Properties

Label 69.2.e
Level $69$
Weight $2$
Character orbit 69.e
Rep. character $\chi_{69}(4,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $40$
Newform subspaces $3$
Sturm bound $16$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 69 = 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 69.e (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q(\zeta_{11})\)
Newform subspaces: \( 3 \)
Sturm bound: \(16\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(69, [\chi])\).

Total New Old
Modular forms 100 40 60
Cusp forms 60 40 20
Eisenstein series 40 0 40

Trace form

\( 40 q - 4 q^{2} - 12 q^{4} - 4 q^{5} - 4 q^{6} - 8 q^{7} - 12 q^{8} - 4 q^{9} - 8 q^{10} - 24 q^{11} - 8 q^{13} - 12 q^{14} - 8 q^{15} + 16 q^{16} + 10 q^{17} - 4 q^{18} - 10 q^{19} + 52 q^{20} - 4 q^{21}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(69, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
69.2.e.a 69.e 23.c $10$ $0.551$ \(\Q(\zeta_{22})\) None 69.2.e.a \(-4\) \(1\) \(5\) \(-8\) $\mathrm{SU}(2)[C_{11}]$ \(q+(-1+\zeta_{22}-\zeta_{22}^{2}-\zeta_{22}^{4}-\zeta_{22}^{6}+\cdots)q^{2}+\cdots\)
69.2.e.b 69.e 23.c $10$ $0.551$ \(\Q(\zeta_{22})\) None 69.2.e.b \(4\) \(1\) \(-3\) \(6\) $\mathrm{SU}(2)[C_{11}]$ \(q+(-\zeta_{22}^{4}+\zeta_{22}^{5}-\zeta_{22}^{8}+\zeta_{22}^{9})q^{2}+\cdots\)
69.2.e.c 69.e 23.c $20$ $0.551$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 69.2.e.c \(-4\) \(-2\) \(-6\) \(-6\) $\mathrm{SU}(2)[C_{11}]$ \(q+(\beta _{1}+\beta _{3}-\beta _{4}+\beta _{5}+2\beta _{6}+2\beta _{7}+\cdots)q^{2}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(69, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(69, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 2}\)