Defining parameters
Level: | \( N \) | \(=\) | \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 684.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(360\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(684, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 252 | 16 | 236 |
Cusp forms | 228 | 16 | 212 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(684, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
684.3.h.a | $2$ | $18.638$ | \(\Q(\sqrt{57}) \) | \(\Q(\sqrt{-19}) \) | \(0\) | \(0\) | \(-9\) | \(5\) | \(q+(-4-\beta )q^{5}+(4-3\beta )q^{7}+(4-5\beta )q^{11}+\cdots\) |
684.3.h.b | $2$ | $18.638$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-4\) | \(q-2q^{7}+\zeta_{6}q^{13}+(-13-\zeta_{6})q^{19}+\cdots\) |
684.3.h.c | $2$ | $18.638$ | \(\Q(\sqrt{-29}) \) | None | \(0\) | \(0\) | \(8\) | \(-2\) | \(q+4q^{5}-q^{7}-14q^{11}-\beta q^{13}-23q^{17}+\cdots\) |
684.3.h.d | $4$ | $18.638$ | \(\Q(\sqrt{3}, \sqrt{19})\) | \(\Q(\sqrt{-19}) \) | \(0\) | \(0\) | \(0\) | \(-10\) | \(q+\beta _{1}q^{5}+(-3-\beta _{3})q^{7}-\beta _{2}q^{11}+\cdots\) |
684.3.h.e | $6$ | $18.638$ | 6.0.219615408.1 | None | \(0\) | \(0\) | \(2\) | \(-2\) | \(q+\beta _{3}q^{5}-\beta _{2}q^{7}+(4+\beta _{2})q^{11}+(-\beta _{1}+\cdots)q^{13}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(684, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(684, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(342, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(228, [\chi])\)\(^{\oplus 2}\)