Properties

Label 684.2.cf.b.127.4
Level $684$
Weight $2$
Character 684.127
Analytic conductor $5.462$
Analytic rank $0$
Dimension $60$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [684,2,Mod(91,684)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(684, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 0, 11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("684.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.cf (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 228)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 127.4
Character \(\chi\) \(=\) 684.127
Dual form 684.2.cf.b.307.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.436096 - 1.34530i) q^{2} +(-1.61964 + 1.17336i) q^{4} +(0.711633 + 4.03587i) q^{5} +(-1.83842 - 1.06142i) q^{7} +(2.28483 + 1.66720i) q^{8} +(5.11910 - 2.71738i) q^{10} +(-3.08105 + 1.77885i) q^{11} +(-0.919976 - 2.52761i) q^{13} +(-0.626188 + 2.93610i) q^{14} +(1.24647 - 3.80083i) q^{16} +(3.54387 - 2.97366i) q^{17} +(-4.35844 + 0.0631645i) q^{19} +(-5.88810 - 5.70166i) q^{20} +(3.73671 + 3.36918i) q^{22} +(-6.47440 - 1.14161i) q^{23} +(-11.0834 + 4.03402i) q^{25} +(-2.99919 + 2.33992i) q^{26} +(4.22301 - 0.438015i) q^{28} +(-3.65007 + 4.34998i) q^{29} +(2.24228 - 3.88374i) q^{31} +(-5.65682 - 0.0193500i) q^{32} +(-5.54592 - 3.47075i) q^{34} +(2.97545 - 8.17498i) q^{35} +1.09818i q^{37} +(1.98567 + 5.83585i) q^{38} +(-5.10265 + 10.4077i) q^{40} +(-1.96417 + 5.39651i) q^{41} +(-4.53199 + 0.799112i) q^{43} +(2.90298 - 6.49626i) q^{44} +(1.28765 + 9.20784i) q^{46} +(5.72037 - 6.81727i) q^{47} +(-1.24680 - 2.15951i) q^{49} +(10.2604 + 13.1512i) q^{50} +(4.45582 + 3.01437i) q^{52} +(-7.11245 - 1.25412i) q^{53} +(-9.37178 - 11.1688i) q^{55} +(-2.43089 - 5.49017i) q^{56} +(7.44379 + 3.01341i) q^{58} +(-5.74836 + 4.82344i) q^{59} +(-0.333289 + 1.89018i) q^{61} +(-6.20262 - 1.32284i) q^{62} +(2.44088 + 7.61854i) q^{64} +(9.54643 - 5.51163i) q^{65} +(8.67038 + 7.27532i) q^{67} +(-2.25064 + 8.97449i) q^{68} +(-12.2954 - 0.437785i) q^{70} +(0.929621 + 5.27214i) q^{71} +(8.23159 + 2.99605i) q^{73} +(1.47738 - 0.478913i) q^{74} +(6.98500 - 5.21630i) q^{76} +7.55238 q^{77} +(3.94216 + 1.43483i) q^{79} +(16.2267 + 2.32581i) q^{80} +(8.11647 + 0.288993i) q^{82} +(4.80400 + 2.77359i) q^{83} +(14.5233 + 12.1865i) q^{85} +(3.05142 + 5.74838i) q^{86} +(-10.0054 - 1.07237i) q^{88} +(-1.59739 - 4.38880i) q^{89} +(-0.991540 + 5.62330i) q^{91} +(11.8257 - 5.74777i) q^{92} +(-11.6659 - 4.72261i) q^{94} +(-3.35653 - 17.5452i) q^{95} +(-0.673146 - 0.802225i) q^{97} +(-2.36146 + 2.61906i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 3 q^{2} - 3 q^{4} + 3 q^{8} - 6 q^{10} - 6 q^{13} + 9 q^{14} + 21 q^{16} + 18 q^{19} - 30 q^{20} - 12 q^{22} - 18 q^{28} - 12 q^{31} - 33 q^{32} - 15 q^{34} + 84 q^{38} - 87 q^{40} + 12 q^{41} - 18 q^{43}+ \cdots + 105 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.436096 1.34530i −0.308366 0.951268i
\(3\) 0 0
\(4\) −1.61964 + 1.17336i −0.809820 + 0.586678i
\(5\) 0.711633 + 4.03587i 0.318252 + 1.80490i 0.553377 + 0.832931i \(0.313339\pi\)
−0.235125 + 0.971965i \(0.575550\pi\)
\(6\) 0 0
\(7\) −1.83842 1.06142i −0.694859 0.401177i 0.110571 0.993868i \(-0.464732\pi\)
−0.805430 + 0.592691i \(0.798066\pi\)
\(8\) 2.28483 + 1.66720i 0.807809 + 0.589444i
\(9\) 0 0
\(10\) 5.11910 2.71738i 1.61880 0.859312i
\(11\) −3.08105 + 1.77885i −0.928972 + 0.536342i −0.886486 0.462755i \(-0.846861\pi\)
−0.0424860 + 0.999097i \(0.513528\pi\)
\(12\) 0 0
\(13\) −0.919976 2.52761i −0.255155 0.701033i −0.999449 0.0331814i \(-0.989436\pi\)
0.744294 0.667852i \(-0.232786\pi\)
\(14\) −0.626188 + 2.93610i −0.167356 + 0.784707i
\(15\) 0 0
\(16\) 1.24647 3.80083i 0.311618 0.950207i
\(17\) 3.54387 2.97366i 0.859515 0.721219i −0.102348 0.994749i \(-0.532636\pi\)
0.961864 + 0.273530i \(0.0881912\pi\)
\(18\) 0 0
\(19\) −4.35844 + 0.0631645i −0.999895 + 0.0144909i
\(20\) −5.88810 5.70166i −1.31662 1.27493i
\(21\) 0 0
\(22\) 3.73671 + 3.36918i 0.796669 + 0.718312i
\(23\) −6.47440 1.14161i −1.35001 0.238042i −0.548561 0.836111i \(-0.684824\pi\)
−0.801445 + 0.598068i \(0.795935\pi\)
\(24\) 0 0
\(25\) −11.0834 + 4.03402i −2.21667 + 0.806803i
\(26\) −2.99919 + 2.33992i −0.588189 + 0.458896i
\(27\) 0 0
\(28\) 4.22301 0.438015i 0.798073 0.0827770i
\(29\) −3.65007 + 4.34998i −0.677801 + 0.807771i −0.989823 0.142303i \(-0.954549\pi\)
0.312022 + 0.950075i \(0.398994\pi\)
\(30\) 0 0
\(31\) 2.24228 3.88374i 0.402725 0.697540i −0.591329 0.806430i \(-0.701397\pi\)
0.994054 + 0.108891i \(0.0347298\pi\)
\(32\) −5.65682 0.0193500i −0.999994 0.00342063i
\(33\) 0 0
\(34\) −5.54592 3.47075i −0.951118 0.595229i
\(35\) 2.97545 8.17498i 0.502943 1.38182i
\(36\) 0 0
\(37\) 1.09818i 0.180540i 0.995917 + 0.0902701i \(0.0287730\pi\)
−0.995917 + 0.0902701i \(0.971227\pi\)
\(38\) 1.98567 + 5.83585i 0.322119 + 0.946699i
\(39\) 0 0
\(40\) −5.10265 + 10.4077i −0.806799 + 1.64560i
\(41\) −1.96417 + 5.39651i −0.306752 + 0.842793i 0.686533 + 0.727099i \(0.259132\pi\)
−0.993285 + 0.115695i \(0.963091\pi\)
\(42\) 0 0
\(43\) −4.53199 + 0.799112i −0.691122 + 0.121863i −0.508168 0.861258i \(-0.669677\pi\)
−0.182954 + 0.983121i \(0.558566\pi\)
\(44\) 2.90298 6.49626i 0.437641 0.979349i
\(45\) 0 0
\(46\) 1.28765 + 9.20784i 0.189854 + 1.35762i
\(47\) 5.72037 6.81727i 0.834402 0.994402i −0.165564 0.986199i \(-0.552945\pi\)
0.999966 0.00820263i \(-0.00261101\pi\)
\(48\) 0 0
\(49\) −1.24680 2.15951i −0.178114 0.308502i
\(50\) 10.2604 + 13.1512i 1.45103 + 1.85986i
\(51\) 0 0
\(52\) 4.45582 + 3.01437i 0.617911 + 0.418017i
\(53\) −7.11245 1.25412i −0.976970 0.172266i −0.337704 0.941252i \(-0.609650\pi\)
−0.639266 + 0.768986i \(0.720762\pi\)
\(54\) 0 0
\(55\) −9.37178 11.1688i −1.26369 1.50601i
\(56\) −2.43089 5.49017i −0.324842 0.733655i
\(57\) 0 0
\(58\) 7.44379 + 3.01341i 0.977418 + 0.395680i
\(59\) −5.74836 + 4.82344i −0.748372 + 0.627959i −0.935072 0.354458i \(-0.884665\pi\)
0.186700 + 0.982417i \(0.440221\pi\)
\(60\) 0 0
\(61\) −0.333289 + 1.89018i −0.0426733 + 0.242012i −0.998682 0.0513263i \(-0.983655\pi\)
0.956009 + 0.293338i \(0.0947663\pi\)
\(62\) −6.20262 1.32284i −0.787734 0.168001i
\(63\) 0 0
\(64\) 2.44088 + 7.61854i 0.305111 + 0.952317i
\(65\) 9.54643 5.51163i 1.18409 0.683634i
\(66\) 0 0
\(67\) 8.67038 + 7.27532i 1.05926 + 0.888821i 0.994036 0.109050i \(-0.0347807\pi\)
0.0652198 + 0.997871i \(0.479225\pi\)
\(68\) −2.25064 + 8.97449i −0.272930 + 1.08832i
\(69\) 0 0
\(70\) −12.2954 0.437785i −1.46958 0.0523253i
\(71\) 0.929621 + 5.27214i 0.110326 + 0.625688i 0.988959 + 0.148191i \(0.0473449\pi\)
−0.878633 + 0.477497i \(0.841544\pi\)
\(72\) 0 0
\(73\) 8.23159 + 2.99605i 0.963434 + 0.350661i 0.775378 0.631497i \(-0.217559\pi\)
0.188056 + 0.982158i \(0.439781\pi\)
\(74\) 1.47738 0.478913i 0.171742 0.0556725i
\(75\) 0 0
\(76\) 6.98500 5.21630i 0.801234 0.598351i
\(77\) 7.55238 0.860673
\(78\) 0 0
\(79\) 3.94216 + 1.43483i 0.443527 + 0.161431i 0.554123 0.832435i \(-0.313054\pi\)
−0.110596 + 0.993865i \(0.535276\pi\)
\(80\) 16.2267 + 2.32581i 1.81420 + 0.260034i
\(81\) 0 0
\(82\) 8.11647 + 0.288993i 0.896314 + 0.0319139i
\(83\) 4.80400 + 2.77359i 0.527308 + 0.304441i 0.739920 0.672695i \(-0.234864\pi\)
−0.212612 + 0.977137i \(0.568197\pi\)
\(84\) 0 0
\(85\) 14.5233 + 12.1865i 1.57527 + 1.32181i
\(86\) 3.05142 + 5.74838i 0.329043 + 0.619863i
\(87\) 0 0
\(88\) −10.0054 1.07237i −1.06658 0.114315i
\(89\) −1.59739 4.38880i −0.169323 0.465212i 0.825787 0.563982i \(-0.190731\pi\)
−0.995110 + 0.0987701i \(0.968509\pi\)
\(90\) 0 0
\(91\) −0.991540 + 5.62330i −0.103942 + 0.589482i
\(92\) 11.8257 5.74777i 1.23292 0.599247i
\(93\) 0 0
\(94\) −11.6659 4.72261i −1.20324 0.487100i
\(95\) −3.35653 17.5452i −0.344373 1.80010i
\(96\) 0 0
\(97\) −0.673146 0.802225i −0.0683477 0.0814536i 0.730787 0.682605i \(-0.239153\pi\)
−0.799135 + 0.601152i \(0.794709\pi\)
\(98\) −2.36146 + 2.61906i −0.238544 + 0.264565i
\(99\) 0 0
\(100\) 13.2177 19.5384i 1.32177 1.95384i
\(101\) −12.9780 + 4.72361i −1.29136 + 0.470016i −0.894173 0.447721i \(-0.852236\pi\)
−0.397187 + 0.917738i \(0.630013\pi\)
\(102\) 0 0
\(103\) −5.73664 9.93615i −0.565248 0.979038i −0.997027 0.0770585i \(-0.975447\pi\)
0.431779 0.901980i \(-0.357886\pi\)
\(104\) 2.11205 7.30894i 0.207104 0.716701i
\(105\) 0 0
\(106\) 1.41455 + 10.1153i 0.137393 + 0.982481i
\(107\) −7.21066 + 12.4892i −0.697080 + 1.20738i 0.272394 + 0.962186i \(0.412185\pi\)
−0.969474 + 0.245193i \(0.921149\pi\)
\(108\) 0 0
\(109\) 1.35889 0.239609i 0.130158 0.0229504i −0.108190 0.994130i \(-0.534505\pi\)
0.238348 + 0.971180i \(0.423394\pi\)
\(110\) −10.9384 + 17.4785i −1.04294 + 1.66651i
\(111\) 0 0
\(112\) −6.32581 + 5.66451i −0.597732 + 0.535246i
\(113\) 7.65796i 0.720401i 0.932875 + 0.360200i \(0.117292\pi\)
−0.932875 + 0.360200i \(0.882708\pi\)
\(114\) 0 0
\(115\) 26.9423i 2.51238i
\(116\) 0.807725 11.3282i 0.0749953 1.05180i
\(117\) 0 0
\(118\) 8.99579 + 5.62975i 0.828130 + 0.518261i
\(119\) −9.67143 + 1.70533i −0.886579 + 0.156328i
\(120\) 0 0
\(121\) 0.828591 1.43516i 0.0753265 0.130469i
\(122\) 2.68819 0.375925i 0.243377 0.0340347i
\(123\) 0 0
\(124\) 0.925321 + 8.92125i 0.0830963 + 0.801152i
\(125\) −13.9227 24.1149i −1.24529 2.15690i
\(126\) 0 0
\(127\) −2.38904 + 0.869540i −0.211993 + 0.0771592i −0.445834 0.895116i \(-0.647093\pi\)
0.233841 + 0.972275i \(0.424871\pi\)
\(128\) 9.18472 6.60612i 0.811823 0.583904i
\(129\) 0 0
\(130\) −11.5779 10.4392i −1.01545 0.915576i
\(131\) 3.85394 + 4.59295i 0.336720 + 0.401288i 0.907661 0.419703i \(-0.137866\pi\)
−0.570941 + 0.820991i \(0.693421\pi\)
\(132\) 0 0
\(133\) 8.07971 + 4.50999i 0.700600 + 0.391066i
\(134\) 6.00633 14.8370i 0.518868 1.28172i
\(135\) 0 0
\(136\) 13.0548 0.885962i 1.11944 0.0759706i
\(137\) 0.598106 3.39202i 0.0510996 0.289800i −0.948540 0.316658i \(-0.897439\pi\)
0.999639 + 0.0268581i \(0.00855024\pi\)
\(138\) 0 0
\(139\) 3.02967 + 8.32394i 0.256973 + 0.706028i 0.999350 + 0.0360455i \(0.0114761\pi\)
−0.742377 + 0.669982i \(0.766302\pi\)
\(140\) 4.77300 + 16.7318i 0.403392 + 1.41410i
\(141\) 0 0
\(142\) 6.68719 3.54977i 0.561176 0.297890i
\(143\) 7.33073 + 6.15121i 0.613026 + 0.514390i
\(144\) 0 0
\(145\) −20.1535 11.6356i −1.67365 0.966285i
\(146\) 0.440816 12.3805i 0.0364822 1.02462i
\(147\) 0 0
\(148\) −1.28856 1.77866i −0.105919 0.146205i
\(149\) −13.8652 5.04652i −1.13588 0.413427i −0.295457 0.955356i \(-0.595472\pi\)
−0.840424 + 0.541929i \(0.817694\pi\)
\(150\) 0 0
\(151\) 0.105578 0.00859181 0.00429591 0.999991i \(-0.498633\pi\)
0.00429591 + 0.999991i \(0.498633\pi\)
\(152\) −10.0636 7.12208i −0.816266 0.577677i
\(153\) 0 0
\(154\) −3.29356 10.1602i −0.265403 0.818731i
\(155\) 17.2699 + 6.28574i 1.38716 + 0.504883i
\(156\) 0 0
\(157\) −2.85909 16.2147i −0.228180 1.29408i −0.856511 0.516129i \(-0.827373\pi\)
0.628330 0.777947i \(-0.283739\pi\)
\(158\) 0.211110 5.92909i 0.0167950 0.471693i
\(159\) 0 0
\(160\) −3.94749 22.8440i −0.312076 1.80597i
\(161\) 10.6910 + 8.97079i 0.842567 + 0.706998i
\(162\) 0 0
\(163\) −15.6449 + 9.03261i −1.22541 + 0.707488i −0.966065 0.258298i \(-0.916838\pi\)
−0.259340 + 0.965786i \(0.583505\pi\)
\(164\) −3.15078 11.0451i −0.246034 0.862476i
\(165\) 0 0
\(166\) 1.63630 7.67236i 0.127001 0.595490i
\(167\) 0.866864 4.91623i 0.0670799 0.380429i −0.932723 0.360593i \(-0.882574\pi\)
0.999803 0.0198363i \(-0.00631450\pi\)
\(168\) 0 0
\(169\) 4.41611 3.70556i 0.339701 0.285043i
\(170\) 10.0609 24.8525i 0.771633 1.90610i
\(171\) 0 0
\(172\) 6.40255 6.61191i 0.488190 0.504153i
\(173\) 15.5466 + 18.5277i 1.18198 + 1.40863i 0.892260 + 0.451522i \(0.149119\pi\)
0.289723 + 0.957110i \(0.406437\pi\)
\(174\) 0 0
\(175\) 24.6577 + 4.34782i 1.86395 + 0.328664i
\(176\) 2.92064 + 13.9278i 0.220152 + 1.04985i
\(177\) 0 0
\(178\) −5.20762 + 4.06291i −0.390328 + 0.304528i
\(179\) −3.04930 5.28154i −0.227915 0.394761i 0.729275 0.684221i \(-0.239858\pi\)
−0.957190 + 0.289460i \(0.906524\pi\)
\(180\) 0 0
\(181\) −0.110871 + 0.132131i −0.00824100 + 0.00982125i −0.770149 0.637864i \(-0.779818\pi\)
0.761908 + 0.647685i \(0.224263\pi\)
\(182\) 7.99741 1.11838i 0.592807 0.0829001i
\(183\) 0 0
\(184\) −12.8896 13.4025i −0.950234 0.988046i
\(185\) −4.43213 + 0.781504i −0.325856 + 0.0574573i
\(186\) 0 0
\(187\) −5.62917 + 15.4660i −0.411646 + 1.13099i
\(188\) −1.26586 + 17.7536i −0.0923225 + 1.29481i
\(189\) 0 0
\(190\) −22.1397 + 12.1669i −1.60618 + 0.882680i
\(191\) 7.77180i 0.562348i 0.959657 + 0.281174i \(0.0907238\pi\)
−0.959657 + 0.281174i \(0.909276\pi\)
\(192\) 0 0
\(193\) −1.92679 + 5.29382i −0.138693 + 0.381057i −0.989521 0.144388i \(-0.953879\pi\)
0.850828 + 0.525445i \(0.176101\pi\)
\(194\) −0.785673 + 1.25543i −0.0564080 + 0.0901345i
\(195\) 0 0
\(196\) 4.55324 + 2.03470i 0.325231 + 0.145336i
\(197\) 11.0193 19.0861i 0.785096 1.35983i −0.143846 0.989600i \(-0.545947\pi\)
0.928942 0.370225i \(-0.120720\pi\)
\(198\) 0 0
\(199\) 6.60433 7.87073i 0.468168 0.557941i −0.479358 0.877620i \(-0.659130\pi\)
0.947526 + 0.319678i \(0.103575\pi\)
\(200\) −32.0491 9.26116i −2.26622 0.654863i
\(201\) 0 0
\(202\) 12.0143 + 15.3993i 0.845323 + 1.08349i
\(203\) 11.3275 4.12288i 0.795035 0.289369i
\(204\) 0 0
\(205\) −23.1774 4.08680i −1.61878 0.285434i
\(206\) −10.8653 + 12.0506i −0.757024 + 0.839604i
\(207\) 0 0
\(208\) −10.7537 + 0.346068i −0.745638 + 0.0239955i
\(209\) 13.3162 7.94761i 0.921103 0.549748i
\(210\) 0 0
\(211\) −2.27879 + 1.91213i −0.156879 + 0.131637i −0.717848 0.696200i \(-0.754873\pi\)
0.560970 + 0.827836i \(0.310428\pi\)
\(212\) 12.9911 6.31421i 0.892235 0.433662i
\(213\) 0 0
\(214\) 19.9462 + 4.25397i 1.36350 + 0.290795i
\(215\) −6.45023 17.7218i −0.439902 1.20862i
\(216\) 0 0
\(217\) −8.24451 + 4.75997i −0.559674 + 0.323128i
\(218\) −0.914951 1.72362i −0.0619683 0.116738i
\(219\) 0 0
\(220\) 28.2839 + 7.09310i 1.90690 + 0.478217i
\(221\) −10.7765 6.22184i −0.724908 0.418526i
\(222\) 0 0
\(223\) 2.27484 + 12.9013i 0.152335 + 0.863932i 0.961182 + 0.275914i \(0.0889805\pi\)
−0.808848 + 0.588018i \(0.799908\pi\)
\(224\) 10.3791 + 6.03981i 0.693483 + 0.403552i
\(225\) 0 0
\(226\) 10.3022 3.33961i 0.685294 0.222147i
\(227\) −19.5224 −1.29575 −0.647873 0.761749i \(-0.724341\pi\)
−0.647873 + 0.761749i \(0.724341\pi\)
\(228\) 0 0
\(229\) −3.65697 −0.241660 −0.120830 0.992673i \(-0.538556\pi\)
−0.120830 + 0.992673i \(0.538556\pi\)
\(230\) −36.2453 + 11.7494i −2.38994 + 0.774733i
\(231\) 0 0
\(232\) −15.5921 + 3.85357i −1.02367 + 0.252999i
\(233\) 3.63030 + 20.5885i 0.237829 + 1.34879i 0.836574 + 0.547855i \(0.184555\pi\)
−0.598745 + 0.800940i \(0.704334\pi\)
\(234\) 0 0
\(235\) 31.5844 + 18.2353i 2.06034 + 1.18954i
\(236\) 3.65066 14.5571i 0.237638 0.947587i
\(237\) 0 0
\(238\) 6.51185 + 12.2672i 0.422101 + 0.795167i
\(239\) 5.20862 3.00720i 0.336917 0.194519i −0.321991 0.946743i \(-0.604352\pi\)
0.658908 + 0.752224i \(0.271019\pi\)
\(240\) 0 0
\(241\) 4.03800 + 11.0943i 0.260111 + 0.714648i 0.999159 + 0.0409961i \(0.0130531\pi\)
−0.739049 + 0.673652i \(0.764725\pi\)
\(242\) −2.29206 0.488832i −0.147339 0.0314233i
\(243\) 0 0
\(244\) −1.67804 3.45247i −0.107425 0.221022i
\(245\) 7.82826 6.56869i 0.500129 0.419658i
\(246\) 0 0
\(247\) 4.16931 + 10.9583i 0.265287 + 0.697262i
\(248\) 11.5982 5.13535i 0.736486 0.326095i
\(249\) 0 0
\(250\) −26.3700 + 29.2466i −1.66779 + 1.84972i
\(251\) 25.1628 + 4.43689i 1.58826 + 0.280054i 0.896827 0.442382i \(-0.145866\pi\)
0.691438 + 0.722436i \(0.256978\pi\)
\(252\) 0 0
\(253\) 21.9787 7.99960i 1.38179 0.502931i
\(254\) 2.21164 + 2.83476i 0.138771 + 0.177869i
\(255\) 0 0
\(256\) −12.8926 9.47527i −0.805788 0.592204i
\(257\) 9.65399 11.5052i 0.602199 0.717673i −0.375702 0.926741i \(-0.622598\pi\)
0.977901 + 0.209067i \(0.0670428\pi\)
\(258\) 0 0
\(259\) 1.16563 2.01893i 0.0724286 0.125450i
\(260\) −8.99468 + 20.1282i −0.557827 + 1.24830i
\(261\) 0 0
\(262\) 4.49818 7.18765i 0.277899 0.444055i
\(263\) −6.98652 + 19.1953i −0.430807 + 1.18363i 0.514511 + 0.857484i \(0.327974\pi\)
−0.945318 + 0.326150i \(0.894249\pi\)
\(264\) 0 0
\(265\) 29.5974i 1.81815i
\(266\) 2.54375 12.8364i 0.155967 0.787049i
\(267\) 0 0
\(268\) −22.5794 1.60996i −1.37926 0.0983438i
\(269\) −4.70144 + 12.9171i −0.286652 + 0.787569i 0.709877 + 0.704325i \(0.248750\pi\)
−0.996529 + 0.0832439i \(0.973472\pi\)
\(270\) 0 0
\(271\) −9.89960 + 1.74557i −0.601358 + 0.106036i −0.466035 0.884766i \(-0.654318\pi\)
−0.135322 + 0.990802i \(0.543207\pi\)
\(272\) −6.88504 17.1762i −0.417467 1.04146i
\(273\) 0 0
\(274\) −4.82411 + 0.674619i −0.291435 + 0.0407552i
\(275\) 26.9726 32.1446i 1.62651 1.93839i
\(276\) 0 0
\(277\) −6.28070 10.8785i −0.377370 0.653625i 0.613308 0.789844i \(-0.289838\pi\)
−0.990679 + 0.136219i \(0.956505\pi\)
\(278\) 9.87694 7.70584i 0.592380 0.462165i
\(279\) 0 0
\(280\) 20.4277 13.7178i 1.22079 0.819793i
\(281\) 15.9346 + 2.80969i 0.950576 + 0.167612i 0.627374 0.778718i \(-0.284130\pi\)
0.323202 + 0.946330i \(0.395241\pi\)
\(282\) 0 0
\(283\) 0.116039 + 0.138290i 0.00689780 + 0.00822048i 0.769482 0.638668i \(-0.220514\pi\)
−0.762585 + 0.646889i \(0.776070\pi\)
\(284\) −7.69175 7.44820i −0.456421 0.441969i
\(285\) 0 0
\(286\) 5.07830 12.5445i 0.300286 0.741773i
\(287\) 9.33891 7.83628i 0.551259 0.462561i
\(288\) 0 0
\(289\) 0.764346 4.33482i 0.0449615 0.254990i
\(290\) −6.86450 + 32.1866i −0.403097 + 1.89006i
\(291\) 0 0
\(292\) −16.8477 + 4.80605i −0.985934 + 0.281253i
\(293\) 5.02365 2.90040i 0.293485 0.169443i −0.346028 0.938224i \(-0.612470\pi\)
0.639512 + 0.768781i \(0.279136\pi\)
\(294\) 0 0
\(295\) −23.5575 19.7671i −1.37157 1.15089i
\(296\) −1.83089 + 2.50916i −0.106418 + 0.145842i
\(297\) 0 0
\(298\) −0.742506 + 20.8535i −0.0430122 + 1.20801i
\(299\) 3.07074 + 17.4150i 0.177585 + 1.00714i
\(300\) 0 0
\(301\) 9.17991 + 3.34121i 0.529121 + 0.192584i
\(302\) −0.0460421 0.142034i −0.00264943 0.00817311i
\(303\) 0 0
\(304\) −5.19260 + 16.6444i −0.297816 + 0.954623i
\(305\) −7.86568 −0.450388
\(306\) 0 0
\(307\) 27.7415 + 10.0971i 1.58329 + 0.576271i 0.975916 0.218145i \(-0.0700006\pi\)
0.607374 + 0.794416i \(0.292223\pi\)
\(308\) −12.2321 + 8.86163i −0.696991 + 0.504938i
\(309\) 0 0
\(310\) 0.924837 25.9744i 0.0525272 1.47524i
\(311\) −17.8231 10.2902i −1.01065 0.583502i −0.0992714 0.995060i \(-0.531651\pi\)
−0.911383 + 0.411559i \(0.864985\pi\)
\(312\) 0 0
\(313\) 16.9322 + 14.2078i 0.957062 + 0.803071i 0.980473 0.196655i \(-0.0630080\pi\)
−0.0234104 + 0.999726i \(0.507452\pi\)
\(314\) −20.5668 + 10.9175i −1.16065 + 0.616110i
\(315\) 0 0
\(316\) −8.06844 + 2.30165i −0.453885 + 0.129478i
\(317\) 5.33653 + 14.6620i 0.299729 + 0.823500i 0.994545 + 0.104312i \(0.0332639\pi\)
−0.694815 + 0.719188i \(0.744514\pi\)
\(318\) 0 0
\(319\) 3.50810 19.8954i 0.196416 1.11393i
\(320\) −29.0104 + 15.2727i −1.62173 + 0.853770i
\(321\) 0 0
\(322\) 7.40608 18.2946i 0.412725 1.01952i
\(323\) −15.2579 + 13.1844i −0.848974 + 0.733598i
\(324\) 0 0
\(325\) 20.3929 + 24.3033i 1.13119 + 1.34810i
\(326\) 18.9742 + 17.1080i 1.05088 + 0.947523i
\(327\) 0 0
\(328\) −13.4849 + 9.05544i −0.744577 + 0.500003i
\(329\) −17.7524 + 6.46136i −0.978723 + 0.356226i
\(330\) 0 0
\(331\) −12.2363 21.1939i −0.672567 1.16492i −0.977174 0.212442i \(-0.931858\pi\)
0.304606 0.952478i \(-0.401475\pi\)
\(332\) −11.0352 + 1.14458i −0.605634 + 0.0628170i
\(333\) 0 0
\(334\) −6.99182 + 0.977758i −0.382575 + 0.0535006i
\(335\) −23.1921 + 40.1699i −1.26712 + 2.19472i
\(336\) 0 0
\(337\) −24.3074 + 4.28605i −1.32411 + 0.233476i −0.790607 0.612324i \(-0.790235\pi\)
−0.533500 + 0.845800i \(0.679124\pi\)
\(338\) −6.91092 4.32500i −0.375904 0.235249i
\(339\) 0 0
\(340\) −37.8215 2.69674i −2.05116 0.146251i
\(341\) 15.9547i 0.863994i
\(342\) 0 0
\(343\) 20.1533i 1.08818i
\(344\) −11.6871 5.72990i −0.630126 0.308936i
\(345\) 0 0
\(346\) 18.1454 28.9946i 0.975503 1.55876i
\(347\) 18.6375 3.28629i 1.00051 0.176417i 0.350680 0.936495i \(-0.385951\pi\)
0.649832 + 0.760078i \(0.274839\pi\)
\(348\) 0 0
\(349\) −0.0843926 + 0.146172i −0.00451743 + 0.00782442i −0.868275 0.496083i \(-0.834771\pi\)
0.863758 + 0.503907i \(0.168105\pi\)
\(350\) −4.90402 35.0680i −0.262131 1.87446i
\(351\) 0 0
\(352\) 17.4634 10.0030i 0.930802 0.533162i
\(353\) −16.9470 29.3530i −0.901996 1.56230i −0.824900 0.565279i \(-0.808768\pi\)
−0.0770963 0.997024i \(-0.524565\pi\)
\(354\) 0 0
\(355\) −20.6161 + 7.50366i −1.09419 + 0.398253i
\(356\) 7.73683 + 5.23397i 0.410051 + 0.277400i
\(357\) 0 0
\(358\) −5.77545 + 6.40547i −0.305242 + 0.338540i
\(359\) 0.215220 + 0.256489i 0.0113589 + 0.0135370i 0.771694 0.635994i \(-0.219410\pi\)
−0.760335 + 0.649531i \(0.774965\pi\)
\(360\) 0 0
\(361\) 18.9920 0.550597i 0.999580 0.0289788i
\(362\) 0.226106 + 0.0915328i 0.0118839 + 0.00481086i
\(363\) 0 0
\(364\) −4.99219 10.2712i −0.261662 0.538355i
\(365\) −6.23381 + 35.3537i −0.326293 + 1.85050i
\(366\) 0 0
\(367\) 7.82567 + 21.5009i 0.408497 + 1.12234i 0.957981 + 0.286831i \(0.0926020\pi\)
−0.549484 + 0.835504i \(0.685176\pi\)
\(368\) −12.4092 + 23.1851i −0.646876 + 1.20861i
\(369\) 0 0
\(370\) 2.98419 + 5.62171i 0.155140 + 0.292259i
\(371\) 11.7446 + 9.85486i 0.609747 + 0.511639i
\(372\) 0 0
\(373\) 4.29467 + 2.47953i 0.222369 + 0.128385i 0.607047 0.794666i \(-0.292354\pi\)
−0.384677 + 0.923051i \(0.625687\pi\)
\(374\) 23.2612 + 0.828233i 1.20281 + 0.0428269i
\(375\) 0 0
\(376\) 24.4358 6.03930i 1.26018 0.311453i
\(377\) 14.3530 + 5.22408i 0.739219 + 0.269054i
\(378\) 0 0
\(379\) 31.6774 1.62716 0.813579 0.581454i \(-0.197516\pi\)
0.813579 + 0.581454i \(0.197516\pi\)
\(380\) 26.0231 + 24.4784i 1.33496 + 1.25572i
\(381\) 0 0
\(382\) 10.4554 3.38925i 0.534943 0.173409i
\(383\) −31.5696 11.4904i −1.61313 0.587131i −0.631074 0.775722i \(-0.717386\pi\)
−0.982056 + 0.188591i \(0.939608\pi\)
\(384\) 0 0
\(385\) 5.37452 + 30.4804i 0.273911 + 1.55343i
\(386\) 7.96201 + 0.283493i 0.405256 + 0.0144294i
\(387\) 0 0
\(388\) 2.03155 + 0.509476i 0.103136 + 0.0258647i
\(389\) −8.60011 7.21635i −0.436043 0.365883i 0.398183 0.917306i \(-0.369641\pi\)
−0.834226 + 0.551422i \(0.814085\pi\)
\(390\) 0 0
\(391\) −26.3392 + 15.2070i −1.33203 + 0.769049i
\(392\) 0.751628 7.01278i 0.0379629 0.354199i
\(393\) 0 0
\(394\) −30.4819 6.50092i −1.53566 0.327512i
\(395\) −2.98541 + 16.9311i −0.150212 + 0.851897i
\(396\) 0 0
\(397\) 10.1113 8.48436i 0.507470 0.425818i −0.352768 0.935711i \(-0.614759\pi\)
0.860238 + 0.509893i \(0.170315\pi\)
\(398\) −13.4686 5.45238i −0.675119 0.273303i
\(399\) 0 0
\(400\) 1.51748 + 47.1543i 0.0758740 + 2.35771i
\(401\) −22.0701 26.3021i −1.10213 1.31346i −0.945433 0.325816i \(-0.894361\pi\)
−0.156693 0.987647i \(-0.550083\pi\)
\(402\) 0 0
\(403\) −11.8794 2.09466i −0.591756 0.104343i
\(404\) 15.4772 22.8784i 0.770021 1.13824i
\(405\) 0 0
\(406\) −10.4864 13.4409i −0.520430 0.667060i
\(407\) −1.95350 3.38356i −0.0968314 0.167717i
\(408\) 0 0
\(409\) −17.6689 + 21.0569i −0.873669 + 1.04120i 0.125127 + 0.992141i \(0.460066\pi\)
−0.998796 + 0.0490573i \(0.984378\pi\)
\(410\) 4.60961 + 32.9627i 0.227652 + 1.62791i
\(411\) 0 0
\(412\) 20.9499 + 9.36188i 1.03213 + 0.461227i
\(413\) 15.6876 2.76615i 0.771936 0.136113i
\(414\) 0 0
\(415\) −7.77518 + 21.3621i −0.381668 + 1.04863i
\(416\) 5.15523 + 14.3161i 0.252756 + 0.701902i
\(417\) 0 0
\(418\) −16.4990 14.4483i −0.806994 0.706692i
\(419\) 8.73341i 0.426655i 0.976981 + 0.213327i \(0.0684301\pi\)
−0.976981 + 0.213327i \(0.931570\pi\)
\(420\) 0 0
\(421\) 7.08553 19.4673i 0.345328 0.948780i −0.638494 0.769627i \(-0.720442\pi\)
0.983821 0.179153i \(-0.0573356\pi\)
\(422\) 3.56616 + 2.23178i 0.173598 + 0.108641i
\(423\) 0 0
\(424\) −14.1599 14.7233i −0.687664 0.715028i
\(425\) −27.2822 + 47.2542i −1.32338 + 2.29217i
\(426\) 0 0
\(427\) 2.61899 3.12119i 0.126742 0.151045i
\(428\) −2.97562 28.6887i −0.143832 1.38672i
\(429\) 0 0
\(430\) −21.0282 + 16.4059i −1.01407 + 0.791162i
\(431\) −14.7071 + 5.35294i −0.708416 + 0.257842i −0.671000 0.741458i \(-0.734135\pi\)
−0.0374160 + 0.999300i \(0.511913\pi\)
\(432\) 0 0
\(433\) 21.2295 + 3.74334i 1.02023 + 0.179893i 0.658650 0.752449i \(-0.271128\pi\)
0.361576 + 0.932343i \(0.382239\pi\)
\(434\) 9.99897 + 9.01551i 0.479966 + 0.432758i
\(435\) 0 0
\(436\) −1.91977 + 1.98254i −0.0919401 + 0.0949465i
\(437\) 28.2904 + 4.56670i 1.35331 + 0.218455i
\(438\) 0 0
\(439\) −18.2798 + 15.3386i −0.872447 + 0.732070i −0.964612 0.263674i \(-0.915066\pi\)
0.0921648 + 0.995744i \(0.470621\pi\)
\(440\) −2.79219 41.1435i −0.133113 1.96144i
\(441\) 0 0
\(442\) −3.67061 + 17.2109i −0.174593 + 0.818641i
\(443\) 1.19994 + 3.29680i 0.0570107 + 0.156636i 0.964929 0.262512i \(-0.0845511\pi\)
−0.907918 + 0.419148i \(0.862329\pi\)
\(444\) 0 0
\(445\) 16.5759 9.57009i 0.785772 0.453666i
\(446\) 16.3640 8.68651i 0.774856 0.411318i
\(447\) 0 0
\(448\) 3.59905 16.5969i 0.170039 0.784130i
\(449\) −5.94492 3.43230i −0.280558 0.161980i 0.353118 0.935579i \(-0.385121\pi\)
−0.633676 + 0.773598i \(0.718455\pi\)
\(450\) 0 0
\(451\) −3.54786 20.1209i −0.167062 0.947456i
\(452\) −8.98551 12.4032i −0.422643 0.583395i
\(453\) 0 0
\(454\) 8.51362 + 26.2634i 0.399564 + 1.23260i
\(455\) −23.4005 −1.09703
\(456\) 0 0
\(457\) −23.0184 −1.07675 −0.538377 0.842704i \(-0.680962\pi\)
−0.538377 + 0.842704i \(0.680962\pi\)
\(458\) 1.59479 + 4.91971i 0.0745197 + 0.229883i
\(459\) 0 0
\(460\) 31.6128 + 43.6368i 1.47396 + 2.03458i
\(461\) −5.44422 30.8757i −0.253563 1.43803i −0.799735 0.600353i \(-0.795027\pi\)
0.546173 0.837673i \(-0.316084\pi\)
\(462\) 0 0
\(463\) 12.4250 + 7.17355i 0.577436 + 0.333383i 0.760114 0.649790i \(-0.225143\pi\)
−0.182677 + 0.983173i \(0.558476\pi\)
\(464\) 11.9838 + 19.2954i 0.556335 + 0.895768i
\(465\) 0 0
\(466\) 26.1144 13.8624i 1.20973 0.642162i
\(467\) −14.8365 + 8.56586i −0.686552 + 0.396381i −0.802319 0.596895i \(-0.796401\pi\)
0.115767 + 0.993276i \(0.463067\pi\)
\(468\) 0 0
\(469\) −8.21772 22.5780i −0.379459 1.04256i
\(470\) 10.7580 50.4427i 0.496230 2.32675i
\(471\) 0 0
\(472\) −21.1757 + 1.43708i −0.974689 + 0.0661469i
\(473\) 12.5418 10.5238i 0.576673 0.483886i
\(474\) 0 0
\(475\) 48.0514 18.2821i 2.20475 0.838840i
\(476\) 13.6633 14.1101i 0.626256 0.646733i
\(477\) 0 0
\(478\) −6.31702 5.69570i −0.288934 0.260515i
\(479\) −22.0097 3.88090i −1.00565 0.177323i −0.353516 0.935428i \(-0.615014\pi\)
−0.652132 + 0.758105i \(0.726125\pi\)
\(480\) 0 0
\(481\) 2.77578 1.01030i 0.126565 0.0460658i
\(482\) 13.1642 10.2705i 0.599612 0.467808i
\(483\) 0 0
\(484\) 0.341935 + 3.29668i 0.0155425 + 0.149849i
\(485\) 2.75864 3.28762i 0.125263 0.149283i
\(486\) 0 0
\(487\) 11.3250 19.6155i 0.513185 0.888862i −0.486698 0.873570i \(-0.661799\pi\)
0.999883 0.0152921i \(-0.00486782\pi\)
\(488\) −3.91281 + 3.76307i −0.177125 + 0.170346i
\(489\) 0 0
\(490\) −12.2507 7.66675i −0.553430 0.346348i
\(491\) 8.60271 23.6357i 0.388235 1.06667i −0.579561 0.814929i \(-0.696776\pi\)
0.967796 0.251737i \(-0.0810019\pi\)
\(492\) 0 0
\(493\) 26.2698i 1.18313i
\(494\) 12.9240 10.3878i 0.581478 0.467371i
\(495\) 0 0
\(496\) −11.9665 13.3635i −0.537311 0.600038i
\(497\) 3.88689 10.6792i 0.174351 0.479025i
\(498\) 0 0
\(499\) 27.0863 4.77605i 1.21255 0.213805i 0.469434 0.882967i \(-0.344458\pi\)
0.743117 + 0.669162i \(0.233347\pi\)
\(500\) 50.8452 + 22.7211i 2.27387 + 1.01612i
\(501\) 0 0
\(502\) −5.00448 35.7864i −0.223361 1.59722i
\(503\) −11.8240 + 14.0913i −0.527207 + 0.628301i −0.962269 0.272099i \(-0.912282\pi\)
0.435062 + 0.900401i \(0.356726\pi\)
\(504\) 0 0
\(505\) −28.2994 49.0161i −1.25931 2.18119i
\(506\) −20.3467 26.0793i −0.904519 1.15937i
\(507\) 0 0
\(508\) 2.84911 4.21154i 0.126409 0.186857i
\(509\) −39.6174 6.98562i −1.75601 0.309632i −0.799356 0.600857i \(-0.794826\pi\)
−0.956654 + 0.291225i \(0.905937\pi\)
\(510\) 0 0
\(511\) −11.9531 14.2451i −0.528774 0.630168i
\(512\) −7.12462 + 21.4765i −0.314867 + 0.949136i
\(513\) 0 0
\(514\) −19.6879 7.97011i −0.868397 0.351546i
\(515\) 36.0186 30.2232i 1.58717 1.33179i
\(516\) 0 0
\(517\) −5.49788 + 31.1800i −0.241797 + 1.37130i
\(518\) −3.22438 0.687669i −0.141671 0.0302144i
\(519\) 0 0
\(520\) 31.0010 + 3.32268i 1.35948 + 0.145709i
\(521\) 12.8556 7.42221i 0.563216 0.325173i −0.191219 0.981547i \(-0.561244\pi\)
0.754435 + 0.656374i \(0.227911\pi\)
\(522\) 0 0
\(523\) 7.26433 + 6.09550i 0.317647 + 0.266538i 0.787644 0.616130i \(-0.211301\pi\)
−0.469997 + 0.882668i \(0.655745\pi\)
\(524\) −11.6312 2.91688i −0.508110 0.127425i
\(525\) 0 0
\(526\) 28.8702 + 1.02794i 1.25880 + 0.0448205i
\(527\) −3.60258 20.4312i −0.156931 0.889999i
\(528\) 0 0
\(529\) 19.0017 + 6.91604i 0.826159 + 0.300697i
\(530\) −39.8172 + 12.9073i −1.72955 + 0.560657i
\(531\) 0 0
\(532\) −18.3781 + 2.17580i −0.796790 + 0.0943331i
\(533\) 15.4473 0.669096
\(534\) 0 0
\(535\) −55.5362 20.2135i −2.40104 0.873907i
\(536\) 7.68093 + 31.0781i 0.331766 + 1.34237i
\(537\) 0 0
\(538\) 19.4276 + 0.691734i 0.837583 + 0.0298228i
\(539\) 7.68289 + 4.43572i 0.330926 + 0.191060i
\(540\) 0 0
\(541\) −26.1459 21.9390i −1.12410 0.943231i −0.125294 0.992120i \(-0.539987\pi\)
−0.998804 + 0.0488891i \(0.984432\pi\)
\(542\) 6.66548 + 12.5567i 0.286307 + 0.539354i
\(543\) 0 0
\(544\) −20.1046 + 16.7529i −0.861977 + 0.718275i
\(545\) 1.93406 + 5.31379i 0.0828461 + 0.227618i
\(546\) 0 0
\(547\) −2.00888 + 11.3929i −0.0858937 + 0.487127i 0.911266 + 0.411817i \(0.135106\pi\)
−0.997160 + 0.0753101i \(0.976005\pi\)
\(548\) 3.01133 + 6.19565i 0.128638 + 0.264665i
\(549\) 0 0
\(550\) −55.0067 22.2679i −2.34549 0.949507i
\(551\) 15.6338 19.1897i 0.666024 0.817508i
\(552\) 0 0
\(553\) −5.72441 6.82209i −0.243427 0.290105i
\(554\) −11.8958 + 13.1935i −0.505404 + 0.560536i
\(555\) 0 0
\(556\) −14.6739 9.92692i −0.622313 0.420995i
\(557\) 6.50467 2.36750i 0.275612 0.100314i −0.200517 0.979690i \(-0.564262\pi\)
0.476128 + 0.879376i \(0.342040\pi\)
\(558\) 0 0
\(559\) 6.18916 + 10.7199i 0.261774 + 0.453405i
\(560\) −27.3629 21.4991i −1.15629 0.908502i
\(561\) 0 0
\(562\) −3.16913 22.6620i −0.133681 0.955938i
\(563\) 12.2842 21.2769i 0.517718 0.896713i −0.482071 0.876132i \(-0.660115\pi\)
0.999788 0.0205807i \(-0.00655150\pi\)
\(564\) 0 0
\(565\) −30.9066 + 5.44966i −1.30025 + 0.229269i
\(566\) 0.135437 0.216414i 0.00569283 0.00909658i
\(567\) 0 0
\(568\) −6.66569 + 13.5958i −0.279686 + 0.570467i
\(569\) 34.0797i 1.42870i −0.699790 0.714348i \(-0.746723\pi\)
0.699790 0.714348i \(-0.253277\pi\)
\(570\) 0 0
\(571\) 9.62744i 0.402896i −0.979499 0.201448i \(-0.935435\pi\)
0.979499 0.201448i \(-0.0645647\pi\)
\(572\) −19.0907 1.36120i −0.798222 0.0569148i
\(573\) 0 0
\(574\) −14.6148 9.14623i −0.610009 0.381756i
\(575\) 76.3635 13.4649i 3.18458 0.561527i
\(576\) 0 0
\(577\) −0.894022 + 1.54849i −0.0372186 + 0.0644646i −0.884035 0.467421i \(-0.845183\pi\)
0.846816 + 0.531886i \(0.178516\pi\)
\(578\) −6.16495 + 0.862126i −0.256428 + 0.0358597i
\(579\) 0 0
\(580\) 46.2941 4.80167i 1.92226 0.199379i
\(581\) −5.88787 10.1981i −0.244270 0.423088i
\(582\) 0 0
\(583\) 24.1447 8.78796i 0.999972 0.363960i
\(584\) 13.8127 + 20.5692i 0.571575 + 0.851158i
\(585\) 0 0
\(586\) −6.09269 5.49344i −0.251687 0.226932i
\(587\) 19.6664 + 23.4375i 0.811719 + 0.967369i 0.999891 0.0147675i \(-0.00470082\pi\)
−0.188172 + 0.982136i \(0.560256\pi\)
\(588\) 0 0
\(589\) −9.52752 + 17.0687i −0.392575 + 0.703302i
\(590\) −16.3193 + 40.3122i −0.671853 + 1.65963i
\(591\) 0 0
\(592\) 4.17401 + 1.36886i 0.171551 + 0.0562597i
\(593\) −0.892954 + 5.06419i −0.0366692 + 0.207962i −0.997638 0.0686968i \(-0.978116\pi\)
0.960968 + 0.276658i \(0.0892270\pi\)
\(594\) 0 0
\(595\) −13.7650 37.8191i −0.564311 1.55043i
\(596\) 28.3780 8.09525i 1.16241 0.331594i
\(597\) 0 0
\(598\) 22.0892 11.7257i 0.903296 0.479498i
\(599\) 18.9579 + 15.9076i 0.774600 + 0.649966i 0.941882 0.335943i \(-0.109055\pi\)
−0.167283 + 0.985909i \(0.553499\pi\)
\(600\) 0 0
\(601\) 1.99259 + 1.15042i 0.0812794 + 0.0469267i 0.540089 0.841608i \(-0.318391\pi\)
−0.458809 + 0.888535i \(0.651724\pi\)
\(602\) 0.491601 13.8068i 0.0200362 0.562722i
\(603\) 0 0
\(604\) −0.170998 + 0.123880i −0.00695783 + 0.00504062i
\(605\) 6.38178 + 2.32278i 0.259456 + 0.0944344i
\(606\) 0 0
\(607\) −33.4906 −1.35934 −0.679671 0.733517i \(-0.737877\pi\)
−0.679671 + 0.733517i \(0.737877\pi\)
\(608\) 24.6561 0.272974i 0.999939 0.0110706i
\(609\) 0 0
\(610\) 3.43019 + 10.5817i 0.138884 + 0.428439i
\(611\) −22.4940 8.18716i −0.910011 0.331217i
\(612\) 0 0
\(613\) 3.19791 + 18.1363i 0.129163 + 0.732517i 0.978748 + 0.205066i \(0.0657410\pi\)
−0.849586 + 0.527451i \(0.823148\pi\)
\(614\) 1.48561 41.7238i 0.0599542 1.68384i
\(615\) 0 0
\(616\) 17.2559 + 12.5913i 0.695260 + 0.507319i
\(617\) 5.51004 + 4.62348i 0.221826 + 0.186134i 0.746927 0.664906i \(-0.231528\pi\)
−0.525102 + 0.851040i \(0.675973\pi\)
\(618\) 0 0
\(619\) −22.0539 + 12.7328i −0.886421 + 0.511775i −0.872770 0.488131i \(-0.837679\pi\)
−0.0136509 + 0.999907i \(0.504345\pi\)
\(620\) −35.3465 + 10.0831i −1.41955 + 0.404948i
\(621\) 0 0
\(622\) −6.07074 + 28.4648i −0.243415 + 1.14134i
\(623\) −1.72165 + 9.76398i −0.0689766 + 0.391186i
\(624\) 0 0
\(625\) 42.2405 35.4440i 1.68962 1.41776i
\(626\) 11.7296 28.9747i 0.468809 1.15806i
\(627\) 0 0
\(628\) 23.6563 + 22.9073i 0.943990 + 0.914100i
\(629\) 3.26563 + 3.89182i 0.130209 + 0.155177i
\(630\) 0 0
\(631\) 34.1843 + 6.02761i 1.36085 + 0.239955i 0.805962 0.591967i \(-0.201649\pi\)
0.554892 + 0.831923i \(0.312760\pi\)
\(632\) 6.61501 + 9.85070i 0.263131 + 0.391840i
\(633\) 0 0
\(634\) 17.3975 13.5732i 0.690942 0.539063i
\(635\) −5.20947 9.02307i −0.206731 0.358069i
\(636\) 0 0
\(637\) −4.31139 + 5.13812i −0.170824 + 0.203580i
\(638\) −28.2951 + 3.95688i −1.12021 + 0.156654i
\(639\) 0 0
\(640\) 33.1976 + 32.3672i 1.31225 + 1.27943i
\(641\) −15.5563 + 2.74300i −0.614437 + 0.108342i −0.472201 0.881491i \(-0.656540\pi\)
−0.142236 + 0.989833i \(0.545429\pi\)
\(642\) 0 0
\(643\) 7.88997 21.6775i 0.311150 0.854878i −0.681275 0.732027i \(-0.738574\pi\)
0.992425 0.122850i \(-0.0392035\pi\)
\(644\) −27.8415 1.98515i −1.09711 0.0782259i
\(645\) 0 0
\(646\) 24.3908 + 14.7768i 0.959643 + 0.581384i
\(647\) 10.0700i 0.395891i −0.980213 0.197946i \(-0.936573\pi\)
0.980213 0.197946i \(-0.0634269\pi\)
\(648\) 0 0
\(649\) 9.13082 25.0867i 0.358416 0.984740i
\(650\) 23.8018 38.0330i 0.933585 1.49178i
\(651\) 0 0
\(652\) 14.7407 32.9866i 0.577291 1.29186i
\(653\) −4.15147 + 7.19055i −0.162459 + 0.281388i −0.935750 0.352664i \(-0.885276\pi\)
0.773291 + 0.634052i \(0.218609\pi\)
\(654\) 0 0
\(655\) −15.7940 + 18.8225i −0.617121 + 0.735456i
\(656\) 18.0629 + 14.1921i 0.705239 + 0.554108i
\(657\) 0 0
\(658\) 16.4342 + 21.0645i 0.640672 + 0.821180i
\(659\) 26.1053 9.50156i 1.01692 0.370128i 0.220833 0.975312i \(-0.429123\pi\)
0.796086 + 0.605184i \(0.206900\pi\)
\(660\) 0 0
\(661\) −23.2420 4.09819i −0.904008 0.159401i −0.297727 0.954651i \(-0.596228\pi\)
−0.606281 + 0.795250i \(0.707340\pi\)
\(662\) −23.1758 + 25.7040i −0.900754 + 0.999014i
\(663\) 0 0
\(664\) 6.35219 + 14.3464i 0.246513 + 0.556749i
\(665\) −12.4520 + 35.8181i −0.482866 + 1.38897i
\(666\) 0 0
\(667\) 28.5980 23.9966i 1.10732 0.929151i
\(668\) 4.36448 + 8.97966i 0.168867 + 0.347434i
\(669\) 0 0
\(670\) 64.1544 + 13.6823i 2.47850 + 0.528594i
\(671\) −2.33545 6.41660i −0.0901591 0.247710i
\(672\) 0 0
\(673\) −6.45808 + 3.72857i −0.248941 + 0.143726i −0.619279 0.785171i \(-0.712575\pi\)
0.370338 + 0.928897i \(0.379242\pi\)
\(674\) 16.3663 + 30.8315i 0.630408 + 1.18758i
\(675\) 0 0
\(676\) −2.80458 + 11.1833i −0.107868 + 0.430128i
\(677\) 25.0349 + 14.4539i 0.962171 + 0.555510i 0.896841 0.442354i \(-0.145857\pi\)
0.0653305 + 0.997864i \(0.479190\pi\)
\(678\) 0 0
\(679\) 0.386036 + 2.18932i 0.0148147 + 0.0840183i
\(680\) 12.8659 + 52.0571i 0.493384 + 1.99630i
\(681\) 0 0
\(682\) 21.4637 6.95776i 0.821889 0.266426i
\(683\) −48.0254 −1.83764 −0.918821 0.394676i \(-0.870857\pi\)
−0.918821 + 0.394676i \(0.870857\pi\)
\(684\) 0 0
\(685\) 14.1154 0.539322
\(686\) 27.1121 8.78876i 1.03515 0.335556i
\(687\) 0 0
\(688\) −2.61172 + 18.2214i −0.0995708 + 0.694684i
\(689\) 3.37336 + 19.1313i 0.128515 + 0.728843i
\(690\) 0 0
\(691\) −23.6640 13.6624i −0.900221 0.519743i −0.0229489 0.999737i \(-0.507306\pi\)
−0.877272 + 0.479994i \(0.840639\pi\)
\(692\) −46.9194 11.7665i −1.78361 0.447296i
\(693\) 0 0
\(694\) −12.5487 23.6398i −0.476344 0.897353i
\(695\) −31.4384 + 18.1509i −1.19252 + 0.688505i
\(696\) 0 0
\(697\) 9.08663 + 24.9653i 0.344181 + 0.945629i
\(698\) 0.233448 + 0.0497879i 0.00883614 + 0.00188450i
\(699\) 0 0
\(700\) −45.0382 + 21.8904i −1.70228 + 0.827378i
\(701\) −16.8471 + 14.1364i −0.636306 + 0.533924i −0.902881 0.429890i \(-0.858552\pi\)
0.266575 + 0.963814i \(0.414108\pi\)
\(702\) 0 0
\(703\) −0.0693662 4.78637i −0.00261619 0.180521i
\(704\) −21.0727 19.1312i −0.794207 0.721032i
\(705\) 0 0
\(706\) −32.0980 + 35.5994i −1.20802 + 1.33980i
\(707\) 28.8728 + 5.09105i 1.08587 + 0.191469i
\(708\) 0 0
\(709\) −14.0920 + 5.12907i −0.529236 + 0.192626i −0.592797 0.805352i \(-0.701976\pi\)
0.0635610 + 0.997978i \(0.479754\pi\)
\(710\) 19.0853 + 24.4625i 0.716257 + 0.918061i
\(711\) 0 0
\(712\) 3.66724 12.6908i 0.137436 0.475609i
\(713\) −18.9511 + 22.5851i −0.709725 + 0.845817i
\(714\) 0 0
\(715\) −19.6087 + 33.9633i −0.733324 + 1.27015i
\(716\) 11.1359 + 4.97629i 0.416168 + 0.185973i
\(717\) 0 0
\(718\) 0.251197 0.401388i 0.00937458 0.0149797i
\(719\) 5.86251 16.1071i 0.218635 0.600693i −0.781084 0.624426i \(-0.785333\pi\)
0.999718 + 0.0237327i \(0.00755507\pi\)
\(720\) 0 0
\(721\) 24.3558i 0.907058i
\(722\) −9.02306 25.3098i −0.335803 0.941932i
\(723\) 0 0
\(724\) 0.0245348 0.344097i 0.000911827 0.0127883i
\(725\) 22.9072 62.9369i 0.850750 2.33742i
\(726\) 0 0
\(727\) −6.63741 + 1.17035i −0.246168 + 0.0434060i −0.295371 0.955383i \(-0.595443\pi\)
0.0492027 + 0.998789i \(0.484332\pi\)
\(728\) −11.6407 + 11.1952i −0.431432 + 0.414921i
\(729\) 0 0
\(730\) 50.2797 7.03128i 1.86094 0.260239i
\(731\) −13.6845 + 16.3086i −0.506140 + 0.603194i
\(732\) 0 0
\(733\) −5.86925 10.1658i −0.216786 0.375484i 0.737038 0.675851i \(-0.236224\pi\)
−0.953823 + 0.300368i \(0.902891\pi\)
\(734\) 25.5123 19.9043i 0.941675 0.734680i
\(735\) 0 0
\(736\) 36.6024 + 6.58317i 1.34918 + 0.242659i
\(737\) −39.6556 6.99235i −1.46073 0.257567i
\(738\) 0 0
\(739\) −9.52966 11.3570i −0.350554 0.417774i 0.561737 0.827316i \(-0.310133\pi\)
−0.912292 + 0.409541i \(0.865689\pi\)
\(740\) 6.26147 6.46622i 0.230176 0.237703i
\(741\) 0 0
\(742\) 8.13594 20.0976i 0.298680 0.737805i
\(743\) −37.9130 + 31.8128i −1.39089 + 1.16710i −0.425916 + 0.904763i \(0.640048\pi\)
−0.964977 + 0.262335i \(0.915507\pi\)
\(744\) 0 0
\(745\) 10.5002 59.5494i 0.384696 2.18172i
\(746\) 1.46281 6.85891i 0.0535573 0.251123i
\(747\) 0 0
\(748\) −9.02990 31.6544i −0.330166 1.15740i
\(749\) 26.5125 15.3070i 0.968746 0.559306i
\(750\) 0 0
\(751\) −15.5215 13.0241i −0.566388 0.475256i 0.314057 0.949404i \(-0.398312\pi\)
−0.880445 + 0.474148i \(0.842756\pi\)
\(752\) −18.7810 30.2397i −0.684873 1.10273i
\(753\) 0 0
\(754\) 0.768631 21.5873i 0.0279919 0.786162i
\(755\) 0.0751328 + 0.426099i 0.00273436 + 0.0155073i
\(756\) 0 0
\(757\) −45.5910 16.5938i −1.65703 0.603111i −0.667141 0.744931i \(-0.732482\pi\)
−0.989892 + 0.141820i \(0.954705\pi\)
\(758\) −13.8144 42.6155i −0.501761 1.54786i
\(759\) 0 0
\(760\) 21.5822 45.6837i 0.782868 1.65712i
\(761\) −2.39951 −0.0869822 −0.0434911 0.999054i \(-0.513848\pi\)
−0.0434911 + 0.999054i \(0.513848\pi\)
\(762\) 0 0
\(763\) −2.75254 1.00184i −0.0996487 0.0362691i
\(764\) −9.11909 12.5875i −0.329917 0.455401i
\(765\) 0 0
\(766\) −1.69061 + 47.4813i −0.0610842 + 1.71557i
\(767\) 17.4801 + 10.0922i 0.631171 + 0.364407i
\(768\) 0 0
\(769\) 21.1512 + 17.7480i 0.762732 + 0.640008i 0.938836 0.344364i \(-0.111905\pi\)
−0.176105 + 0.984371i \(0.556350\pi\)
\(770\) 38.6614 20.5227i 1.39326 0.739587i
\(771\) 0 0
\(772\) −3.09082 10.8349i −0.111241 0.389956i
\(773\) 4.96066 + 13.6293i 0.178423 + 0.490212i 0.996375 0.0850744i \(-0.0271128\pi\)
−0.817952 + 0.575286i \(0.804891\pi\)
\(774\) 0 0
\(775\) −9.18492 + 52.0903i −0.329932 + 1.87114i
\(776\) −0.200555 2.95522i −0.00719950 0.106086i
\(777\) 0 0
\(778\) −5.95765 + 14.7167i −0.213592 + 0.527620i
\(779\) 8.21985 23.6444i 0.294507 0.847150i
\(780\) 0 0
\(781\) −12.2425 14.5901i −0.438073 0.522075i
\(782\) 31.9443 + 28.8023i 1.14232 + 1.02997i
\(783\) 0 0
\(784\) −9.76204 + 2.04708i −0.348644 + 0.0731101i
\(785\) 63.4059 23.0779i 2.26305 0.823684i
\(786\) 0 0
\(787\) 10.2360 + 17.7292i 0.364873 + 0.631979i 0.988756 0.149539i \(-0.0477790\pi\)
−0.623883 + 0.781518i \(0.714446\pi\)
\(788\) 4.54736 + 43.8422i 0.161993 + 1.56181i
\(789\) 0 0
\(790\) 24.0793 3.36732i 0.856702 0.119804i
\(791\) 8.12828 14.0786i 0.289008 0.500577i
\(792\) 0 0
\(793\) 5.08425 0.896490i 0.180547 0.0318353i
\(794\) −15.8235 9.90265i −0.561553 0.351432i
\(795\) 0 0
\(796\) −1.46147 + 20.4970i −0.0518006 + 0.726496i
\(797\) 6.95943i 0.246516i 0.992375 + 0.123258i \(0.0393342\pi\)
−0.992375 + 0.123258i \(0.960666\pi\)
\(798\) 0 0
\(799\) 41.1700i 1.45649i
\(800\) 62.7747 22.6053i 2.21942 0.799216i
\(801\) 0 0
\(802\) −25.7594 + 41.1610i −0.909596 + 1.45344i
\(803\) −30.6915 + 5.41173i −1.08308 + 0.190976i
\(804\) 0 0
\(805\) −28.5969 + 49.5313i −1.00791 + 1.74575i
\(806\) 2.36262 + 16.8948i 0.0832199 + 0.595094i
\(807\) 0 0
\(808\) −37.5277 10.8443i −1.32022 0.381501i
\(809\) −2.02094 3.50038i −0.0710526 0.123067i 0.828310 0.560270i \(-0.189302\pi\)
−0.899363 + 0.437203i \(0.855969\pi\)
\(810\) 0 0
\(811\) −23.4470 + 8.53402i −0.823336 + 0.299670i −0.719121 0.694885i \(-0.755455\pi\)
−0.104215 + 0.994555i \(0.533233\pi\)
\(812\) −13.5089 + 19.9688i −0.474069 + 0.700767i
\(813\) 0 0
\(814\) −3.69998 + 4.10359i −0.129684 + 0.143831i
\(815\) −47.5879 56.7130i −1.66693 1.98657i
\(816\) 0 0
\(817\) 19.7019 3.76914i 0.689283 0.131866i
\(818\) 36.0331 + 14.5870i 1.25987 + 0.510023i
\(819\) 0 0
\(820\) 42.3343 20.5762i 1.47838 0.718551i
\(821\) 1.97173 11.1822i 0.0688138 0.390262i −0.930876 0.365337i \(-0.880954\pi\)
0.999689 0.0249259i \(-0.00793497\pi\)
\(822\) 0 0
\(823\) −10.6234 29.1877i −0.370310 1.01742i −0.975242 0.221141i \(-0.929022\pi\)
0.604932 0.796277i \(-0.293200\pi\)
\(824\) 3.45832 32.2665i 0.120476 1.12406i
\(825\) 0 0
\(826\) −10.5626 19.8981i −0.367519 0.692345i
\(827\) −2.30858 1.93713i −0.0802772 0.0673606i 0.601766 0.798672i \(-0.294464\pi\)
−0.682043 + 0.731312i \(0.738908\pi\)
\(828\) 0 0
\(829\) 44.7506 + 25.8368i 1.55425 + 0.897348i 0.997788 + 0.0664763i \(0.0211757\pi\)
0.556464 + 0.830872i \(0.312158\pi\)
\(830\) 32.1291 + 1.14398i 1.11522 + 0.0397081i
\(831\) 0 0
\(832\) 17.0111 13.1785i 0.589755 0.456881i
\(833\) −10.8402 3.94549i −0.375589 0.136703i
\(834\) 0 0
\(835\) 20.4582 0.707984
\(836\) −12.2421 + 28.4969i −0.423403 + 0.985588i
\(837\) 0 0
\(838\) 11.7490 3.80860i 0.405863 0.131566i
\(839\) 5.56173 + 2.02430i 0.192012 + 0.0698867i 0.436236 0.899832i \(-0.356311\pi\)
−0.244224 + 0.969719i \(0.578533\pi\)
\(840\) 0 0
\(841\) −0.563547 3.19603i −0.0194327 0.110208i
\(842\) −29.2793 1.04251i −1.00903 0.0359273i
\(843\) 0 0
\(844\) 1.44721 5.77081i 0.0498151 0.198639i
\(845\) 18.0978 + 15.1859i 0.622583 + 0.522409i
\(846\) 0 0
\(847\) −3.04661 + 1.75896i −0.104683 + 0.0604385i
\(848\) −13.6322 + 25.4700i −0.468130 + 0.874643i
\(849\) 0 0
\(850\) 75.4686 + 16.0953i 2.58855 + 0.552065i
\(851\) 1.25370 7.11008i 0.0429763 0.243730i
\(852\) 0 0
\(853\) −10.5042 + 8.81406i −0.359657 + 0.301788i −0.804654 0.593744i \(-0.797649\pi\)
0.444997 + 0.895532i \(0.353205\pi\)
\(854\) −5.34105 2.16218i −0.182767 0.0739881i
\(855\) 0 0
\(856\) −37.2972 + 16.5141i −1.27479 + 0.564441i
\(857\) 20.4136 + 24.3280i 0.697315 + 0.831027i 0.992220 0.124499i \(-0.0397325\pi\)
−0.294905 + 0.955527i \(0.595288\pi\)
\(858\) 0 0
\(859\) −21.7695 3.83856i −0.742767 0.130970i −0.210556 0.977582i \(-0.567528\pi\)
−0.532211 + 0.846612i \(0.678639\pi\)
\(860\) 31.2411 + 21.1346i 1.06531 + 0.720685i
\(861\) 0 0
\(862\) 13.6150 + 17.4510i 0.463729 + 0.594383i
\(863\) 0.298949 + 0.517795i 0.0101763 + 0.0176259i 0.871069 0.491161i \(-0.163427\pi\)
−0.860892 + 0.508787i \(0.830094\pi\)
\(864\) 0 0
\(865\) −63.7118 + 75.9288i −2.16627 + 2.58166i
\(866\) −4.22221 30.1924i −0.143477 1.02598i
\(867\) 0 0
\(868\) 7.76801 17.3832i 0.263664 0.590024i
\(869\) −14.6983 + 2.59171i −0.498607 + 0.0879178i
\(870\) 0 0
\(871\) 10.4126 28.6085i 0.352819 0.969361i
\(872\) 3.50431 + 1.71808i 0.118671 + 0.0581814i
\(873\) 0 0
\(874\) −6.19377 40.0505i −0.209507 1.35473i
\(875\) 59.1112i 1.99832i
\(876\) 0 0
\(877\) 15.7951 43.3968i 0.533364 1.46541i −0.321679 0.946849i \(-0.604247\pi\)
0.855043 0.518557i \(-0.173531\pi\)
\(878\) 28.6067 + 17.9026i 0.965428 + 0.604185i
\(879\) 0 0
\(880\) −54.1326 + 21.6988i −1.82481 + 0.731468i
\(881\) −1.08289 + 1.87562i −0.0364835 + 0.0631913i −0.883691 0.468071i \(-0.844949\pi\)
0.847207 + 0.531263i \(0.178282\pi\)
\(882\) 0 0
\(883\) −0.285489 + 0.340233i −0.00960747 + 0.0114497i −0.770827 0.637045i \(-0.780157\pi\)
0.761219 + 0.648495i \(0.224601\pi\)
\(884\) 24.7546 2.56757i 0.832586 0.0863567i
\(885\) 0 0
\(886\) 3.91188 3.05199i 0.131422 0.102534i
\(887\) 12.1025 4.40495i 0.406363 0.147904i −0.130748 0.991416i \(-0.541738\pi\)
0.537111 + 0.843512i \(0.319516\pi\)
\(888\) 0 0
\(889\) 5.31501 + 0.937180i 0.178260 + 0.0314320i
\(890\) −20.1033 18.1260i −0.673863 0.607585i
\(891\) 0 0
\(892\) −18.8222 18.2262i −0.630213 0.610259i
\(893\) −24.5013 + 30.0740i −0.819905 + 1.00639i
\(894\) 0 0
\(895\) 19.1456 16.0651i 0.639968 0.536997i
\(896\) −23.8973 + 2.39606i −0.798351 + 0.0800466i
\(897\) 0 0
\(898\) −2.02491 + 9.49449i −0.0675720 + 0.316835i
\(899\) 8.70972 + 23.9298i 0.290486 + 0.798102i
\(900\) 0 0
\(901\) −28.9349 + 16.7056i −0.963962 + 0.556544i
\(902\) −25.5213 + 13.5476i −0.849768 + 0.451084i
\(903\) 0 0
\(904\) −12.7674 + 17.4971i −0.424636 + 0.581946i
\(905\) −0.612165 0.353434i −0.0203490 0.0117485i
\(906\) 0 0
\(907\) 7.19674 + 40.8147i 0.238964 + 1.35523i 0.834103 + 0.551609i \(0.185986\pi\)
−0.595139 + 0.803623i \(0.702903\pi\)
\(908\) 31.6192 22.9067i 1.04932 0.760185i
\(909\) 0 0
\(910\) 10.2049 + 31.4806i 0.338288 + 1.04357i
\(911\) −4.19282 −0.138914 −0.0694571 0.997585i \(-0.522127\pi\)
−0.0694571 + 0.997585i \(0.522127\pi\)
\(912\) 0 0
\(913\) −19.7352 −0.653139
\(914\) 10.0382 + 30.9665i 0.332035 + 1.02428i
\(915\) 0 0
\(916\) 5.92298 4.29093i 0.195701 0.141776i
\(917\) −2.21016 12.5344i −0.0729858 0.413923i
\(918\) 0 0
\(919\) −35.7443 20.6370i −1.17910 0.680752i −0.223291 0.974752i \(-0.571680\pi\)
−0.955805 + 0.294000i \(0.905013\pi\)
\(920\) 44.9181 61.5584i 1.48091 2.02952i
\(921\) 0 0
\(922\) −39.1628 + 20.7889i −1.28976 + 0.684645i
\(923\) 12.4707 7.19996i 0.410478 0.236990i
\(924\) 0 0
\(925\) −4.43009 12.1716i −0.145661 0.400199i
\(926\) 4.23208 19.8436i 0.139075 0.652101i
\(927\) 0 0
\(928\) 20.7320 24.5364i 0.680560 0.805448i
\(929\) −17.9323 + 15.0470i −0.588339 + 0.493675i −0.887674 0.460473i \(-0.847680\pi\)
0.299334 + 0.954148i \(0.403235\pi\)
\(930\) 0 0
\(931\) 5.57049 + 9.33336i 0.182566 + 0.305889i
\(932\) −30.0374 29.0863i −0.983907 0.952753i
\(933\) 0 0
\(934\) 17.9938 + 16.2240i 0.588774 + 0.530864i
\(935\) −66.4247 11.7125i −2.17232 0.383039i
\(936\) 0 0
\(937\) 56.8850 20.7045i 1.85835 0.676385i 0.878151 0.478383i \(-0.158777\pi\)
0.980202 0.198002i \(-0.0634453\pi\)
\(938\) −26.7904 + 20.9014i −0.874737 + 0.682456i
\(939\) 0 0
\(940\) −72.5519 + 7.52516i −2.36638 + 0.245444i
\(941\) −8.15425 + 9.71786i −0.265821 + 0.316793i −0.882400 0.470500i \(-0.844074\pi\)
0.616579 + 0.787293i \(0.288518\pi\)
\(942\) 0 0
\(943\) 18.8775 32.6969i 0.614737 1.06476i
\(944\) 11.1679 + 27.8608i 0.363485 + 0.906792i
\(945\) 0 0
\(946\) −19.6271 12.2830i −0.638131 0.399356i
\(947\) 17.5275 48.1565i 0.569569 1.56488i −0.235612 0.971847i \(-0.575709\pi\)
0.805180 0.593030i \(-0.202068\pi\)
\(948\) 0 0
\(949\) 23.5626i 0.764873i
\(950\) −45.5499 56.6706i −1.47783 1.83864i
\(951\) 0 0
\(952\) −24.9407 12.2278i −0.808333 0.396306i
\(953\) −2.10699 + 5.78891i −0.0682522 + 0.187521i −0.969129 0.246553i \(-0.920702\pi\)
0.900877 + 0.434074i \(0.142924\pi\)
\(954\) 0 0
\(955\) −31.3660 + 5.53067i −1.01498 + 0.178968i
\(956\) −4.90758 + 10.9821i −0.158722 + 0.355188i
\(957\) 0 0
\(958\) 4.37737 + 31.3020i 0.141426 + 1.01132i
\(959\) −4.69992 + 5.60114i −0.151768 + 0.180870i
\(960\) 0 0
\(961\) 5.44439 + 9.42996i 0.175626 + 0.304192i
\(962\) −2.56966 3.29366i −0.0828492 0.106192i
\(963\) 0 0
\(964\) −19.5577 13.2308i −0.629911 0.426136i
\(965\) −22.7363 4.00903i −0.731908 0.129055i
\(966\) 0 0
\(967\) 4.44136 + 5.29300i 0.142824 + 0.170211i 0.832714 0.553703i \(-0.186786\pi\)
−0.689890 + 0.723914i \(0.742341\pi\)
\(968\) 4.28589 1.89767i 0.137754 0.0609935i
\(969\) 0 0
\(970\) −5.62586 2.27747i −0.180635 0.0731252i
\(971\) −37.1841 + 31.2011i −1.19329 + 1.00129i −0.193497 + 0.981101i \(0.561983\pi\)
−0.999796 + 0.0201908i \(0.993573\pi\)
\(972\) 0 0
\(973\) 3.26534 18.5187i 0.104682 0.593682i
\(974\) −31.3274 6.68125i −1.00379 0.214081i
\(975\) 0 0
\(976\) 6.76880 + 3.62283i 0.216664 + 0.115964i
\(977\) −45.9065 + 26.5041i −1.46868 + 0.847942i −0.999384 0.0351002i \(-0.988825\pi\)
−0.469294 + 0.883042i \(0.655492\pi\)
\(978\) 0 0
\(979\) 12.7287 + 10.6806i 0.406810 + 0.341354i
\(980\) −4.97156 + 19.8243i −0.158811 + 0.633263i
\(981\) 0 0
\(982\) −35.5487 1.26574i −1.13440 0.0403913i
\(983\) −3.45333 19.5848i −0.110144 0.624659i −0.989040 0.147646i \(-0.952830\pi\)
0.878896 0.477013i \(-0.158281\pi\)
\(984\) 0 0
\(985\) 84.8706 + 30.8904i 2.70420 + 0.984249i
\(986\) 35.3407 11.4562i 1.12548 0.364839i
\(987\) 0 0
\(988\) −19.6108 12.8565i −0.623903 0.409019i
\(989\) 30.2542 0.962027
\(990\) 0 0
\(991\) −13.1289 4.77853i −0.417053 0.151795i 0.124966 0.992161i \(-0.460118\pi\)
−0.542019 + 0.840366i \(0.682340\pi\)
\(992\) −12.7593 + 21.9262i −0.405108 + 0.696158i
\(993\) 0 0
\(994\) −16.0617 0.571888i −0.509445 0.0181392i
\(995\) 36.4651 + 21.0531i 1.15602 + 0.667430i
\(996\) 0 0
\(997\) −7.05984 5.92391i −0.223587 0.187612i 0.524112 0.851649i \(-0.324397\pi\)
−0.747700 + 0.664037i \(0.768842\pi\)
\(998\) −18.2374 34.3563i −0.577296 1.08753i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.cf.b.127.4 60
3.2 odd 2 228.2.w.b.127.7 yes 60
4.3 odd 2 684.2.cf.c.127.2 60
12.11 even 2 228.2.w.a.127.9 yes 60
19.3 odd 18 684.2.cf.c.307.2 60
57.41 even 18 228.2.w.a.79.9 60
76.3 even 18 inner 684.2.cf.b.307.4 60
228.155 odd 18 228.2.w.b.79.7 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.2.w.a.79.9 60 57.41 even 18
228.2.w.a.127.9 yes 60 12.11 even 2
228.2.w.b.79.7 yes 60 228.155 odd 18
228.2.w.b.127.7 yes 60 3.2 odd 2
684.2.cf.b.127.4 60 1.1 even 1 trivial
684.2.cf.b.307.4 60 76.3 even 18 inner
684.2.cf.c.127.2 60 4.3 odd 2
684.2.cf.c.307.2 60 19.3 odd 18