Properties

Label 69.2.g
Level $69$
Weight $2$
Character orbit 69.g
Rep. character $\chi_{69}(5,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $60$
Newform subspaces $1$
Sturm bound $16$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 69 = 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 69.g (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 69 \)
Character field: \(\Q(\zeta_{22})\)
Newform subspaces: \( 1 \)
Sturm bound: \(16\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(69, [\chi])\).

Total New Old
Modular forms 100 100 0
Cusp forms 60 60 0
Eisenstein series 40 40 0

Trace form

\( 60 q - 11 q^{3} - 10 q^{4} - 14 q^{6} - 22 q^{7} - 11 q^{9} - 22 q^{10} + 4 q^{12} - 22 q^{13} - 46 q^{16} + 12 q^{18} - 22 q^{19} + 22 q^{21} + 50 q^{24} + 8 q^{25} + 10 q^{27} - 22 q^{28} + 33 q^{30}+ \cdots + 121 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(69, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
69.2.g.a 69.g 69.g $60$ $0.551$ None 69.2.g.a \(0\) \(-11\) \(0\) \(-22\) $\mathrm{SU}(2)[C_{22}]$