0.0322930\pi\)
−0.101277 + 0.994858i \(0.532293\pi\)
\(374\) 0.123402 0.00638098
\(375\) −17.7028 + 7.84937i −0.914166 + 0.405340i
\(376\) 0.482323 0.0248739
\(377\) 10.8421 + 10.8421i 0.558395 + 0.558395i
\(378\) −6.34752 8.42972i −0.326481 0.433578i
\(379\) 15.5004i 0.796200i −0.917342 0.398100i \(-0.869670\pi\)
0.917342 0.398100i \(-0.130330\pi\)
\(380\) −3.18193 + 4.35744i −0.163230 + 0.223532i
\(381\) −0.722702 + 15.4770i −0.0370252 + 0.792911i
\(382\) 11.3461 11.3461i 0.580514 0.580514i
\(383\) 24.7143 24.7143i 1.26284 1.26284i 0.313131 0.949710i \(-0.398622\pi\)
0.949710 0.313131i \(-0.101378\pi\)
\(384\) 0.0807905 1.73017i 0.00412283 0.0882921i
\(385\) 13.6284 2.12488i 0.694568 0.108294i
\(386\) 7.31479i 0.372313i
\(387\) −0.355906 + 0.294986i −0.0180917 + 0.0149950i
\(388\) 7.38166 + 7.38166i 0.374747 + 0.374747i
\(389\) 12.7778 0.647858 0.323929 0.946081i \(-0.394996\pi\)
0.323929 + 0.946081i \(0.394996\pi\)
\(390\) −7.09075 + 0.768858i −0.359054 + 0.0389327i
\(391\) −0.0406269 −0.00205459
\(392\) −2.03356 2.03356i −0.102710 0.102710i
\(393\) −10.0029 10.9829i −0.504582 0.554013i
\(394\) 20.5538i 1.03548i
\(395\) −9.29628 6.78842i −0.467747 0.341563i
\(396\) −0.849157 + 9.07272i −0.0426718 + 0.455921i
\(397\) −20.0396 + 20.0396i −1.00576 + 1.00576i −0.00577503 + 0.999983i \(0.501838\pi\)
−0.999983 + 0.00577503i \(0.998162\pi\)
\(398\) 9.08981 9.08981i 0.455631 0.455631i
\(399\) 8.47821 + 0.395892i 0.424441 + 0.0198194i
\(400\) 1.52216 + 4.76267i 0.0761078 + 0.238134i
\(401\) 3.91057i 0.195284i −0.995222 0.0976422i \(-0.968870\pi\)
0.995222 0.0976422i \(-0.0311301\pi\)
\(402\) −12.1127 + 11.0319i −0.604126 + 0.550223i
\(403\) −14.0685 14.0685i −0.700803 0.700803i
\(404\) −15.7509 −0.783635
\(405\) −14.6779 + 13.7680i −0.729351 + 0.684139i
\(406\) −16.9086 −0.839160
\(407\) −1.21431 1.21431i −0.0601909 0.0601909i
\(408\) 0.0520243 0.0473825i 0.00257559 0.00234578i
\(409\) 8.76129i 0.433218i 0.976258 + 0.216609i \(0.0694996\pi\)
−0.976258 + 0.216609i \(0.930500\pi\)
\(410\) 3.25770 + 20.8940i 0.160886 + 1.03188i
\(411\) 28.4830 + 1.33002i 1.40497 + 0.0656052i
\(412\) 9.94078 9.94078i 0.489747 0.489747i
\(413\) −3.02398 + 3.02398i −0.148800 + 0.148800i
\(414\) 0.279562 2.98695i 0.0137397 0.146800i
\(415\) −1.49668 9.59931i −0.0734693 0.471212i
\(416\) 1.84156i 0.0902897i
\(417\) 0.261599 + 0.287227i 0.0128106 + 0.0140655i
\(418\) −5.18258 5.18258i −0.253488 0.253488i
\(419\) −14.3441 −0.700754 −0.350377 0.936609i \(-0.613946\pi\)
−0.350377 + 0.936609i \(0.613946\pi\)
\(420\) 4.92961 6.12868i 0.240541 0.299049i
\(421\) −8.54877 −0.416641 −0.208321 0.978061i \(-0.566800\pi\)
−0.208321 + 0.978061i \(0.566800\pi\)
\(422\) −17.5433 17.5433i −0.853996 0.853996i
\(423\) −1.11405 + 0.923363i −0.0541672 + 0.0448955i
\(424\) 0.170486i 0.00827952i
\(425\) −0.0930921 + 0.180548i −0.00451563 + 0.00875785i
\(426\) −0.460240 + 9.85624i −0.0222987 + 0.477536i
\(427\) 15.4549 15.4549i 0.747916 0.747916i
\(428\) 8.28163 8.28163i 0.400308 0.400308i
\(429\) 0.451914 9.67793i 0.0218186 0.467255i
\(430\) −0.278257 0.203192i −0.0134188 0.00979878i
\(431\) 34.3396i 1.65408i −0.562141 0.827041i \(-0.690022\pi\)
0.562141 0.827041i \(-0.309978\pi\)
\(432\) 3.12564 + 4.15095i 0.150382 + 0.199713i
\(433\) −12.5838 12.5838i −0.604740 0.604740i 0.336827 0.941567i \(-0.390646\pi\)
−0.941567 + 0.336827i \(0.890646\pi\)
\(434\) 21.9404 1.05317
\(435\) 3.47619 + 32.0590i 0.166671 + 1.53711i
\(436\) −5.16166 −0.247199
\(437\) 1.70622 + 1.70622i 0.0816197 + 0.0816197i
\(438\) 10.6060 + 11.6450i 0.506774 + 0.556421i
\(439\) 15.6542i 0.747133i 0.927603 + 0.373567i \(0.121865\pi\)
−0.927603 + 0.373567i \(0.878135\pi\)
\(440\) −6.71088 + 1.04633i −0.319929 + 0.0498819i
\(441\) 8.59010 + 0.803987i 0.409052 + 0.0382851i
\(442\) −0.0529034 + 0.0529034i −0.00251636 + 0.00251636i
\(443\) 21.4453 21.4453i 1.01890 1.01890i 0.0190784 0.999818i \(-0.493927\pi\)
0.999818 0.0190784i \(-0.00607322\pi\)
\(444\) −0.978185 0.0456766i −0.0464226 0.00216772i
\(445\) −15.8955 + 21.7677i −0.753517 + 1.03189i
\(446\) 9.38220i 0.444260i
\(447\) −7.03810 + 6.41013i −0.332891 + 0.303189i
\(448\) −1.43599 1.43599i −0.0678440 0.0678440i
\(449\) −19.2237 −0.907224 −0.453612 0.891199i \(-0.649865\pi\)
−0.453612 + 0.891199i \(0.649865\pi\)
\(450\) −12.6335 8.08665i −0.595550 0.381208i
\(451\) −28.7251 −1.35261
\(452\) −10.2943 10.2943i −0.484204 0.484204i
\(453\) −12.0988 + 11.0193i −0.568453 + 0.517733i
\(454\) 7.00820i 0.328911i
\(455\) −4.93163 + 6.75353i −0.231198 + 0.316611i
\(456\) −4.17483 0.194945i −0.195504 0.00912912i
\(457\) −11.6854 + 11.6854i −0.546620 + 0.546620i −0.925461 0.378842i \(-0.876322\pi\)
0.378842 + 0.925461i \(0.376322\pi\)
\(458\) −7.97242 + 7.97242i −0.372527 + 0.372527i
\(459\) −0.0294547 + 0.209038i −0.00137483 + 0.00975708i
\(460\) 2.20937 0.344476i 0.103013 0.0160613i
\(461\) 30.4595i 1.41864i −0.704886 0.709320i \(-0.749002\pi\)
0.704886 0.709320i \(-0.250998\pi\)
\(462\) 7.19416 + 7.89893i 0.334703 + 0.367492i
\(463\) 9.14602 + 9.14602i 0.425052 + 0.425052i 0.886939 0.461887i \(-0.152827\pi\)
−0.461887 + 0.886939i \(0.652827\pi\)
\(464\) 8.32611 0.386530
\(465\) −4.51066 41.5993i −0.209177 1.92912i
\(466\) 17.7490 0.822206
\(467\) −27.1900 27.1900i −1.25820 1.25820i −0.951951 0.306251i \(-0.900925\pi\)
−0.306251 0.951951i \(-0.599075\pi\)
\(468\) −3.52549 4.25357i −0.162966 0.196621i
\(469\) 19.2094i 0.887006i
\(470\) −0.871000 0.636030i −0.0401762 0.0293379i
\(471\) 1.78828 38.2969i 0.0823998 1.76463i
\(472\) 1.48906 1.48906i 0.0685397 0.0685397i
\(473\) 0.330949 0.330949i 0.0152170 0.0152170i
\(474\) 0.415900 8.90669i 0.0191029 0.409098i
\(475\) 11.4922 3.67291i 0.527296 0.168524i
\(476\) 0.0825048i 0.00378160i
\(477\) 0.326380 + 0.393783i 0.0149439 + 0.0180301i
\(478\) 0.871438 + 0.871438i 0.0398586 + 0.0398586i
\(479\) −7.60429 −0.347449 −0.173724 0.984794i \(-0.555580\pi\)
−0.173724 + 0.984794i \(0.555580\pi\)
\(480\) −2.42743 + 3.01787i −0.110797 + 0.137746i
\(481\) 1.04116 0.0474729
\(482\) −7.09816 7.09816i −0.323312 0.323312i
\(483\) −2.36848 2.60051i −0.107770 0.118327i
\(484\) 1.77386i 0.0806301i
\(485\) −3.59607 23.0642i −0.163289 1.04729i
\(486\) −15.1661 3.60399i −0.687949 0.163480i
\(487\) 18.0300 18.0300i 0.817017 0.817017i −0.168658 0.985675i \(-0.553943\pi\)
0.985675 + 0.168658i \(0.0539433\pi\)
\(488\) −7.61029 + 7.61029i −0.344502 + 0.344502i
\(489\) 6.60481 + 0.308413i 0.298680 + 0.0139469i
\(490\) 0.990673 + 6.35390i 0.0447541 + 0.287040i
\(491\) 4.29319i 0.193749i 0.995297 + 0.0968745i \(0.0308845\pi\)
−0.995297 + 0.0968745i \(0.969115\pi\)
\(492\) −12.1100 + 11.0295i −0.545961 + 0.497248i
\(493\) 0.239189 + 0.239189i 0.0107725 + 0.0107725i
\(494\) 4.44361 0.199927
\(495\) 13.4975 15.2642i 0.606666 0.686073i
\(496\) −10.8038 −0.485107
\(497\) 8.18039 + 8.18039i 0.366941 + 0.366941i
\(498\) 5.56370 5.06728i 0.249315 0.227070i
\(499\) 11.6589i 0.521925i 0.965349 + 0.260963i \(0.0840399\pi\)
−0.965349 + 0.260963i \(0.915960\pi\)
\(500\) 3.53167 10.6079i 0.157941 0.474399i
\(501\) 12.2156 + 0.570410i 0.545753 + 0.0254841i
\(502\) 7.87197 7.87197i 0.351343 0.351343i
\(503\) −21.7405 + 21.7405i −0.969360 + 0.969360i −0.999544 0.0301846i \(-0.990390\pi\)
0.0301846 + 0.999544i \(0.490390\pi\)
\(504\) 6.06587 + 0.567733i 0.270195 + 0.0252888i
\(505\) 28.4436 + 20.7704i 1.26572 + 0.924270i
\(506\) 3.03746i 0.135031i
\(507\) −11.2064 12.3043i −0.497696 0.546452i
\(508\) −6.32534 6.32534i −0.280642 0.280642i
\(509\) 36.4307 1.61476 0.807381 0.590031i \(-0.200884\pi\)
0.807381 + 0.590031i \(0.200884\pi\)
\(510\) −0.156430 + 0.0169619i −0.00692685 + 0.000751086i
\(511\) 18.4677 0.816963
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 10.0161 7.54205i 0.442221 0.332990i
\(514\) 0.603532i 0.0266206i
\(515\) −31.0602 + 4.84278i −1.36868 + 0.213398i
\(516\) 0.0124488 0.266596i 0.000548027 0.0117362i
\(517\) 1.03594 1.03594i 0.0455604 0.0455604i
\(518\) −0.811865 + 0.811865i −0.0356713 + 0.0356713i
\(519\) −0.580229 + 12.4259i −0.0254692 + 0.545435i
\(520\) 2.42843 3.32557i 0.106494 0.145836i
\(521\) 40.9950i 1.79602i −0.439972 0.898012i \(-0.645011\pi\)
0.439972 0.898012i \(-0.354989\pi\)
\(522\) −19.2314 + 15.9396i −0.841735 + 0.697657i
\(523\) −11.8550 11.8550i −0.518381 0.518381i 0.398700 0.917081i \(-0.369461\pi\)
−0.917081 + 0.398700i \(0.869461\pi\)
\(524\) 8.57676 0.374677
\(525\) −16.9839 + 4.56685i −0.741238 + 0.199314i
\(526\) 19.7851 0.862670
\(527\) −0.310368 0.310368i −0.0135198 0.0135198i
\(528\) −3.54254 3.88958i −0.154169 0.169272i
\(529\) 1.00000i 0.0434783i
\(530\) −0.224817 + 0.307871i −0.00976541 + 0.0133731i
\(531\) −0.588717 + 6.29007i −0.0255481 + 0.272966i
\(532\) −3.46499 + 3.46499i −0.150226 + 0.150226i
\(533\) 12.3146 12.3146i 0.533406 0.533406i
\(534\) −20.8555 0.973853i −0.902506 0.0421427i
\(535\) −25.8762 + 4.03451i −1.11872 + 0.174427i
\(536\) 9.45905i 0.408569i
\(537\) −11.6518 + 10.6122i −0.502813 + 0.457950i
\(538\) −10.9938 10.9938i −0.473977 0.473977i
\(539\) −8.73536 −0.376259
\(540\) −0.170634 11.6177i −0.00734294 0.499946i
\(541\) −18.7415 −0.805758 −0.402879 0.915253i \(-0.631991\pi\)
−0.402879 + 0.915253i \(0.631991\pi\)
\(542\) 2.18788 + 2.18788i 0.0939775 + 0.0939775i
\(543\) −32.6423 + 29.7298i −1.40081 + 1.27583i
\(544\) 0.0406269i 0.00174186i
\(545\) 9.32117 + 6.80659i 0.399275 + 0.291562i
\(546\) −6.47051 0.302142i −0.276912 0.0129305i
\(547\) 3.00042 3.00042i 0.128288 0.128288i −0.640047 0.768336i \(-0.721085\pi\)
0.768336 + 0.640047i \(0.221085\pi\)
\(548\) −11.6408 + 11.6408i −0.497271 + 0.497271i
\(549\) 3.00881 32.1472i 0.128413 1.37201i
\(550\) 13.4986 + 6.96000i 0.575582 + 0.296775i
\(551\) 20.0906i 0.855888i
\(552\) 1.16628 + 1.28054i 0.0496404 + 0.0545034i
\(553\) −7.39230 7.39230i −0.314352 0.314352i
\(554\) 6.76562 0.287444
\(555\) 1.70622 + 1.37240i 0.0724249 + 0.0582551i
\(556\) −0.224301 −0.00951249
\(557\) 21.5167 + 21.5167i 0.911692 + 0.911692i 0.996405 0.0847134i \(-0.0269975\pi\)
−0.0847134 + 0.996405i \(0.526997\pi\)
\(558\) 24.9544 20.6830i 1.05640 0.875580i
\(559\) 0.283760i 0.0120018i
\(560\) 0.699560 + 4.48678i 0.0295618 + 0.189601i
\(561\) 0.00996974 0.213506i 0.000420923 0.00901425i
\(562\) −4.29779 + 4.29779i −0.181292 + 0.181292i
\(563\) 5.98181 5.98181i 0.252103 0.252103i −0.569729 0.821832i \(-0.692952\pi\)
0.821832 + 0.569729i \(0.192952\pi\)
\(564\) 0.0389671 0.834498i 0.00164081 0.0351387i
\(565\) 5.01501 + 32.1649i 0.210983 + 1.35319i
\(566\) 2.30819i 0.0970206i
\(567\) −15.0976 + 10.3012i −0.634041 + 0.432611i
\(568\) −4.02818 4.02818i −0.169019 0.169019i
\(569\) −20.4479 −0.857222 −0.428611 0.903489i \(-0.640997\pi\)
−0.428611 + 0.903489i \(0.640997\pi\)
\(570\) 7.28202 + 5.85731i 0.305010 + 0.245336i
\(571\) −24.0739 −1.00746 −0.503730 0.863861i \(-0.668039\pi\)
−0.503730 + 0.863861i \(0.668039\pi\)
\(572\) 3.95530 + 3.95530i 0.165380 + 0.165380i
\(573\) −18.7139 20.5472i −0.781784 0.858372i
\(574\) 19.2051i 0.801606i
\(575\) −4.44404 2.29139i −0.185329 0.0955576i
\(576\) −2.98695 0.279562i −0.124456 0.0116484i
\(577\) −8.20948 + 8.20948i −0.341765 + 0.341765i −0.857031 0.515266i \(-0.827693\pi\)
0.515266 + 0.857031i \(0.327693\pi\)
\(578\) 12.0196 12.0196i 0.499951 0.499951i
\(579\) −12.6558 0.590966i −0.525957 0.0245597i
\(580\) −15.0357 10.9795i −0.624322 0.455899i
\(581\) 8.82341i 0.366057i
\(582\) 13.3679 12.1751i 0.554116 0.504675i
\(583\) −0.366170 0.366170i −0.0151652 0.0151652i
\(584\) −9.09384 −0.376306
\(585\) 0.757387 + 12.3303i 0.0313141 + 0.509795i
\(586\) 14.0091 0.578711
\(587\) −29.6663 29.6663i −1.22446 1.22446i −0.966031 0.258426i \(-0.916796\pi\)
−0.258426 0.966031i \(-0.583204\pi\)
\(588\) −3.68268 + 3.35409i −0.151871 + 0.138321i
\(589\) 26.0693i 1.07417i
\(590\) −4.65262 + 0.725417i −0.191545 + 0.0298649i
\(591\) 35.5614 + 1.66055i 1.46280 + 0.0683058i
\(592\) 0.399778 0.399778i 0.0164308 0.0164308i
\(593\) −28.7282 + 28.7282i −1.17972 + 1.17972i −0.199911 + 0.979814i \(0.564065\pi\)
−0.979814 + 0.199911i \(0.935935\pi\)
\(594\) 15.6287 + 2.20217i 0.641253 + 0.0903562i
\(595\) −0.108798 + 0.148991i −0.00446026 + 0.00610803i
\(596\) 5.49620i 0.225133i
\(597\) −14.9925 16.4613i −0.613603 0.673714i
\(598\) −1.30218 1.30218i −0.0532500 0.0532500i
\(599\) 46.9570 1.91861 0.959305 0.282371i \(-0.0911211\pi\)
0.959305 + 0.282371i \(0.0911211\pi\)
\(600\) 8.36319 2.24880i 0.341426 0.0918069i
\(601\) −18.4761 −0.753656 −0.376828 0.926283i \(-0.622985\pi\)
−0.376828 + 0.926283i \(0.622985\pi\)
\(602\) −0.221267 0.221267i −0.00901817 0.00901817i
\(603\) 18.1085 + 21.8482i 0.737435 + 0.889728i
\(604\) 9.44824i 0.384443i
\(605\) 2.33916 3.20332i 0.0951004 0.130234i
\(606\) −1.27252 + 27.2516i −0.0516926 + 1.10702i
\(607\) −29.6024 + 29.6024i −1.20152 + 1.20152i −0.227821 + 0.973703i \(0.573160\pi\)
−0.973703 + 0.227821i \(0.926840\pi\)
\(608\) 1.70622 1.70622i 0.0691965 0.0691965i
\(609\) −1.36606 + 29.2547i −0.0553553 + 1.18546i
\(610\) 23.7786 3.70745i 0.962766 0.150110i
\(611\) 0.888224i 0.0359337i
\(612\) −0.0777765 0.0938387i −0.00314393 0.00379321i
\(613\) −26.0428 26.0428i −1.05186 1.05186i −0.998580 0.0532791i \(-0.983033\pi\)
−0.0532791 0.998580i \(-0.516967\pi\)
\(614\) 31.6895 1.27889
\(615\) 36.4132 3.94832i 1.46832 0.159212i
\(616\) −6.16844 −0.248534
\(617\) −9.82533 9.82533i −0.395553 0.395553i 0.481108 0.876661i \(-0.340234\pi\)
−0.876661 + 0.481108i \(0.840234\pi\)
\(618\) −16.3961 18.0023i −0.659547 0.724159i
\(619\) 11.5924i 0.465937i 0.972484 + 0.232968i \(0.0748438\pi\)
−0.972484 + 0.232968i \(0.925156\pi\)
\(620\) 19.5101 + 14.2468i 0.783543 + 0.572167i
\(621\) −5.14532 0.725006i −0.206475 0.0290935i
\(622\) −15.6285 + 15.6285i −0.626646 + 0.626646i
\(623\) −17.3095 + 17.3095i −0.693489 + 0.693489i
\(624\) 3.18620 + 0.148780i 0.127550 + 0.00595598i
\(625\) −20.3661 + 14.4991i −0.814644 + 0.579962i
\(626\) 4.57703i 0.182935i
\(627\) −9.38542 + 8.54801i −0.374818 + 0.341375i
\(628\) 15.6517 + 15.6517i 0.624570 + 0.624570i
\(629\) 0.0229693 0.000915844
\(630\) −10.2054 9.02419i −0.406591 0.359532i
\(631\) −24.8506 −0.989288 −0.494644 0.869096i \(-0.664702\pi\)
−0.494644 + 0.869096i \(0.664702\pi\)
\(632\) 3.64010 + 3.64010i 0.144796 + 0.144796i
\(633\) −31.7702 + 28.9355i −1.26275 + 1.15008i
\(634\) 15.6572i 0.621826i
\(635\) 3.08147 + 19.7637i 0.122285 + 0.784299i
\(636\) −0.294969 0.0137736i −0.0116963 0.000546160i
\(637\) 3.74491 3.74491i 0.148379 0.148379i
\(638\) 17.8829 17.8829i 0.707989 0.707989i
\(639\) 17.0157 + 1.59258i 0.673132 + 0.0630016i
\(640\) −0.344476 2.20937i −0.0136166 0.0873332i
\(641\) 43.6697i 1.72485i −0.506186 0.862424i \(-0.668945\pi\)
0.506186 0.862424i \(-0.331055\pi\)
\(642\) −13.6595 14.9977i −0.539098 0.591911i
\(643\) 4.13381 + 4.13381i 0.163021 + 0.163021i 0.783904 0.620882i \(-0.213226\pi\)
−0.620882 + 0.783904i \(0.713226\pi\)
\(644\) 2.03079 0.0800244
\(645\) −0.374036 + 0.465015i −0.0147277 + 0.0183100i
\(646\) 0.0980312 0.00385699
\(647\) −24.4013 24.4013i −0.959316 0.959316i 0.0398886 0.999204i \(-0.487300\pi\)
−0.999204 + 0.0398886i \(0.987300\pi\)
\(648\) 7.43435 5.07251i 0.292049 0.199267i
\(649\) 6.39644i 0.251082i
\(650\) −8.77073 + 2.80313i −0.344016 + 0.109948i
\(651\) 1.77257 37.9605i 0.0694727 1.48779i
\(652\) −2.69934 + 2.69934i −0.105714 + 0.105714i
\(653\) −3.78364 + 3.78364i −0.148065 + 0.148065i −0.777253 0.629188i \(-0.783388\pi\)
0.629188 + 0.777253i \(0.283388\pi\)
\(654\) −0.417014 + 8.93053i −0.0163065 + 0.349211i
\(655\) −15.4883 11.3100i −0.605178 0.441919i
\(656\) 9.45696i 0.369232i
\(657\) 21.0047 17.4093i 0.819471 0.679203i
\(658\) −0.692609 0.692609i −0.0270007 0.0270007i
\(659\) 21.1564 0.824137 0.412069 0.911153i \(-0.364806\pi\)
0.412069 + 0.911153i \(0.364806\pi\)
\(660\) 1.26815 + 11.6955i 0.0493628 + 0.455245i
\(661\) −13.6642 −0.531475 −0.265737 0.964045i \(-0.585615\pi\)
−0.265737 + 0.964045i \(0.585615\pi\)
\(662\) 19.5047 + 19.5047i 0.758070 + 0.758070i
\(663\) 0.0872575 + 0.0958057i 0.00338880 + 0.00372078i
\(664\) 4.34481i 0.168611i
\(665\) 10.8264 1.68801i 0.419831 0.0654584i
\(666\) −0.158056 + 1.68873i −0.00612455 + 0.0654370i
\(667\) −5.88745 + 5.88745i −0.227963 + 0.227963i
\(668\) −4.99243 + 4.99243i −0.193163 + 0.193163i
\(669\) 16.2328 + 0.757993i 0.627595 + 0.0293057i
\(670\) −12.4735 + 17.0816i −0.481892 + 0.659919i
\(671\) 32.6908i 1.26202i
\(672\) −2.60051 + 2.36848i −0.100317 + 0.0913662i
\(673\) −17.2276 17.2276i −0.664074 0.664074i 0.292264 0.956338i \(-0.405592\pi\)
−0.956338 + 0.292264i \(0.905592\pi\)
\(674\) 23.4652 0.903845
\(675\) −15.0119 + 21.2048i −0.577809 + 0.816172i
\(676\) 9.60867 0.369564
\(677\) 8.11519 + 8.11519i 0.311892 + 0.311892i 0.845642 0.533750i \(-0.179218\pi\)
−0.533750 + 0.845642i \(0.679218\pi\)
\(678\) −18.6425 + 16.9792i −0.715963 + 0.652082i
\(679\) 21.1999i 0.813579i
\(680\) 0.0535739 0.0733659i 0.00205447 0.00281345i
\(681\) −12.1253 0.566196i −0.464644 0.0216967i
\(682\) −23.2046 + 23.2046i −0.888548 + 0.888548i
\(683\) −14.2948 + 14.2948i −0.546975 + 0.546975i −0.925565 0.378589i \(-0.876409\pi\)
0.378589 + 0.925565i \(0.376409\pi\)
\(684\) −0.674573 + 7.20739i −0.0257929 + 0.275582i
\(685\) 36.3721 5.67098i 1.38971 0.216677i
\(686\) 20.0559i 0.765737i
\(687\) 13.1495 + 14.4377i 0.501685 + 0.550833i
\(688\) 0.108956 + 0.108956i 0.00415391 + 0.00415391i
\(689\) 0.313959 0.0119609
\(690\) −0.417505 3.85041i −0.0158941 0.146583i
\(691\) 5.32354 0.202517 0.101258 0.994860i \(-0.467713\pi\)
0.101258 + 0.994860i \(0.467713\pi\)
\(692\) −5.07836 5.07836i −0.193050 0.193050i
\(693\) 14.2477 11.8089i 0.541225 0.448584i
\(694\) 13.4035i 0.508789i
\(695\) 0.405053 + 0.295782i 0.0153646 + 0.0112197i
\(696\) 0.672671 14.4055i 0.0254975 0.546041i
\(697\) 0.271675 0.271675i 0.0102904 0.0102904i
\(698\) −12.2995 + 12.2995i −0.465543 + 0.465543i
\(699\) 1.43395 30.7087i 0.0542370 1.16151i
\(700\) 4.65334 9.02493i 0.175880 0.341110i
\(701\) 37.7240i 1.42482i 0.701765 + 0.712408i \(0.252396\pi\)
−0.701765 + 0.712408i \(0.747604\pi\)
\(702\) −7.64421 + 5.75604i −0.288512 + 0.217248i
\(703\) −0.964649 0.964649i −0.0363824 0.0363824i
\(704\) 3.03746 0.114478
\(705\) −1.17081 + 1.45559i −0.0440951 + 0.0548207i
\(706\) −31.1068 −1.17072
\(707\) 22.6180 + 22.6180i 0.850639 + 0.850639i
\(708\) −2.45602 2.69663i −0.0923030 0.101345i
\(709\) 17.6180i 0.661657i 0.943691 + 0.330828i \(0.107328\pi\)
−0.943691 + 0.330828i \(0.892672\pi\)
\(710\) 1.96238 + 12.5862i 0.0736468 + 0.472350i
\(711\) −15.3764 1.43915i −0.576662 0.0539724i
\(712\) 8.52350 8.52350i 0.319432 0.319432i
\(713\) 7.63947 7.63947i 0.286100 0.286100i
\(714\) −0.142747 0.00666560i −0.00534217 0.000249454i
\(715\) −1.92688 12.3585i −0.0720612 0.462180i
\(716\) 9.09915i 0.340051i
\(717\) 1.57814 1.43733i 0.0589366 0.0536780i
\(718\) 16.7863 + 16.7863i 0.626461 + 0.626461i
\(719\) 23.4101 0.873050 0.436525 0.899692i \(-0.356209\pi\)
0.436525 + 0.899692i \(0.356209\pi\)
\(720\) 5.02531 + 4.44368i 0.187282 + 0.165606i
\(721\) −28.5497 −1.06325
\(722\) 9.31797 + 9.31797i 0.346779 + 0.346779i
\(723\) −12.8545 + 11.7075i −0.478062 + 0.435408i
\(724\) 25.4910i 0.947367i
\(725\) 12.6736 + 39.6545i 0.470687 + 1.47273i
\(726\) 3.06908 + 0.143311i 0.113904 + 0.00531878i
\(727\) −1.31281 + 1.31281i −0.0486893 + 0.0486893i −0.731032 0.682343i \(-0.760961\pi\)
0.682343 + 0.731032i \(0.260961\pi\)
\(728\) 2.64445 2.64445i 0.0980099 0.0980099i
\(729\) −7.46078 + 25.9487i −0.276325 + 0.961064i
\(730\) 16.4221 + 11.9919i 0.607808 + 0.443840i
\(731\) 0.00626007i 0.000231537i
\(732\) 12.5522 + 13.7819i 0.463944 + 0.509394i
\(733\) 33.1490 + 33.1490i 1.22439 + 1.22439i 0.966056 + 0.258332i \(0.0831728\pi\)
0.258332 + 0.966056i \(0.416827\pi\)
\(734\) 28.6554 1.05769
\(735\) 11.0733 1.20069i 0.408446 0.0442883i
\(736\) −1.00000 −0.0368605
\(737\) −20.3162 20.3162i −0.748357 0.748357i
\(738\) 18.1045 + 21.8434i 0.666435 + 0.804066i
\(739\) 20.5449i 0.755758i −0.925855 0.377879i \(-0.876654\pi\)
0.925855 0.377879i \(-0.123346\pi\)
\(740\) −1.24912 + 0.194757i −0.0459184 + 0.00715941i
\(741\) 0.359002 7.68818i 0.0131883 0.282432i
\(742\) −0.244815 + 0.244815i −0.00898746 + 0.00898746i
\(743\) 23.4804 23.4804i 0.861411 0.861411i −0.130091 0.991502i \(-0.541527\pi\)
0.991502 + 0.130091i \(0.0415269\pi\)
\(744\) −0.872848 + 18.6924i −0.0320002 + 0.685298i
\(745\) −7.24774 + 9.92529i −0.265537 + 0.363635i
\(746\) 24.4064i 0.893581i
\(747\) −8.31774 10.0355i −0.304330 0.367180i
\(748\) 0.0872586 + 0.0872586i 0.00319049 + 0.00319049i
\(749\) −23.7846 −0.869072
\(750\) −18.0681 6.96740i −0.659753 0.254413i
\(751\) 9.33331 0.340577 0.170289 0.985394i \(-0.445530\pi\)
0.170289 + 0.985394i \(0.445530\pi\)
\(752\) 0.341054 + 0.341054i 0.0124369 + 0.0124369i
\(753\) −12.9838 14.2558i −0.473157 0.519510i
\(754\) 15.3330i 0.558395i
\(755\) −12.4592 + 17.0621i −0.453437 + 0.620952i
\(756\) 1.47234 10.4491i 0.0535483 0.380030i
\(757\) −7.70849 + 7.70849i −0.280170 + 0.280170i −0.833177 0.553007i \(-0.813480\pi\)
0.553007 + 0.833177i \(0.313480\pi\)
\(758\) 10.9604 10.9604i 0.398100 0.398100i
\(759\) 5.25530 + 0.245398i 0.190755 + 0.00890737i
\(760\) −5.33114 + 0.831209i −0.193381 + 0.0301511i
\(761\) 5.80591i 0.210464i 0.994448 + 0.105232i \(0.0335586\pi\)
−0.994448 + 0.105232i \(0.966441\pi\)
\(762\) −11.4549 + 10.4329i −0.414968 + 0.377943i
\(763\) 7.41208 + 7.41208i 0.268335 + 0.268335i
\(764\) 16.0457 0.580514
\(765\) 0.0167088 + 0.272021i 0.000604109 + 0.00983493i
\(766\) 34.9513 1.26284
\(767\) 2.74219 + 2.74219i 0.0990148 + 0.0990148i
\(768\) 1.28054 1.16628i 0.0462075 0.0420847i
\(769\) 9.81402i 0.353903i 0.984220 + 0.176951i \(0.0566235\pi\)
−0.984220 + 0.176951i \(0.943376\pi\)
\(770\) 11.1393 + 8.13422i 0.401431 + 0.293137i
\(771\) 1.04421 + 0.0487597i 0.0376063 + 0.00175604i
\(772\) 5.17234 5.17234i 0.186156 0.186156i
\(773\) 4.72645 4.72645i 0.169999 0.169999i −0.616980 0.786979i \(-0.711644\pi\)
0.786979 + 0.616980i \(0.211644\pi\)
\(774\) −0.460250 0.0430769i −0.0165433 0.00154837i
\(775\) −16.4451 51.4552i −0.590726 1.84832i
\(776\) 10.4392i 0.374747i
\(777\) 1.33907 + 1.47025i