Properties

Label 684.2.cf.b.91.4
Level $684$
Weight $2$
Character 684.91
Analytic conductor $5.462$
Analytic rank $0$
Dimension $60$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [684,2,Mod(91,684)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("684.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(684, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 0, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.cf (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 228)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 91.4
Character \(\chi\) \(=\) 684.91
Dual form 684.2.cf.b.451.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.578232 - 1.29060i) q^{2} +(-1.33130 + 1.49253i) q^{4} +(-3.00606 + 2.52238i) q^{5} +(3.14549 + 1.81605i) q^{7} +(2.69606 + 0.855142i) q^{8} +(4.99358 + 2.42109i) q^{10} +(-0.114858 + 0.0663132i) q^{11} +(-6.41015 - 1.13028i) q^{13} +(0.524971 - 5.10966i) q^{14} +(-0.455300 - 3.97400i) q^{16} +(-2.07248 - 0.754320i) q^{17} +(-3.51706 - 2.57494i) q^{19} +(0.237219 - 7.84467i) q^{20} +(0.151998 + 0.109891i) q^{22} +(3.26515 - 3.89125i) q^{23} +(1.80573 - 10.2408i) q^{25} +(2.24781 + 8.92650i) q^{26} +(-6.89809 + 2.27704i) q^{28} +(-0.208018 - 0.571524i) q^{29} +(-0.726976 + 1.25916i) q^{31} +(-4.86558 + 2.88551i) q^{32} +(0.224847 + 3.11091i) q^{34} +(-14.0363 + 2.47497i) q^{35} -2.84148i q^{37} +(-1.28954 + 6.02802i) q^{38} +(-10.2615 + 4.22988i) q^{40} +(-8.74416 + 1.54183i) q^{41} +(-0.382981 - 0.456418i) q^{43} +(0.0539353 - 0.259712i) q^{44} +(-6.91006 - 1.96395i) q^{46} +(1.54735 + 4.25131i) q^{47} +(3.09606 + 5.36254i) q^{49} +(-14.2609 + 3.59108i) q^{50} +(10.2208 - 8.06261i) q^{52} +(0.676498 - 0.806218i) q^{53} +(0.178002 - 0.489057i) q^{55} +(6.92744 + 7.58601i) q^{56} +(-0.617326 + 0.598941i) q^{58} +(-5.41120 - 1.96952i) q^{59} +(5.10087 + 4.28014i) q^{61} +(2.04543 + 0.210149i) q^{62} +(6.53746 + 4.61103i) q^{64} +(22.1203 - 12.7711i) q^{65} +(-13.3272 + 4.85072i) q^{67} +(3.88493 - 2.08901i) q^{68} +(11.3104 + 16.6841i) q^{70} +(2.03061 - 1.70388i) q^{71} +(-0.940394 - 5.33324i) q^{73} +(-3.66721 + 1.64303i) q^{74} +(8.52542 - 1.82131i) q^{76} -0.481712 q^{77} +(-2.11318 - 11.9844i) q^{79} +(11.3926 + 10.7976i) q^{80} +(7.04604 + 10.3937i) q^{82} +(1.92603 + 1.11199i) q^{83} +(8.13266 - 2.96005i) q^{85} +(-0.367602 + 0.758190i) q^{86} +(-0.366371 + 0.0805646i) q^{88} +(-5.86514 - 1.03418i) q^{89} +(-18.1104 - 15.1964i) q^{91} +(1.46094 + 10.0537i) q^{92} +(4.59201 - 4.45525i) q^{94} +(17.0674 - 1.13095i) q^{95} +(-4.42348 + 12.1534i) q^{97} +(5.13065 - 7.09657i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 3 q^{2} - 3 q^{4} + 3 q^{8} - 6 q^{10} - 6 q^{13} + 9 q^{14} + 21 q^{16} + 18 q^{19} - 30 q^{20} - 12 q^{22} - 18 q^{28} - 12 q^{31} - 33 q^{32} - 15 q^{34} + 84 q^{38} - 87 q^{40} + 12 q^{41} - 18 q^{43}+ \cdots + 105 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.578232 1.29060i −0.408872 0.912592i
\(3\) 0 0
\(4\) −1.33130 + 1.49253i −0.665648 + 0.746266i
\(5\) −3.00606 + 2.52238i −1.34435 + 1.12804i −0.363863 + 0.931452i \(0.618542\pi\)
−0.980486 + 0.196590i \(0.937013\pi\)
\(6\) 0 0
\(7\) 3.14549 + 1.81605i 1.18888 + 0.686402i 0.958053 0.286592i \(-0.0925225\pi\)
0.230830 + 0.972994i \(0.425856\pi\)
\(8\) 2.69606 + 0.855142i 0.953201 + 0.302338i
\(9\) 0 0
\(10\) 4.99358 + 2.42109i 1.57911 + 0.765617i
\(11\) −0.114858 + 0.0663132i −0.0346310 + 0.0199942i −0.517216 0.855855i \(-0.673031\pi\)
0.482585 + 0.875849i \(0.339698\pi\)
\(12\) 0 0
\(13\) −6.41015 1.13028i −1.77786 0.313484i −0.814191 0.580598i \(-0.802819\pi\)
−0.963665 + 0.267114i \(0.913930\pi\)
\(14\) 0.524971 5.10966i 0.140304 1.36562i
\(15\) 0 0
\(16\) −0.455300 3.97400i −0.113825 0.993501i
\(17\) −2.07248 0.754320i −0.502650 0.182950i 0.0782357 0.996935i \(-0.475071\pi\)
−0.580885 + 0.813985i \(0.697294\pi\)
\(18\) 0 0
\(19\) −3.51706 2.57494i −0.806868 0.590731i
\(20\) 0.237219 7.84467i 0.0530437 1.75412i
\(21\) 0 0
\(22\) 0.151998 + 0.109891i 0.0324062 + 0.0234289i
\(23\) 3.26515 3.89125i 0.680830 0.811382i −0.309384 0.950937i \(-0.600123\pi\)
0.990214 + 0.139555i \(0.0445673\pi\)
\(24\) 0 0
\(25\) 1.80573 10.2408i 0.361146 2.04816i
\(26\) 2.24781 + 8.92650i 0.440832 + 1.75063i
\(27\) 0 0
\(28\) −6.89809 + 2.27704i −1.30362 + 0.430320i
\(29\) −0.208018 0.571524i −0.0386279 0.106129i 0.918879 0.394539i \(-0.129096\pi\)
−0.957507 + 0.288410i \(0.906873\pi\)
\(30\) 0 0
\(31\) −0.726976 + 1.25916i −0.130569 + 0.226152i −0.923896 0.382644i \(-0.875014\pi\)
0.793327 + 0.608795i \(0.208347\pi\)
\(32\) −4.86558 + 2.88551i −0.860121 + 0.510090i
\(33\) 0 0
\(34\) 0.224847 + 3.11091i 0.0385609 + 0.533517i
\(35\) −14.0363 + 2.47497i −2.37256 + 0.418347i
\(36\) 0 0
\(37\) 2.84148i 0.467136i −0.972340 0.233568i \(-0.924960\pi\)
0.972340 0.233568i \(-0.0750402\pi\)
\(38\) −1.28954 + 6.02802i −0.209191 + 0.977875i
\(39\) 0 0
\(40\) −10.2615 + 4.22988i −1.62248 + 0.668803i
\(41\) −8.74416 + 1.54183i −1.36561 + 0.240794i −0.807938 0.589268i \(-0.799416\pi\)
−0.557671 + 0.830062i \(0.688305\pi\)
\(42\) 0 0
\(43\) −0.382981 0.456418i −0.0584040 0.0696032i 0.736052 0.676926i \(-0.236688\pi\)
−0.794456 + 0.607322i \(0.792244\pi\)
\(44\) 0.0539353 0.259712i 0.00813105 0.0391530i
\(45\) 0 0
\(46\) −6.91006 1.96395i −1.01883 0.289569i
\(47\) 1.54735 + 4.25131i 0.225704 + 0.620117i 0.999918 0.0128071i \(-0.00407674\pi\)
−0.774214 + 0.632924i \(0.781855\pi\)
\(48\) 0 0
\(49\) 3.09606 + 5.36254i 0.442295 + 0.766077i
\(50\) −14.2609 + 3.59108i −2.01679 + 0.507855i
\(51\) 0 0
\(52\) 10.2208 8.06261i 1.41737 1.11808i
\(53\) 0.676498 0.806218i 0.0929241 0.110743i −0.717579 0.696478i \(-0.754750\pi\)
0.810503 + 0.585735i \(0.199194\pi\)
\(54\) 0 0
\(55\) 0.178002 0.489057i 0.0240018 0.0659444i
\(56\) 6.92744 + 7.58601i 0.925718 + 1.01372i
\(57\) 0 0
\(58\) −0.617326 + 0.598941i −0.0810589 + 0.0786448i
\(59\) −5.41120 1.96952i −0.704478 0.256409i −0.0351565 0.999382i \(-0.511193\pi\)
−0.669322 + 0.742973i \(0.733415\pi\)
\(60\) 0 0
\(61\) 5.10087 + 4.28014i 0.653099 + 0.548015i 0.908010 0.418949i \(-0.137602\pi\)
−0.254911 + 0.966965i \(0.582046\pi\)
\(62\) 2.04543 + 0.210149i 0.259770 + 0.0266890i
\(63\) 0 0
\(64\) 6.53746 + 4.61103i 0.817183 + 0.576378i
\(65\) 22.1203 12.7711i 2.74368 1.58407i
\(66\) 0 0
\(67\) −13.3272 + 4.85072i −1.62818 + 0.592610i −0.984916 0.173034i \(-0.944643\pi\)
−0.643266 + 0.765643i \(0.722421\pi\)
\(68\) 3.88493 2.08901i 0.471117 0.253330i
\(69\) 0 0
\(70\) 11.3104 + 16.6841i 1.35185 + 1.99413i
\(71\) 2.03061 1.70388i 0.240989 0.202214i −0.514292 0.857615i \(-0.671945\pi\)
0.755280 + 0.655402i \(0.227501\pi\)
\(72\) 0 0
\(73\) −0.940394 5.33324i −0.110065 0.624208i −0.989076 0.147407i \(-0.952907\pi\)
0.879011 0.476801i \(-0.158204\pi\)
\(74\) −3.66721 + 1.64303i −0.426305 + 0.190999i
\(75\) 0 0
\(76\) 8.52542 1.82131i 0.977933 0.208919i
\(77\) −0.481712 −0.0548962
\(78\) 0 0
\(79\) −2.11318 11.9844i −0.237751 1.34835i −0.836742 0.547597i \(-0.815543\pi\)
0.598991 0.800756i \(-0.295568\pi\)
\(80\) 11.3926 + 10.7976i 1.27373 + 1.20721i
\(81\) 0 0
\(82\) 7.04604 + 10.3937i 0.778105 + 1.14779i
\(83\) 1.92603 + 1.11199i 0.211409 + 0.122057i 0.601966 0.798522i \(-0.294384\pi\)
−0.390557 + 0.920579i \(0.627718\pi\)
\(84\) 0 0
\(85\) 8.13266 2.96005i 0.882111 0.321062i
\(86\) −0.367602 + 0.758190i −0.0396396 + 0.0817578i
\(87\) 0 0
\(88\) −0.366371 + 0.0805646i −0.0390553 + 0.00858821i
\(89\) −5.86514 1.03418i −0.621703 0.109623i −0.146081 0.989273i \(-0.546666\pi\)
−0.475622 + 0.879650i \(0.657777\pi\)
\(90\) 0 0
\(91\) −18.1104 15.1964i −1.89849 1.59302i
\(92\) 1.46094 + 10.0537i 0.152313 + 1.04818i
\(93\) 0 0
\(94\) 4.59201 4.45525i 0.473630 0.459524i
\(95\) 17.0674 1.13095i 1.75108 0.116033i
\(96\) 0 0
\(97\) −4.42348 + 12.1534i −0.449136 + 1.23399i 0.484190 + 0.874963i \(0.339114\pi\)
−0.933327 + 0.359029i \(0.883108\pi\)
\(98\) 5.13065 7.09657i 0.518274 0.716862i
\(99\) 0 0
\(100\) 12.8807 + 16.3286i 1.28807 + 1.63286i
\(101\) −0.763578 + 4.33046i −0.0759788 + 0.430897i 0.922962 + 0.384890i \(0.125761\pi\)
−0.998941 + 0.0460069i \(0.985350\pi\)
\(102\) 0 0
\(103\) 3.16703 + 5.48546i 0.312057 + 0.540498i 0.978807 0.204783i \(-0.0656487\pi\)
−0.666751 + 0.745281i \(0.732315\pi\)
\(104\) −16.3156 8.52889i −1.59987 0.836327i
\(105\) 0 0
\(106\) −1.43168 0.406907i −0.139057 0.0395223i
\(107\) −2.76186 + 4.78368i −0.266999 + 0.462456i −0.968085 0.250620i \(-0.919365\pi\)
0.701086 + 0.713076i \(0.252699\pi\)
\(108\) 0 0
\(109\) −7.83434 9.33660i −0.750394 0.894285i 0.246806 0.969065i \(-0.420619\pi\)
−0.997200 + 0.0747803i \(0.976174\pi\)
\(110\) −0.734103 + 0.0530586i −0.0699939 + 0.00505894i
\(111\) 0 0
\(112\) 5.78484 13.3270i 0.546616 1.25929i
\(113\) 11.9979i 1.12867i −0.825546 0.564336i \(-0.809132\pi\)
0.825546 0.564336i \(-0.190868\pi\)
\(114\) 0 0
\(115\) 19.9333i 1.85879i
\(116\) 1.12995 + 0.450395i 0.104913 + 0.0418181i
\(117\) 0 0
\(118\) 0.587070 + 8.12253i 0.0540442 + 0.747740i
\(119\) −5.14907 6.13643i −0.472015 0.562525i
\(120\) 0 0
\(121\) −5.49121 + 9.51105i −0.499200 + 0.864641i
\(122\) 2.57446 9.05809i 0.233081 0.820081i
\(123\) 0 0
\(124\) −0.911514 2.76135i −0.0818564 0.247976i
\(125\) 10.5927 + 18.3471i 0.947443 + 1.64102i
\(126\) 0 0
\(127\) −2.37797 + 13.4861i −0.211011 + 1.19670i 0.676686 + 0.736272i \(0.263416\pi\)
−0.887697 + 0.460429i \(0.847696\pi\)
\(128\) 2.17082 11.1035i 0.191875 0.981419i
\(129\) 0 0
\(130\) −29.2731 21.1637i −2.56742 1.85618i
\(131\) 0.715663 1.96627i 0.0625278 0.171794i −0.904495 0.426485i \(-0.859752\pi\)
0.967022 + 0.254691i \(0.0819739\pi\)
\(132\) 0 0
\(133\) −6.38665 14.4866i −0.553793 1.25615i
\(134\) 13.9666 + 14.3953i 1.20653 + 1.24356i
\(135\) 0 0
\(136\) −4.94247 3.80595i −0.423813 0.326358i
\(137\) −16.8320 14.1237i −1.43806 1.20667i −0.940751 0.339098i \(-0.889878\pi\)
−0.497306 0.867575i \(-0.665677\pi\)
\(138\) 0 0
\(139\) 11.8412 + 2.08792i 1.00436 + 0.177095i 0.651554 0.758602i \(-0.274117\pi\)
0.352803 + 0.935697i \(0.385228\pi\)
\(140\) 14.9925 24.2445i 1.26709 2.04904i
\(141\) 0 0
\(142\) −3.37319 1.63546i −0.283072 0.137245i
\(143\) 0.811209 0.295256i 0.0678367 0.0246905i
\(144\) 0 0
\(145\) 2.06691 + 1.19333i 0.171648 + 0.0991009i
\(146\) −6.33931 + 4.29752i −0.524645 + 0.355665i
\(147\) 0 0
\(148\) 4.24100 + 3.78285i 0.348608 + 0.310948i
\(149\) 0.139687 + 0.792202i 0.0114436 + 0.0648997i 0.989995 0.141104i \(-0.0450652\pi\)
−0.978551 + 0.206004i \(0.933954\pi\)
\(150\) 0 0
\(151\) −3.81184 −0.310203 −0.155102 0.987899i \(-0.549571\pi\)
−0.155102 + 0.987899i \(0.549571\pi\)
\(152\) −7.28026 9.94977i −0.590507 0.807033i
\(153\) 0 0
\(154\) 0.278541 + 0.621698i 0.0224455 + 0.0500978i
\(155\) −0.990748 5.61881i −0.0795788 0.451314i
\(156\) 0 0
\(157\) −5.09012 + 4.27111i −0.406236 + 0.340872i −0.822898 0.568189i \(-0.807644\pi\)
0.416662 + 0.909061i \(0.363200\pi\)
\(158\) −14.2452 + 9.65704i −1.13329 + 0.768273i
\(159\) 0 0
\(160\) 7.34786 20.9468i 0.580899 1.65599i
\(161\) 17.3372 6.31022i 1.36636 0.497315i
\(162\) 0 0
\(163\) 12.2112 7.05013i 0.956454 0.552209i 0.0613741 0.998115i \(-0.480452\pi\)
0.895080 + 0.445906i \(0.147118\pi\)
\(164\) 9.33984 15.1036i 0.729319 1.17939i
\(165\) 0 0
\(166\) 0.321447 3.12872i 0.0249491 0.242835i
\(167\) 0.530626 + 0.445248i 0.0410611 + 0.0344543i 0.663087 0.748542i \(-0.269246\pi\)
−0.622026 + 0.782996i \(0.713690\pi\)
\(168\) 0 0
\(169\) 27.5965 + 10.0443i 2.12281 + 0.772638i
\(170\) −8.52280 8.78442i −0.653669 0.673734i
\(171\) 0 0
\(172\) 1.19108 + 0.0360177i 0.0908190 + 0.00274632i
\(173\) −0.212455 + 0.583714i −0.0161526 + 0.0443790i −0.947507 0.319735i \(-0.896406\pi\)
0.931354 + 0.364114i \(0.118628\pi\)
\(174\) 0 0
\(175\) 24.2777 28.9330i 1.83522 2.18713i
\(176\) 0.315824 + 0.426253i 0.0238061 + 0.0321300i
\(177\) 0 0
\(178\) 2.05669 + 8.16754i 0.154156 + 0.612183i
\(179\) 3.49386 + 6.05155i 0.261143 + 0.452314i 0.966546 0.256493i \(-0.0825671\pi\)
−0.705403 + 0.708807i \(0.749234\pi\)
\(180\) 0 0
\(181\) 1.45869 + 4.00773i 0.108424 + 0.297892i 0.982025 0.188750i \(-0.0604437\pi\)
−0.873601 + 0.486642i \(0.838221\pi\)
\(182\) −9.14051 + 32.1603i −0.677539 + 2.38388i
\(183\) 0 0
\(184\) 12.1306 7.69888i 0.894280 0.567569i
\(185\) 7.16729 + 8.54164i 0.526950 + 0.627994i
\(186\) 0 0
\(187\) 0.288062 0.0507931i 0.0210652 0.00371436i
\(188\) −8.40519 3.35028i −0.613012 0.244344i
\(189\) 0 0
\(190\) −11.3285 21.3733i −0.821859 1.55058i
\(191\) 22.8590i 1.65402i 0.562187 + 0.827010i \(0.309960\pi\)
−0.562187 + 0.827010i \(0.690040\pi\)
\(192\) 0 0
\(193\) −11.0749 + 1.95280i −0.797186 + 0.140565i −0.557382 0.830256i \(-0.688194\pi\)
−0.239804 + 0.970821i \(0.577083\pi\)
\(194\) 18.2430 1.31854i 1.30977 0.0946659i
\(195\) 0 0
\(196\) −12.1255 2.51816i −0.866110 0.179868i
\(197\) −5.43953 + 9.42154i −0.387550 + 0.671257i −0.992119 0.125296i \(-0.960012\pi\)
0.604569 + 0.796553i \(0.293345\pi\)
\(198\) 0 0
\(199\) 5.97342 + 16.4118i 0.423444 + 1.16340i 0.949723 + 0.313091i \(0.101365\pi\)
−0.526279 + 0.850312i \(0.676413\pi\)
\(200\) 13.6257 26.0656i 0.963481 1.84312i
\(201\) 0 0
\(202\) 6.03042 1.51854i 0.424299 0.106844i
\(203\) 0.383598 2.17549i 0.0269233 0.152690i
\(204\) 0 0
\(205\) 22.3964 26.6909i 1.56423 1.86418i
\(206\) 5.24825 7.25924i 0.365663 0.505775i
\(207\) 0 0
\(208\) −1.57320 + 25.9886i −0.109082 + 1.80198i
\(209\) 0.574714 + 0.0625245i 0.0397538 + 0.00432491i
\(210\) 0 0
\(211\) −10.3242 3.75769i −0.710745 0.258690i −0.0387534 0.999249i \(-0.512339\pi\)
−0.671992 + 0.740559i \(0.734561\pi\)
\(212\) 0.302688 + 2.08301i 0.0207887 + 0.143062i
\(213\) 0 0
\(214\) 7.77081 + 0.798380i 0.531202 + 0.0545761i
\(215\) 2.30252 + 0.405997i 0.157031 + 0.0276887i
\(216\) 0 0
\(217\) −4.57339 + 2.64045i −0.310462 + 0.179245i
\(218\) −7.51976 + 15.5097i −0.509302 + 1.05045i
\(219\) 0 0
\(220\) 0.492959 + 0.916753i 0.0332353 + 0.0618075i
\(221\) 12.4323 + 7.17779i 0.836287 + 0.482830i
\(222\) 0 0
\(223\) 3.16227 2.65346i 0.211761 0.177689i −0.530737 0.847536i \(-0.678085\pi\)
0.742499 + 0.669847i \(0.233641\pi\)
\(224\) −20.5448 + 0.240195i −1.37271 + 0.0160487i
\(225\) 0 0
\(226\) −15.4845 + 6.93759i −1.03002 + 0.461481i
\(227\) −22.7323 −1.50880 −0.754399 0.656416i \(-0.772072\pi\)
−0.754399 + 0.656416i \(0.772072\pi\)
\(228\) 0 0
\(229\) −4.30789 −0.284673 −0.142337 0.989818i \(-0.545462\pi\)
−0.142337 + 0.989818i \(0.545462\pi\)
\(230\) 25.7259 11.5260i 1.69631 0.760005i
\(231\) 0 0
\(232\) −0.0720939 1.71875i −0.00473319 0.112841i
\(233\) 2.82584 2.37116i 0.185127 0.155340i −0.545514 0.838101i \(-0.683666\pi\)
0.730641 + 0.682762i \(0.239221\pi\)
\(234\) 0 0
\(235\) −15.3748 8.87666i −1.00294 0.579050i
\(236\) 10.1435 5.45438i 0.660284 0.355050i
\(237\) 0 0
\(238\) −4.94231 + 10.1937i −0.320363 + 0.660757i
\(239\) 15.7598 9.09895i 1.01942 0.588562i 0.105484 0.994421i \(-0.466361\pi\)
0.913936 + 0.405859i \(0.133028\pi\)
\(240\) 0 0
\(241\) 0.688871 + 0.121467i 0.0443741 + 0.00782435i 0.195791 0.980646i \(-0.437273\pi\)
−0.151417 + 0.988470i \(0.548384\pi\)
\(242\) 15.4501 + 1.58736i 0.993173 + 0.102039i
\(243\) 0 0
\(244\) −13.1790 + 1.91508i −0.843699 + 0.122600i
\(245\) −22.8333 8.31065i −1.45877 0.530948i
\(246\) 0 0
\(247\) 19.6345 + 20.4810i 1.24931 + 1.30318i
\(248\) −3.03673 + 2.77310i −0.192832 + 0.176092i
\(249\) 0 0
\(250\) 17.5538 24.2799i 1.11020 1.53559i
\(251\) 17.6189 20.9974i 1.11209 1.32534i 0.171742 0.985142i \(-0.445061\pi\)
0.940353 0.340201i \(-0.110495\pi\)
\(252\) 0 0
\(253\) −0.116987 + 0.663463i −0.00735488 + 0.0417116i
\(254\) 18.7802 4.72910i 1.17838 0.296730i
\(255\) 0 0
\(256\) −15.5854 + 3.61873i −0.974088 + 0.226171i
\(257\) 5.12241 + 14.0737i 0.319527 + 0.877894i 0.990635 + 0.136535i \(0.0435965\pi\)
−0.671108 + 0.741360i \(0.734181\pi\)
\(258\) 0 0
\(259\) 5.16026 8.93784i 0.320643 0.555370i
\(260\) −10.3873 + 50.0174i −0.644193 + 3.10195i
\(261\) 0 0
\(262\) −2.95148 + 0.213324i −0.182343 + 0.0131792i
\(263\) −1.54112 + 0.271742i −0.0950297 + 0.0167563i −0.220961 0.975283i \(-0.570919\pi\)
0.125931 + 0.992039i \(0.459808\pi\)
\(264\) 0 0
\(265\) 4.12992i 0.253699i
\(266\) −15.0034 + 16.6192i −0.919919 + 1.01899i
\(267\) 0 0
\(268\) 10.5027 26.3491i 0.641552 1.60953i
\(269\) 18.7970 3.31442i 1.14607 0.202084i 0.431813 0.901963i \(-0.357874\pi\)
0.714261 + 0.699879i \(0.246763\pi\)
\(270\) 0 0
\(271\) −0.812187 0.967927i −0.0493369 0.0587974i 0.740812 0.671713i \(-0.234441\pi\)
−0.790149 + 0.612915i \(0.789997\pi\)
\(272\) −2.05407 + 8.57948i −0.124546 + 0.520207i
\(273\) 0 0
\(274\) −8.49530 + 29.8902i −0.513220 + 1.80573i
\(275\) 0.471698 + 1.29598i 0.0284444 + 0.0781505i
\(276\) 0 0
\(277\) −2.57753 4.46441i −0.154869 0.268240i 0.778143 0.628088i \(-0.216162\pi\)
−0.933011 + 0.359847i \(0.882829\pi\)
\(278\) −4.15228 16.4896i −0.249037 0.988978i
\(279\) 0 0
\(280\) −39.9591 5.33033i −2.38801 0.318548i
\(281\) −16.3514 + 19.4869i −0.975443 + 1.16249i 0.0112566 + 0.999937i \(0.496417\pi\)
−0.986700 + 0.162552i \(0.948028\pi\)
\(282\) 0 0
\(283\) −0.410271 + 1.12721i −0.0243881 + 0.0670057i −0.951289 0.308300i \(-0.900240\pi\)
0.926901 + 0.375306i \(0.122462\pi\)
\(284\) −0.160243 + 5.29912i −0.00950865 + 0.314445i
\(285\) 0 0
\(286\) −0.850124 0.876220i −0.0502689 0.0518120i
\(287\) −30.3047 11.0300i −1.78883 0.651081i
\(288\) 0 0
\(289\) −9.29659 7.80077i −0.546858 0.458869i
\(290\) 0.344961 3.35758i 0.0202568 0.197164i
\(291\) 0 0
\(292\) 9.21197 + 5.69655i 0.539090 + 0.333366i
\(293\) 2.26935 1.31021i 0.132577 0.0765433i −0.432245 0.901756i \(-0.642278\pi\)
0.564822 + 0.825213i \(0.308945\pi\)
\(294\) 0 0
\(295\) 21.2342 7.72863i 1.23630 0.449978i
\(296\) 2.42987 7.66079i 0.141233 0.445275i
\(297\) 0 0
\(298\) 0.941645 0.638356i 0.0545480 0.0369790i
\(299\) −25.3283 + 21.2530i −1.46477 + 1.22909i
\(300\) 0 0
\(301\) −0.375783 2.13117i −0.0216598 0.122839i
\(302\) 2.20413 + 4.91956i 0.126833 + 0.283089i
\(303\) 0 0
\(304\) −8.63149 + 15.1492i −0.495050 + 0.868864i
\(305\) −26.1296 −1.49618
\(306\) 0 0
\(307\) 3.60419 + 20.4404i 0.205702 + 1.16659i 0.896332 + 0.443384i \(0.146222\pi\)
−0.690630 + 0.723208i \(0.742667\pi\)
\(308\) 0.641302 0.718971i 0.0365416 0.0409672i
\(309\) 0 0
\(310\) −6.67875 + 4.52763i −0.379328 + 0.257152i
\(311\) 7.49584 + 4.32773i 0.425050 + 0.245403i 0.697236 0.716842i \(-0.254413\pi\)
−0.272186 + 0.962245i \(0.587746\pi\)
\(312\) 0 0
\(313\) −16.3293 + 5.94338i −0.922987 + 0.335940i −0.759426 0.650594i \(-0.774520\pi\)
−0.163561 + 0.986533i \(0.552298\pi\)
\(314\) 8.45557 + 4.09961i 0.477175 + 0.231354i
\(315\) 0 0
\(316\) 20.7004 + 12.8008i 1.16449 + 0.720103i
\(317\) −18.3187 3.23007i −1.02888 0.181419i −0.366366 0.930471i \(-0.619398\pi\)
−0.662512 + 0.749052i \(0.730509\pi\)
\(318\) 0 0
\(319\) 0.0617921 + 0.0518497i 0.00345969 + 0.00290303i
\(320\) −31.2827 + 2.62897i −1.74876 + 0.146964i
\(321\) 0 0
\(322\) −18.1689 18.7266i −1.01251 1.04359i
\(323\) 5.34670 + 7.98949i 0.297498 + 0.444547i
\(324\) 0 0
\(325\) −23.1500 + 63.6040i −1.28413 + 3.52812i
\(326\) −16.1598 11.6831i −0.895008 0.647070i
\(327\) 0 0
\(328\) −24.8933 3.32063i −1.37450 0.183351i
\(329\) −2.85341 + 16.1825i −0.157314 + 0.892170i
\(330\) 0 0
\(331\) 1.69965 + 2.94388i 0.0934212 + 0.161810i 0.908949 0.416908i \(-0.136886\pi\)
−0.815527 + 0.578718i \(0.803553\pi\)
\(332\) −4.22379 + 1.39426i −0.231811 + 0.0765202i
\(333\) 0 0
\(334\) 0.267812 0.942283i 0.0146540 0.0515594i
\(335\) 27.8271 48.1979i 1.52036 2.63333i
\(336\) 0 0
\(337\) 14.9862 + 17.8599i 0.816351 + 0.972889i 0.999949 0.0101120i \(-0.00321881\pi\)
−0.183598 + 0.983001i \(0.558774\pi\)
\(338\) −2.99399 41.4239i −0.162852 2.25316i
\(339\) 0 0
\(340\) −6.40902 + 16.0790i −0.347578 + 0.872004i
\(341\) 0.192832i 0.0104425i
\(342\) 0 0
\(343\) 2.93426i 0.158435i
\(344\) −0.642236 1.55803i −0.0346270 0.0840035i
\(345\) 0 0
\(346\) 0.876190 0.0633282i 0.0471042 0.00340454i
\(347\) 3.20788 + 3.82300i 0.172208 + 0.205229i 0.845244 0.534380i \(-0.179455\pi\)
−0.673037 + 0.739609i \(0.735010\pi\)
\(348\) 0 0
\(349\) −1.36711 + 2.36790i −0.0731797 + 0.126751i −0.900293 0.435284i \(-0.856648\pi\)
0.827114 + 0.562035i \(0.189981\pi\)
\(350\) −51.3790 14.6028i −2.74633 0.780551i
\(351\) 0 0
\(352\) 0.367503 0.654075i 0.0195880 0.0348623i
\(353\) −14.1040 24.4289i −0.750681 1.30022i −0.947493 0.319776i \(-0.896392\pi\)
0.196812 0.980441i \(-0.436941\pi\)
\(354\) 0 0
\(355\) −1.80628 + 10.2439i −0.0958674 + 0.543691i
\(356\) 9.35178 7.37710i 0.495643 0.390985i
\(357\) 0 0
\(358\) 5.78986 8.00837i 0.306004 0.423256i
\(359\) −9.54210 + 26.2167i −0.503613 + 1.38367i 0.384110 + 0.923287i \(0.374508\pi\)
−0.887723 + 0.460378i \(0.847714\pi\)
\(360\) 0 0
\(361\) 5.73939 + 18.1124i 0.302073 + 0.953285i
\(362\) 4.32891 4.19999i 0.227523 0.220746i
\(363\) 0 0
\(364\) 46.7915 6.79939i 2.45254 0.356385i
\(365\) 16.2793 + 13.6600i 0.852099 + 0.714996i
\(366\) 0 0
\(367\) −36.8532 6.49822i −1.92372 0.339204i −0.924595 0.380952i \(-0.875596\pi\)
−0.999128 + 0.0417476i \(0.986707\pi\)
\(368\) −16.9505 11.2040i −0.883604 0.584050i
\(369\) 0 0
\(370\) 6.87949 14.1892i 0.357648 0.737659i
\(371\) 3.59205 1.30740i 0.186490 0.0678767i
\(372\) 0 0
\(373\) −5.83655 3.36973i −0.302205 0.174478i 0.341228 0.939981i \(-0.389157\pi\)
−0.643433 + 0.765502i \(0.722491\pi\)
\(374\) −0.232120 0.342402i −0.0120026 0.0177052i
\(375\) 0 0
\(376\) 0.536274 + 12.7850i 0.0276562 + 0.659335i
\(377\) 0.687441 + 3.89867i 0.0354050 + 0.200792i
\(378\) 0 0
\(379\) 30.6964 1.57677 0.788384 0.615183i \(-0.210918\pi\)
0.788384 + 0.615183i \(0.210918\pi\)
\(380\) −21.0338 + 26.9793i −1.07901 + 1.38401i
\(381\) 0 0
\(382\) 29.5018 13.2178i 1.50945 0.676282i
\(383\) −4.69272 26.6138i −0.239787 1.35990i −0.832294 0.554334i \(-0.812973\pi\)
0.592507 0.805565i \(-0.298138\pi\)
\(384\) 0 0
\(385\) 1.44805 1.21506i 0.0737996 0.0619253i
\(386\) 8.92411 + 13.1640i 0.454225 + 0.670032i
\(387\) 0 0
\(388\) −12.2504 22.7820i −0.621919 1.15658i
\(389\) 34.4298 12.5314i 1.74566 0.635368i 0.746124 0.665807i \(-0.231913\pi\)
0.999537 + 0.0304389i \(0.00969050\pi\)
\(390\) 0 0
\(391\) −9.70220 + 5.60157i −0.490661 + 0.283283i
\(392\) 3.76144 + 17.1053i 0.189981 + 0.863948i
\(393\) 0 0
\(394\) 15.3047 + 1.57242i 0.771042 + 0.0792175i
\(395\) 36.5816 + 30.6956i 1.84062 + 1.54446i
\(396\) 0 0
\(397\) 12.0237 + 4.37627i 0.603453 + 0.219639i 0.625636 0.780115i \(-0.284839\pi\)
−0.0221832 + 0.999754i \(0.507062\pi\)
\(398\) 17.7271 17.1991i 0.888578 0.862114i
\(399\) 0 0
\(400\) −41.5191 2.51333i −2.07595 0.125667i
\(401\) −4.52331 + 12.4277i −0.225883 + 0.620610i −0.999922 0.0125293i \(-0.996012\pi\)
0.774038 + 0.633139i \(0.218234\pi\)
\(402\) 0 0
\(403\) 6.08323 7.24971i 0.303027 0.361134i
\(404\) −5.44681 6.90479i −0.270989 0.343526i
\(405\) 0 0
\(406\) −3.02950 + 0.762867i −0.150352 + 0.0378605i
\(407\) 0.188428 + 0.326366i 0.00934001 + 0.0161774i
\(408\) 0 0
\(409\) −8.83683 24.2790i −0.436953 1.20052i −0.941464 0.337113i \(-0.890549\pi\)
0.504511 0.863405i \(-0.331673\pi\)
\(410\) −47.3976 13.4712i −2.34080 0.665295i
\(411\) 0 0
\(412\) −12.4035 2.57588i −0.611075 0.126904i
\(413\) −13.4441 16.0221i −0.661542 0.788396i
\(414\) 0 0
\(415\) −8.59460 + 1.51546i −0.421892 + 0.0743910i
\(416\) 34.4505 12.9970i 1.68908 0.637232i
\(417\) 0 0
\(418\) −0.251624 0.777880i −0.0123073 0.0380473i
\(419\) 19.8048i 0.967529i 0.875198 + 0.483765i \(0.160731\pi\)
−0.875198 + 0.483765i \(0.839269\pi\)
\(420\) 0 0
\(421\) 17.6581 3.11360i 0.860603 0.151748i 0.274107 0.961699i \(-0.411618\pi\)
0.586496 + 0.809952i \(0.300507\pi\)
\(422\) 1.12009 + 15.4972i 0.0545250 + 0.754391i
\(423\) 0 0
\(424\) 2.51331 1.59511i 0.122057 0.0774654i
\(425\) −11.4672 + 19.8617i −0.556239 + 0.963434i
\(426\) 0 0
\(427\) 8.27178 + 22.7265i 0.400300 + 1.09981i
\(428\) −3.46294 10.4907i −0.167388 0.507085i
\(429\) 0 0
\(430\) −0.807412 3.20639i −0.0389368 0.154626i
\(431\) −0.459335 + 2.60502i −0.0221254 + 0.125479i −0.993870 0.110556i \(-0.964737\pi\)
0.971745 + 0.236035i \(0.0758480\pi\)
\(432\) 0 0
\(433\) −5.16377 + 6.15394i −0.248155 + 0.295739i −0.875715 0.482829i \(-0.839609\pi\)
0.627560 + 0.778568i \(0.284054\pi\)
\(434\) 6.05224 + 4.37562i 0.290517 + 0.210037i
\(435\) 0 0
\(436\) 24.3650 + 0.736786i 1.16687 + 0.0352856i
\(437\) −21.5034 + 5.27820i −1.02865 + 0.252491i
\(438\) 0 0
\(439\) 16.0502 + 5.84179i 0.766034 + 0.278814i 0.695337 0.718684i \(-0.255255\pi\)
0.0706975 + 0.997498i \(0.477477\pi\)
\(440\) 0.898117 1.16631i 0.0428160 0.0556016i
\(441\) 0 0
\(442\) 2.07491 20.1955i 0.0986933 0.960604i
\(443\) −27.7191 4.88763i −1.31698 0.232218i −0.529366 0.848393i \(-0.677570\pi\)
−0.787609 + 0.616175i \(0.788681\pi\)
\(444\) 0 0
\(445\) 20.2395 11.6853i 0.959445 0.553936i
\(446\) −5.25308 2.54691i −0.248741 0.120600i
\(447\) 0 0
\(448\) 12.1897 + 26.3763i 0.575908 + 1.24616i
\(449\) 2.80954 + 1.62209i 0.132590 + 0.0765510i 0.564828 0.825209i \(-0.308943\pi\)
−0.432238 + 0.901760i \(0.642276\pi\)
\(450\) 0 0
\(451\) 0.902092 0.756945i 0.0424779 0.0356432i
\(452\) 17.9073 + 15.9728i 0.842289 + 0.751298i
\(453\) 0 0
\(454\) 13.1446 + 29.3384i 0.616905 + 1.37692i
\(455\) 92.7721 4.34922
\(456\) 0 0
\(457\) 7.67802 0.359162 0.179581 0.983743i \(-0.442526\pi\)
0.179581 + 0.983743i \(0.442526\pi\)
\(458\) 2.49096 + 5.55976i 0.116395 + 0.259791i
\(459\) 0 0
\(460\) −29.7510 26.5371i −1.38715 1.23730i
\(461\) −12.9525 + 10.8684i −0.603258 + 0.506193i −0.892491 0.451065i \(-0.851044\pi\)
0.289233 + 0.957259i \(0.406600\pi\)
\(462\) 0 0
\(463\) −33.0367 19.0738i −1.53535 0.886433i −0.999102 0.0423700i \(-0.986509\pi\)
−0.536244 0.844063i \(-0.680157\pi\)
\(464\) −2.17653 + 1.08688i −0.101043 + 0.0504571i
\(465\) 0 0
\(466\) −4.69421 2.27595i −0.217455 0.105431i
\(467\) 4.70600 2.71701i 0.217768 0.125728i −0.387148 0.922017i \(-0.626540\pi\)
0.604916 + 0.796289i \(0.293207\pi\)
\(468\) 0 0
\(469\) −50.7298 8.94504i −2.34249 0.413043i
\(470\) −2.56601 + 24.9755i −0.118361 + 1.15204i
\(471\) 0 0
\(472\) −12.9047 9.93727i −0.593987 0.457400i
\(473\) 0.0742549 + 0.0270266i 0.00341425 + 0.00124268i
\(474\) 0 0
\(475\) −32.7202 + 31.3678i −1.50131 + 1.43925i
\(476\) 16.0137 + 0.484248i 0.733989 + 0.0221955i
\(477\) 0 0
\(478\) −20.8559 15.0783i −0.953928 0.689668i
\(479\) −12.7757 + 15.2254i −0.583735 + 0.695668i −0.974389 0.224869i \(-0.927805\pi\)
0.390654 + 0.920538i \(0.372249\pi\)
\(480\) 0 0
\(481\) −3.21167 + 18.2143i −0.146440 + 0.830501i
\(482\) −0.241562 0.959293i −0.0110029 0.0436946i
\(483\) 0 0
\(484\) −6.88512 20.8578i −0.312960 0.948083i
\(485\) −17.3583 47.6915i −0.788199 2.16556i
\(486\) 0 0
\(487\) 19.8885 34.4478i 0.901232 1.56098i 0.0753359 0.997158i \(-0.475997\pi\)
0.825896 0.563822i \(-0.190670\pi\)
\(488\) 10.0921 + 15.9015i 0.456848 + 0.719825i
\(489\) 0 0
\(490\) 2.47723 + 34.2741i 0.111910 + 1.54835i
\(491\) −26.2474 + 4.62812i −1.18453 + 0.208864i −0.730999 0.682378i \(-0.760946\pi\)
−0.453527 + 0.891242i \(0.649835\pi\)
\(492\) 0 0
\(493\) 1.34138i 0.0604128i
\(494\) 15.0795 37.1830i 0.678460 1.67294i
\(495\) 0 0
\(496\) 5.33489 + 2.31571i 0.239544 + 0.103978i
\(497\) 9.48158 1.67186i 0.425307 0.0749931i
\(498\) 0 0
\(499\) −1.58546 1.88948i −0.0709748 0.0845845i 0.729389 0.684100i \(-0.239805\pi\)
−0.800364 + 0.599515i \(0.795360\pi\)
\(500\) −41.4858 8.61550i −1.85530 0.385297i
\(501\) 0 0
\(502\) −37.2870 10.5976i −1.66420 0.472994i
\(503\) 9.97372 + 27.4026i 0.444706 + 1.22182i 0.936364 + 0.351031i \(0.114169\pi\)
−0.491657 + 0.870789i \(0.663609\pi\)
\(504\) 0 0
\(505\) −8.62772 14.9436i −0.383928 0.664984i
\(506\) 0.923911 0.232653i 0.0410729 0.0103427i
\(507\) 0 0
\(508\) −16.9627 21.5032i −0.752598 0.954052i
\(509\) −6.92417 + 8.25190i −0.306908 + 0.365759i −0.897349 0.441322i \(-0.854510\pi\)
0.590440 + 0.807081i \(0.298954\pi\)
\(510\) 0 0
\(511\) 6.72742 18.4834i 0.297604 0.817659i
\(512\) 13.6823 + 18.0221i 0.604678 + 0.796470i
\(513\) 0 0
\(514\) 15.2016 14.7489i 0.670514 0.650544i
\(515\) −23.3567 8.50114i −1.02922 0.374605i
\(516\) 0 0
\(517\) −0.459643 0.385687i −0.0202151 0.0169625i
\(518\) −14.5190 1.49169i −0.637928 0.0655413i
\(519\) 0 0
\(520\) 70.5587 15.5158i 3.09420 0.680412i
\(521\) −3.43242 + 1.98171i −0.150377 + 0.0868202i −0.573300 0.819345i \(-0.694337\pi\)
0.422924 + 0.906165i \(0.361004\pi\)
\(522\) 0 0
\(523\) 24.7336 9.00230i 1.08153 0.393643i 0.261050 0.965325i \(-0.415931\pi\)
0.820475 + 0.571682i \(0.193709\pi\)
\(524\) 1.98196 + 3.68584i 0.0865822 + 0.161016i
\(525\) 0 0
\(526\) 1.24184 + 1.83184i 0.0541466 + 0.0798722i
\(527\) 2.45645 2.06121i 0.107005 0.0897876i
\(528\) 0 0
\(529\) −0.486741 2.76045i −0.0211627 0.120019i
\(530\) 5.33008 2.38805i 0.231524 0.103730i
\(531\) 0 0
\(532\) 30.1242 + 9.75366i 1.30605 + 0.422875i
\(533\) 57.7941 2.50334
\(534\) 0 0
\(535\) −3.76396 21.3465i −0.162730 0.922888i
\(536\) −40.0791 + 1.68114i −1.73115 + 0.0726142i
\(537\) 0 0
\(538\) −15.1466 22.3429i −0.653017 0.963272i
\(539\) −0.711215 0.410620i −0.0306342 0.0176867i
\(540\) 0 0
\(541\) −16.8842 + 6.14533i −0.725907 + 0.264209i −0.678431 0.734664i \(-0.737340\pi\)
−0.0474757 + 0.998872i \(0.515118\pi\)
\(542\) −0.779574 + 1.60790i −0.0334856 + 0.0690650i
\(543\) 0 0
\(544\) 12.2604 2.30994i 0.525660 0.0990379i
\(545\) 47.1009 + 8.30516i 2.01758 + 0.355754i
\(546\) 0 0
\(547\) −6.45422 5.41574i −0.275963 0.231560i 0.494293 0.869295i \(-0.335427\pi\)
−0.770256 + 0.637735i \(0.779871\pi\)
\(548\) 43.4886 6.31944i 1.85774 0.269953i
\(549\) 0 0
\(550\) 1.39984 1.35815i 0.0596894 0.0579117i
\(551\) −0.740029 + 2.54572i −0.0315263 + 0.108451i
\(552\) 0 0
\(553\) 15.1173 41.5345i 0.642854 1.76623i
\(554\) −4.27136 + 5.90802i −0.181473 + 0.251008i
\(555\) 0 0
\(556\) −18.8804 + 14.8937i −0.800709 + 0.631634i
\(557\) 3.70739 21.0256i 0.157087 0.890884i −0.799766 0.600312i \(-0.795043\pi\)
0.956853 0.290573i \(-0.0938458\pi\)
\(558\) 0 0
\(559\) 1.93908 + 3.35859i 0.0820144 + 0.142053i
\(560\) 16.2263 + 54.6534i 0.685685 + 2.30953i
\(561\) 0 0
\(562\) 34.6046 + 9.83521i 1.45971 + 0.414874i
\(563\) −17.4354 + 30.1990i −0.734815 + 1.27274i 0.219990 + 0.975502i \(0.429398\pi\)
−0.954804 + 0.297235i \(0.903936\pi\)
\(564\) 0 0
\(565\) 30.2634 + 36.0665i 1.27319 + 1.51733i
\(566\) 1.69201 0.122293i 0.0711204 0.00514036i
\(567\) 0 0
\(568\) 6.93170 2.85731i 0.290847 0.119890i
\(569\) 24.0150i 1.00676i −0.864064 0.503382i \(-0.832089\pi\)
0.864064 0.503382i \(-0.167911\pi\)
\(570\) 0 0
\(571\) 31.2136i 1.30625i −0.757250 0.653125i \(-0.773458\pi\)
0.757250 0.653125i \(-0.226542\pi\)
\(572\) −0.639281 + 1.60383i −0.0267297 + 0.0670594i
\(573\) 0 0
\(574\) 3.28781 + 45.4892i 0.137231 + 1.89868i
\(575\) −33.9535 40.4642i −1.41596 1.68748i
\(576\) 0 0
\(577\) 9.86003 17.0781i 0.410478 0.710969i −0.584464 0.811420i \(-0.698695\pi\)
0.994942 + 0.100451i \(0.0320284\pi\)
\(578\) −4.69208 + 16.5088i −0.195165 + 0.686677i
\(579\) 0 0
\(580\) −4.53276 + 1.49625i −0.188213 + 0.0621286i
\(581\) 4.03886 + 6.99551i 0.167560 + 0.290223i
\(582\) 0 0
\(583\) −0.0242381 + 0.137461i −0.00100384 + 0.00569307i
\(584\) 2.02532 15.1829i 0.0838083 0.628273i
\(585\) 0 0
\(586\) −3.00317 2.17122i −0.124060 0.0896922i
\(587\) 7.48674 20.5697i 0.309011 0.849000i −0.683839 0.729633i \(-0.739691\pi\)
0.992850 0.119368i \(-0.0380867\pi\)
\(588\) 0 0
\(589\) 5.79907 2.55662i 0.238947 0.105344i
\(590\) −22.2529 22.9360i −0.916136 0.944259i
\(591\) 0 0
\(592\) −11.2920 + 1.29373i −0.464100 + 0.0531718i
\(593\) −36.0079 30.2142i −1.47867 1.24075i −0.907592 0.419853i \(-0.862082\pi\)
−0.571076 0.820897i \(-0.693474\pi\)
\(594\) 0 0
\(595\) 30.9568 + 5.45852i 1.26910 + 0.223777i
\(596\) −1.36835 0.846169i −0.0560498 0.0346604i
\(597\) 0 0
\(598\) 42.0747 + 20.3996i 1.72056 + 0.834200i
\(599\) 26.9051 9.79267i 1.09931 0.400118i 0.272251 0.962226i \(-0.412232\pi\)
0.827063 + 0.562109i \(0.190010\pi\)
\(600\) 0 0
\(601\) −18.3472 10.5928i −0.748399 0.432089i 0.0767159 0.997053i \(-0.475557\pi\)
−0.825115 + 0.564964i \(0.808890\pi\)
\(602\) −2.53320 + 1.71730i −0.103245 + 0.0699917i
\(603\) 0 0
\(604\) 5.07469 5.68929i 0.206486 0.231494i
\(605\) −7.48361 42.4416i −0.304252 1.72550i
\(606\) 0 0
\(607\) −21.9349 −0.890312 −0.445156 0.895453i \(-0.646852\pi\)
−0.445156 + 0.895453i \(0.646852\pi\)
\(608\) 24.5425 + 2.38008i 0.995331 + 0.0965248i
\(609\) 0 0
\(610\) 15.1090 + 33.7229i 0.611744 + 1.36540i
\(611\) −5.11356 29.0005i −0.206873 1.17323i
\(612\) 0 0
\(613\) 2.11675 1.77616i 0.0854947 0.0717385i −0.599039 0.800720i \(-0.704450\pi\)
0.684533 + 0.728982i \(0.260006\pi\)
\(614\) 24.2963 16.4708i 0.980518 0.664708i
\(615\) 0 0
\(616\) −1.29872 0.411932i −0.0523271 0.0165972i
\(617\) 6.28411 2.28723i 0.252989 0.0920803i −0.212413 0.977180i \(-0.568132\pi\)
0.465401 + 0.885100i \(0.345910\pi\)
\(618\) 0 0
\(619\) −22.3047 + 12.8776i −0.896501 + 0.517595i −0.876063 0.482196i \(-0.839839\pi\)
−0.0204377 + 0.999791i \(0.506506\pi\)
\(620\) 9.70523 + 6.00158i 0.389771 + 0.241029i
\(621\) 0 0
\(622\) 1.25103 12.1766i 0.0501617 0.488236i
\(623\) −16.5706 13.9044i −0.663887 0.557067i
\(624\) 0 0
\(625\) −29.2626 10.6507i −1.17050 0.426028i
\(626\) 17.1126 + 17.6379i 0.683959 + 0.704954i
\(627\) 0 0
\(628\) 0.401680 13.2833i 0.0160288 0.530060i
\(629\) −2.14338 + 5.88890i −0.0854624 + 0.234806i
\(630\) 0 0
\(631\) −15.7619 + 18.7844i −0.627473 + 0.747793i −0.982336 0.187125i \(-0.940083\pi\)
0.354863 + 0.934918i \(0.384528\pi\)
\(632\) 4.55113 34.1178i 0.181034 1.35713i
\(633\) 0 0
\(634\) 6.42369 + 25.5098i 0.255117 + 1.01312i
\(635\) −26.8688 46.5382i −1.06626 1.84681i
\(636\) 0 0
\(637\) −13.7851 37.8741i −0.546184 1.50063i
\(638\) 0.0311871 0.109730i 0.00123471 0.00434425i
\(639\) 0 0
\(640\) 21.4816 + 38.8533i 0.849136 + 1.53581i
\(641\) 16.9399 + 20.1881i 0.669084 + 0.797384i 0.988659 0.150177i \(-0.0479845\pi\)
−0.319575 + 0.947561i \(0.603540\pi\)
\(642\) 0 0
\(643\) −14.9537 + 2.63675i −0.589718 + 0.103983i −0.460541 0.887638i \(-0.652345\pi\)
−0.129177 + 0.991622i \(0.541234\pi\)
\(644\) −13.6627 + 34.2771i −0.538387 + 1.35071i
\(645\) 0 0
\(646\) 7.21960 11.5202i 0.284052 0.453257i
\(647\) 32.4651i 1.27634i −0.769897 0.638168i \(-0.779692\pi\)
0.769897 0.638168i \(-0.220308\pi\)
\(648\) 0 0
\(649\) 0.752124 0.132620i 0.0295235 0.00520578i
\(650\) 95.4734 6.90051i 3.74477 0.270660i
\(651\) 0 0
\(652\) −5.73416 + 27.6114i −0.224567 + 1.08135i
\(653\) −19.3262 + 33.4739i −0.756292 + 1.30994i 0.188437 + 0.982085i \(0.439658\pi\)
−0.944729 + 0.327851i \(0.893676\pi\)
\(654\) 0 0
\(655\) 2.80835 + 7.71589i 0.109731 + 0.301485i
\(656\) 10.1085 + 34.0473i 0.394669 + 1.32933i
\(657\) 0 0
\(658\) 22.5351 5.67462i 0.878508 0.221220i
\(659\) −5.95369 + 33.7650i −0.231923 + 1.31530i 0.617076 + 0.786904i \(0.288317\pi\)
−0.848998 + 0.528396i \(0.822794\pi\)
\(660\) 0 0
\(661\) 17.5522 20.9178i 0.682700 0.813610i −0.307752 0.951466i \(-0.599577\pi\)
0.990452 + 0.137857i \(0.0440213\pi\)
\(662\) 2.81658 3.89581i 0.109469 0.151415i
\(663\) 0 0
\(664\) 4.24177 + 4.64502i 0.164612 + 0.180262i
\(665\) 55.7393 + 27.4379i 2.16148 + 1.06400i
\(666\) 0 0
\(667\) −2.90315 1.05666i −0.112411 0.0409141i
\(668\) −1.37097 + 0.199219i −0.0530443 + 0.00770801i
\(669\) 0 0
\(670\) −78.2947 8.04406i −3.02479 0.310769i
\(671\) −0.869704 0.153352i −0.0335746 0.00592010i
\(672\) 0 0
\(673\) 21.6909 12.5232i 0.836122 0.482735i −0.0198220 0.999804i \(-0.506310\pi\)
0.855944 + 0.517068i \(0.172977\pi\)
\(674\) 14.3845 29.6684i 0.554068 1.14278i
\(675\) 0 0
\(676\) −51.7305 + 27.8167i −1.98963 + 1.06987i
\(677\) −12.0827 6.97595i −0.464376 0.268108i 0.249506 0.968373i \(-0.419732\pi\)
−0.713883 + 0.700265i \(0.753065\pi\)
\(678\) 0 0
\(679\) −35.9852 + 30.1951i −1.38098 + 1.15878i
\(680\) 24.4574 1.02588i 0.937899 0.0393407i
\(681\) 0 0
\(682\) −0.248870 + 0.111502i −0.00952971 + 0.00426963i
\(683\) −37.7081 −1.44286 −0.721430 0.692487i \(-0.756515\pi\)
−0.721430 + 0.692487i \(0.756515\pi\)
\(684\) 0 0
\(685\) 86.2235 3.29443
\(686\) −3.78696 + 1.69668i −0.144587 + 0.0647797i
\(687\) 0 0
\(688\) −1.63944 + 1.72977i −0.0625030 + 0.0659470i
\(689\) −5.24771 + 4.40335i −0.199922 + 0.167754i
\(690\) 0 0
\(691\) −4.34115 2.50636i −0.165145 0.0953465i 0.415150 0.909753i \(-0.363729\pi\)
−0.580295 + 0.814407i \(0.697063\pi\)
\(692\) −0.588372 1.09419i −0.0223665 0.0415949i
\(693\) 0 0
\(694\) 3.07907 6.35067i 0.116880 0.241068i
\(695\) −40.8618 + 23.5916i −1.54998 + 0.894880i
\(696\) 0 0
\(697\) 19.2851 + 3.40049i 0.730476 + 0.128803i
\(698\) 3.84652 + 0.395195i 0.145593 + 0.0149583i
\(699\) 0 0
\(700\) 10.8626 + 74.7536i 0.410569 + 2.82542i
\(701\) 43.1668 + 15.7114i 1.63039 + 0.593413i 0.985321 0.170713i \(-0.0546072\pi\)
0.645067 + 0.764126i \(0.276829\pi\)
\(702\) 0 0
\(703\) −7.31663 + 9.99365i −0.275952 + 0.376917i
\(704\) −1.05665 0.0960922i −0.0398240 0.00362161i
\(705\) 0 0
\(706\) −23.3725 + 32.3282i −0.879636 + 1.21669i
\(707\) −10.2662 + 12.2347i −0.386099 + 0.460134i
\(708\) 0 0
\(709\) 6.04085 34.2593i 0.226869 1.28664i −0.632211 0.774796i \(-0.717853\pi\)
0.859080 0.511841i \(-0.171036\pi\)
\(710\) 14.2653 3.59218i 0.535366 0.134812i
\(711\) 0 0
\(712\) −14.9284 7.80374i −0.559465 0.292457i
\(713\) 2.52602 + 6.94019i 0.0946002 + 0.259912i
\(714\) 0 0
\(715\) −1.69379 + 2.93373i −0.0633442 + 0.109715i
\(716\) −13.6835 2.84170i −0.511376 0.106199i
\(717\) 0 0
\(718\) 39.3528 2.84430i 1.46863 0.106148i
\(719\) −33.2913 + 5.87015i −1.24156 + 0.218920i −0.755582 0.655054i \(-0.772646\pi\)
−0.485973 + 0.873974i \(0.661535\pi\)
\(720\) 0 0
\(721\) 23.0059i 0.856785i
\(722\) 20.0572 17.8804i 0.746451 0.665440i
\(723\) 0 0
\(724\) −7.92362 3.15833i −0.294479 0.117378i
\(725\) −6.22848 + 1.09825i −0.231320 + 0.0407880i
\(726\) 0 0
\(727\) 14.3441 + 17.0946i 0.531993 + 0.634004i 0.963373 0.268166i \(-0.0864176\pi\)
−0.431380 + 0.902170i \(0.641973\pi\)
\(728\) −35.8316 56.4574i −1.32801 2.09245i
\(729\) 0 0
\(730\) 8.21635 28.9087i 0.304101 1.06996i
\(731\) 0.449433 + 1.23481i 0.0166229 + 0.0456710i
\(732\) 0 0
\(733\) −7.18916 12.4520i −0.265538 0.459925i 0.702167 0.712013i \(-0.252216\pi\)
−0.967704 + 0.252088i \(0.918883\pi\)
\(734\) 12.9231 + 51.3203i 0.477000 + 1.89427i
\(735\) 0 0
\(736\) −4.65861 + 28.3548i −0.171719 + 1.04517i
\(737\) 1.20907 1.44092i 0.0445367 0.0530768i
\(738\) 0 0
\(739\) −17.1003 + 46.9828i −0.629046 + 1.72829i 0.0546341 + 0.998506i \(0.482601\pi\)
−0.683680 + 0.729782i \(0.739621\pi\)
\(740\) −22.2905 0.674052i −0.819414 0.0247787i
\(741\) 0 0
\(742\) −3.76436 3.87992i −0.138194 0.142436i
\(743\) 22.4570 + 8.17366i 0.823866 + 0.299863i 0.719339 0.694659i \(-0.244445\pi\)
0.104527 + 0.994522i \(0.466667\pi\)
\(744\) 0 0
\(745\) −2.41814 2.02906i −0.0885938 0.0743390i
\(746\) −0.974100 + 9.48114i −0.0356643 + 0.347129i
\(747\) 0 0
\(748\) −0.307685 + 0.497562i −0.0112501 + 0.0181927i
\(749\) −17.3748 + 10.0313i −0.634861 + 0.366537i
\(750\) 0 0
\(751\) 37.5314 13.6603i 1.36954 0.498472i 0.450550 0.892751i \(-0.351228\pi\)
0.918991 + 0.394280i \(0.129006\pi\)
\(752\) 16.1902 8.08479i 0.590396 0.294822i
\(753\) 0 0
\(754\) 4.63413 3.14155i 0.168765 0.114408i
\(755\) 11.4586 9.61492i 0.417022 0.349923i
\(756\) 0 0
\(757\) 5.21920 + 29.5995i 0.189695 + 1.07581i 0.919773 + 0.392450i \(0.128372\pi\)
−0.730078 + 0.683363i \(0.760517\pi\)
\(758\) −17.7496 39.6168i −0.644696 1.43895i
\(759\) 0 0
\(760\) 46.9819 + 11.5460i 1.70421 + 0.418817i
\(761\) 9.55210 0.346263 0.173132 0.984899i \(-0.444611\pi\)
0.173132 + 0.984899i \(0.444611\pi\)
\(762\) 0 0
\(763\) −7.68710 43.5957i −0.278292 1.57827i
\(764\) −34.1178 30.4321i −1.23434 1.10100i
\(765\) 0 0
\(766\) −31.6342 + 21.4453i −1.14299 + 0.774852i
\(767\) 32.4605 + 18.7411i 1.17208 + 0.676701i
\(768\) 0 0
\(769\) 28.5462 10.3900i 1.02940 0.374671i 0.228548 0.973533i \(-0.426602\pi\)
0.800853 + 0.598861i \(0.204380\pi\)
\(770\) −2.40547 1.16627i −0.0866871 0.0420295i
\(771\) 0 0
\(772\) 11.8293 19.1293i 0.425746 0.688480i
\(773\) −0.589119 0.103878i −0.0211891 0.00373622i 0.163044 0.986619i \(-0.447869\pi\)
−0.184233 + 0.982883i \(0.558980\pi\)
\(774\) 0 0
\(775\) 11.5821 + 9.71850i 0.416040 + 0.349099i
\(776\) −22.3188 + 28.9836i −0.801200 + 1.04045i
\(777\) 0 0
\(778\) −36.0815 37.1890i −1.29358 1.33329i
\(779\) 34.7238 + 17.0930i 1.24411 + 0.612419i
\(780\) 0 0
\(781\) −0.120241 + 0.330360i −0.00430257 + 0.0118212i
\(782\) 12.8395 + 9.28265i 0.459139 + 0.331947i
\(783\) 0 0
\(784\) 19.9011 14.7453i 0.710754 0.526619i
\(785\) 4.52780 25.6784i 0.161604 0.916502i
\(786\) 0 0
\(787\) −0.962577 1.66723i −0.0343122 0.0594304i 0.848359 0.529421i \(-0.177591\pi\)
−0.882672 + 0.469990i \(0.844257\pi\)
\(788\) −6.82032 20.6615i −0.242964 0.736036i
\(789\) 0 0
\(790\) 18.4631 64.9614i 0.656888 2.31122i
\(791\) 21.7888 37.7394i 0.774722 1.34186i
\(792\) 0 0
\(793\) −27.8596 33.2017i −0.989322 1.17903i
\(794\) −1.30447 18.0483i −0.0462940 0.640510i
\(795\) 0 0
\(796\) −32.4475 12.9335i −1.15007 0.458415i
\(797\) 4.78646i 0.169545i 0.996400 + 0.0847726i \(0.0270164\pi\)
−0.996400 + 0.0847726i \(0.972984\pi\)
\(798\) 0 0
\(799\) 9.97794i 0.352994i
\(800\) 20.7639 + 55.0378i 0.734116 + 1.94588i
\(801\) 0 0
\(802\) 18.6547 1.34830i 0.658721 0.0476102i
\(803\) 0.461676 + 0.550204i 0.0162922 + 0.0194163i
\(804\) 0 0
\(805\) −36.1998 + 62.6998i −1.27587 + 2.20988i
\(806\) −12.8740 3.65900i −0.453467 0.128883i
\(807\) 0 0
\(808\) −5.76181 + 11.0222i −0.202700 + 0.387760i
\(809\) 2.53018 + 4.38240i 0.0889564 + 0.154077i 0.907070 0.420979i \(-0.138313\pi\)
−0.818114 + 0.575056i \(0.804980\pi\)
\(810\) 0 0
\(811\) −1.72377 + 9.77601i −0.0605299 + 0.343282i 0.939470 + 0.342631i \(0.111318\pi\)
−1.00000 0.000650628i \(0.999793\pi\)
\(812\) 2.73631 + 3.46876i 0.0960256 + 0.121730i
\(813\) 0 0
\(814\) 0.312253 0.431900i 0.0109445 0.0151381i
\(815\) −18.9244 + 51.9943i −0.662893 + 1.82128i
\(816\) 0 0
\(817\) 0.171715 + 2.59140i 0.00600756 + 0.0906617i
\(818\) −26.2247 + 25.4437i −0.916926 + 0.889618i
\(819\) 0 0
\(820\) 10.0209 + 68.9608i 0.349944 + 2.40822i
\(821\) −3.44782 2.89307i −0.120330 0.100969i 0.580637 0.814162i \(-0.302804\pi\)
−0.700967 + 0.713194i \(0.747248\pi\)
\(822\) 0 0
\(823\) −15.1795 2.67655i −0.529124 0.0932988i −0.0972972 0.995255i \(-0.531020\pi\)
−0.431827 + 0.901957i \(0.642131\pi\)
\(824\) 3.84766 + 17.4974i 0.134039 + 0.609550i
\(825\) 0 0
\(826\) −12.9043 + 26.6155i −0.448998 + 0.926071i
\(827\) 48.1339 17.5193i 1.67378 0.609206i 0.681344 0.731963i \(-0.261396\pi\)
0.992437 + 0.122757i \(0.0391735\pi\)
\(828\) 0 0
\(829\) −26.3220 15.1970i −0.914201 0.527814i −0.0324208 0.999474i \(-0.510322\pi\)
−0.881781 + 0.471660i \(0.843655\pi\)
\(830\) 6.92552 + 10.2159i 0.240388 + 0.354599i
\(831\) 0 0
\(832\) −36.6944 36.9465i −1.27215 1.28089i
\(833\) −2.37145 13.4492i −0.0821659 0.465986i
\(834\) 0 0
\(835\) −2.71818 −0.0940664
\(836\) −0.858435 + 0.774541i −0.0296896 + 0.0267880i
\(837\) 0 0
\(838\) 25.5601 11.4518i 0.882960 0.395595i
\(839\) 1.97933 + 11.2253i 0.0683340 + 0.387541i 0.999723 + 0.0235170i \(0.00748638\pi\)
−0.931389 + 0.364024i \(0.881403\pi\)
\(840\) 0 0
\(841\) 21.9319 18.4031i 0.756273 0.634588i
\(842\) −14.2289 20.9892i −0.490360 0.723334i
\(843\) 0 0
\(844\) 19.3530 10.4065i 0.666158 0.358208i
\(845\) −108.292 + 39.4151i −3.72536 + 1.35592i
\(846\) 0 0
\(847\) −34.5450 + 19.9446i −1.18698 + 0.685304i
\(848\) −3.51192 2.32133i −0.120600 0.0797149i
\(849\) 0 0
\(850\) 32.2642 + 3.31485i 1.10665 + 0.113698i
\(851\) −11.0569 9.27785i −0.379026 0.318041i
\(852\) 0 0
\(853\) −18.9117 6.88330i −0.647525 0.235680i −0.00268364 0.999996i \(-0.500854\pi\)
−0.644841 + 0.764317i \(0.723076\pi\)
\(854\) 24.5479 23.8168i 0.840010 0.814993i
\(855\) 0 0
\(856\) −11.5369 + 10.5353i −0.394322 + 0.360089i
\(857\) 3.92157 10.7744i 0.133958 0.368047i −0.854518 0.519421i \(-0.826148\pi\)
0.988477 + 0.151374i \(0.0483698\pi\)
\(858\) 0 0
\(859\) 12.4652 14.8554i 0.425307 0.506861i −0.510255 0.860023i \(-0.670449\pi\)
0.935562 + 0.353162i \(0.114894\pi\)
\(860\) −3.67130 + 2.89608i −0.125190 + 0.0987556i
\(861\) 0 0
\(862\) 3.62764 0.913486i 0.123558 0.0311135i
\(863\) 20.4555 + 35.4300i 0.696314 + 1.20605i 0.969736 + 0.244158i \(0.0785114\pi\)
−0.273421 + 0.961894i \(0.588155\pi\)
\(864\) 0 0
\(865\) −0.833699 2.29057i −0.0283466 0.0778817i
\(866\) 10.9281 + 3.10596i 0.371353 + 0.105545i
\(867\) 0 0
\(868\) 2.14758 10.3411i 0.0728938 0.351001i
\(869\) 1.03744 + 1.23637i 0.0351928 + 0.0419411i
\(870\) 0 0
\(871\) 90.9123 16.0303i 3.08045 0.543166i
\(872\) −13.1377 31.8715i −0.444899 1.07931i
\(873\) 0 0
\(874\) 19.2460 + 24.7003i 0.651006 + 0.835501i
\(875\) 76.9476i 2.60131i
\(876\) 0 0
\(877\) −27.1451 + 4.78640i −0.916623 + 0.161625i −0.612009 0.790851i \(-0.709639\pi\)
−0.304614 + 0.952476i \(0.598527\pi\)
\(878\) −1.74131 24.0923i −0.0587665 0.813076i
\(879\) 0 0
\(880\) −2.02456 0.484713i −0.0682478 0.0163397i
\(881\) 23.1999 40.1834i 0.781625 1.35381i −0.149370 0.988781i \(-0.547725\pi\)
0.930995 0.365033i \(-0.118942\pi\)
\(882\) 0 0
\(883\) −6.23517 17.1310i −0.209830 0.576504i 0.789475 0.613783i \(-0.210353\pi\)
−0.999305 + 0.0372793i \(0.988131\pi\)
\(884\) −27.2641 + 8.99983i −0.916992 + 0.302697i
\(885\) 0 0
\(886\) 9.72010 + 38.6005i 0.326553 + 1.29681i
\(887\) 2.78945 15.8197i 0.0936605 0.531175i −0.901489 0.432802i \(-0.857525\pi\)
0.995150 0.0983733i \(-0.0313639\pi\)
\(888\) 0 0
\(889\) −31.9713 + 38.1020i −1.07228 + 1.27790i
\(890\) −26.7842 19.3643i −0.897808 0.649093i
\(891\) 0 0
\(892\) −0.249546 + 8.25233i −0.00835543 + 0.276308i
\(893\) 5.50474 18.9364i 0.184209 0.633683i
\(894\) 0 0
\(895\) −25.7670 9.37844i −0.861297 0.313487i
\(896\) 26.9928 30.9836i 0.901765 1.03509i
\(897\) 0 0
\(898\) 0.468902 4.56393i 0.0156475 0.152300i
\(899\) 0.870863 + 0.153557i 0.0290449 + 0.00512140i
\(900\) 0 0
\(901\) −2.01017 + 1.16057i −0.0669686 + 0.0386643i
\(902\) −1.49853 0.726550i −0.0498957 0.0241915i
\(903\) 0 0
\(904\) 10.2599 32.3471i 0.341241 1.07585i
\(905\) −14.4939 8.36808i −0.481795 0.278164i
\(906\) 0 0
\(907\) −15.3909 + 12.9145i −0.511046 + 0.428819i −0.861497 0.507762i \(-0.830473\pi\)
0.350451 + 0.936581i \(0.386028\pi\)
\(908\) 30.2635 33.9287i 1.00433 1.12596i
\(909\) 0 0
\(910\) −53.6437 119.732i −1.77827 3.96906i
\(911\) −47.7221 −1.58110 −0.790552 0.612395i \(-0.790206\pi\)
−0.790552 + 0.612395i \(0.790206\pi\)
\(912\) 0 0
\(913\) −0.294959 −0.00976172
\(914\) −4.43967 9.90925i −0.146851 0.327769i
\(915\) 0 0
\(916\) 5.73508 6.42966i 0.189492 0.212442i
\(917\) 5.82195 4.88520i 0.192258 0.161323i
\(918\) 0 0
\(919\) −10.5468 6.08921i −0.347907 0.200864i 0.315856 0.948807i \(-0.397708\pi\)
−0.663763 + 0.747943i \(0.731042\pi\)
\(920\) −17.0458 + 53.7412i −0.561982 + 1.77180i
\(921\) 0 0
\(922\) 21.5163 + 10.4320i 0.708603 + 0.343560i
\(923\) −14.9424 + 8.62698i −0.491834 + 0.283960i
\(924\) 0 0
\(925\) −29.0990 5.13094i −0.956769 0.168704i
\(926\) −5.51371 + 53.6662i −0.181192 + 1.76358i
\(927\) 0 0
\(928\) 2.66126 + 2.18056i 0.0873602 + 0.0715804i
\(929\) −3.57159 1.29995i −0.117180 0.0426500i 0.282765 0.959189i \(-0.408748\pi\)
−0.399945 + 0.916539i \(0.630971\pi\)
\(930\) 0 0
\(931\) 2.91917 26.8325i 0.0956720 0.879401i
\(932\) −0.222997 + 7.37437i −0.00730451 + 0.241555i
\(933\) 0 0
\(934\) −6.22774 4.50251i −0.203778 0.147327i
\(935\) −0.737810 + 0.879288i −0.0241290 + 0.0287558i
\(936\) 0 0
\(937\) 9.15393 51.9145i 0.299046 1.69597i −0.351242 0.936285i \(-0.614240\pi\)
0.650287 0.759688i \(-0.274648\pi\)
\(938\) 17.7891 + 70.6442i 0.580836 + 2.30662i
\(939\) 0 0
\(940\) 33.7172 11.1300i 1.09973 0.363019i
\(941\) 9.21031 + 25.3051i 0.300247 + 0.824923i 0.994456 + 0.105149i \(0.0335321\pi\)
−0.694209 + 0.719773i \(0.744246\pi\)
\(942\) 0 0
\(943\) −22.5513 + 39.0600i −0.734372 + 1.27197i
\(944\) −5.36314 + 22.4008i −0.174555 + 0.729086i
\(945\) 0 0
\(946\) −0.00805604 0.111461i −0.000261925 0.00362391i
\(947\) 29.9433 5.27981i 0.973027 0.171571i 0.335535 0.942028i \(-0.391083\pi\)
0.637492 + 0.770457i \(0.279972\pi\)
\(948\) 0 0
\(949\) 35.2498i 1.14426i
\(950\) 59.4032 + 24.0909i 1.92729 + 0.781612i
\(951\) 0 0
\(952\) −8.63469 20.9474i −0.279852 0.678908i
\(953\) −27.5664 + 4.86069i −0.892962 + 0.157453i −0.601258 0.799055i \(-0.705333\pi\)
−0.291704 + 0.956509i \(0.594222\pi\)
\(954\) 0 0
\(955\) −57.6591 68.7155i −1.86581 2.22358i
\(956\) −7.40055 + 35.6355i −0.239351 + 1.15253i
\(957\) 0 0
\(958\) 27.0373 + 7.68444i 0.873534 + 0.248273i
\(959\) −27.2955 74.9939i −0.881419 2.42168i
\(960\) 0 0
\(961\) 14.4430 + 25.0160i 0.465904 + 0.806969i
\(962\) 25.3645 6.38710i 0.817783 0.205928i
\(963\) 0 0
\(964\) −1.09838 + 0.866454i −0.0353766 + 0.0279066i
\(965\) 28.3659 33.8052i 0.913132 1.08823i
\(966\) 0 0
\(967\) 4.63867 12.7446i 0.149169 0.409840i −0.842492 0.538709i \(-0.818912\pi\)
0.991662 + 0.128869i \(0.0411346\pi\)
\(968\) −22.9379 + 20.9466i −0.737252 + 0.673249i
\(969\) 0 0
\(970\) −51.5135 + 49.9793i −1.65400 + 1.60474i
\(971\) 9.79356 + 3.56457i 0.314290 + 0.114392i 0.494349 0.869264i \(-0.335406\pi\)
−0.180059 + 0.983656i \(0.557629\pi\)
\(972\) 0 0
\(973\) 33.4546 + 28.0717i 1.07250 + 0.899938i
\(974\) −55.9585 5.74922i −1.79303 0.184217i
\(975\) 0 0
\(976\) 14.6868 22.2196i 0.470114 0.711232i
\(977\) −29.6369 + 17.1109i −0.948168 + 0.547425i −0.892511 0.451025i \(-0.851059\pi\)
−0.0556569 + 0.998450i \(0.517725\pi\)
\(978\) 0 0
\(979\) 0.742237 0.270152i 0.0237220 0.00863410i
\(980\) 42.8018 23.0155i 1.36725 0.735203i
\(981\) 0 0
\(982\) 21.1501 + 31.1987i 0.674927 + 0.995591i
\(983\) 32.8104 27.5312i 1.04649 0.878109i 0.0537697 0.998553i \(-0.482876\pi\)
0.992720 + 0.120444i \(0.0384319\pi\)
\(984\) 0 0
\(985\) −7.41318 42.0422i −0.236204 1.33958i
\(986\) 1.73119 0.775630i 0.0551323 0.0247011i
\(987\) 0 0
\(988\) −56.7078 + 2.03876i −1.80412 + 0.0648616i
\(989\) −3.02653 −0.0962380
\(990\) 0 0
\(991\) −6.48293 36.7665i −0.205937 1.16793i −0.895959 0.444138i \(-0.853510\pi\)
0.690022 0.723789i \(-0.257601\pi\)
\(992\) −0.0961517 8.22423i −0.00305282 0.261120i
\(993\) 0 0
\(994\) −7.64025 11.2702i −0.242334 0.357469i
\(995\) −59.3533 34.2676i −1.88163 1.08636i
\(996\) 0 0
\(997\) −24.3330 + 8.85649i −0.770634 + 0.280488i −0.697262 0.716817i \(-0.745598\pi\)
−0.0733724 + 0.997305i \(0.523376\pi\)
\(998\) −1.52179 + 3.13875i −0.0481716 + 0.0993553i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.cf.b.91.4 60
3.2 odd 2 228.2.w.b.91.7 yes 60
4.3 odd 2 684.2.cf.c.91.9 60
12.11 even 2 228.2.w.a.91.2 60
19.14 odd 18 684.2.cf.c.451.9 60
57.14 even 18 228.2.w.a.223.2 yes 60
76.71 even 18 inner 684.2.cf.b.451.4 60
228.71 odd 18 228.2.w.b.223.7 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.2.w.a.91.2 60 12.11 even 2
228.2.w.a.223.2 yes 60 57.14 even 18
228.2.w.b.91.7 yes 60 3.2 odd 2
228.2.w.b.223.7 yes 60 228.71 odd 18
684.2.cf.b.91.4 60 1.1 even 1 trivial
684.2.cf.b.451.4 60 76.71 even 18 inner
684.2.cf.c.91.9 60 4.3 odd 2
684.2.cf.c.451.9 60 19.14 odd 18