Properties

Label 690.2.i.e.47.8
Level $690$
Weight $2$
Character 690.47
Analytic conductor $5.510$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.i (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.8
Character \(\chi\) \(=\) 690.47
Dual form 690.2.i.e.323.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(1.47268 - 0.911701i) q^{3} -1.00000i q^{4} +(2.23363 + 0.104337i) q^{5} +(-0.396675 + 1.68602i) q^{6} +(-1.29732 - 1.29732i) q^{7} +(0.707107 + 0.707107i) q^{8} +(1.33760 - 2.68530i) q^{9} +O(q^{10})\) \(q+(-0.707107 + 0.707107i) q^{2} +(1.47268 - 0.911701i) q^{3} -1.00000i q^{4} +(2.23363 + 0.104337i) q^{5} +(-0.396675 + 1.68602i) q^{6} +(-1.29732 - 1.29732i) q^{7} +(0.707107 + 0.707107i) q^{8} +(1.33760 - 2.68530i) q^{9} +(-1.65319 + 1.50564i) q^{10} +0.254719i q^{11} +(-0.911701 - 1.47268i) q^{12} +(0.686574 - 0.686574i) q^{13} +1.83469 q^{14} +(3.38456 - 1.88275i) q^{15} -1.00000 q^{16} +(2.14714 - 2.14714i) q^{17} +(0.952965 + 2.84462i) q^{18} +0.235326i q^{19} +(0.104337 - 2.23363i) q^{20} +(-3.09331 - 0.727776i) q^{21} +(-0.180113 - 0.180113i) q^{22} +(0.707107 + 0.707107i) q^{23} +(1.68602 + 0.396675i) q^{24} +(4.97823 + 0.466101i) q^{25} +0.970962i q^{26} +(-0.478323 - 5.17409i) q^{27} +(-1.29732 + 1.29732i) q^{28} +0.789167 q^{29} +(-1.06194 + 3.72455i) q^{30} -2.07999 q^{31} +(0.707107 - 0.707107i) q^{32} +(0.232227 + 0.375120i) q^{33} +3.03651i q^{34} +(-2.76238 - 3.03310i) q^{35} +(-2.68530 - 1.33760i) q^{36} +(-4.51979 - 4.51979i) q^{37} +(-0.166400 - 0.166400i) q^{38} +(0.385157 - 1.63706i) q^{39} +(1.50564 + 1.65319i) q^{40} +7.61245i q^{41} +(2.70192 - 1.67269i) q^{42} +(2.43550 - 2.43550i) q^{43} +0.254719 q^{44} +(3.26789 - 5.85841i) q^{45} -1.00000 q^{46} +(-2.45797 + 2.45797i) q^{47} +(-1.47268 + 0.911701i) q^{48} -3.63392i q^{49} +(-3.84972 + 3.19056i) q^{50} +(1.20451 - 5.11961i) q^{51} +(-0.686574 - 0.686574i) q^{52} +(2.31783 + 2.31783i) q^{53} +(3.99686 + 3.32041i) q^{54} +(-0.0265766 + 0.568948i) q^{55} -1.83469i q^{56} +(0.214547 + 0.346560i) q^{57} +(-0.558025 + 0.558025i) q^{58} -10.3269 q^{59} +(-1.88275 - 3.38456i) q^{60} +12.2697 q^{61} +(1.47077 - 1.47077i) q^{62} +(-5.21899 + 1.74839i) q^{63} +1.00000i q^{64} +(1.60519 - 1.46192i) q^{65} +(-0.429460 - 0.101041i) q^{66} +(1.01439 + 1.01439i) q^{67} +(-2.14714 - 2.14714i) q^{68} +(1.68602 + 0.396675i) q^{69} +(4.09802 + 0.191426i) q^{70} +1.05315i q^{71} +(2.84462 - 0.952965i) q^{72} +(6.97373 - 6.97373i) q^{73} +6.39195 q^{74} +(7.75631 - 3.85224i) q^{75} +0.235326 q^{76} +(0.330452 - 0.330452i) q^{77} +(0.885227 + 1.42992i) q^{78} +12.7539i q^{79} +(-2.23363 - 0.104337i) q^{80} +(-5.42164 - 7.18372i) q^{81} +(-5.38282 - 5.38282i) q^{82} +(8.88336 + 8.88336i) q^{83} +(-0.727776 + 3.09331i) q^{84} +(5.01995 - 4.57190i) q^{85} +3.44432i q^{86} +(1.16219 - 0.719484i) q^{87} +(-0.180113 + 0.180113i) q^{88} -9.41789 q^{89} +(1.83177 + 6.45326i) q^{90} -1.78141 q^{91} +(0.707107 - 0.707107i) q^{92} +(-3.06317 + 1.89633i) q^{93} -3.47609i q^{94} +(-0.0245532 + 0.525631i) q^{95} +(0.396675 - 1.68602i) q^{96} +(2.94241 + 2.94241i) q^{97} +(2.56957 + 2.56957i) q^{98} +(0.683996 + 0.340712i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 4q^{3} - 4q^{6} - 8q^{7} + O(q^{10}) \) \( 32q + 4q^{3} - 4q^{6} - 8q^{7} - 8q^{10} - 4q^{12} - 4q^{15} - 32q^{16} + 8q^{18} - 32q^{21} - 8q^{22} + 4q^{27} - 8q^{28} + 20q^{30} - 24q^{31} + 20q^{36} - 32q^{37} - 16q^{40} + 8q^{42} + 144q^{43} + 36q^{45} - 32q^{46} - 4q^{48} + 12q^{51} - 64q^{55} + 52q^{57} + 16q^{58} + 4q^{60} - 24q^{61} - 116q^{63} + 12q^{66} - 16q^{67} - 80q^{70} - 8q^{72} + 40q^{73} + 44q^{75} + 24q^{76} - 36q^{78} - 108q^{81} - 32q^{82} - 80q^{85} + 68q^{87} - 8q^{88} + 16q^{90} + 120q^{91} + 12q^{93} + 4q^{96} - 8q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/690\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(461\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 1.47268 0.911701i 0.850255 0.526371i
\(4\) 1.00000i 0.500000i
\(5\) 2.23363 + 0.104337i 0.998911 + 0.0466609i
\(6\) −0.396675 + 1.68602i −0.161942 + 0.688313i
\(7\) −1.29732 1.29732i −0.490341 0.490341i 0.418072 0.908414i \(-0.362706\pi\)
−0.908414 + 0.418072i \(0.862706\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 1.33760 2.68530i 0.445867 0.895099i
\(10\) −1.65319 + 1.50564i −0.522786 + 0.476125i
\(11\) 0.254719i 0.0768006i 0.999262 + 0.0384003i \(0.0122262\pi\)
−0.999262 + 0.0384003i \(0.987774\pi\)
\(12\) −0.911701 1.47268i −0.263185 0.425128i
\(13\) 0.686574 0.686574i 0.190421 0.190421i −0.605457 0.795878i \(-0.707010\pi\)
0.795878 + 0.605457i \(0.207010\pi\)
\(14\) 1.83469 0.490341
\(15\) 3.38456 1.88275i 0.873890 0.486124i
\(16\) −1.00000 −0.250000
\(17\) 2.14714 2.14714i 0.520758 0.520758i −0.397042 0.917800i \(-0.629963\pi\)
0.917800 + 0.397042i \(0.129963\pi\)
\(18\) 0.952965 + 2.84462i 0.224616 + 0.670483i
\(19\) 0.235326i 0.0539874i 0.999636 + 0.0269937i \(0.00859340\pi\)
−0.999636 + 0.0269937i \(0.991407\pi\)
\(20\) 0.104337 2.23363i 0.0233305 0.499455i
\(21\) −3.09331 0.727776i −0.675016 0.158814i
\(22\) −0.180113 0.180113i −0.0384003 0.0384003i
\(23\) 0.707107 + 0.707107i 0.147442 + 0.147442i
\(24\) 1.68602 + 0.396675i 0.344156 + 0.0809710i
\(25\) 4.97823 + 0.466101i 0.995646 + 0.0932202i
\(26\) 0.970962i 0.190421i
\(27\) −0.478323 5.17409i −0.0920533 0.995754i
\(28\) −1.29732 + 1.29732i −0.245171 + 0.245171i
\(29\) 0.789167 0.146545 0.0732723 0.997312i \(-0.476656\pi\)
0.0732723 + 0.997312i \(0.476656\pi\)
\(30\) −1.06194 + 3.72455i −0.193883 + 0.680007i
\(31\) −2.07999 −0.373577 −0.186788 0.982400i \(-0.559808\pi\)
−0.186788 + 0.982400i \(0.559808\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0.232227 + 0.375120i 0.0404256 + 0.0653001i
\(34\) 3.03651i 0.520758i
\(35\) −2.76238 3.03310i −0.466927 0.512687i
\(36\) −2.68530 1.33760i −0.447550 0.222934i
\(37\) −4.51979 4.51979i −0.743049 0.743049i 0.230114 0.973164i \(-0.426090\pi\)
−0.973164 + 0.230114i \(0.926090\pi\)
\(38\) −0.166400 0.166400i −0.0269937 0.0269937i
\(39\) 0.385157 1.63706i 0.0616744 0.262139i
\(40\) 1.50564 + 1.65319i 0.238062 + 0.261393i
\(41\) 7.61245i 1.18887i 0.804145 + 0.594433i \(0.202623\pi\)
−0.804145 + 0.594433i \(0.797377\pi\)
\(42\) 2.70192 1.67269i 0.416915 0.258101i
\(43\) 2.43550 2.43550i 0.371410 0.371410i −0.496580 0.867991i \(-0.665411\pi\)
0.867991 + 0.496580i \(0.165411\pi\)
\(44\) 0.254719 0.0384003
\(45\) 3.26789 5.85841i 0.487148 0.873320i
\(46\) −1.00000 −0.147442
\(47\) −2.45797 + 2.45797i −0.358531 + 0.358531i −0.863271 0.504740i \(-0.831588\pi\)
0.504740 + 0.863271i \(0.331588\pi\)
\(48\) −1.47268 + 0.911701i −0.212564 + 0.131593i
\(49\) 3.63392i 0.519131i
\(50\) −3.84972 + 3.19056i −0.544433 + 0.451213i
\(51\) 1.20451 5.11961i 0.168665 0.716889i
\(52\) −0.686574 0.686574i −0.0952107 0.0952107i
\(53\) 2.31783 + 2.31783i 0.318378 + 0.318378i 0.848144 0.529766i \(-0.177720\pi\)
−0.529766 + 0.848144i \(0.677720\pi\)
\(54\) 3.99686 + 3.32041i 0.543904 + 0.451850i
\(55\) −0.0265766 + 0.568948i −0.00358359 + 0.0767169i
\(56\) 1.83469i 0.245171i
\(57\) 0.214547 + 0.346560i 0.0284174 + 0.0459031i
\(58\) −0.558025 + 0.558025i −0.0732723 + 0.0732723i
\(59\) −10.3269 −1.34445 −0.672224 0.740348i \(-0.734661\pi\)
−0.672224 + 0.740348i \(0.734661\pi\)
\(60\) −1.88275 3.38456i −0.243062 0.436945i
\(61\) 12.2697 1.57098 0.785490 0.618874i \(-0.212411\pi\)
0.785490 + 0.618874i \(0.212411\pi\)
\(62\) 1.47077 1.47077i 0.186788 0.186788i
\(63\) −5.21899 + 1.74839i −0.657531 + 0.220277i
\(64\) 1.00000i 0.125000i
\(65\) 1.60519 1.46192i 0.199099 0.181329i
\(66\) −0.429460 0.101041i −0.0528628 0.0124372i
\(67\) 1.01439 + 1.01439i 0.123927 + 0.123927i 0.766350 0.642423i \(-0.222071\pi\)
−0.642423 + 0.766350i \(0.722071\pi\)
\(68\) −2.14714 2.14714i −0.260379 0.260379i
\(69\) 1.68602 + 0.396675i 0.202972 + 0.0477541i
\(70\) 4.09802 + 0.191426i 0.489807 + 0.0228798i
\(71\) 1.05315i 0.124985i 0.998045 + 0.0624927i \(0.0199050\pi\)
−0.998045 + 0.0624927i \(0.980095\pi\)
\(72\) 2.84462 0.952965i 0.335242 0.112308i
\(73\) 6.97373 6.97373i 0.816214 0.816214i −0.169343 0.985557i \(-0.554165\pi\)
0.985557 + 0.169343i \(0.0541646\pi\)
\(74\) 6.39195 0.743049
\(75\) 7.75631 3.85224i 0.895621 0.444818i
\(76\) 0.235326 0.0269937
\(77\) 0.330452 0.330452i 0.0376585 0.0376585i
\(78\) 0.885227 + 1.42992i 0.100232 + 0.161907i
\(79\) 12.7539i 1.43492i 0.696599 + 0.717461i \(0.254696\pi\)
−0.696599 + 0.717461i \(0.745304\pi\)
\(80\) −2.23363 0.104337i −0.249728 0.0116652i
\(81\) −5.42164 7.18372i −0.602405 0.798191i
\(82\) −5.38282 5.38282i −0.594433 0.594433i
\(83\) 8.88336 + 8.88336i 0.975075 + 0.975075i 0.999697 0.0246219i \(-0.00783820\pi\)
−0.0246219 + 0.999697i \(0.507838\pi\)
\(84\) −0.727776 + 3.09331i −0.0794069 + 0.337508i
\(85\) 5.01995 4.57190i 0.544490 0.495892i
\(86\) 3.44432i 0.371410i
\(87\) 1.16219 0.719484i 0.124600 0.0771368i
\(88\) −0.180113 + 0.180113i −0.0192001 + 0.0192001i
\(89\) −9.41789 −0.998294 −0.499147 0.866517i \(-0.666353\pi\)
−0.499147 + 0.866517i \(0.666353\pi\)
\(90\) 1.83177 + 6.45326i 0.193086 + 0.680234i
\(91\) −1.78141 −0.186743
\(92\) 0.707107 0.707107i 0.0737210 0.0737210i
\(93\) −3.06317 + 1.89633i −0.317635 + 0.196640i
\(94\) 3.47609i 0.358531i
\(95\) −0.0245532 + 0.525631i −0.00251910 + 0.0539286i
\(96\) 0.396675 1.68602i 0.0404855 0.172078i
\(97\) 2.94241 + 2.94241i 0.298757 + 0.298757i 0.840527 0.541770i \(-0.182246\pi\)
−0.541770 + 0.840527i \(0.682246\pi\)
\(98\) 2.56957 + 2.56957i 0.259566 + 0.259566i
\(99\) 0.683996 + 0.340712i 0.0687441 + 0.0342429i
\(100\) 0.466101 4.97823i 0.0466101 0.497823i
\(101\) 15.2340i 1.51584i 0.652350 + 0.757918i \(0.273783\pi\)
−0.652350 + 0.757918i \(0.726217\pi\)
\(102\) 2.76839 + 4.47183i 0.274112 + 0.442777i
\(103\) −1.33242 + 1.33242i −0.131288 + 0.131288i −0.769697 0.638409i \(-0.779593\pi\)
0.638409 + 0.769697i \(0.279593\pi\)
\(104\) 0.970962 0.0952107
\(105\) −6.83339 1.94833i −0.666871 0.190138i
\(106\) −3.27790 −0.318378
\(107\) 0.890386 0.890386i 0.0860768 0.0860768i −0.662757 0.748834i \(-0.730614\pi\)
0.748834 + 0.662757i \(0.230614\pi\)
\(108\) −5.17409 + 0.478323i −0.497877 + 0.0460266i
\(109\) 11.3456i 1.08672i 0.839501 + 0.543358i \(0.182847\pi\)
−0.839501 + 0.543358i \(0.817153\pi\)
\(110\) −0.383515 0.421099i −0.0365667 0.0401503i
\(111\) −10.7769 2.53553i −1.02290 0.240662i
\(112\) 1.29732 + 1.29732i 0.122585 + 0.122585i
\(113\) −2.39356 2.39356i −0.225167 0.225167i 0.585503 0.810670i \(-0.300897\pi\)
−0.810670 + 0.585503i \(0.800897\pi\)
\(114\) −0.396763 0.0933479i −0.0371602 0.00874283i
\(115\) 1.50564 + 1.65319i 0.140402 + 0.154161i
\(116\) 0.789167i 0.0732723i
\(117\) −0.925292 2.76202i −0.0855433 0.255349i
\(118\) 7.30222 7.30222i 0.672224 0.672224i
\(119\) −5.57106 −0.510698
\(120\) 3.72455 + 1.06194i 0.340003 + 0.0969415i
\(121\) 10.9351 0.994102
\(122\) −8.67602 + 8.67602i −0.785490 + 0.785490i
\(123\) 6.94028 + 11.2107i 0.625784 + 1.01084i
\(124\) 2.07999i 0.186788i
\(125\) 11.0709 + 1.56051i 0.990211 + 0.139576i
\(126\) 2.45408 4.92668i 0.218627 0.438904i
\(127\) −11.6705 11.6705i −1.03559 1.03559i −0.999343 0.0362444i \(-0.988461\pi\)
−0.0362444 0.999343i \(-0.511539\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 1.36628 5.80717i 0.120294 0.511293i
\(130\) −0.101307 + 2.16877i −0.00888523 + 0.190214i
\(131\) 7.84601i 0.685509i 0.939425 + 0.342755i \(0.111360\pi\)
−0.939425 + 0.342755i \(0.888640\pi\)
\(132\) 0.375120 0.232227i 0.0326500 0.0202128i
\(133\) 0.305293 0.305293i 0.0264722 0.0264722i
\(134\) −1.43456 −0.123927
\(135\) −0.528548 11.6069i −0.0454902 0.998965i
\(136\) 3.03651 0.260379
\(137\) −0.446558 + 0.446558i −0.0381520 + 0.0381520i −0.725925 0.687773i \(-0.758588\pi\)
0.687773 + 0.725925i \(0.258588\pi\)
\(138\) −1.47268 + 0.911701i −0.125363 + 0.0776092i
\(139\) 12.5052i 1.06067i 0.847787 + 0.530337i \(0.177935\pi\)
−0.847787 + 0.530337i \(0.822065\pi\)
\(140\) −3.03310 + 2.76238i −0.256343 + 0.233464i
\(141\) −1.37888 + 5.86074i −0.116123 + 0.493563i
\(142\) −0.744687 0.744687i −0.0624927 0.0624927i
\(143\) 0.174883 + 0.174883i 0.0146245 + 0.0146245i
\(144\) −1.33760 + 2.68530i −0.111467 + 0.223775i
\(145\) 1.76271 + 0.0823393i 0.146385 + 0.00683791i
\(146\) 9.86235i 0.816214i
\(147\) −3.31305 5.35162i −0.273255 0.441394i
\(148\) −4.51979 + 4.51979i −0.371525 + 0.371525i
\(149\) −10.1715 −0.833281 −0.416640 0.909071i \(-0.636793\pi\)
−0.416640 + 0.909071i \(0.636793\pi\)
\(150\) −2.76059 + 8.20848i −0.225402 + 0.670219i
\(151\) −14.1211 −1.14916 −0.574581 0.818448i \(-0.694835\pi\)
−0.574581 + 0.818448i \(0.694835\pi\)
\(152\) −0.166400 + 0.166400i −0.0134968 + 0.0134968i
\(153\) −2.89369 8.63773i −0.233941 0.698319i
\(154\) 0.467330i 0.0376585i
\(155\) −4.64593 0.217020i −0.373170 0.0174314i
\(156\) −1.63706 0.385157i −0.131069 0.0308372i
\(157\) −10.7816 10.7816i −0.860465 0.860465i 0.130927 0.991392i \(-0.458205\pi\)
−0.991392 + 0.130927i \(0.958205\pi\)
\(158\) −9.01834 9.01834i −0.717461 0.717461i
\(159\) 5.52660 + 1.30026i 0.438288 + 0.103118i
\(160\) 1.65319 1.50564i 0.130696 0.119031i
\(161\) 1.83469i 0.144594i
\(162\) 8.91334 + 1.24597i 0.700298 + 0.0978930i
\(163\) −1.35354 + 1.35354i −0.106017 + 0.106017i −0.758126 0.652108i \(-0.773885\pi\)
0.652108 + 0.758126i \(0.273885\pi\)
\(164\) 7.61245 0.594433
\(165\) 0.479572 + 0.862111i 0.0373346 + 0.0671153i
\(166\) −12.5630 −0.975075
\(167\) −5.90252 + 5.90252i −0.456751 + 0.456751i −0.897587 0.440837i \(-0.854682\pi\)
0.440837 + 0.897587i \(0.354682\pi\)
\(168\) −1.67269 2.70192i −0.129051 0.208458i
\(169\) 12.0572i 0.927479i
\(170\) −0.316821 + 6.78246i −0.0242990 + 0.520191i
\(171\) 0.631919 + 0.314772i 0.0483241 + 0.0240712i
\(172\) −2.43550 2.43550i −0.185705 0.185705i
\(173\) −12.9677 12.9677i −0.985916 0.985916i 0.0139865 0.999902i \(-0.495548\pi\)
−0.999902 + 0.0139865i \(0.995548\pi\)
\(174\) −0.313043 + 1.33055i −0.0237317 + 0.100869i
\(175\) −5.85368 7.06304i −0.442496 0.533916i
\(176\) 0.254719i 0.0192001i
\(177\) −15.2083 + 9.41504i −1.14312 + 0.707678i
\(178\) 6.65945 6.65945i 0.499147 0.499147i
\(179\) −17.1909 −1.28491 −0.642455 0.766323i \(-0.722084\pi\)
−0.642455 + 0.766323i \(0.722084\pi\)
\(180\) −5.85841 3.26789i −0.436660 0.243574i
\(181\) −15.0456 −1.11833 −0.559166 0.829055i \(-0.688879\pi\)
−0.559166 + 0.829055i \(0.688879\pi\)
\(182\) 1.25965 1.25965i 0.0933714 0.0933714i
\(183\) 18.0695 11.1863i 1.33573 0.826918i
\(184\) 1.00000i 0.0737210i
\(185\) −9.62397 10.5671i −0.707568 0.776911i
\(186\) 0.825080 3.50689i 0.0604978 0.257138i
\(187\) 0.546917 + 0.546917i 0.0399945 + 0.0399945i
\(188\) 2.45797 + 2.45797i 0.179266 + 0.179266i
\(189\) −6.09192 + 7.33299i −0.443122 + 0.533397i
\(190\) −0.354315 0.389039i −0.0257047 0.0282238i
\(191\) 2.26357i 0.163786i −0.996641 0.0818932i \(-0.973903\pi\)
0.996641 0.0818932i \(-0.0260966\pi\)
\(192\) 0.911701 + 1.47268i 0.0657964 + 0.106282i
\(193\) 1.03012 1.03012i 0.0741495 0.0741495i −0.669059 0.743209i \(-0.733303\pi\)
0.743209 + 0.669059i \(0.233303\pi\)
\(194\) −4.16120 −0.298757
\(195\) 1.03110 3.61640i 0.0738389 0.258976i
\(196\) −3.63392 −0.259566
\(197\) 0.571573 0.571573i 0.0407229 0.0407229i −0.686452 0.727175i \(-0.740833\pi\)
0.727175 + 0.686452i \(0.240833\pi\)
\(198\) −0.724578 + 0.242738i −0.0514935 + 0.0172506i
\(199\) 18.8518i 1.33637i 0.743996 + 0.668184i \(0.232928\pi\)
−0.743996 + 0.668184i \(0.767072\pi\)
\(200\) 3.19056 + 3.84972i 0.225606 + 0.272216i
\(201\) 2.41869 + 0.569054i 0.170601 + 0.0401380i
\(202\) −10.7720 10.7720i −0.757918 0.757918i
\(203\) −1.02380 1.02380i −0.0718568 0.0718568i
\(204\) −5.11961 1.20451i −0.358444 0.0843326i
\(205\) −0.794260 + 17.0034i −0.0554736 + 1.18757i
\(206\) 1.88433i 0.131288i
\(207\) 2.84462 0.952965i 0.197715 0.0662356i
\(208\) −0.686574 + 0.686574i −0.0476053 + 0.0476053i
\(209\) −0.0599418 −0.00414626
\(210\) 6.20962 3.45426i 0.428504 0.238367i
\(211\) 4.60366 0.316929 0.158465 0.987365i \(-0.449346\pi\)
0.158465 + 0.987365i \(0.449346\pi\)
\(212\) 2.31783 2.31783i 0.159189 0.159189i
\(213\) 0.960155 + 1.55095i 0.0657887 + 0.106270i
\(214\) 1.25920i 0.0860768i
\(215\) 5.69413 5.18590i 0.388336 0.353675i
\(216\) 3.32041 3.99686i 0.225925 0.271952i
\(217\) 2.69841 + 2.69841i 0.183180 + 0.183180i
\(218\) −8.02258 8.02258i −0.543358 0.543358i
\(219\) 3.91215 16.6281i 0.264359 1.12362i
\(220\) 0.568948 + 0.0265766i 0.0383585 + 0.00179179i
\(221\) 2.94834i 0.198327i
\(222\) 9.41333 5.82755i 0.631781 0.391120i
\(223\) 7.68075 7.68075i 0.514341 0.514341i −0.401512 0.915854i \(-0.631515\pi\)
0.915854 + 0.401512i \(0.131515\pi\)
\(224\) −1.83469 −0.122585
\(225\) 7.91051 12.7446i 0.527367 0.849638i
\(226\) 3.38500 0.225167
\(227\) −0.512571 + 0.512571i −0.0340205 + 0.0340205i −0.723912 0.689892i \(-0.757658\pi\)
0.689892 + 0.723912i \(0.257658\pi\)
\(228\) 0.346560 0.214547i 0.0229515 0.0142087i
\(229\) 16.3029i 1.07733i 0.842521 + 0.538664i \(0.181071\pi\)
−0.842521 + 0.538664i \(0.818929\pi\)
\(230\) −2.23363 0.104337i −0.147281 0.00687978i
\(231\) 0.185378 0.787925i 0.0121970 0.0518417i
\(232\) 0.558025 + 0.558025i 0.0366361 + 0.0366361i
\(233\) −6.11748 6.11748i −0.400769 0.400769i 0.477735 0.878504i \(-0.341458\pi\)
−0.878504 + 0.477735i \(0.841458\pi\)
\(234\) 2.60732 + 1.29876i 0.170446 + 0.0849026i
\(235\) −5.74665 + 5.23373i −0.374870 + 0.341411i
\(236\) 10.3269i 0.672224i
\(237\) 11.6277 + 18.7824i 0.755301 + 1.22005i
\(238\) 3.93933 3.93933i 0.255349 0.255349i
\(239\) −5.10225 −0.330037 −0.165019 0.986290i \(-0.552768\pi\)
−0.165019 + 0.986290i \(0.552768\pi\)
\(240\) −3.38456 + 1.88275i −0.218472 + 0.121531i
\(241\) 12.6977 0.817933 0.408966 0.912549i \(-0.365889\pi\)
0.408966 + 0.912549i \(0.365889\pi\)
\(242\) −7.73230 + 7.73230i −0.497051 + 0.497051i
\(243\) −14.5338 5.63643i −0.932342 0.361577i
\(244\) 12.2697i 0.785490i
\(245\) 0.379152 8.11684i 0.0242231 0.518566i
\(246\) −12.8347 3.01967i −0.818312 0.192527i
\(247\) 0.161568 + 0.161568i 0.0102804 + 0.0102804i
\(248\) −1.47077 1.47077i −0.0933942 0.0933942i
\(249\) 21.1813 + 4.98342i 1.34231 + 0.315811i
\(250\) −8.93176 + 6.72486i −0.564894 + 0.425317i
\(251\) 21.8369i 1.37833i 0.724602 + 0.689167i \(0.242024\pi\)
−0.724602 + 0.689167i \(0.757976\pi\)
\(252\) 1.74839 + 5.21899i 0.110138 + 0.328766i
\(253\) −0.180113 + 0.180113i −0.0113236 + 0.0113236i
\(254\) 16.5045 1.03559
\(255\) 3.22460 11.3097i 0.201932 0.708238i
\(256\) 1.00000 0.0625000
\(257\) −2.12293 + 2.12293i −0.132425 + 0.132425i −0.770212 0.637787i \(-0.779850\pi\)
0.637787 + 0.770212i \(0.279850\pi\)
\(258\) 3.14019 + 5.07240i 0.195500 + 0.315794i
\(259\) 11.7272i 0.728695i
\(260\) −1.46192 1.60519i −0.0906643 0.0995496i
\(261\) 1.05559 2.11915i 0.0653394 0.131172i
\(262\) −5.54797 5.54797i −0.342755 0.342755i
\(263\) 19.7112 + 19.7112i 1.21544 + 1.21544i 0.969210 + 0.246234i \(0.0791932\pi\)
0.246234 + 0.969210i \(0.420807\pi\)
\(264\) −0.101041 + 0.429460i −0.00621862 + 0.0264314i
\(265\) 4.93534 + 5.41901i 0.303176 + 0.332887i
\(266\) 0.431749i 0.0264722i
\(267\) −13.8696 + 8.58630i −0.848804 + 0.525473i
\(268\) 1.01439 1.01439i 0.0619635 0.0619635i
\(269\) 24.6404 1.50235 0.751176 0.660102i \(-0.229487\pi\)
0.751176 + 0.660102i \(0.229487\pi\)
\(270\) 8.58107 + 7.83359i 0.522227 + 0.476737i
\(271\) −27.5909 −1.67603 −0.838014 0.545649i \(-0.816283\pi\)
−0.838014 + 0.545649i \(0.816283\pi\)
\(272\) −2.14714 + 2.14714i −0.130189 + 0.130189i
\(273\) −2.62346 + 1.62412i −0.158779 + 0.0982960i
\(274\) 0.631528i 0.0381520i
\(275\) −0.118725 + 1.26805i −0.00715937 + 0.0764662i
\(276\) 0.396675 1.68602i 0.0238771 0.101486i
\(277\) 21.0838 + 21.0838i 1.26680 + 1.26680i 0.947729 + 0.319076i \(0.103372\pi\)
0.319076 + 0.947729i \(0.396628\pi\)
\(278\) −8.84248 8.84248i −0.530337 0.530337i
\(279\) −2.78219 + 5.58538i −0.166566 + 0.334388i
\(280\) 0.191426 4.09802i 0.0114399 0.244904i
\(281\) 17.6206i 1.05115i −0.850746 0.525577i \(-0.823849\pi\)
0.850746 0.525577i \(-0.176151\pi\)
\(282\) −3.16915 5.11918i −0.188720 0.304843i
\(283\) 17.7774 17.7774i 1.05676 1.05676i 0.0584697 0.998289i \(-0.481378\pi\)
0.998289 0.0584697i \(-0.0186221\pi\)
\(284\) 1.05315 0.0624927
\(285\) 0.443059 + 0.796474i 0.0262446 + 0.0471790i
\(286\) −0.247322 −0.0146245
\(287\) 9.87579 9.87579i 0.582950 0.582950i
\(288\) −0.952965 2.84462i −0.0561540 0.167621i
\(289\) 7.77958i 0.457622i
\(290\) −1.30465 + 1.18820i −0.0766114 + 0.0697735i
\(291\) 7.01584 + 1.65064i 0.411276 + 0.0967625i
\(292\) −6.97373 6.97373i −0.408107 0.408107i
\(293\) 4.75775 + 4.75775i 0.277951 + 0.277951i 0.832291 0.554340i \(-0.187029\pi\)
−0.554340 + 0.832291i \(0.687029\pi\)
\(294\) 6.12684 + 1.44149i 0.357325 + 0.0840691i
\(295\) −23.0665 1.07748i −1.34298 0.0627332i
\(296\) 6.39195i 0.371525i
\(297\) 1.31794 0.121838i 0.0764745 0.00706974i
\(298\) 7.19233 7.19233i 0.416640 0.416640i
\(299\) 0.970962 0.0561522
\(300\) −3.85224 7.75631i −0.222409 0.447811i
\(301\) −6.31925 −0.364236
\(302\) 9.98515 9.98515i 0.574581 0.574581i
\(303\) 13.8888 + 22.4348i 0.797892 + 1.28885i
\(304\) 0.235326i 0.0134968i
\(305\) 27.4061 + 1.28019i 1.56927 + 0.0733034i
\(306\) 8.15394 + 4.06165i 0.466130 + 0.232189i
\(307\) −23.0519 23.0519i −1.31564 1.31564i −0.917190 0.398451i \(-0.869548\pi\)
−0.398451 0.917190i \(-0.630452\pi\)
\(308\) −0.330452 0.330452i −0.0188292 0.0188292i
\(309\) −0.747468 + 3.17701i −0.0425220 + 0.180734i
\(310\) 3.43862 3.13171i 0.195301 0.177869i
\(311\) 24.8240i 1.40764i −0.710377 0.703821i \(-0.751476\pi\)
0.710377 0.703821i \(-0.248524\pi\)
\(312\) 1.42992 0.885227i 0.0809533 0.0501161i
\(313\) 2.31611 2.31611i 0.130914 0.130914i −0.638614 0.769528i \(-0.720492\pi\)
0.769528 + 0.638614i \(0.220492\pi\)
\(314\) 15.2475 0.860465
\(315\) −11.8397 + 3.36073i −0.667093 + 0.189356i
\(316\) 12.7539 0.717461
\(317\) −22.5014 + 22.5014i −1.26381 + 1.26381i −0.314574 + 0.949233i \(0.601862\pi\)
−0.949233 + 0.314574i \(0.898138\pi\)
\(318\) −4.82732 + 2.98847i −0.270703 + 0.167585i
\(319\) 0.201016i 0.0112547i
\(320\) −0.104337 + 2.23363i −0.00583261 + 0.124864i
\(321\) 0.499492 2.12302i 0.0278789 0.118496i
\(322\) 1.29732 + 1.29732i 0.0722969 + 0.0722969i
\(323\) 0.505277 + 0.505277i 0.0281144 + 0.0281144i
\(324\) −7.18372 + 5.42164i −0.399095 + 0.301202i
\(325\) 3.73793 3.09791i 0.207343 0.171841i
\(326\) 1.91419i 0.106017i
\(327\) 10.3438 + 16.7086i 0.572015 + 0.923985i
\(328\) −5.38282 + 5.38282i −0.297216 + 0.297216i
\(329\) 6.37754 0.351605
\(330\) −0.948713 0.270496i −0.0522249 0.0148903i
\(331\) −9.35497 −0.514196 −0.257098 0.966385i \(-0.582766\pi\)
−0.257098 + 0.966385i \(0.582766\pi\)
\(332\) 8.88336 8.88336i 0.487537 0.487537i
\(333\) −18.1827 + 6.09130i −0.996404 + 0.333801i
\(334\) 8.34742i 0.456751i
\(335\) 2.15993 + 2.37161i 0.118010 + 0.129575i
\(336\) 3.09331 + 0.727776i 0.168754 + 0.0397034i
\(337\) 19.5467 + 19.5467i 1.06477 + 1.06477i 0.997751 + 0.0670235i \(0.0213503\pi\)
0.0670235 + 0.997751i \(0.478650\pi\)
\(338\) −8.52575 8.52575i −0.463740 0.463740i
\(339\) −5.70717 1.34275i −0.309971 0.0729280i
\(340\) −4.57190 5.01995i −0.247946 0.272245i
\(341\) 0.529812i 0.0286909i
\(342\) −0.669412 + 0.224257i −0.0361976 + 0.0121264i
\(343\) −13.7956 + 13.7956i −0.744893 + 0.744893i
\(344\) 3.44432 0.185705
\(345\) 3.72455 + 1.06194i 0.200523 + 0.0571730i
\(346\) 18.3391 0.985916
\(347\) 20.1751 20.1751i 1.08306 1.08306i 0.0868324 0.996223i \(-0.472326\pi\)
0.996223 0.0868324i \(-0.0276745\pi\)
\(348\) −0.719484 1.16219i −0.0385684 0.0623001i
\(349\) 3.34945i 0.179292i 0.995974 + 0.0896460i \(0.0285736\pi\)
−0.995974 + 0.0896460i \(0.971426\pi\)
\(350\) 9.13350 + 0.855150i 0.488206 + 0.0457097i
\(351\) −3.88080 3.22399i −0.207142 0.172084i
\(352\) 0.180113 + 0.180113i 0.00960007 + 0.00960007i
\(353\) 0.587472 + 0.587472i 0.0312680 + 0.0312680i 0.722568 0.691300i \(-0.242962\pi\)
−0.691300 + 0.722568i \(0.742962\pi\)
\(354\) 4.09643 17.4113i 0.217723 0.925401i
\(355\) −0.109882 + 2.35234i −0.00583194 + 0.124849i
\(356\) 9.41789i 0.499147i
\(357\) −8.20442 + 5.07914i −0.434224 + 0.268817i
\(358\) 12.1558 12.1558i 0.642455 0.642455i
\(359\) 22.1203 1.16746 0.583731 0.811947i \(-0.301592\pi\)
0.583731 + 0.811947i \(0.301592\pi\)
\(360\) 6.45326 1.83177i 0.340117 0.0965429i
\(361\) 18.9446 0.997085
\(362\) 10.6389 10.6389i 0.559166 0.559166i
\(363\) 16.1040 9.96956i 0.845240 0.523266i
\(364\) 1.78141i 0.0933714i
\(365\) 16.3044 14.8491i 0.853410 0.777240i
\(366\) −4.86711 + 20.6870i −0.254408 + 1.08133i
\(367\) −10.1692 10.1692i −0.530827 0.530827i 0.389992 0.920818i \(-0.372478\pi\)
−0.920818 + 0.389992i \(0.872478\pi\)
\(368\) −0.707107 0.707107i −0.0368605 0.0368605i
\(369\) 20.4417 + 10.1824i 1.06415 + 0.530076i
\(370\) 14.2773 + 0.666917i 0.742240 + 0.0346714i
\(371\) 6.01393i 0.312228i
\(372\) 1.89633 + 3.06317i 0.0983200 + 0.158818i
\(373\) 6.32688 6.32688i 0.327594 0.327594i −0.524077 0.851671i \(-0.675590\pi\)
0.851671 + 0.524077i \(0.175590\pi\)
\(374\) −0.773457 −0.0399945
\(375\) 17.7267 7.79521i 0.915401 0.402543i
\(376\) −3.47609 −0.179266
\(377\) 0.541821 0.541821i 0.0279052 0.0279052i
\(378\) −0.877573 9.49284i −0.0451375 0.488259i
\(379\) 29.7415i 1.52772i −0.645382 0.763860i \(-0.723302\pi\)
0.645382 0.763860i \(-0.276698\pi\)
\(380\) 0.525631 + 0.0245532i 0.0269643 + 0.00125955i
\(381\) −27.8269 6.54695i −1.42562 0.335410i
\(382\) 1.60059 + 1.60059i 0.0818932 + 0.0818932i
\(383\) −11.8299 11.8299i −0.604479 0.604479i 0.337019 0.941498i \(-0.390581\pi\)
−0.941498 + 0.337019i \(0.890581\pi\)
\(384\) −1.68602 0.396675i −0.0860391 0.0202428i
\(385\) 0.772586 0.703630i 0.0393747 0.0358603i
\(386\) 1.45681i 0.0741495i
\(387\) −3.28231 9.79777i −0.166849 0.498049i
\(388\) 2.94241 2.94241i 0.149378 0.149378i
\(389\) 33.8998 1.71879 0.859394 0.511315i \(-0.170841\pi\)
0.859394 + 0.511315i \(0.170841\pi\)
\(390\) 1.82808 + 3.28628i 0.0925684 + 0.166407i
\(391\) 3.03651 0.153563
\(392\) 2.56957 2.56957i 0.129783 0.129783i
\(393\) 7.15322 + 11.5547i 0.360832 + 0.582858i
\(394\) 0.808326i 0.0407229i
\(395\) −1.33070 + 28.4874i −0.0669547 + 1.43336i
\(396\) 0.340712 0.683996i 0.0171214 0.0343721i
\(397\) −1.01644 1.01644i −0.0510138 0.0510138i 0.681140 0.732153i \(-0.261485\pi\)
−0.732153 + 0.681140i \(0.761485\pi\)
\(398\) −13.3302 13.3302i −0.668184 0.668184i
\(399\) 0.171264 0.727936i 0.00857394 0.0364424i
\(400\) −4.97823 0.466101i −0.248911 0.0233050i
\(401\) 21.8339i 1.09033i −0.838327 0.545167i \(-0.816466\pi\)
0.838327 0.545167i \(-0.183534\pi\)
\(402\) −2.11265 + 1.30789i −0.105370 + 0.0652316i
\(403\) −1.42806 + 1.42806i −0.0711370 + 0.0711370i
\(404\) 15.2340 0.757918
\(405\) −11.3604 16.6115i −0.564504 0.825430i
\(406\) 1.44788 0.0718568
\(407\) 1.15128 1.15128i 0.0570666 0.0570666i
\(408\) 4.47183 2.76839i 0.221389 0.137056i
\(409\) 32.4433i 1.60422i −0.597177 0.802109i \(-0.703711\pi\)
0.597177 0.802109i \(-0.296289\pi\)
\(410\) −11.4616 12.5849i −0.566049 0.621522i
\(411\) −0.250512 + 1.06477i −0.0123568 + 0.0525210i
\(412\) 1.33242 + 1.33242i 0.0656438 + 0.0656438i
\(413\) 13.3973 + 13.3973i 0.659238 + 0.659238i
\(414\) −1.33760 + 2.68530i −0.0657395 + 0.131975i
\(415\) 18.9153 + 20.7690i 0.928515 + 1.01951i
\(416\) 0.970962i 0.0476053i
\(417\) 11.4010 + 18.4162i 0.558308 + 0.901843i
\(418\) 0.0423853 0.0423853i 0.00207313 0.00207313i
\(419\) −11.6777 −0.570495 −0.285248 0.958454i \(-0.592076\pi\)
−0.285248 + 0.958454i \(0.592076\pi\)
\(420\) −1.94833 + 6.83339i −0.0950688 + 0.333435i
\(421\) 31.0857 1.51502 0.757512 0.652822i \(-0.226415\pi\)
0.757512 + 0.652822i \(0.226415\pi\)
\(422\) −3.25528 + 3.25528i −0.158465 + 0.158465i
\(423\) 3.31259 + 9.88815i 0.161064 + 0.480778i
\(424\) 3.27790i 0.159189i
\(425\) 11.6897 9.68817i 0.567036 0.469945i
\(426\) −1.77562 0.417757i −0.0860291 0.0202404i
\(427\) −15.9178 15.9178i −0.770316 0.770316i
\(428\) −0.890386 0.890386i −0.0430384 0.0430384i
\(429\) 0.416989 + 0.0981066i 0.0201324 + 0.00473663i
\(430\) −0.359370 + 7.69334i −0.0173303 + 0.371006i
\(431\) 17.3722i 0.836791i −0.908265 0.418395i \(-0.862593\pi\)
0.908265 0.418395i \(-0.137407\pi\)
\(432\) 0.478323 + 5.17409i 0.0230133 + 0.248939i
\(433\) −3.43595 + 3.43595i −0.165121 + 0.165121i −0.784831 0.619710i \(-0.787250\pi\)
0.619710 + 0.784831i \(0.287250\pi\)
\(434\) −3.81613 −0.183180
\(435\) 2.67098 1.48580i 0.128064 0.0712388i
\(436\) 11.3456 0.543358
\(437\) −0.166400 + 0.166400i −0.00796001 + 0.00796001i
\(438\) 8.99152 + 14.5241i 0.429631 + 0.693990i
\(439\) 12.2984i 0.586971i 0.955964 + 0.293486i \(0.0948153\pi\)
−0.955964 + 0.293486i \(0.905185\pi\)
\(440\) −0.421099 + 0.383515i −0.0200751 + 0.0182833i
\(441\) −9.75815 4.86073i −0.464674 0.231464i
\(442\) 2.08479 + 2.08479i 0.0991634 + 0.0991634i
\(443\) −11.2303 11.2303i −0.533567 0.533567i 0.388065 0.921632i \(-0.373144\pi\)
−0.921632 + 0.388065i \(0.873144\pi\)
\(444\) −2.53553 + 10.7769i −0.120331 + 0.511450i
\(445\) −21.0361 0.982634i −0.997207 0.0465813i
\(446\) 10.8622i 0.514341i
\(447\) −14.9794 + 9.27336i −0.708501 + 0.438615i
\(448\) 1.29732 1.29732i 0.0612926 0.0612926i
\(449\) 4.18538 0.197520 0.0987601 0.995111i \(-0.468512\pi\)
0.0987601 + 0.995111i \(0.468512\pi\)
\(450\) 3.41819 + 14.6053i 0.161135 + 0.688502i
\(451\) −1.93903 −0.0913056
\(452\) −2.39356 + 2.39356i −0.112584 + 0.112584i
\(453\) −20.7960 + 12.8743i −0.977080 + 0.604885i
\(454\) 0.724884i 0.0340205i
\(455\) −3.97902 0.185867i −0.186539 0.00871359i
\(456\) −0.0933479 + 0.396763i −0.00437141 + 0.0185801i
\(457\) 7.32848 + 7.32848i 0.342812 + 0.342812i 0.857423 0.514612i \(-0.172064\pi\)
−0.514612 + 0.857423i \(0.672064\pi\)
\(458\) −11.5279 11.5279i −0.538664 0.538664i
\(459\) −12.1365 10.0825i −0.566484 0.470609i
\(460\) 1.65319 1.50564i 0.0770806 0.0702008i
\(461\) 11.7310i 0.546367i 0.961962 + 0.273184i \(0.0880767\pi\)
−0.961962 + 0.273184i \(0.911923\pi\)
\(462\) 0.426065 + 0.688229i 0.0198223 + 0.0320193i
\(463\) −19.3473 + 19.3473i −0.899144 + 0.899144i −0.995360 0.0962167i \(-0.969326\pi\)
0.0962167 + 0.995360i \(0.469326\pi\)
\(464\) −0.789167 −0.0366361
\(465\) −7.03984 + 3.91610i −0.326465 + 0.181605i
\(466\) 8.65142 0.400769
\(467\) 18.8596 18.8596i 0.872719 0.872719i −0.120049 0.992768i \(-0.538305\pi\)
0.992768 + 0.120049i \(0.0383051\pi\)
\(468\) −2.76202 + 0.925292i −0.127674 + 0.0427717i
\(469\) 2.63197i 0.121533i
\(470\) 0.362685 7.76430i 0.0167294 0.358141i
\(471\) −25.7075 6.04830i −1.18454 0.278691i
\(472\) −7.30222 7.30222i −0.336112 0.336112i
\(473\) 0.620368 + 0.620368i 0.0285245 + 0.0285245i
\(474\) −21.5032 5.05914i −0.987675 0.232374i
\(475\) −0.109685 + 1.17150i −0.00503272 + 0.0537523i
\(476\) 5.57106i 0.255349i
\(477\) 9.32439 3.12373i 0.426934 0.143026i
\(478\) 3.60784 3.60784i 0.165019 0.165019i
\(479\) −31.9961 −1.46194 −0.730970 0.682410i \(-0.760932\pi\)
−0.730970 + 0.682410i \(0.760932\pi\)
\(480\) 1.06194 3.72455i 0.0484707 0.170002i
\(481\) −6.20634 −0.282985
\(482\) −8.97865 + 8.97865i −0.408966 + 0.408966i
\(483\) −1.67269 2.70192i −0.0761099 0.122942i
\(484\) 10.9351i 0.497051i
\(485\) 6.26526 + 6.87927i 0.284491 + 0.312371i
\(486\) 14.2625 6.29137i 0.646960 0.285382i
\(487\) 5.57401 + 5.57401i 0.252583 + 0.252583i 0.822029 0.569446i \(-0.192842\pi\)
−0.569446 + 0.822029i \(0.692842\pi\)
\(488\) 8.67602 + 8.67602i 0.392745 + 0.392745i
\(489\) −0.759313 + 3.22736i −0.0343373 + 0.145946i
\(490\) 5.47137 + 6.00757i 0.247171 + 0.271394i
\(491\) 10.2383i 0.462049i −0.972948 0.231025i \(-0.925792\pi\)
0.972948 0.231025i \(-0.0742078\pi\)
\(492\) 11.2107 6.94028i 0.505419 0.312892i
\(493\) 1.69445 1.69445i 0.0763143 0.0763143i
\(494\) −0.228492 −0.0102804
\(495\) 1.49225 + 0.832392i 0.0670715 + 0.0374132i
\(496\) 2.07999 0.0933942
\(497\) 1.36627 1.36627i 0.0612855 0.0612855i
\(498\) −18.5013 + 11.4537i −0.829062 + 0.513251i
\(499\) 23.8537i 1.06784i −0.845536 0.533919i \(-0.820719\pi\)
0.845536 0.533919i \(-0.179281\pi\)
\(500\) 1.56051 11.0709i 0.0697882 0.495106i
\(501\) −3.31122 + 14.0739i −0.147934 + 0.628775i
\(502\) −15.4410 15.4410i −0.689167 0.689167i
\(503\) 18.1094 + 18.1094i 0.807460 + 0.807460i 0.984249 0.176789i \(-0.0565710\pi\)
−0.176789 + 0.984249i \(0.556571\pi\)
\(504\) −4.92668 2.45408i −0.219452 0.109314i
\(505\) −1.58947 + 34.0271i −0.0707303 + 1.51418i
\(506\) 0.254719i 0.0113236i
\(507\) 10.9926 + 17.7565i 0.488198 + 0.788594i
\(508\) −11.6705 + 11.6705i −0.517794 + 0.517794i
\(509\) −33.2985 −1.47593 −0.737966 0.674838i \(-0.764213\pi\)
−0.737966 + 0.674838i \(0.764213\pi\)
\(510\) 5.71700 + 10.2773i 0.253153 + 0.455085i
\(511\) −18.0943 −0.800447
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 1.21760 0.112562i 0.0537582 0.00496972i
\(514\) 3.00228i 0.132425i
\(515\) −3.11517 + 2.83712i −0.137271 + 0.125019i
\(516\) −5.80717 1.36628i −0.255647 0.0601470i
\(517\) −0.626090 0.626090i −0.0275354 0.0275354i
\(518\) −8.29241 8.29241i −0.364348 0.364348i
\(519\) −30.9200 7.27467i −1.35724 0.319322i
\(520\) 2.16877 + 0.101307i 0.0951070 + 0.00444262i
\(521\) 39.9278i 1.74927i −0.484782 0.874635i \(-0.661101\pi\)
0.484782 0.874635i \(-0.338899\pi\)
\(522\) 0.752048 + 2.24488i 0.0329162 + 0.0982557i
\(523\) 12.0950 12.0950i 0.528876 0.528876i −0.391361 0.920237i \(-0.627996\pi\)
0.920237 + 0.391361i \(0.127996\pi\)
\(524\) 7.84601 0.342755
\(525\) −15.0600 5.06483i −0.657272 0.221047i
\(526\) −27.8758 −1.21544
\(527\) −4.46602 + 4.46602i −0.194543 + 0.194543i
\(528\) −0.232227 0.375120i −0.0101064 0.0163250i
\(529\) 1.00000i 0.0434783i
\(530\) −7.32163 0.342007i −0.318031 0.0148558i
\(531\) −13.8133 + 27.7308i −0.599445 + 1.20341i
\(532\) −0.305293 0.305293i −0.0132361 0.0132361i
\(533\) 5.22651 + 5.22651i 0.226385 + 0.226385i
\(534\) 3.73584 15.8787i 0.161666 0.687139i
\(535\) 2.08169 1.89589i 0.0899995 0.0819666i
\(536\) 1.43456i 0.0619635i
\(537\) −25.3168 + 15.6730i −1.09250 + 0.676339i
\(538\) −17.4234 + 17.4234i −0.751176 + 0.751176i
\(539\) 0.925627 0.0398696
\(540\) −11.6069 + 0.528548i −0.499482 + 0.0227451i
\(541\) −2.96852 −0.127627 −0.0638134 0.997962i \(-0.520326\pi\)
−0.0638134 + 0.997962i \(0.520326\pi\)
\(542\) 19.5097 19.5097i 0.838014 0.838014i
\(543\) −22.1575 + 13.7171i −0.950868 + 0.588658i
\(544\) 3.03651i 0.130189i
\(545\) −1.18377 + 25.3420i −0.0507071 + 1.08553i
\(546\) 0.706643 3.00349i 0.0302415 0.128538i
\(547\) 8.47104 + 8.47104i 0.362195 + 0.362195i 0.864621 0.502425i \(-0.167559\pi\)
−0.502425 + 0.864621i \(0.667559\pi\)
\(548\) 0.446558 + 0.446558i 0.0190760 + 0.0190760i
\(549\) 16.4120 32.9479i 0.700449 1.40618i
\(550\) −0.812694 0.980596i −0.0346534 0.0418128i
\(551\) 0.185711i 0.00791156i
\(552\) 0.911701 + 1.47268i 0.0388046 + 0.0626816i
\(553\) 16.5458 16.5458i 0.703601 0.703601i
\(554\) −29.8170 −1.26680
\(555\) −23.8071 6.78787i −1.01056 0.288129i
\(556\) 12.5052 0.530337
\(557\) −14.3600 + 14.3600i −0.608454 + 0.608454i −0.942542 0.334088i \(-0.891572\pi\)
0.334088 + 0.942542i \(0.391572\pi\)
\(558\) −1.98215 5.91677i −0.0839113 0.250477i
\(559\) 3.34430i 0.141449i
\(560\) 2.76238 + 3.03310i 0.116732 + 0.128172i
\(561\) 1.30406 + 0.306811i 0.0550575 + 0.0129536i
\(562\) 12.4596 + 12.4596i 0.525577 + 0.525577i
\(563\) 13.7798 + 13.7798i 0.580751 + 0.580751i 0.935109 0.354359i \(-0.115301\pi\)
−0.354359 + 0.935109i \(0.615301\pi\)
\(564\) 5.86074 + 1.37888i 0.246782 + 0.0580613i
\(565\) −5.09659 5.59607i −0.214415 0.235428i
\(566\) 25.1411i 1.05676i
\(567\) −2.28598 + 16.3532i −0.0960019 + 0.686770i
\(568\) −0.744687 + 0.744687i −0.0312464 + 0.0312464i
\(569\) −29.2322 −1.22548 −0.612739 0.790285i \(-0.709932\pi\)
−0.612739 + 0.790285i \(0.709932\pi\)
\(570\) −0.876482 0.249902i −0.0367118 0.0104672i
\(571\) −0.323861 −0.0135532 −0.00677659 0.999977i \(-0.502157\pi\)
−0.00677659 + 0.999977i \(0.502157\pi\)
\(572\) 0.174883 0.174883i 0.00731223 0.00731223i
\(573\) −2.06370 3.33353i −0.0862124 0.139260i
\(574\) 13.9665i 0.582950i
\(575\) 3.19056 + 3.84972i 0.133055 + 0.160544i
\(576\) 2.68530 + 1.33760i 0.111887 + 0.0557334i
\(577\) −16.8926 16.8926i −0.703249 0.703249i 0.261857 0.965107i \(-0.415665\pi\)
−0.965107 + 0.261857i \(0.915665\pi\)
\(578\) −5.50099 5.50099i −0.228811 0.228811i
\(579\) 0.577879 2.45620i 0.0240158 0.102076i
\(580\) 0.0823393 1.76271i 0.00341895 0.0731925i
\(581\) 23.0491i 0.956239i
\(582\) −6.12813 + 3.79377i −0.254019 + 0.157257i
\(583\) −0.590394 + 0.590394i −0.0244516 + 0.0244516i
\(584\) 9.86235 0.408107
\(585\) −1.77858 6.26587i −0.0735353 0.259062i
\(586\) −6.72848 −0.277951
\(587\) −13.5739 + 13.5739i −0.560257 + 0.560257i −0.929380 0.369124i \(-0.879658\pi\)
0.369124 + 0.929380i \(0.379658\pi\)
\(588\) −5.35162 + 3.31305i −0.220697 + 0.136628i
\(589\) 0.489474i 0.0201684i
\(590\) 17.0724 15.5486i 0.702858 0.640125i
\(591\) 0.320643 1.36285i 0.0131895 0.0560601i
\(592\) 4.51979 + 4.51979i 0.185762 + 0.185762i
\(593\) 12.1444 + 12.1444i 0.498710 + 0.498710i 0.911036 0.412326i \(-0.135284\pi\)
−0.412326 + 0.911036i \(0.635284\pi\)
\(594\) −0.845770 + 1.01807i −0.0347024 + 0.0417721i
\(595\) −12.4437 0.581268i −0.510142 0.0238296i
\(596\) 10.1715i 0.416640i
\(597\) 17.1872 + 27.7628i 0.703426 + 1.13625i
\(598\) −0.686574 + 0.686574i −0.0280761 + 0.0280761i
\(599\) −16.7260 −0.683406 −0.341703 0.939808i \(-0.611004\pi\)
−0.341703 + 0.939808i \(0.611004\pi\)
\(600\) 8.20848 + 2.76059i 0.335110 + 0.112701i
\(601\) 28.9544 1.18108 0.590538 0.807010i \(-0.298915\pi\)
0.590538 + 0.807010i \(0.298915\pi\)
\(602\) 4.46839 4.46839i 0.182118 0.182118i
\(603\) 4.08078 1.36708i 0.166182 0.0556720i
\(604\) 14.1211i 0.574581i
\(605\) 24.4250 + 1.14094i 0.993019 + 0.0463857i
\(606\) −25.6847 6.04294i −1.04337 0.245478i
\(607\) −21.5740 21.5740i −0.875663 0.875663i 0.117420 0.993082i \(-0.462538\pi\)
−0.993082 + 0.117420i \(0.962538\pi\)
\(608\) 0.166400 + 0.166400i 0.00674842 + 0.00674842i
\(609\) −2.44114 0.574337i −0.0989200 0.0232733i
\(610\) −20.2843 + 18.4738i −0.821286 + 0.747983i
\(611\) 3.37515i 0.136544i
\(612\) −8.63773 + 2.89369i −0.349159 + 0.116971i
\(613\) 0.222524 0.222524i 0.00898766 0.00898766i −0.702599 0.711586i \(-0.747977\pi\)
0.711586 + 0.702599i \(0.247977\pi\)
\(614\) 32.6003 1.31564
\(615\) 14.3323 + 25.7648i 0.577936 + 1.03894i
\(616\) 0.467330 0.0188292
\(617\) −13.9375 + 13.9375i −0.561104 + 0.561104i −0.929621 0.368517i \(-0.879866\pi\)
0.368517 + 0.929621i \(0.379866\pi\)
\(618\) −1.71795 2.77503i −0.0691060 0.111628i
\(619\) 28.4695i 1.14429i −0.820154 0.572143i \(-0.806112\pi\)
0.820154 0.572143i \(-0.193888\pi\)
\(620\) −0.217020 + 4.64593i −0.00871572 + 0.186585i
\(621\) 3.32041 3.99686i 0.133243 0.160388i
\(622\) 17.5532 + 17.5532i 0.703821 + 0.703821i
\(623\) 12.2180 + 12.2180i 0.489505 + 0.489505i
\(624\) −0.385157 + 1.63706i −0.0154186 + 0.0655347i
\(625\) 24.5655 + 4.64071i 0.982620 + 0.185629i
\(626\) 3.27547i 0.130914i
\(627\) −0.0882754 + 0.0546490i −0.00352538 + 0.00218247i
\(628\) −10.7816 + 10.7816i −0.430232 + 0.430232i
\(629\) −19.4093 −0.773898
\(630\) 5.99555 10.7484i 0.238869 0.428225i
\(631\) 14.9930 0.596863 0.298431 0.954431i \(-0.403537\pi\)
0.298431 + 0.954431i \(0.403537\pi\)
\(632\) −9.01834 + 9.01834i −0.358730 + 0.358730i
\(633\) 6.77974 4.19716i 0.269471 0.166822i
\(634\) 31.8218i 1.26381i
\(635\) −24.8499 27.2852i −0.986138 1.08278i
\(636\) 1.30026 5.52660i 0.0515588 0.219144i
\(637\) −2.49495 2.49495i −0.0988536 0.0988536i
\(638\) −0.142139 0.142139i −0.00562736 0.00562736i
\(639\) 2.82801 + 1.40869i 0.111874 + 0.0557269i
\(640\) −1.50564 1.65319i −0.0595156 0.0653482i
\(641\) 5.92967i 0.234208i 0.993120 + 0.117104i \(0.0373611\pi\)
−0.993120 + 0.117104i \(0.962639\pi\)
\(642\) 1.14801 + 1.85440i 0.0453083 + 0.0731872i
\(643\) 0.231570 0.231570i 0.00913224 0.00913224i −0.702526 0.711658i \(-0.747945\pi\)
0.711658 + 0.702526i \(0.247945\pi\)
\(644\) −1.83469 −0.0722969
\(645\) 3.65766 12.8285i 0.144020 0.505123i
\(646\) −0.714570 −0.0281144
\(647\) 25.8635 25.8635i 1.01680 1.01680i 0.0169438 0.999856i \(-0.494606\pi\)
0.999856 0.0169438i \(-0.00539363\pi\)
\(648\) 1.24597 8.91334i 0.0489465 0.350149i
\(649\) 2.63045i 0.103254i
\(650\) −0.452566 + 4.83367i −0.0177511 + 0.189592i
\(651\) 6.43405 + 1.51376i 0.252170 + 0.0593291i
\(652\) 1.35354 + 1.35354i 0.0530087 + 0.0530087i
\(653\) −30.6540 30.6540i −1.19958 1.19958i −0.974291 0.225292i \(-0.927667\pi\)
−0.225292 0.974291i \(-0.572333\pi\)
\(654\) −19.1289 4.50054i −0.748000 0.175985i
\(655\) −0.818629 + 17.5251i −0.0319865 + 0.684762i
\(656\) 7.61245i 0.297216i
\(657\) −9.39847 28.0546i −0.366669 1.09452i
\(658\) −4.50960 + 4.50960i −0.175803 + 0.175803i
\(659\) 3.72086 0.144944 0.0724721 0.997370i \(-0.476911\pi\)
0.0724721 + 0.997370i \(0.476911\pi\)
\(660\) 0.862111 0.479572i 0.0335576 0.0186673i
\(661\) 35.1235 1.36615 0.683073 0.730350i \(-0.260643\pi\)
0.683073 + 0.730350i \(0.260643\pi\)
\(662\) 6.61496 6.61496i 0.257098 0.257098i
\(663\) −2.68801 4.34198i −0.104393 0.168628i
\(664\) 12.5630i 0.487537i
\(665\) 0.713765 0.650059i 0.0276786 0.0252082i
\(666\) 8.54988 17.1643i 0.331301 0.665103i
\(667\) 0.558025 + 0.558025i 0.0216068 + 0.0216068i
\(668\) 5.90252 + 5.90252i 0.228375 + 0.228375i
\(669\) 4.30878 18.3139i 0.166587 0.708056i
\(670\) −3.20428 0.149678i −0.123792 0.00578255i
\(671\) 3.12533i 0.120652i
\(672\) −2.70192 + 1.67269i −0.104229 + 0.0645253i
\(673\) −6.35962 + 6.35962i −0.245145 + 0.245145i −0.818975 0.573830i \(-0.805457\pi\)
0.573830 + 0.818975i \(0.305457\pi\)
\(674\) −27.6432 −1.06477
\(675\) 0.0304487 25.9807i 0.00117197 0.999999i
\(676\) 12.0572 0.463740
\(677\) 1.56497 1.56497i 0.0601469 0.0601469i −0.676394 0.736540i \(-0.736458\pi\)
0.736540 + 0.676394i \(0.236458\pi\)
\(678\) 4.98504 3.08611i 0.191449 0.118521i
\(679\) 7.63450i 0.292985i
\(680\) 6.78246 + 0.316821i 0.260095 + 0.0121495i
\(681\) −0.287544 + 1.22217i −0.0110187 + 0.0468335i
\(682\) 0.374633 + 0.374633i 0.0143455 + 0.0143455i
\(683\) −2.23708 2.23708i −0.0855996 0.0855996i 0.663011 0.748610i \(-0.269278\pi\)
−0.748610 + 0.663011i \(0.769278\pi\)
\(684\) 0.314772 0.631919i 0.0120356 0.0241620i
\(685\) −1.04404 + 0.950853i −0.0398906 + 0.0363302i
\(686\) 19.5099i 0.744893i
\(687\) 14.8634 + 24.0091i 0.567074 + 0.916004i
\(688\) −2.43550 + 2.43550i −0.0928526 + 0.0928526i
\(689\) 3.18272 0.121252
\(690\) −3.38456 + 1.88275i −0.128848 + 0.0716751i
\(691\) 50.0983 1.90583 0.952914 0.303242i \(-0.0980690\pi\)
0.952914 + 0.303242i \(0.0980690\pi\)
\(692\) −12.9677 + 12.9677i −0.492958 + 0.492958i
\(693\) −0.445349 1.32937i −0.0169174 0.0504988i
\(694\) 28.5319i 1.08306i
\(695\) −1.30475 + 27.9319i −0.0494920 + 1.05952i
\(696\) 1.33055 + 0.313043i 0.0504343 + 0.0118659i
\(697\) 16.3450 + 16.3450i 0.619111 + 0.619111i
\(698\) −2.36842 2.36842i −0.0896460 0.0896460i
\(699\) −14.5864 3.43181i −0.551709 0.129803i
\(700\) −7.06304 + 5.85368i −0.266958 + 0.221248i
\(701\) 17.7346i 0.669827i 0.942249 + 0.334913i \(0.108707\pi\)
−0.942249 + 0.334913i \(0.891293\pi\)
\(702\) 5.02384 0.464433i 0.189613 0.0175289i
\(703\) 1.06362 1.06362i 0.0401153 0.0401153i
\(704\) −0.254719 −0.00960007
\(705\) −3.69140 + 12.9469i −0.139026 + 0.487607i
\(706\) −0.830811 −0.0312680
\(707\) 19.7633 19.7633i 0.743277 0.743277i
\(708\) 9.41504 + 15.2083i 0.353839 + 0.571562i
\(709\) 38.9851i 1.46411i −0.681243 0.732057i \(-0.738560\pi\)
0.681243 0.732057i \(-0.261440\pi\)
\(710\) −1.58566 1.74106i −0.0595087 0.0653406i
\(711\) 34.2479 + 17.0596i 1.28440 + 0.639784i
\(712\) −6.65945 6.65945i −0.249573 0.249573i
\(713\) −1.47077 1.47077i −0.0550809 0.0550809i
\(714\) 2.20990 9.39289i 0.0827035 0.351520i
\(715\) 0.372378 + 0.408872i 0.0139261 + 0.0152909i
\(716\) 17.1909i 0.642455i
\(717\) −7.51401 + 4.65173i −0.280616 + 0.173722i
\(718\) −15.6414 + 15.6414i −0.583731 + 0.583731i
\(719\) −24.8193 −0.925605 −0.462803 0.886461i \(-0.653156\pi\)
−0.462803 + 0.886461i \(0.653156\pi\)
\(720\) −3.26789 + 5.85841i −0.121787 + 0.218330i
\(721\) 3.45716 0.128751
\(722\) −13.3959 + 13.3959i −0.498543 + 0.498543i
\(723\) 18.6998 11.5765i 0.695451 0.430536i
\(724\) 15.0456i 0.559166i
\(725\) 3.92865 + 0.367831i 0.145906 + 0.0136609i
\(726\) −4.33769 + 18.4368i −0.160987 + 0.684253i
\(727\) 17.7250 + 17.7250i 0.657385 + 0.657385i 0.954761 0.297376i \(-0.0961114\pi\)
−0.297376 + 0.954761i \(0.596111\pi\)
\(728\) −1.25965 1.25965i −0.0466857 0.0466857i
\(729\) −26.5424 + 4.94977i −0.983052 + 0.183325i
\(730\) −1.02901 + 22.0289i −0.0380853 + 0.815325i
\(731\) 10.4587i 0.386830i
\(732\) −11.1863 18.0695i −0.413459 0.667867i
\(733\) 0.884740 0.884740i 0.0326786 0.0326786i −0.690579 0.723257i \(-0.742644\pi\)
0.723257 + 0.690579i \(0.242644\pi\)
\(734\) 14.3814 0.530827
\(735\) −6.84176 12.2992i −0.252362 0.453663i
\(736\) 1.00000 0.0368605
\(737\) −0.258383 + 0.258383i −0.00951767 + 0.00951767i
\(738\) −21.6545 + 7.25440i −0.797114 + 0.267038i
\(739\) 30.9488i 1.13847i 0.822175 + 0.569235i \(0.192761\pi\)
−0.822175 + 0.569235i \(0.807239\pi\)
\(740\) −10.5671 + 9.62397i −0.388456 + 0.353784i
\(741\) 0.385241 + 0.0906372i 0.0141522 + 0.00332964i
\(742\) 4.25249 + 4.25249i 0.156114 + 0.156114i
\(743\) −9.54480 9.54480i −0.350165 0.350165i 0.510006 0.860171i \(-0.329643\pi\)
−0.860171 + 0.510006i \(0.829643\pi\)
\(744\) −3.50689 0.825080i −0.128569 0.0302489i
\(745\) −22.7194 1.06126i −0.832373 0.0388816i
\(746\) 8.94756i 0.327594i
\(747\) 35.7368 11.9721i 1.30754 0.438035i
\(748\) 0.546917 0.546917i 0.0199973 0.0199973i
\(749\) −2.31023 −0.0844140
\(750\) −7.02260 + 18.0467i −0.256429 + 0.658972i
\(751\) 36.9921 1.34986 0.674930 0.737882i \(-0.264174\pi\)
0.674930 + 0.737882i \(0.264174\pi\)
\(752\) 2.45797 2.45797i 0.0896328 0.0896328i
\(753\) 19.9088 + 32.1589i 0.725515 + 1.17194i
\(754\) 0.766251i 0.0279052i
\(755\) −31.5414 1.47336i −1.14791 0.0536209i
\(756\) 7.33299 + 6.09192i 0.266698 + 0.221561i
\(757\) −28.4234 28.4234i −1.03306 1.03306i −0.999434 0.0336303i \(-0.989293\pi\)
−0.0336303 0.999434i \(-0.510707\pi\)
\(758\) 21.0304 + 21.0304i 0.763860 + 0.763860i
\(759\) −0.101041 + 0.429460i −0.00366754 + 0.0155884i
\(760\) −0.389039 + 0.354315i −0.0141119 + 0.0128524i
\(761\) 33.3114i 1.20754i −0.797160 0.603768i \(-0.793665\pi\)
0.797160 0.603768i \(-0.206335\pi\)
\(762\) 24.3060 15.0472i 0.880513 0.545103i
\(763\) 14.7189 14.7189i 0.532861 0.532861i
\(764\) −2.26357 −0.0818932
\(765\) −5.56221 19.5954i −0.201102 0.708474i
\(766\) 16.7300 0.604479
\(767\) −7.09018 + 7.09018i −0.256011 + 0.256011i
\(768\) 1.47268 0.911701i 0.0531409 0.0328982i
\(769\) 15.4887i 0.558538i −0.960213 0.279269i \(-0.909908\pi\)
0.960213 0.279269i \(-0.0900920\pi\)
\(770\) −0.0487598 + 1.04384i −0.00175718 + 0.0376175i
\(771\) −1.19093 + 5.06189i −0.0428903 + 0.182300i
\(772\) −1.03012 1.03012i −0.0370748 0.0370748i
\(773\) 22.3134 + 22.3134i 0.802556 + 0.802556i 0.983494 0.180938i \(-0.0579134\pi\)
−0.180938 + 0.983494i \(0.557913\pi\)
\(774\) 9.24902 + 4.60713i 0.332449 + 0.165600i
\(775\) −10.3546 0.969484i −0.371950 0.0348249i
\(776\) 4.16120i 0.149378i
\(777\) 10.6917 + 17.2705i 0.383564 + 0.619577i