Properties

Label 6840.2.a.bm.1.3
Level $6840$
Weight $2$
Character 6840.1
Self dual yes
Analytic conductor $54.618$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6840,2,Mod(1,6840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6840.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6840 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6840.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.6176749826\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 760)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.470683\) of defining polynomial
Character \(\chi\) \(=\) 6840.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +2.71982 q^{7} +5.55691 q^{11} +2.02760 q^{13} +3.77846 q^{17} +1.00000 q^{19} +5.77846 q^{23} +1.00000 q^{25} +5.66119 q^{29} +7.55691 q^{31} +2.71982 q^{35} -3.75086 q^{37} +12.6155 q^{41} -9.43965 q^{43} -11.1138 q^{47} +0.397442 q^{49} +8.85170 q^{53} +5.55691 q^{55} -11.4526 q^{59} -10.6155 q^{61} +2.02760 q^{65} -11.5845 q^{67} -9.45264 q^{73} +15.1138 q^{77} +8.94137 q^{79} +4.94137 q^{83} +3.77846 q^{85} -15.4948 q^{89} +5.51471 q^{91} +1.00000 q^{95} +10.8647 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{5} - q^{7} - 11 q^{13} + 3 q^{17} + 3 q^{19} + 9 q^{23} + 3 q^{25} + 7 q^{29} + 6 q^{31} - q^{35} - 20 q^{37} + 22 q^{41} - 10 q^{43} + 12 q^{49} + 7 q^{53} - 11 q^{59} - 16 q^{61} - 11 q^{65}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.71982 1.02800 0.513998 0.857791i \(-0.328164\pi\)
0.513998 + 0.857791i \(0.328164\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.55691 1.67547 0.837736 0.546075i \(-0.183879\pi\)
0.837736 + 0.546075i \(0.183879\pi\)
\(12\) 0 0
\(13\) 2.02760 0.562354 0.281177 0.959656i \(-0.409275\pi\)
0.281177 + 0.959656i \(0.409275\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.77846 0.916410 0.458205 0.888846i \(-0.348492\pi\)
0.458205 + 0.888846i \(0.348492\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.77846 1.20489 0.602446 0.798160i \(-0.294193\pi\)
0.602446 + 0.798160i \(0.294193\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.66119 1.05126 0.525628 0.850714i \(-0.323830\pi\)
0.525628 + 0.850714i \(0.323830\pi\)
\(30\) 0 0
\(31\) 7.55691 1.35726 0.678631 0.734479i \(-0.262574\pi\)
0.678631 + 0.734479i \(0.262574\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.71982 0.459734
\(36\) 0 0
\(37\) −3.75086 −0.616637 −0.308319 0.951283i \(-0.599766\pi\)
−0.308319 + 0.951283i \(0.599766\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 12.6155 1.97022 0.985109 0.171932i \(-0.0550011\pi\)
0.985109 + 0.171932i \(0.0550011\pi\)
\(42\) 0 0
\(43\) −9.43965 −1.43953 −0.719766 0.694216i \(-0.755751\pi\)
−0.719766 + 0.694216i \(0.755751\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −11.1138 −1.62112 −0.810559 0.585657i \(-0.800837\pi\)
−0.810559 + 0.585657i \(0.800837\pi\)
\(48\) 0 0
\(49\) 0.397442 0.0567775
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.85170 1.21587 0.607937 0.793985i \(-0.291997\pi\)
0.607937 + 0.793985i \(0.291997\pi\)
\(54\) 0 0
\(55\) 5.55691 0.749294
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −11.4526 −1.49101 −0.745503 0.666502i \(-0.767791\pi\)
−0.745503 + 0.666502i \(0.767791\pi\)
\(60\) 0 0
\(61\) −10.6155 −1.35918 −0.679591 0.733591i \(-0.737843\pi\)
−0.679591 + 0.733591i \(0.737843\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.02760 0.251493
\(66\) 0 0
\(67\) −11.5845 −1.41527 −0.707637 0.706576i \(-0.750239\pi\)
−0.707637 + 0.706576i \(0.750239\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −9.45264 −1.10635 −0.553174 0.833066i \(-0.686583\pi\)
−0.553174 + 0.833066i \(0.686583\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 15.1138 1.72238
\(78\) 0 0
\(79\) 8.94137 1.00598 0.502991 0.864292i \(-0.332233\pi\)
0.502991 + 0.864292i \(0.332233\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.94137 0.542385 0.271193 0.962525i \(-0.412582\pi\)
0.271193 + 0.962525i \(0.412582\pi\)
\(84\) 0 0
\(85\) 3.77846 0.409831
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −15.4948 −1.64245 −0.821225 0.570604i \(-0.806709\pi\)
−0.821225 + 0.570604i \(0.806709\pi\)
\(90\) 0 0
\(91\) 5.51471 0.578099
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) 10.8647 1.10314 0.551571 0.834128i \(-0.314029\pi\)
0.551571 + 0.834128i \(0.314029\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.49828 −0.447596 −0.223798 0.974636i \(-0.571846\pi\)
−0.223798 + 0.974636i \(0.571846\pi\)
\(102\) 0 0
\(103\) 4.36641 0.430235 0.215117 0.976588i \(-0.430987\pi\)
0.215117 + 0.976588i \(0.430987\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.64658 0.159181 0.0795906 0.996828i \(-0.474639\pi\)
0.0795906 + 0.996828i \(0.474639\pi\)
\(108\) 0 0
\(109\) −0.954357 −0.0914108 −0.0457054 0.998955i \(-0.514554\pi\)
−0.0457054 + 0.998955i \(0.514554\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.68879 −0.535156 −0.267578 0.963536i \(-0.586223\pi\)
−0.267578 + 0.963536i \(0.586223\pi\)
\(114\) 0 0
\(115\) 5.77846 0.538844
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 10.2767 0.942067
\(120\) 0 0
\(121\) 19.8793 1.80721
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −10.3043 −0.914362 −0.457181 0.889374i \(-0.651141\pi\)
−0.457181 + 0.889374i \(0.651141\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.11383 −0.272056 −0.136028 0.990705i \(-0.543434\pi\)
−0.136028 + 0.990705i \(0.543434\pi\)
\(132\) 0 0
\(133\) 2.71982 0.235839
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.4526 −1.14934 −0.574668 0.818386i \(-0.694869\pi\)
−0.574668 + 0.818386i \(0.694869\pi\)
\(138\) 0 0
\(139\) 9.55691 0.810607 0.405303 0.914182i \(-0.367166\pi\)
0.405303 + 0.914182i \(0.367166\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 11.2672 0.942209
\(144\) 0 0
\(145\) 5.66119 0.470136
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −19.6121 −1.60669 −0.803343 0.595516i \(-0.796948\pi\)
−0.803343 + 0.595516i \(0.796948\pi\)
\(150\) 0 0
\(151\) −17.0518 −1.38765 −0.693826 0.720143i \(-0.744076\pi\)
−0.693826 + 0.720143i \(0.744076\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 7.55691 0.606986
\(156\) 0 0
\(157\) −22.4983 −1.79556 −0.897779 0.440446i \(-0.854820\pi\)
−0.897779 + 0.440446i \(0.854820\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 15.7164 1.23862
\(162\) 0 0
\(163\) 22.4362 1.75734 0.878670 0.477430i \(-0.158432\pi\)
0.878670 + 0.477430i \(0.158432\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.69223 0.517860 0.258930 0.965896i \(-0.416630\pi\)
0.258930 + 0.965896i \(0.416630\pi\)
\(168\) 0 0
\(169\) −8.88885 −0.683758
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.86469 0.217798 0.108899 0.994053i \(-0.465267\pi\)
0.108899 + 0.994053i \(0.465267\pi\)
\(174\) 0 0
\(175\) 2.71982 0.205599
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.38445 −0.103479 −0.0517394 0.998661i \(-0.516477\pi\)
−0.0517394 + 0.998661i \(0.516477\pi\)
\(180\) 0 0
\(181\) −20.8793 −1.55195 −0.775973 0.630766i \(-0.782741\pi\)
−0.775973 + 0.630766i \(0.782741\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.75086 −0.275769
\(186\) 0 0
\(187\) 20.9966 1.53542
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −19.2733 −1.39457 −0.697284 0.716795i \(-0.745608\pi\)
−0.697284 + 0.716795i \(0.745608\pi\)
\(192\) 0 0
\(193\) −8.01461 −0.576904 −0.288452 0.957494i \(-0.593141\pi\)
−0.288452 + 0.957494i \(0.593141\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −16.8793 −1.20260 −0.601300 0.799023i \(-0.705350\pi\)
−0.601300 + 0.799023i \(0.705350\pi\)
\(198\) 0 0
\(199\) 1.28018 0.0907493 0.0453746 0.998970i \(-0.485552\pi\)
0.0453746 + 0.998970i \(0.485552\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 15.3974 1.08069
\(204\) 0 0
\(205\) 12.6155 0.881108
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.55691 0.384380
\(210\) 0 0
\(211\) −1.54392 −0.106288 −0.0531441 0.998587i \(-0.516924\pi\)
−0.0531441 + 0.998587i \(0.516924\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −9.43965 −0.643779
\(216\) 0 0
\(217\) 20.5535 1.39526
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.66119 0.515347
\(222\) 0 0
\(223\) −3.92332 −0.262725 −0.131363 0.991334i \(-0.541935\pi\)
−0.131363 + 0.991334i \(0.541935\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.9069 −0.723916 −0.361958 0.932194i \(-0.617892\pi\)
−0.361958 + 0.932194i \(0.617892\pi\)
\(228\) 0 0
\(229\) 10.1725 0.672215 0.336108 0.941824i \(-0.390889\pi\)
0.336108 + 0.941824i \(0.390889\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.11383 0.597067 0.298533 0.954399i \(-0.403503\pi\)
0.298533 + 0.954399i \(0.403503\pi\)
\(234\) 0 0
\(235\) −11.1138 −0.724986
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −20.1595 −1.30401 −0.652004 0.758216i \(-0.726071\pi\)
−0.652004 + 0.758216i \(0.726071\pi\)
\(240\) 0 0
\(241\) −4.82410 −0.310748 −0.155374 0.987856i \(-0.549658\pi\)
−0.155374 + 0.987856i \(0.549658\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.397442 0.0253917
\(246\) 0 0
\(247\) 2.02760 0.129013
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 18.2277 1.15052 0.575260 0.817971i \(-0.304901\pi\)
0.575260 + 0.817971i \(0.304901\pi\)
\(252\) 0 0
\(253\) 32.1104 2.01876
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −28.5941 −1.78365 −0.891824 0.452382i \(-0.850574\pi\)
−0.891824 + 0.452382i \(0.850574\pi\)
\(258\) 0 0
\(259\) −10.2017 −0.633901
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 27.3776 1.68817 0.844087 0.536206i \(-0.180143\pi\)
0.844087 + 0.536206i \(0.180143\pi\)
\(264\) 0 0
\(265\) 8.85170 0.543755
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.0000 0.853595 0.426798 0.904347i \(-0.359642\pi\)
0.426798 + 0.904347i \(0.359642\pi\)
\(270\) 0 0
\(271\) 15.8337 0.961826 0.480913 0.876768i \(-0.340305\pi\)
0.480913 + 0.876768i \(0.340305\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.55691 0.335095
\(276\) 0 0
\(277\) −6.70683 −0.402975 −0.201487 0.979491i \(-0.564577\pi\)
−0.201487 + 0.979491i \(0.564577\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.38101 −0.499969 −0.249985 0.968250i \(-0.580426\pi\)
−0.249985 + 0.968250i \(0.580426\pi\)
\(282\) 0 0
\(283\) −20.2897 −1.20610 −0.603050 0.797704i \(-0.706048\pi\)
−0.603050 + 0.797704i \(0.706048\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 34.3121 2.02538
\(288\) 0 0
\(289\) −2.72326 −0.160192
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.76041 0.394947 0.197474 0.980308i \(-0.436726\pi\)
0.197474 + 0.980308i \(0.436726\pi\)
\(294\) 0 0
\(295\) −11.4526 −0.666798
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 11.7164 0.677576
\(300\) 0 0
\(301\) −25.6742 −1.47984
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −10.6155 −0.607844
\(306\) 0 0
\(307\) 7.74398 0.441972 0.220986 0.975277i \(-0.429072\pi\)
0.220986 + 0.975277i \(0.429072\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.0456 0.626341 0.313170 0.949697i \(-0.398609\pi\)
0.313170 + 0.949697i \(0.398609\pi\)
\(312\) 0 0
\(313\) 1.16291 0.0657315 0.0328658 0.999460i \(-0.489537\pi\)
0.0328658 + 0.999460i \(0.489537\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 21.8742 1.22858 0.614290 0.789080i \(-0.289443\pi\)
0.614290 + 0.789080i \(0.289443\pi\)
\(318\) 0 0
\(319\) 31.4588 1.76135
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.77846 0.210239
\(324\) 0 0
\(325\) 2.02760 0.112471
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −30.2277 −1.66650
\(330\) 0 0
\(331\) 14.6646 0.806041 0.403020 0.915191i \(-0.367960\pi\)
0.403020 + 0.915191i \(0.367960\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.5845 −0.632929
\(336\) 0 0
\(337\) −20.0958 −1.09469 −0.547344 0.836908i \(-0.684361\pi\)
−0.547344 + 0.836908i \(0.684361\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 41.9931 2.27406
\(342\) 0 0
\(343\) −17.9578 −0.969630
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.0586 0.593659 0.296829 0.954931i \(-0.404071\pi\)
0.296829 + 0.954931i \(0.404071\pi\)
\(348\) 0 0
\(349\) 8.11727 0.434507 0.217254 0.976115i \(-0.430290\pi\)
0.217254 + 0.976115i \(0.430290\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.0130 −0.639387 −0.319693 0.947521i \(-0.603580\pi\)
−0.319693 + 0.947521i \(0.603580\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 17.9509 0.947413 0.473707 0.880683i \(-0.342916\pi\)
0.473707 + 0.880683i \(0.342916\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9.45264 −0.494774
\(366\) 0 0
\(367\) −3.11383 −0.162541 −0.0812703 0.996692i \(-0.525898\pi\)
−0.0812703 + 0.996692i \(0.525898\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 24.0751 1.24991
\(372\) 0 0
\(373\) −21.8742 −1.13261 −0.566303 0.824197i \(-0.691627\pi\)
−0.566303 + 0.824197i \(0.691627\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 11.4786 0.591179
\(378\) 0 0
\(379\) −5.28018 −0.271224 −0.135612 0.990762i \(-0.543300\pi\)
−0.135612 + 0.990762i \(0.543300\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.1319 0.824300 0.412150 0.911116i \(-0.364778\pi\)
0.412150 + 0.911116i \(0.364778\pi\)
\(384\) 0 0
\(385\) 15.1138 0.770272
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3.43965 −0.174397 −0.0871985 0.996191i \(-0.527791\pi\)
−0.0871985 + 0.996191i \(0.527791\pi\)
\(390\) 0 0
\(391\) 21.8337 1.10418
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.94137 0.449889
\(396\) 0 0
\(397\) −1.29317 −0.0649021 −0.0324511 0.999473i \(-0.510331\pi\)
−0.0324511 + 0.999473i \(0.510331\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 35.1070 1.75316 0.876579 0.481258i \(-0.159820\pi\)
0.876579 + 0.481258i \(0.159820\pi\)
\(402\) 0 0
\(403\) 15.3224 0.763262
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −20.8432 −1.03316
\(408\) 0 0
\(409\) −24.8793 −1.23020 −0.615101 0.788448i \(-0.710885\pi\)
−0.615101 + 0.788448i \(0.710885\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −31.1492 −1.53275
\(414\) 0 0
\(415\) 4.94137 0.242562
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 35.4328 1.73100 0.865502 0.500905i \(-0.167000\pi\)
0.865502 + 0.500905i \(0.167000\pi\)
\(420\) 0 0
\(421\) 14.2147 0.692780 0.346390 0.938091i \(-0.387407\pi\)
0.346390 + 0.938091i \(0.387407\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.77846 0.183282
\(426\) 0 0
\(427\) −28.8724 −1.39723
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 24.4983 1.18004 0.590020 0.807388i \(-0.299120\pi\)
0.590020 + 0.807388i \(0.299120\pi\)
\(432\) 0 0
\(433\) 9.45426 0.454343 0.227171 0.973855i \(-0.427052\pi\)
0.227171 + 0.973855i \(0.427052\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.77846 0.276421
\(438\) 0 0
\(439\) 9.70340 0.463118 0.231559 0.972821i \(-0.425617\pi\)
0.231559 + 0.972821i \(0.425617\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.85008 0.325457 0.162729 0.986671i \(-0.447971\pi\)
0.162729 + 0.986671i \(0.447971\pi\)
\(444\) 0 0
\(445\) −15.4948 −0.734526
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 25.7655 1.21595 0.607974 0.793957i \(-0.291983\pi\)
0.607974 + 0.793957i \(0.291983\pi\)
\(450\) 0 0
\(451\) 70.1035 3.30105
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5.51471 0.258534
\(456\) 0 0
\(457\) 0.400880 0.0187524 0.00937619 0.999956i \(-0.497015\pi\)
0.00937619 + 0.999956i \(0.497015\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −23.1070 −1.07620 −0.538099 0.842882i \(-0.680857\pi\)
−0.538099 + 0.842882i \(0.680857\pi\)
\(462\) 0 0
\(463\) 4.96735 0.230852 0.115426 0.993316i \(-0.463177\pi\)
0.115426 + 0.993316i \(0.463177\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −21.6190 −1.00041 −0.500204 0.865908i \(-0.666742\pi\)
−0.500204 + 0.865908i \(0.666742\pi\)
\(468\) 0 0
\(469\) −31.5078 −1.45490
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −52.4553 −2.41190
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.20855 −0.100911 −0.0504557 0.998726i \(-0.516067\pi\)
−0.0504557 + 0.998726i \(0.516067\pi\)
\(480\) 0 0
\(481\) −7.60523 −0.346769
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.8647 0.493340
\(486\) 0 0
\(487\) −11.4250 −0.517718 −0.258859 0.965915i \(-0.583346\pi\)
−0.258859 + 0.965915i \(0.583346\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −23.6673 −1.06809 −0.534045 0.845456i \(-0.679329\pi\)
−0.534045 + 0.845456i \(0.679329\pi\)
\(492\) 0 0
\(493\) 21.3906 0.963383
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 3.99312 0.178757 0.0893784 0.995998i \(-0.471512\pi\)
0.0893784 + 0.995998i \(0.471512\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −0.338809 −0.0151068 −0.00755338 0.999971i \(-0.502404\pi\)
−0.00755338 + 0.999971i \(0.502404\pi\)
\(504\) 0 0
\(505\) −4.49828 −0.200171
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 28.4914 1.26286 0.631430 0.775433i \(-0.282468\pi\)
0.631430 + 0.775433i \(0.282468\pi\)
\(510\) 0 0
\(511\) −25.7095 −1.13732
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.36641 0.192407
\(516\) 0 0
\(517\) −61.7586 −2.71614
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −41.4328 −1.81520 −0.907601 0.419833i \(-0.862089\pi\)
−0.907601 + 0.419833i \(0.862089\pi\)
\(522\) 0 0
\(523\) −22.1741 −0.969605 −0.484802 0.874624i \(-0.661108\pi\)
−0.484802 + 0.874624i \(0.661108\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 28.5535 1.24381
\(528\) 0 0
\(529\) 10.3906 0.451764
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 25.5793 1.10796
\(534\) 0 0
\(535\) 1.64658 0.0711880
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.20855 0.0951291
\(540\) 0 0
\(541\) −7.61211 −0.327270 −0.163635 0.986521i \(-0.552322\pi\)
−0.163635 + 0.986521i \(0.552322\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.954357 −0.0408801
\(546\) 0 0
\(547\) −18.3303 −0.783748 −0.391874 0.920019i \(-0.628173\pi\)
−0.391874 + 0.920019i \(0.628173\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.66119 0.241175
\(552\) 0 0
\(553\) 24.3189 1.03415
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −36.7000 −1.55503 −0.777514 0.628866i \(-0.783519\pi\)
−0.777514 + 0.628866i \(0.783519\pi\)
\(558\) 0 0
\(559\) −19.1398 −0.809528
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16.1319 0.679877 0.339939 0.940448i \(-0.389594\pi\)
0.339939 + 0.940448i \(0.389594\pi\)
\(564\) 0 0
\(565\) −5.68879 −0.239329
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 19.2051 0.805120 0.402560 0.915394i \(-0.368120\pi\)
0.402560 + 0.915394i \(0.368120\pi\)
\(570\) 0 0
\(571\) −2.46907 −0.103327 −0.0516636 0.998665i \(-0.516452\pi\)
−0.0516636 + 0.998665i \(0.516452\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.77846 0.240978
\(576\) 0 0
\(577\) 11.7233 0.488046 0.244023 0.969769i \(-0.421533\pi\)
0.244023 + 0.969769i \(0.421533\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 13.4396 0.557571
\(582\) 0 0
\(583\) 49.1881 2.03716
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.28973 0.342154 0.171077 0.985258i \(-0.445275\pi\)
0.171077 + 0.985258i \(0.445275\pi\)
\(588\) 0 0
\(589\) 7.55691 0.311377
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 31.5760 1.29667 0.648336 0.761354i \(-0.275465\pi\)
0.648336 + 0.761354i \(0.275465\pi\)
\(594\) 0 0
\(595\) 10.2767 0.421305
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.28629 −0.0525564 −0.0262782 0.999655i \(-0.508366\pi\)
−0.0262782 + 0.999655i \(0.508366\pi\)
\(600\) 0 0
\(601\) 38.8432 1.58445 0.792224 0.610231i \(-0.208923\pi\)
0.792224 + 0.610231i \(0.208923\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 19.8793 0.808208
\(606\) 0 0
\(607\) 43.6888 1.77327 0.886637 0.462467i \(-0.153036\pi\)
0.886637 + 0.462467i \(0.153036\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −22.5344 −0.911643
\(612\) 0 0
\(613\) −30.8172 −1.24470 −0.622348 0.782741i \(-0.713821\pi\)
−0.622348 + 0.782741i \(0.713821\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10.4983 −0.422645 −0.211322 0.977416i \(-0.567777\pi\)
−0.211322 + 0.977416i \(0.567777\pi\)
\(618\) 0 0
\(619\) 13.3224 0.535472 0.267736 0.963492i \(-0.413725\pi\)
0.267736 + 0.963492i \(0.413725\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −42.1432 −1.68843
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −14.1725 −0.565093
\(630\) 0 0
\(631\) 1.21199 0.0482486 0.0241243 0.999709i \(-0.492320\pi\)
0.0241243 + 0.999709i \(0.492320\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −10.3043 −0.408915
\(636\) 0 0
\(637\) 0.805853 0.0319291
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 49.6965 1.96289 0.981447 0.191732i \(-0.0614105\pi\)
0.981447 + 0.191732i \(0.0614105\pi\)
\(642\) 0 0
\(643\) −39.0449 −1.53978 −0.769890 0.638177i \(-0.779689\pi\)
−0.769890 + 0.638177i \(0.779689\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28.4232 1.11743 0.558716 0.829359i \(-0.311294\pi\)
0.558716 + 0.829359i \(0.311294\pi\)
\(648\) 0 0
\(649\) −63.6413 −2.49814
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −29.0586 −1.13715 −0.568576 0.822631i \(-0.692506\pi\)
−0.568576 + 0.822631i \(0.692506\pi\)
\(654\) 0 0
\(655\) −3.11383 −0.121667
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −11.8957 −0.463392 −0.231696 0.972788i \(-0.574427\pi\)
−0.231696 + 0.972788i \(0.574427\pi\)
\(660\) 0 0
\(661\) 30.8923 1.20157 0.600785 0.799410i \(-0.294855\pi\)
0.600785 + 0.799410i \(0.294855\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.71982 0.105470
\(666\) 0 0
\(667\) 32.7129 1.26665
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −58.9897 −2.27727
\(672\) 0 0
\(673\) 37.5354 1.44688 0.723442 0.690385i \(-0.242559\pi\)
0.723442 + 0.690385i \(0.242559\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 31.6466 1.21628 0.608138 0.793831i \(-0.291917\pi\)
0.608138 + 0.793831i \(0.291917\pi\)
\(678\) 0 0
\(679\) 29.5500 1.13403
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −22.6233 −0.865656 −0.432828 0.901477i \(-0.642484\pi\)
−0.432828 + 0.901477i \(0.642484\pi\)
\(684\) 0 0
\(685\) −13.4526 −0.513999
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 17.9477 0.683752
\(690\) 0 0
\(691\) 17.7655 0.675830 0.337915 0.941177i \(-0.390278\pi\)
0.337915 + 0.941177i \(0.390278\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.55691 0.362514
\(696\) 0 0
\(697\) 47.6673 1.80553
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −25.6052 −0.967096 −0.483548 0.875318i \(-0.660652\pi\)
−0.483548 + 0.875318i \(0.660652\pi\)
\(702\) 0 0
\(703\) −3.75086 −0.141466
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −12.2345 −0.460127
\(708\) 0 0
\(709\) 23.2311 0.872462 0.436231 0.899835i \(-0.356313\pi\)
0.436231 + 0.899835i \(0.356313\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 43.6673 1.63535
\(714\) 0 0
\(715\) 11.2672 0.421369
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24.9544 −0.930640 −0.465320 0.885142i \(-0.654061\pi\)
−0.465320 + 0.885142i \(0.654061\pi\)
\(720\) 0 0
\(721\) 11.8759 0.442280
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.66119 0.210251
\(726\) 0 0
\(727\) −3.39744 −0.126004 −0.0630021 0.998013i \(-0.520067\pi\)
−0.0630021 + 0.998013i \(0.520067\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −35.6673 −1.31920
\(732\) 0 0
\(733\) −9.66730 −0.357070 −0.178535 0.983934i \(-0.557136\pi\)
−0.178535 + 0.983934i \(0.557136\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −64.3741 −2.37125
\(738\) 0 0
\(739\) 17.0225 0.626184 0.313092 0.949723i \(-0.398635\pi\)
0.313092 + 0.949723i \(0.398635\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −8.57496 −0.314585 −0.157292 0.987552i \(-0.550277\pi\)
−0.157292 + 0.987552i \(0.550277\pi\)
\(744\) 0 0
\(745\) −19.6121 −0.718532
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.47842 0.163638
\(750\) 0 0
\(751\) 12.8310 0.468209 0.234104 0.972211i \(-0.424784\pi\)
0.234104 + 0.972211i \(0.424784\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −17.0518 −0.620577
\(756\) 0 0
\(757\) −35.8827 −1.30418 −0.652090 0.758142i \(-0.726108\pi\)
−0.652090 + 0.758142i \(0.726108\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 30.1234 1.09197 0.545986 0.837794i \(-0.316155\pi\)
0.545986 + 0.837794i \(0.316155\pi\)
\(762\) 0 0
\(763\) −2.59568 −0.0939700
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −23.2213 −0.838474
\(768\) 0 0
\(769\) −6.22154 −0.224355 −0.112177 0.993688i \(-0.535782\pi\)
−0.112177 + 0.993688i \(0.535782\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −10.2362 −0.368169 −0.184084 0.982910i \(-0.558932\pi\)
−0.184084 + 0.982910i \(0.558932\pi\)
\(774\) 0 0
\(775\) 7.55691 0.271452
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.6155 0.451999
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −22.4983 −0.802998
\(786\) 0 0
\(787\) −4.34654 −0.154937 −0.0774687 0.996995i \(-0.524684\pi\)
−0.0774687 + 0.996995i \(0.524684\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −15.4725 −0.550139
\(792\) 0 0
\(793\) −21.5241 −0.764342
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 30.1932 1.06950 0.534749 0.845011i \(-0.320406\pi\)
0.534749 + 0.845011i \(0.320406\pi\)
\(798\) 0 0
\(799\) −41.9931 −1.48561
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −52.5275 −1.85366
\(804\) 0 0
\(805\) 15.7164 0.553930
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 11.8077 0.415136 0.207568 0.978221i \(-0.433445\pi\)
0.207568 + 0.978221i \(0.433445\pi\)
\(810\) 0 0
\(811\) 0.811111 0.0284820 0.0142410 0.999899i \(-0.495467\pi\)
0.0142410 + 0.999899i \(0.495467\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 22.4362 0.785906
\(816\) 0 0
\(817\) −9.43965 −0.330251
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −40.6707 −1.41942 −0.709709 0.704495i \(-0.751174\pi\)
−0.709709 + 0.704495i \(0.751174\pi\)
\(822\) 0 0
\(823\) −7.48185 −0.260801 −0.130401 0.991461i \(-0.541626\pi\)
−0.130401 + 0.991461i \(0.541626\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 46.4346 1.61469 0.807344 0.590080i \(-0.200904\pi\)
0.807344 + 0.590080i \(0.200904\pi\)
\(828\) 0 0
\(829\) −10.7267 −0.372554 −0.186277 0.982497i \(-0.559642\pi\)
−0.186277 + 0.982497i \(0.559642\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.50172 0.0520315
\(834\) 0 0
\(835\) 6.69223 0.231594
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −10.1465 −0.350295 −0.175148 0.984542i \(-0.556040\pi\)
−0.175148 + 0.984542i \(0.556040\pi\)
\(840\) 0 0
\(841\) 3.04908 0.105141
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8.88885 −0.305786
\(846\) 0 0
\(847\) 54.0682 1.85780
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −21.6742 −0.742981
\(852\) 0 0
\(853\) −26.1104 −0.894003 −0.447001 0.894533i \(-0.647508\pi\)
−0.447001 + 0.894533i \(0.647508\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −20.6922 −0.706833 −0.353416 0.935466i \(-0.614980\pi\)
−0.353416 + 0.935466i \(0.614980\pi\)
\(858\) 0 0
\(859\) 3.53093 0.120474 0.0602370 0.998184i \(-0.480814\pi\)
0.0602370 + 0.998184i \(0.480814\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.39906 0.115705 0.0578527 0.998325i \(-0.481575\pi\)
0.0578527 + 0.998325i \(0.481575\pi\)
\(864\) 0 0
\(865\) 2.86469 0.0974023
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 49.6864 1.68550
\(870\) 0 0
\(871\) −23.4887 −0.795885
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.71982 0.0919468
\(876\) 0 0
\(877\) −0.422364 −0.0142622 −0.00713111 0.999975i \(-0.502270\pi\)
−0.00713111 + 0.999975i \(0.502270\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −16.5243 −0.556716 −0.278358 0.960477i \(-0.589790\pi\)
−0.278358 + 0.960477i \(0.589790\pi\)
\(882\) 0 0
\(883\) 24.5535 0.826290 0.413145 0.910665i \(-0.364430\pi\)
0.413145 + 0.910665i \(0.364430\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 41.5975 1.39671 0.698354 0.715753i \(-0.253916\pi\)
0.698354 + 0.715753i \(0.253916\pi\)
\(888\) 0 0
\(889\) −28.0260 −0.939961
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −11.1138 −0.371910
\(894\) 0 0
\(895\) −1.38445 −0.0462771
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 42.7811 1.42683
\(900\) 0 0
\(901\) 33.4458 1.11424
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −20.8793 −0.694051
\(906\) 0 0
\(907\) 31.9294 1.06020 0.530100 0.847935i \(-0.322154\pi\)
0.530100 + 0.847935i \(0.322154\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −26.9605 −0.893240 −0.446620 0.894724i \(-0.647372\pi\)
−0.446620 + 0.894724i \(0.647372\pi\)
\(912\) 0 0
\(913\) 27.4588 0.908752
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −8.46907 −0.279673
\(918\) 0 0
\(919\) −0.394005 −0.0129970 −0.00649850 0.999979i \(-0.502069\pi\)
−0.00649850 + 0.999979i \(0.502069\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −3.75086 −0.123327
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 32.9284 1.08035 0.540173 0.841554i \(-0.318359\pi\)
0.540173 + 0.841554i \(0.318359\pi\)
\(930\) 0 0
\(931\) 0.397442 0.0130256
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 20.9966 0.686661
\(936\) 0 0
\(937\) −26.3388 −0.860451 −0.430226 0.902721i \(-0.641566\pi\)
−0.430226 + 0.902721i \(0.641566\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4.71982 −0.153862 −0.0769309 0.997036i \(-0.524512\pi\)
−0.0769309 + 0.997036i \(0.524512\pi\)
\(942\) 0 0
\(943\) 72.8984 2.37390
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −53.9639 −1.75359 −0.876796 0.480863i \(-0.840323\pi\)
−0.876796 + 0.480863i \(0.840323\pi\)
\(948\) 0 0
\(949\) −19.1661 −0.622159
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 13.0801 0.423707 0.211853 0.977301i \(-0.432050\pi\)
0.211853 + 0.977301i \(0.432050\pi\)
\(954\) 0 0
\(955\) −19.2733 −0.623669
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −36.5888 −1.18151
\(960\) 0 0
\(961\) 26.1070 0.842160
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −8.01461 −0.257999
\(966\) 0 0
\(967\) 10.4914 0.337381 0.168690 0.985669i \(-0.446046\pi\)
0.168690 + 0.985669i \(0.446046\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12.4691 0.400151 0.200076 0.979780i \(-0.435881\pi\)
0.200076 + 0.979780i \(0.435881\pi\)
\(972\) 0 0
\(973\) 25.9931 0.833301
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 52.4699 1.67866 0.839331 0.543621i \(-0.182947\pi\)
0.839331 + 0.543621i \(0.182947\pi\)
\(978\) 0 0
\(979\) −86.1035 −2.75188
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −14.1939 −0.452717 −0.226358 0.974044i \(-0.572682\pi\)
−0.226358 + 0.974044i \(0.572682\pi\)
\(984\) 0 0
\(985\) −16.8793 −0.537819
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −54.5466 −1.73448
\(990\) 0 0
\(991\) 19.4036 0.616374 0.308187 0.951326i \(-0.400278\pi\)
0.308187 + 0.951326i \(0.400278\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.28018 0.0405843
\(996\) 0 0
\(997\) −8.14648 −0.258002 −0.129001 0.991644i \(-0.541177\pi\)
−0.129001 + 0.991644i \(0.541177\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6840.2.a.bm.1.3 3
3.2 odd 2 760.2.a.i.1.2 3
12.11 even 2 1520.2.a.q.1.2 3
15.2 even 4 3800.2.d.n.3649.4 6
15.8 even 4 3800.2.d.n.3649.3 6
15.14 odd 2 3800.2.a.w.1.2 3
24.5 odd 2 6080.2.a.bx.1.2 3
24.11 even 2 6080.2.a.br.1.2 3
60.59 even 2 7600.2.a.bp.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.a.i.1.2 3 3.2 odd 2
1520.2.a.q.1.2 3 12.11 even 2
3800.2.a.w.1.2 3 15.14 odd 2
3800.2.d.n.3649.3 6 15.8 even 4
3800.2.d.n.3649.4 6 15.2 even 4
6080.2.a.br.1.2 3 24.11 even 2
6080.2.a.bx.1.2 3 24.5 odd 2
6840.2.a.bm.1.3 3 1.1 even 1 trivial
7600.2.a.bp.1.2 3 60.59 even 2