Properties

Label 684.2.d
Level $684$
Weight $2$
Character orbit 684.d
Rep. character $\chi_{684}(341,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $1$
Sturm bound $240$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 57 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(240\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(684, [\chi])\).

Total New Old
Modular forms 132 8 124
Cusp forms 108 8 100
Eisenstein series 24 0 24

Trace form

\( 8 q + O(q^{10}) \) \( 8 q - 40 q^{25} + 4 q^{43} + 36 q^{49} + 28 q^{55} - 44 q^{73} + 52 q^{85} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(684, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
684.2.d.a 684.d 57.d $8$ $5.462$ 8.0.\(\cdots\).4 \(\Q(\sqrt{-19}) \) 684.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{3}q^{5}-\beta _{2}q^{7}-\beta _{6}q^{11}+(\beta _{3}-\beta _{5}+\cdots)q^{17}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(684, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(684, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(228, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(342, [\chi])\)\(^{\oplus 2}\)