Properties

Label 690.2.a.h.1.1
Level $690$
Weight $2$
Character 690.1
Self dual yes
Analytic conductor $5.510$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 690 = 2 \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 690.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(5.50967773947\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 690.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} -1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{5} -1.00000 q^{6} +1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{10} -1.00000 q^{12} +6.00000 q^{13} +1.00000 q^{15} +1.00000 q^{16} +2.00000 q^{17} +1.00000 q^{18} -1.00000 q^{20} -1.00000 q^{23} -1.00000 q^{24} +1.00000 q^{25} +6.00000 q^{26} -1.00000 q^{27} +6.00000 q^{29} +1.00000 q^{30} +8.00000 q^{31} +1.00000 q^{32} +2.00000 q^{34} +1.00000 q^{36} +10.0000 q^{37} -6.00000 q^{39} -1.00000 q^{40} -6.00000 q^{41} -8.00000 q^{43} -1.00000 q^{45} -1.00000 q^{46} +8.00000 q^{47} -1.00000 q^{48} -7.00000 q^{49} +1.00000 q^{50} -2.00000 q^{51} +6.00000 q^{52} -6.00000 q^{53} -1.00000 q^{54} +6.00000 q^{58} -4.00000 q^{59} +1.00000 q^{60} -6.00000 q^{61} +8.00000 q^{62} +1.00000 q^{64} -6.00000 q^{65} +8.00000 q^{67} +2.00000 q^{68} +1.00000 q^{69} -8.00000 q^{71} +1.00000 q^{72} +10.0000 q^{73} +10.0000 q^{74} -1.00000 q^{75} -6.00000 q^{78} -8.00000 q^{79} -1.00000 q^{80} +1.00000 q^{81} -6.00000 q^{82} -8.00000 q^{83} -2.00000 q^{85} -8.00000 q^{86} -6.00000 q^{87} -6.00000 q^{89} -1.00000 q^{90} -1.00000 q^{92} -8.00000 q^{93} +8.00000 q^{94} -1.00000 q^{96} +18.0000 q^{97} -7.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) −1.00000 −0.408248
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −1.00000 −0.316228
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) −1.00000 −0.288675
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 1.00000 0.250000
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 1.00000 0.235702
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) −1.00000 −0.204124
\(25\) 1.00000 0.200000
\(26\) 6.00000 1.17670
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 1.00000 0.182574
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) −6.00000 −0.960769
\(40\) −1.00000 −0.158114
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) −1.00000 −0.147442
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) −1.00000 −0.144338
\(49\) −7.00000 −1.00000
\(50\) 1.00000 0.141421
\(51\) −2.00000 −0.280056
\(52\) 6.00000 0.832050
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 6.00000 0.787839
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 1.00000 0.129099
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) 8.00000 1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −6.00000 −0.744208
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 2.00000 0.242536
\(69\) 1.00000 0.120386
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 1.00000 0.117851
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 10.0000 1.16248
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) −6.00000 −0.679366
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) −1.00000 −0.111803
\(81\) 1.00000 0.111111
\(82\) −6.00000 −0.662589
\(83\) −8.00000 −0.878114 −0.439057 0.898459i \(-0.644687\pi\)
−0.439057 + 0.898459i \(0.644687\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.216930
\(86\) −8.00000 −0.862662
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) −1.00000 −0.105409
\(91\) 0 0
\(92\) −1.00000 −0.104257
\(93\) −8.00000 −0.829561
\(94\) 8.00000 0.825137
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) 18.0000 1.82762 0.913812 0.406138i \(-0.133125\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(98\) −7.00000 −0.707107
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) −2.00000 −0.198030
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 6.00000 0.588348
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) −10.0000 −0.949158
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 6.00000 0.557086
\(117\) 6.00000 0.554700
\(118\) −4.00000 −0.368230
\(119\) 0 0
\(120\) 1.00000 0.0912871
\(121\) −11.0000 −1.00000
\(122\) −6.00000 −0.543214
\(123\) 6.00000 0.541002
\(124\) 8.00000 0.718421
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 1.00000 0.0883883
\(129\) 8.00000 0.704361
\(130\) −6.00000 −0.526235
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 8.00000 0.691095
\(135\) 1.00000 0.0860663
\(136\) 2.00000 0.171499
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 1.00000 0.0851257
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) −8.00000 −0.671345
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) −6.00000 −0.498273
\(146\) 10.0000 0.827606
\(147\) 7.00000 0.577350
\(148\) 10.0000 0.821995
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) −1.00000 −0.0816497
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) −6.00000 −0.480384
\(157\) 18.0000 1.43656 0.718278 0.695756i \(-0.244931\pi\)
0.718278 + 0.695756i \(0.244931\pi\)
\(158\) −8.00000 −0.636446
\(159\) 6.00000 0.475831
\(160\) −1.00000 −0.0790569
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) −8.00000 −0.620920
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) −2.00000 −0.153393
\(171\) 0 0
\(172\) −8.00000 −0.609994
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) −6.00000 −0.454859
\(175\) 0 0
\(176\) 0 0
\(177\) 4.00000 0.300658
\(178\) −6.00000 −0.449719
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) −1.00000 −0.0745356
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 6.00000 0.443533
\(184\) −1.00000 −0.0737210
\(185\) −10.0000 −0.735215
\(186\) −8.00000 −0.586588
\(187\) 0 0
\(188\) 8.00000 0.583460
\(189\) 0 0
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 18.0000 1.29567 0.647834 0.761781i \(-0.275675\pi\)
0.647834 + 0.761781i \(0.275675\pi\)
\(194\) 18.0000 1.29232
\(195\) 6.00000 0.429669
\(196\) −7.00000 −0.500000
\(197\) 22.0000 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 1.00000 0.0707107
\(201\) −8.00000 −0.564276
\(202\) 6.00000 0.422159
\(203\) 0 0
\(204\) −2.00000 −0.140028
\(205\) 6.00000 0.419058
\(206\) −8.00000 −0.557386
\(207\) −1.00000 −0.0695048
\(208\) 6.00000 0.416025
\(209\) 0 0
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) −6.00000 −0.412082
\(213\) 8.00000 0.548151
\(214\) 0 0
\(215\) 8.00000 0.545595
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) −6.00000 −0.406371
\(219\) −10.0000 −0.675737
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) −10.0000 −0.671156
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) −6.00000 −0.399114
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 18.0000 1.18947 0.594737 0.803921i \(-0.297256\pi\)
0.594737 + 0.803921i \(0.297256\pi\)
\(230\) 1.00000 0.0659380
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) 6.00000 0.392232
\(235\) −8.00000 −0.521862
\(236\) −4.00000 −0.260378
\(237\) 8.00000 0.519656
\(238\) 0 0
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 1.00000 0.0645497
\(241\) 26.0000 1.67481 0.837404 0.546585i \(-0.184072\pi\)
0.837404 + 0.546585i \(0.184072\pi\)
\(242\) −11.0000 −0.707107
\(243\) −1.00000 −0.0641500
\(244\) −6.00000 −0.384111
\(245\) 7.00000 0.447214
\(246\) 6.00000 0.382546
\(247\) 0 0
\(248\) 8.00000 0.508001
\(249\) 8.00000 0.506979
\(250\) −1.00000 −0.0632456
\(251\) 8.00000 0.504956 0.252478 0.967603i \(-0.418755\pi\)
0.252478 + 0.967603i \(0.418755\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −8.00000 −0.501965
\(255\) 2.00000 0.125245
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 8.00000 0.498058
\(259\) 0 0
\(260\) −6.00000 −0.372104
\(261\) 6.00000 0.371391
\(262\) 4.00000 0.247121
\(263\) −8.00000 −0.493301 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) 6.00000 0.367194
\(268\) 8.00000 0.488678
\(269\) 22.0000 1.34136 0.670682 0.741745i \(-0.266002\pi\)
0.670682 + 0.741745i \(0.266002\pi\)
\(270\) 1.00000 0.0608581
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) 1.00000 0.0601929
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) −4.00000 −0.239904
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) −8.00000 −0.476393
\(283\) 24.0000 1.42665 0.713326 0.700832i \(-0.247188\pi\)
0.713326 + 0.700832i \(0.247188\pi\)
\(284\) −8.00000 −0.474713
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 1.00000 0.0589256
\(289\) −13.0000 −0.764706
\(290\) −6.00000 −0.352332
\(291\) −18.0000 −1.05518
\(292\) 10.0000 0.585206
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 7.00000 0.408248
\(295\) 4.00000 0.232889
\(296\) 10.0000 0.581238
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) −6.00000 −0.346989
\(300\) −1.00000 −0.0577350
\(301\) 0 0
\(302\) −16.0000 −0.920697
\(303\) −6.00000 −0.344691
\(304\) 0 0
\(305\) 6.00000 0.343559
\(306\) 2.00000 0.114332
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) −8.00000 −0.454369
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) −6.00000 −0.339683
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 18.0000 1.01580
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 6.00000 0.336463
\(319\) 0 0
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) 6.00000 0.332820
\(326\) 12.0000 0.664619
\(327\) 6.00000 0.331801
\(328\) −6.00000 −0.331295
\(329\) 0 0
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) −8.00000 −0.439057
\(333\) 10.0000 0.547997
\(334\) −16.0000 −0.875481
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 23.0000 1.25104
\(339\) 6.00000 0.325875
\(340\) −2.00000 −0.108465
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −8.00000 −0.431331
\(345\) −1.00000 −0.0538382
\(346\) −18.0000 −0.967686
\(347\) 36.0000 1.93258 0.966291 0.257454i \(-0.0828835\pi\)
0.966291 + 0.257454i \(0.0828835\pi\)
\(348\) −6.00000 −0.321634
\(349\) −26.0000 −1.39175 −0.695874 0.718164i \(-0.744983\pi\)
−0.695874 + 0.718164i \(0.744983\pi\)
\(350\) 0 0
\(351\) −6.00000 −0.320256
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 4.00000 0.212598
\(355\) 8.00000 0.424596
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) −4.00000 −0.211407
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) −1.00000 −0.0527046
\(361\) −19.0000 −1.00000
\(362\) 2.00000 0.105118
\(363\) 11.0000 0.577350
\(364\) 0 0
\(365\) −10.0000 −0.523424
\(366\) 6.00000 0.313625
\(367\) −24.0000 −1.25279 −0.626395 0.779506i \(-0.715470\pi\)
−0.626395 + 0.779506i \(0.715470\pi\)
\(368\) −1.00000 −0.0521286
\(369\) −6.00000 −0.312348
\(370\) −10.0000 −0.519875
\(371\) 0 0
\(372\) −8.00000 −0.414781
\(373\) 26.0000 1.34623 0.673114 0.739538i \(-0.264956\pi\)
0.673114 + 0.739538i \(0.264956\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 8.00000 0.412568
\(377\) 36.0000 1.85409
\(378\) 0 0
\(379\) −24.0000 −1.23280 −0.616399 0.787434i \(-0.711409\pi\)
−0.616399 + 0.787434i \(0.711409\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) −24.0000 −1.22795
\(383\) −32.0000 −1.63512 −0.817562 0.575841i \(-0.804675\pi\)
−0.817562 + 0.575841i \(0.804675\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 18.0000 0.916176
\(387\) −8.00000 −0.406663
\(388\) 18.0000 0.913812
\(389\) 2.00000 0.101404 0.0507020 0.998714i \(-0.483854\pi\)
0.0507020 + 0.998714i \(0.483854\pi\)
\(390\) 6.00000 0.303822
\(391\) −2.00000 −0.101144
\(392\) −7.00000 −0.353553
\(393\) −4.00000 −0.201773
\(394\) 22.0000 1.10834
\(395\) 8.00000 0.402524
\(396\) 0 0
\(397\) 6.00000 0.301131 0.150566 0.988600i \(-0.451890\pi\)
0.150566 + 0.988600i \(0.451890\pi\)
\(398\) −16.0000 −0.802008
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 26.0000 1.29838 0.649189 0.760627i \(-0.275108\pi\)
0.649189 + 0.760627i \(0.275108\pi\)
\(402\) −8.00000 −0.399004
\(403\) 48.0000 2.39105
\(404\) 6.00000 0.298511
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 0 0
\(408\) −2.00000 −0.0990148
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 6.00000 0.296319
\(411\) 6.00000 0.295958
\(412\) −8.00000 −0.394132
\(413\) 0 0
\(414\) −1.00000 −0.0491473
\(415\) 8.00000 0.392705
\(416\) 6.00000 0.294174
\(417\) 4.00000 0.195881
\(418\) 0 0
\(419\) 16.0000 0.781651 0.390826 0.920465i \(-0.372190\pi\)
0.390826 + 0.920465i \(0.372190\pi\)
\(420\) 0 0
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) 4.00000 0.194717
\(423\) 8.00000 0.388973
\(424\) −6.00000 −0.291386
\(425\) 2.00000 0.0970143
\(426\) 8.00000 0.387601
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 8.00000 0.385794
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 6.00000 0.287678
\(436\) −6.00000 −0.287348
\(437\) 0 0
\(438\) −10.0000 −0.477818
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) 12.0000 0.570782
\(443\) 20.0000 0.950229 0.475114 0.879924i \(-0.342407\pi\)
0.475114 + 0.879924i \(0.342407\pi\)
\(444\) −10.0000 −0.474579
\(445\) 6.00000 0.284427
\(446\) 0 0
\(447\) 6.00000 0.283790
\(448\) 0 0
\(449\) −14.0000 −0.660701 −0.330350 0.943858i \(-0.607167\pi\)
−0.330350 + 0.943858i \(0.607167\pi\)
\(450\) 1.00000 0.0471405
\(451\) 0 0
\(452\) −6.00000 −0.282216
\(453\) 16.0000 0.751746
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −38.0000 −1.77757 −0.888783 0.458329i \(-0.848448\pi\)
−0.888783 + 0.458329i \(0.848448\pi\)
\(458\) 18.0000 0.841085
\(459\) −2.00000 −0.0933520
\(460\) 1.00000 0.0466252
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) −40.0000 −1.85896 −0.929479 0.368875i \(-0.879743\pi\)
−0.929479 + 0.368875i \(0.879743\pi\)
\(464\) 6.00000 0.278543
\(465\) 8.00000 0.370991
\(466\) −22.0000 −1.01913
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 6.00000 0.277350
\(469\) 0 0
\(470\) −8.00000 −0.369012
\(471\) −18.0000 −0.829396
\(472\) −4.00000 −0.184115
\(473\) 0 0
\(474\) 8.00000 0.367452
\(475\) 0 0
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 8.00000 0.365911
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 1.00000 0.0456435
\(481\) 60.0000 2.73576
\(482\) 26.0000 1.18427
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) −18.0000 −0.817338
\(486\) −1.00000 −0.0453609
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) −6.00000 −0.271607
\(489\) −12.0000 −0.542659
\(490\) 7.00000 0.316228
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 6.00000 0.270501
\(493\) 12.0000 0.540453
\(494\) 0 0
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 0 0
\(498\) 8.00000 0.358489
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 16.0000 0.714827
\(502\) 8.00000 0.357057
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 0 0
\(505\) −6.00000 −0.266996
\(506\) 0 0
\(507\) −23.0000 −1.02147
\(508\) −8.00000 −0.354943
\(509\) −26.0000 −1.15243 −0.576215 0.817298i \(-0.695471\pi\)
−0.576215 + 0.817298i \(0.695471\pi\)
\(510\) 2.00000 0.0885615
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 18.0000 0.793946
\(515\) 8.00000 0.352522
\(516\) 8.00000 0.352180
\(517\) 0 0
\(518\) 0 0
\(519\) 18.0000 0.790112
\(520\) −6.00000 −0.263117
\(521\) −14.0000 −0.613351 −0.306676 0.951814i \(-0.599217\pi\)
−0.306676 + 0.951814i \(0.599217\pi\)
\(522\) 6.00000 0.262613
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 4.00000 0.174741
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) 16.0000 0.696971
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 6.00000 0.260623
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) −36.0000 −1.55933
\(534\) 6.00000 0.259645
\(535\) 0 0
\(536\) 8.00000 0.345547
\(537\) 4.00000 0.172613
\(538\) 22.0000 0.948487
\(539\) 0 0
\(540\) 1.00000 0.0430331
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) 16.0000 0.687259
\(543\) −2.00000 −0.0858282
\(544\) 2.00000 0.0857493
\(545\) 6.00000 0.257012
\(546\) 0 0
\(547\) 4.00000 0.171028 0.0855138 0.996337i \(-0.472747\pi\)
0.0855138 + 0.996337i \(0.472747\pi\)
\(548\) −6.00000 −0.256307
\(549\) −6.00000 −0.256074
\(550\) 0 0
\(551\) 0 0
\(552\) 1.00000 0.0425628
\(553\) 0 0
\(554\) −10.0000 −0.424859
\(555\) 10.0000 0.424476
\(556\) −4.00000 −0.169638
\(557\) 10.0000 0.423714 0.211857 0.977301i \(-0.432049\pi\)
0.211857 + 0.977301i \(0.432049\pi\)
\(558\) 8.00000 0.338667
\(559\) −48.0000 −2.03018
\(560\) 0 0
\(561\) 0 0
\(562\) −22.0000 −0.928014
\(563\) 32.0000 1.34864 0.674320 0.738440i \(-0.264437\pi\)
0.674320 + 0.738440i \(0.264437\pi\)
\(564\) −8.00000 −0.336861
\(565\) 6.00000 0.252422
\(566\) 24.0000 1.00880
\(567\) 0 0
\(568\) −8.00000 −0.335673
\(569\) −14.0000 −0.586911 −0.293455 0.955973i \(-0.594805\pi\)
−0.293455 + 0.955973i \(0.594805\pi\)
\(570\) 0 0
\(571\) 8.00000 0.334790 0.167395 0.985890i \(-0.446465\pi\)
0.167395 + 0.985890i \(0.446465\pi\)
\(572\) 0 0
\(573\) 24.0000 1.00261
\(574\) 0 0
\(575\) −1.00000 −0.0417029
\(576\) 1.00000 0.0416667
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) −13.0000 −0.540729
\(579\) −18.0000 −0.748054
\(580\) −6.00000 −0.249136
\(581\) 0 0
\(582\) −18.0000 −0.746124
\(583\) 0 0
\(584\) 10.0000 0.413803
\(585\) −6.00000 −0.248069
\(586\) −6.00000 −0.247858
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 7.00000 0.288675
\(589\) 0 0
\(590\) 4.00000 0.164677
\(591\) −22.0000 −0.904959
\(592\) 10.0000 0.410997
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 16.0000 0.654836
\(598\) −6.00000 −0.245358
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) −1.00000 −0.0408248
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 8.00000 0.325785
\(604\) −16.0000 −0.651031
\(605\) 11.0000 0.447214
\(606\) −6.00000 −0.243733
\(607\) −16.0000 −0.649420 −0.324710 0.945814i \(-0.605267\pi\)
−0.324710 + 0.945814i \(0.605267\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 6.00000 0.242933
\(611\) 48.0000 1.94187
\(612\) 2.00000 0.0808452
\(613\) −46.0000 −1.85792 −0.928961 0.370177i \(-0.879297\pi\)
−0.928961 + 0.370177i \(0.879297\pi\)
\(614\) −4.00000 −0.161427
\(615\) −6.00000 −0.241943
\(616\) 0 0
\(617\) 2.00000 0.0805170 0.0402585 0.999189i \(-0.487182\pi\)
0.0402585 + 0.999189i \(0.487182\pi\)
\(618\) 8.00000 0.321807
\(619\) −16.0000 −0.643094 −0.321547 0.946894i \(-0.604203\pi\)
−0.321547 + 0.946894i \(0.604203\pi\)
\(620\) −8.00000 −0.321288
\(621\) 1.00000 0.0401286
\(622\) 0 0
\(623\) 0 0
\(624\) −6.00000 −0.240192
\(625\) 1.00000 0.0400000
\(626\) −6.00000 −0.239808
\(627\) 0 0
\(628\) 18.0000 0.718278
\(629\) 20.0000 0.797452
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) −8.00000 −0.318223
\(633\) −4.00000 −0.158986
\(634\) −2.00000 −0.0794301
\(635\) 8.00000 0.317470
\(636\) 6.00000 0.237915
\(637\) −42.0000 −1.66410
\(638\) 0 0
\(639\) −8.00000 −0.316475
\(640\) −1.00000 −0.0395285
\(641\) −22.0000 −0.868948 −0.434474 0.900684i \(-0.643066\pi\)
−0.434474 + 0.900684i \(0.643066\pi\)
\(642\) 0 0
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) 0 0
\(645\) −8.00000 −0.315000
\(646\) 0 0
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) 6.00000 0.235339
\(651\) 0 0
\(652\) 12.0000 0.469956
\(653\) −42.0000 −1.64359 −0.821794 0.569785i \(-0.807026\pi\)
−0.821794 + 0.569785i \(0.807026\pi\)
\(654\) 6.00000 0.234619
\(655\) −4.00000 −0.156293
\(656\) −6.00000 −0.234261
\(657\) 10.0000 0.390137
\(658\) 0 0
\(659\) −48.0000 −1.86981 −0.934907 0.354892i \(-0.884518\pi\)
−0.934907 + 0.354892i \(0.884518\pi\)
\(660\) 0 0
\(661\) 2.00000 0.0777910 0.0388955 0.999243i \(-0.487616\pi\)
0.0388955 + 0.999243i \(0.487616\pi\)
\(662\) −20.0000 −0.777322
\(663\) −12.0000 −0.466041
\(664\) −8.00000 −0.310460
\(665\) 0 0
\(666\) 10.0000 0.387492
\(667\) −6.00000 −0.232321
\(668\) −16.0000 −0.619059
\(669\) 0 0
\(670\) −8.00000 −0.309067
\(671\) 0 0
\(672\) 0 0
\(673\) −30.0000 −1.15642 −0.578208 0.815890i \(-0.696248\pi\)
−0.578208 + 0.815890i \(0.696248\pi\)
\(674\) −22.0000 −0.847408
\(675\) −1.00000 −0.0384900
\(676\) 23.0000 0.884615
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) 6.00000 0.230429
\(679\) 0 0
\(680\) −2.00000 −0.0766965
\(681\) 0 0
\(682\) 0 0
\(683\) −4.00000 −0.153056 −0.0765279 0.997067i \(-0.524383\pi\)
−0.0765279 + 0.997067i \(0.524383\pi\)
\(684\) 0 0
\(685\) 6.00000 0.229248
\(686\) 0 0
\(687\) −18.0000 −0.686743
\(688\) −8.00000 −0.304997
\(689\) −36.0000 −1.37149
\(690\) −1.00000 −0.0380693
\(691\) −12.0000 −0.456502 −0.228251 0.973602i \(-0.573301\pi\)
−0.228251 + 0.973602i \(0.573301\pi\)
\(692\) −18.0000 −0.684257
\(693\) 0 0
\(694\) 36.0000 1.36654
\(695\) 4.00000 0.151729
\(696\) −6.00000 −0.227429
\(697\) −12.0000 −0.454532
\(698\) −26.0000 −0.984115
\(699\) 22.0000 0.832116
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) −6.00000 −0.226455
\(703\) 0 0
\(704\) 0 0
\(705\) 8.00000 0.301297
\(706\) 18.0000 0.677439
\(707\) 0 0
\(708\) 4.00000 0.150329
\(709\) 26.0000 0.976450 0.488225 0.872718i \(-0.337644\pi\)
0.488225 + 0.872718i \(0.337644\pi\)
\(710\) 8.00000 0.300235
\(711\) −8.00000 −0.300023
\(712\) −6.00000 −0.224860
\(713\) −8.00000 −0.299602
\(714\) 0 0
\(715\) 0 0
\(716\) −4.00000 −0.149487
\(717\) −8.00000 −0.298765
\(718\) 16.0000 0.597115
\(719\) 40.0000 1.49175 0.745874 0.666087i \(-0.232032\pi\)
0.745874 + 0.666087i \(0.232032\pi\)
\(720\) −1.00000 −0.0372678
\(721\) 0 0
\(722\) −19.0000 −0.707107
\(723\) −26.0000 −0.966950
\(724\) 2.00000 0.0743294
\(725\) 6.00000 0.222834
\(726\) 11.0000 0.408248
\(727\) −16.0000 −0.593407 −0.296704 0.954970i \(-0.595887\pi\)
−0.296704 + 0.954970i \(0.595887\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −10.0000 −0.370117
\(731\) −16.0000 −0.591781
\(732\) 6.00000 0.221766
\(733\) 2.00000 0.0738717 0.0369358 0.999318i \(-0.488240\pi\)
0.0369358 + 0.999318i \(0.488240\pi\)
\(734\) −24.0000 −0.885856
\(735\) −7.00000 −0.258199
\(736\) −1.00000 −0.0368605
\(737\) 0 0
\(738\) −6.00000 −0.220863
\(739\) −4.00000 −0.147142 −0.0735712 0.997290i \(-0.523440\pi\)
−0.0735712 + 0.997290i \(0.523440\pi\)
\(740\) −10.0000 −0.367607
\(741\) 0 0
\(742\) 0 0
\(743\) −8.00000 −0.293492 −0.146746 0.989174i \(-0.546880\pi\)
−0.146746 + 0.989174i \(0.546880\pi\)
\(744\) −8.00000 −0.293294
\(745\) 6.00000 0.219823
\(746\) 26.0000 0.951928
\(747\) −8.00000 −0.292705
\(748\) 0 0
\(749\) 0 0
\(750\) 1.00000 0.0365148
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 8.00000 0.291730
\(753\) −8.00000 −0.291536
\(754\) 36.0000 1.31104
\(755\) 16.0000 0.582300
\(756\) 0 0
\(757\) 34.0000 1.23575 0.617876 0.786276i \(-0.287994\pi\)
0.617876 + 0.786276i \(0.287994\pi\)
\(758\) −24.0000 −0.871719
\(759\) 0 0
\(760\) 0 0
\(761\) 42.0000 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(762\) 8.00000 0.289809
\(763\) 0 0
\(764\) −24.0000 −0.868290
\(765\) −2.00000 −0.0723102
\(766\) −32.0000 −1.15621
\(767\) −24.0000 −0.866590
\(768\) −1.00000 −0.0360844
\(769\) −6.00000 −0.216366 −0.108183 0.994131i \(-0.534503\pi\)
−0.108183 + 0.994131i \(0.534503\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) 18.0000 0.647834
\(773\) 2.00000 0.0719350 0.0359675 0.999353i \(-0.488549\pi\)
0.0359675 + 0.999353i \(0.488549\pi\)
\(774\) −8.00000 −0.287554
\(775\) 8.00000 0.287368
\(776\) 18.0000 0.646162
\(777\) 0 0
\(778\) 2.00000 0.0717035
\(779\) 0 0
\(780\) 6.00000 0.214834
\(781\) 0 0
\(782\) −2.00000 −0.0715199
\(783\) −6.00000 −0.214423
\(784\) −7.00000 −0.250000
\(785\) −18.0000 −0.642448
\(786\) −4.00000 −0.142675
\(787\) −32.0000 −1.14068 −0.570338 0.821410i \(-0.693188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(788\) 22.0000 0.783718
\(789\) 8.00000 0.284808
\(790\) 8.00000 0.284627
\(791\) 0 0
\(792\) 0 0
\(793\) −36.0000 −1.27840
\(794\) 6.00000 0.212932
\(795\) −6.00000 −0.212798
\(796\) −16.0000 −0.567105
\(797\) −54.0000 −1.91278 −0.956389 0.292096i \(-0.905647\pi\)
−0.956389 + 0.292096i \(0.905647\pi\)
\(798\) 0 0
\(799\) 16.0000 0.566039
\(800\) 1.00000 0.0353553
\(801\) −6.00000 −0.212000
\(802\) 26.0000 0.918092
\(803\) 0 0
\(804\) −8.00000 −0.282138
\(805\) 0 0
\(806\) 48.0000 1.69073
\(807\) −22.0000 −0.774437
\(808\) 6.00000 0.211079
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) −1.00000 −0.0351364
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 0 0
\(813\) −16.0000 −0.561144
\(814\) 0 0
\(815\) −12.0000 −0.420342
\(816\) −2.00000 −0.0700140
\(817\) 0 0
\(818\) 10.0000 0.349642
\(819\) 0 0
\(820\) 6.00000 0.209529
\(821\) −10.0000 −0.349002 −0.174501 0.984657i \(-0.555831\pi\)
−0.174501 + 0.984657i \(0.555831\pi\)
\(822\) 6.00000 0.209274
\(823\) 56.0000 1.95204 0.976019 0.217687i \(-0.0698512\pi\)
0.976019 + 0.217687i \(0.0698512\pi\)
\(824\) −8.00000 −0.278693
\(825\) 0 0
\(826\) 0 0
\(827\) −48.0000 −1.66912 −0.834562 0.550914i \(-0.814279\pi\)
−0.834562 + 0.550914i \(0.814279\pi\)
\(828\) −1.00000 −0.0347524
\(829\) −10.0000 −0.347314 −0.173657 0.984806i \(-0.555558\pi\)
−0.173657 + 0.984806i \(0.555558\pi\)
\(830\) 8.00000 0.277684
\(831\) 10.0000 0.346896
\(832\) 6.00000 0.208013
\(833\) −14.0000 −0.485071
\(834\) 4.00000 0.138509
\(835\) 16.0000 0.553703
\(836\) 0 0
\(837\) −8.00000 −0.276520
\(838\) 16.0000 0.552711
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −22.0000 −0.758170
\(843\) 22.0000 0.757720
\(844\) 4.00000 0.137686
\(845\) −23.0000 −0.791224
\(846\) 8.00000 0.275046
\(847\) 0 0
\(848\) −6.00000 −0.206041
\(849\) −24.0000 −0.823678
\(850\) 2.00000 0.0685994
\(851\) −10.0000 −0.342796
\(852\) 8.00000 0.274075
\(853\) −50.0000 −1.71197 −0.855984 0.517003i \(-0.827048\pi\)
−0.855984 + 0.517003i \(0.827048\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 10.0000 0.341593 0.170797 0.985306i \(-0.445366\pi\)
0.170797 + 0.985306i \(0.445366\pi\)
\(858\) 0 0
\(859\) 20.0000 0.682391 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(860\) 8.00000 0.272798
\(861\) 0 0
\(862\) −8.00000 −0.272481
\(863\) 48.0000 1.63394 0.816970 0.576681i \(-0.195652\pi\)
0.816970 + 0.576681i \(0.195652\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 18.0000 0.612018
\(866\) −14.0000 −0.475739
\(867\) 13.0000 0.441503
\(868\) 0 0
\(869\) 0 0
\(870\) 6.00000 0.203419
\(871\) 48.0000 1.62642
\(872\) −6.00000 −0.203186
\(873\) 18.0000 0.609208
\(874\) 0 0
\(875\) 0 0
\(876\) −10.0000 −0.337869
\(877\) 14.0000 0.472746 0.236373 0.971662i \(-0.424041\pi\)
0.236373 + 0.971662i \(0.424041\pi\)
\(878\) 8.00000 0.269987
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) 50.0000 1.68454 0.842271 0.539054i \(-0.181218\pi\)
0.842271 + 0.539054i \(0.181218\pi\)
\(882\) −7.00000 −0.235702
\(883\) 36.0000 1.21150 0.605748 0.795656i \(-0.292874\pi\)
0.605748 + 0.795656i \(0.292874\pi\)
\(884\) 12.0000 0.403604
\(885\) −4.00000 −0.134459
\(886\) 20.0000 0.671913
\(887\) 16.0000 0.537227 0.268614 0.963248i \(-0.413434\pi\)
0.268614 + 0.963248i \(0.413434\pi\)
\(888\) −10.0000 −0.335578
\(889\) 0 0
\(890\) 6.00000 0.201120
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 6.00000 0.200670
\(895\) 4.00000 0.133705
\(896\) 0 0
\(897\) 6.00000 0.200334
\(898\) −14.0000 −0.467186
\(899\) 48.0000 1.60089
\(900\) 1.00000 0.0333333
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) −6.00000 −0.199557
\(905\) −2.00000 −0.0664822
\(906\) 16.0000 0.531564
\(907\) 8.00000 0.265636 0.132818 0.991140i \(-0.457597\pi\)
0.132818 + 0.991140i \(0.457597\pi\)
\(908\) 0 0
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 40.0000 1.32526 0.662630 0.748947i \(-0.269440\pi\)
0.662630 + 0.748947i \(0.269440\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −38.0000 −1.25693
\(915\) −6.00000 −0.198354
\(916\) 18.0000 0.594737
\(917\) 0 0
\(918\) −2.00000 −0.0660098
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 1.00000 0.0329690
\(921\) 4.00000 0.131804
\(922\) 6.00000 0.197599
\(923\) −48.0000 −1.57994
\(924\) 0 0
\(925\) 10.0000 0.328798
\(926\) −40.0000 −1.31448
\(927\) −8.00000 −0.262754
\(928\) 6.00000 0.196960
\(929\) −14.0000 −0.459325 −0.229663 0.973270i \(-0.573762\pi\)
−0.229663 + 0.973270i \(0.573762\pi\)
\(930\) 8.00000 0.262330
\(931\) 0 0
\(932\) −22.0000 −0.720634
\(933\) 0 0
\(934\) 8.00000 0.261768
\(935\) 0 0
\(936\) 6.00000 0.196116
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) 6.00000 0.195803
\(940\) −8.00000 −0.260931
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) −18.0000 −0.586472
\(943\) 6.00000 0.195387
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) 0 0
\(947\) 44.0000 1.42981 0.714904 0.699223i \(-0.246470\pi\)
0.714904 + 0.699223i \(0.246470\pi\)
\(948\) 8.00000 0.259828
\(949\) 60.0000 1.94768
\(950\) 0 0
\(951\) 2.00000 0.0648544
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) −6.00000 −0.194257
\(955\) 24.0000 0.776622
\(956\) 8.00000 0.258738
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 1.00000 0.0322749
\(961\) 33.0000 1.06452
\(962\) 60.0000 1.93448
\(963\) 0 0
\(964\) 26.0000 0.837404
\(965\) −18.0000 −0.579441
\(966\) 0 0
\(967\) −56.0000 −1.80084 −0.900419 0.435023i \(-0.856740\pi\)
−0.900419 + 0.435023i \(0.856740\pi\)
\(968\) −11.0000 −0.353553
\(969\) 0 0
\(970\) −18.0000 −0.577945
\(971\) −32.0000 −1.02693 −0.513464 0.858111i \(-0.671638\pi\)
−0.513464 + 0.858111i \(0.671638\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) 16.0000 0.512673
\(975\) −6.00000 −0.192154
\(976\) −6.00000 −0.192055
\(977\) 50.0000 1.59964 0.799821 0.600239i \(-0.204928\pi\)
0.799821 + 0.600239i \(0.204928\pi\)
\(978\) −12.0000 −0.383718
\(979\) 0 0
\(980\) 7.00000 0.223607
\(981\) −6.00000 −0.191565
\(982\) 36.0000 1.14881
\(983\) −48.0000 −1.53096 −0.765481 0.643458i \(-0.777499\pi\)
−0.765481 + 0.643458i \(0.777499\pi\)
\(984\) 6.00000 0.191273
\(985\) −22.0000 −0.700978
\(986\) 12.0000 0.382158
\(987\) 0 0
\(988\) 0 0
\(989\) 8.00000 0.254385
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 8.00000 0.254000
\(993\) 20.0000 0.634681
\(994\) 0 0
\(995\) 16.0000 0.507234
\(996\) 8.00000 0.253490
\(997\) 38.0000 1.20347 0.601736 0.798695i \(-0.294476\pi\)
0.601736 + 0.798695i \(0.294476\pi\)
\(998\) −20.0000 −0.633089
\(999\) −10.0000 −0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 690.2.a.h.1.1 1
3.2 odd 2 2070.2.a.h.1.1 1
4.3 odd 2 5520.2.a.x.1.1 1
5.2 odd 4 3450.2.d.e.2899.2 2
5.3 odd 4 3450.2.d.e.2899.1 2
5.4 even 2 3450.2.a.j.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
690.2.a.h.1.1 1 1.1 even 1 trivial
2070.2.a.h.1.1 1 3.2 odd 2
3450.2.a.j.1.1 1 5.4 even 2
3450.2.d.e.2899.1 2 5.3 odd 4
3450.2.d.e.2899.2 2 5.2 odd 4
5520.2.a.x.1.1 1 4.3 odd 2