Properties

Label 69.7.d
Level $69$
Weight $7$
Character orbit 69.d
Rep. character $\chi_{69}(22,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $1$
Sturm bound $56$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 69 = 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 69.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(56\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(69, [\chi])\).

Total New Old
Modular forms 50 24 26
Cusp forms 46 24 22
Eisenstein series 4 0 4

Trace form

\( 24 q - 20 q^{2} + 816 q^{4} - 324 q^{6} - 940 q^{8} + 5832 q^{9} + O(q^{10}) \) \( 24 q - 20 q^{2} + 816 q^{4} - 324 q^{6} - 940 q^{8} + 5832 q^{9} + 384 q^{13} + 29544 q^{16} - 4860 q^{18} + 29336 q^{23} - 39204 q^{24} - 61272 q^{25} + 10088 q^{26} + 64672 q^{29} + 9696 q^{31} - 319620 q^{32} - 225744 q^{35} + 198288 q^{36} - 11664 q^{39} + 135280 q^{41} + 233232 q^{46} - 74336 q^{47} + 552096 q^{48} - 722136 q^{49} + 619324 q^{50} + 1059720 q^{52} - 78732 q^{54} - 1019328 q^{55} - 694344 q^{58} + 1057648 q^{59} - 488776 q^{62} - 273888 q^{64} - 23328 q^{69} + 2785512 q^{70} - 255392 q^{71} - 228420 q^{72} - 322560 q^{73} - 365472 q^{75} - 1002960 q^{77} - 171072 q^{78} + 1417176 q^{81} - 5732712 q^{82} - 2704704 q^{85} + 611712 q^{87} - 1611444 q^{92} + 2484432 q^{93} - 147720 q^{94} - 1672656 q^{95} - 1818612 q^{96} + 9104212 q^{98} + O(q^{100}) \)

Decomposition of \(S_{7}^{\mathrm{new}}(69, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
69.7.d.a \(24\) \(15.874\) None \(-20\) \(0\) \(0\) \(0\)

Decomposition of \(S_{7}^{\mathrm{old}}(69, [\chi])\) into lower level spaces

\( S_{7}^{\mathrm{old}}(69, [\chi]) \cong \) \(S_{7}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 2}\)