Properties

Label 684.2.cf.b.127.10
Level $684$
Weight $2$
Character 684.127
Analytic conductor $5.462$
Analytic rank $0$
Dimension $60$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [684,2,Mod(91,684)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(684, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 0, 11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("684.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.cf (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 228)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 127.10
Character \(\chi\) \(=\) 684.127
Dual form 684.2.cf.b.307.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.37514 + 0.330144i) q^{2} +(1.78201 + 0.907986i) q^{4} +(-0.432248 - 2.45140i) q^{5} +(-1.95860 - 1.13080i) q^{7} +(2.15074 + 1.83693i) q^{8} +(0.214913 - 3.51371i) q^{10} +(3.50932 - 2.02611i) q^{11} +(-0.674540 - 1.85328i) q^{13} +(-2.32002 - 2.20162i) q^{14} +(2.35112 + 3.23608i) q^{16} +(4.59329 - 3.85423i) q^{17} +(-1.31039 + 4.15727i) q^{19} +(1.45557 - 4.76089i) q^{20} +(5.49471 - 1.62760i) q^{22} +(-2.40556 - 0.424166i) q^{23} +(-1.12405 + 0.409121i) q^{25} +(-0.315736 - 2.77122i) q^{26} +(-2.46349 - 3.79347i) q^{28} +(6.27599 - 7.47944i) q^{29} +(-2.39881 + 4.15486i) q^{31} +(2.16474 + 5.22627i) q^{32} +(7.58886 - 3.78365i) q^{34} +(-1.92543 + 5.29009i) q^{35} -1.46248i q^{37} +(-3.17447 + 5.28420i) q^{38} +(3.57338 - 6.06634i) q^{40} +(-3.98615 + 10.9519i) q^{41} +(-1.50372 + 0.265146i) q^{43} +(8.09332 - 0.424128i) q^{44} +(-3.16795 - 1.37747i) q^{46} +(-0.929224 + 1.10741i) q^{47} +(-0.942596 - 1.63262i) q^{49} +(-1.68079 + 0.191500i) q^{50} +(0.480719 - 3.91504i) q^{52} +(-2.26529 - 0.399432i) q^{53} +(-6.48369 - 7.72696i) q^{55} +(-2.13525 - 6.02986i) q^{56} +(11.0996 - 8.21328i) q^{58} +(-8.73918 + 7.33304i) q^{59} +(-1.80322 + 10.2266i) q^{61} +(-4.67039 + 4.92155i) q^{62} +(1.25140 + 7.90152i) q^{64} +(-4.25157 + 2.45464i) q^{65} +(8.48745 + 7.12181i) q^{67} +(11.6849 - 2.69763i) q^{68} +(-4.39423 + 6.63893i) q^{70} +(-1.05276 - 5.97051i) q^{71} +(-3.23920 - 1.17897i) q^{73} +(0.482829 - 2.01111i) q^{74} +(-6.10988 + 6.21847i) q^{76} -9.16447 q^{77} +(5.12059 + 1.86374i) q^{79} +(6.91666 - 7.16232i) q^{80} +(-9.09719 + 13.7443i) q^{82} +(6.35421 + 3.66861i) q^{83} +(-11.4337 - 9.59400i) q^{85} +(-2.15536 - 0.131830i) q^{86} +(11.2695 + 2.08873i) q^{88} +(4.28998 + 11.7866i) q^{89} +(-0.774535 + 4.39260i) q^{91} +(-3.90160 - 2.94009i) q^{92} +(-1.64342 + 1.21606i) q^{94} +(10.7575 + 1.41532i) q^{95} +(-3.13752 - 3.73916i) q^{97} +(-0.757199 - 2.55628i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 3 q^{2} - 3 q^{4} + 3 q^{8} - 6 q^{10} - 6 q^{13} + 9 q^{14} + 21 q^{16} + 18 q^{19} - 30 q^{20} - 12 q^{22} - 18 q^{28} - 12 q^{31} - 33 q^{32} - 15 q^{34} + 84 q^{38} - 87 q^{40} + 12 q^{41} - 18 q^{43}+ \cdots + 105 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.37514 + 0.330144i 0.972370 + 0.233447i
\(3\) 0 0
\(4\) 1.78201 + 0.907986i 0.891005 + 0.453993i
\(5\) −0.432248 2.45140i −0.193307 1.09630i −0.914809 0.403886i \(-0.867659\pi\)
0.721502 0.692412i \(-0.243452\pi\)
\(6\) 0 0
\(7\) −1.95860 1.13080i −0.740280 0.427401i 0.0818908 0.996641i \(-0.473904\pi\)
−0.822171 + 0.569240i \(0.807237\pi\)
\(8\) 2.15074 + 1.83693i 0.760403 + 0.649452i
\(9\) 0 0
\(10\) 0.214913 3.51371i 0.0679616 1.11113i
\(11\) 3.50932 2.02611i 1.05810 0.610894i 0.133194 0.991090i \(-0.457477\pi\)
0.924906 + 0.380196i \(0.124143\pi\)
\(12\) 0 0
\(13\) −0.674540 1.85328i −0.187084 0.514008i 0.810323 0.585984i \(-0.199292\pi\)
−0.997406 + 0.0719757i \(0.977070\pi\)
\(14\) −2.32002 2.20162i −0.620051 0.588408i
\(15\) 0 0
\(16\) 2.35112 + 3.23608i 0.587780 + 0.809021i
\(17\) 4.59329 3.85423i 1.11404 0.934788i 0.115749 0.993279i \(-0.463073\pi\)
0.998288 + 0.0584910i \(0.0186289\pi\)
\(18\) 0 0
\(19\) −1.31039 + 4.15727i −0.300625 + 0.953743i
\(20\) 1.45557 4.76089i 0.325475 1.06457i
\(21\) 0 0
\(22\) 5.49471 1.62760i 1.17148 0.347005i
\(23\) −2.40556 0.424166i −0.501595 0.0884447i −0.0828746 0.996560i \(-0.526410\pi\)
−0.418720 + 0.908115i \(0.637521\pi\)
\(24\) 0 0
\(25\) −1.12405 + 0.409121i −0.224810 + 0.0818242i
\(26\) −0.315736 2.77122i −0.0619209 0.543480i
\(27\) 0 0
\(28\) −2.46349 3.79347i −0.465556 0.716899i
\(29\) 6.27599 7.47944i 1.16542 1.38890i 0.259346 0.965785i \(-0.416493\pi\)
0.906077 0.423112i \(-0.139062\pi\)
\(30\) 0 0
\(31\) −2.39881 + 4.15486i −0.430839 + 0.746235i −0.996946 0.0780971i \(-0.975116\pi\)
0.566107 + 0.824332i \(0.308449\pi\)
\(32\) 2.16474 + 5.22627i 0.382676 + 0.923882i
\(33\) 0 0
\(34\) 7.58886 3.78365i 1.30148 0.648891i
\(35\) −1.92543 + 5.29009i −0.325458 + 0.894188i
\(36\) 0 0
\(37\) 1.46248i 0.240430i −0.992748 0.120215i \(-0.961642\pi\)
0.992748 0.120215i \(-0.0383584\pi\)
\(38\) −3.17447 + 5.28420i −0.514966 + 0.857210i
\(39\) 0 0
\(40\) 3.57338 6.06634i 0.565002 0.959172i
\(41\) −3.98615 + 10.9519i −0.622532 + 1.71039i 0.0781722 + 0.996940i \(0.475092\pi\)
−0.700704 + 0.713452i \(0.747131\pi\)
\(42\) 0 0
\(43\) −1.50372 + 0.265146i −0.229315 + 0.0404344i −0.287125 0.957893i \(-0.592699\pi\)
0.0578099 + 0.998328i \(0.481588\pi\)
\(44\) 8.09332 0.424128i 1.22011 0.0639397i
\(45\) 0 0
\(46\) −3.16795 1.37747i −0.467088 0.203097i
\(47\) −0.929224 + 1.10741i −0.135541 + 0.161532i −0.829546 0.558439i \(-0.811400\pi\)
0.694004 + 0.719971i \(0.255845\pi\)
\(48\) 0 0
\(49\) −0.942596 1.63262i −0.134657 0.233232i
\(50\) −1.68079 + 0.191500i −0.237700 + 0.0270821i
\(51\) 0 0
\(52\) 0.480719 3.91504i 0.0666637 0.542919i
\(53\) −2.26529 0.399432i −0.311162 0.0548662i 0.0158867 0.999874i \(-0.494943\pi\)
−0.327048 + 0.945008i \(0.606054\pi\)
\(54\) 0 0
\(55\) −6.48369 7.72696i −0.874261 1.04190i
\(56\) −2.13525 6.02986i −0.285335 0.805773i
\(57\) 0 0
\(58\) 11.0996 8.21328i 1.45746 1.07846i
\(59\) −8.73918 + 7.33304i −1.13774 + 0.954681i −0.999363 0.0356984i \(-0.988634\pi\)
−0.138381 + 0.990379i \(0.544190\pi\)
\(60\) 0 0
\(61\) −1.80322 + 10.2266i −0.230879 + 1.30938i 0.620241 + 0.784411i \(0.287035\pi\)
−0.851121 + 0.524970i \(0.824076\pi\)
\(62\) −4.67039 + 4.92155i −0.593141 + 0.625038i
\(63\) 0 0
\(64\) 1.25140 + 7.90152i 0.156425 + 0.987690i
\(65\) −4.25157 + 2.45464i −0.527342 + 0.304461i
\(66\) 0 0
\(67\) 8.48745 + 7.12181i 1.03691 + 0.870068i 0.991657 0.128908i \(-0.0411471\pi\)
0.0452501 + 0.998976i \(0.485592\pi\)
\(68\) 11.6849 2.69763i 1.41700 0.327136i
\(69\) 0 0
\(70\) −4.39423 + 6.63893i −0.525211 + 0.793504i
\(71\) −1.05276 5.97051i −0.124940 0.708569i −0.981344 0.192262i \(-0.938418\pi\)
0.856404 0.516307i \(-0.172694\pi\)
\(72\) 0 0
\(73\) −3.23920 1.17897i −0.379120 0.137988i 0.145429 0.989369i \(-0.453544\pi\)
−0.524549 + 0.851380i \(0.675766\pi\)
\(74\) 0.482829 2.01111i 0.0561277 0.233787i
\(75\) 0 0
\(76\) −6.10988 + 6.21847i −0.700851 + 0.713308i
\(77\) −9.16447 −1.04439
\(78\) 0 0
\(79\) 5.12059 + 1.86374i 0.576112 + 0.209688i 0.613610 0.789609i \(-0.289717\pi\)
−0.0374984 + 0.999297i \(0.511939\pi\)
\(80\) 6.91666 7.16232i 0.773306 0.800772i
\(81\) 0 0
\(82\) −9.09719 + 13.7443i −1.00462 + 1.51781i
\(83\) 6.35421 + 3.66861i 0.697466 + 0.402682i 0.806403 0.591367i \(-0.201411\pi\)
−0.108937 + 0.994049i \(0.534745\pi\)
\(84\) 0 0
\(85\) −11.4337 9.59400i −1.24016 1.04062i
\(86\) −2.15536 0.131830i −0.232418 0.0142156i
\(87\) 0 0
\(88\) 11.2695 + 2.08873i 1.20133 + 0.222659i
\(89\) 4.28998 + 11.7866i 0.454737 + 1.24938i 0.929355 + 0.369187i \(0.120364\pi\)
−0.474618 + 0.880192i \(0.657414\pi\)
\(90\) 0 0
\(91\) −0.774535 + 4.39260i −0.0811933 + 0.460470i
\(92\) −3.90160 2.94009i −0.406770 0.306525i
\(93\) 0 0
\(94\) −1.64342 + 1.21606i −0.169505 + 0.125427i
\(95\) 10.7575 + 1.41532i 1.10370 + 0.145209i
\(96\) 0 0
\(97\) −3.13752 3.73916i −0.318567 0.379654i 0.582868 0.812567i \(-0.301930\pi\)
−0.901436 + 0.432913i \(0.857486\pi\)
\(98\) −0.757199 2.55628i −0.0764886 0.258223i
\(99\) 0 0
\(100\) −2.37455 0.291565i −0.237455 0.0291565i
\(101\) −1.91216 + 0.695968i −0.190267 + 0.0692514i −0.435396 0.900239i \(-0.643392\pi\)
0.245130 + 0.969490i \(0.421169\pi\)
\(102\) 0 0
\(103\) 0.520359 + 0.901288i 0.0512725 + 0.0888065i 0.890523 0.454939i \(-0.150339\pi\)
−0.839250 + 0.543746i \(0.817006\pi\)
\(104\) 1.95358 5.22502i 0.191564 0.512355i
\(105\) 0 0
\(106\) −2.98322 1.29715i −0.289756 0.125990i
\(107\) 1.97600 3.42253i 0.191027 0.330868i −0.754564 0.656227i \(-0.772152\pi\)
0.945591 + 0.325358i \(0.105485\pi\)
\(108\) 0 0
\(109\) 13.0850 2.30724i 1.25331 0.220993i 0.492701 0.870198i \(-0.336009\pi\)
0.760613 + 0.649205i \(0.224898\pi\)
\(110\) −6.36496 12.7662i −0.606875 1.21721i
\(111\) 0 0
\(112\) −0.945549 8.99683i −0.0893459 0.850120i
\(113\) 7.56376i 0.711539i −0.934574 0.355770i \(-0.884219\pi\)
0.934574 0.355770i \(-0.115781\pi\)
\(114\) 0 0
\(115\) 6.08034i 0.566995i
\(116\) 17.9751 7.62992i 1.66895 0.708420i
\(117\) 0 0
\(118\) −14.4385 + 7.19876i −1.32917 + 0.662700i
\(119\) −13.3548 + 2.35480i −1.22423 + 0.215865i
\(120\) 0 0
\(121\) 2.71022 4.69424i 0.246384 0.426749i
\(122\) −5.85593 + 13.4677i −0.530171 + 1.21930i
\(123\) 0 0
\(124\) −8.04726 + 5.22592i −0.722665 + 0.469301i
\(125\) −4.73425 8.19996i −0.423444 0.733427i
\(126\) 0 0
\(127\) −11.6296 + 4.23284i −1.03196 + 0.375604i −0.801828 0.597554i \(-0.796139\pi\)
−0.230136 + 0.973159i \(0.573917\pi\)
\(128\) −0.887785 + 11.2788i −0.0784698 + 0.996916i
\(129\) 0 0
\(130\) −6.65688 + 1.97185i −0.583847 + 0.172942i
\(131\) −11.1257 13.2590i −0.972054 1.15845i −0.987348 0.158566i \(-0.949313\pi\)
0.0152947 0.999883i \(-0.495131\pi\)
\(132\) 0 0
\(133\) 7.26756 6.66063i 0.630177 0.577550i
\(134\) 9.32019 + 12.5956i 0.805142 + 1.08809i
\(135\) 0 0
\(136\) 16.9589 + 0.148077i 1.45422 + 0.0126975i
\(137\) −0.619278 + 3.51210i −0.0529085 + 0.300059i −0.999767 0.0215919i \(-0.993127\pi\)
0.946858 + 0.321651i \(0.104238\pi\)
\(138\) 0 0
\(139\) 2.32823 + 6.39676i 0.197478 + 0.542566i 0.998421 0.0561742i \(-0.0178902\pi\)
−0.800943 + 0.598741i \(0.795668\pi\)
\(140\) −8.23447 + 7.67872i −0.695940 + 0.648970i
\(141\) 0 0
\(142\) 0.523433 8.55784i 0.0439255 0.718158i
\(143\) −6.12213 5.13707i −0.511958 0.429584i
\(144\) 0 0
\(145\) −21.0479 12.1520i −1.74793 1.00917i
\(146\) −4.06512 2.69065i −0.336432 0.222680i
\(147\) 0 0
\(148\) 1.32791 2.60615i 0.109154 0.214225i
\(149\) −11.8357 4.30783i −0.969617 0.352912i −0.191822 0.981430i \(-0.561440\pi\)
−0.777795 + 0.628518i \(0.783662\pi\)
\(150\) 0 0
\(151\) −16.1180 −1.31166 −0.655830 0.754908i \(-0.727681\pi\)
−0.655830 + 0.754908i \(0.727681\pi\)
\(152\) −10.4549 + 6.53412i −0.848005 + 0.529988i
\(153\) 0 0
\(154\) −12.6024 3.02559i −1.01553 0.243809i
\(155\) 11.2221 + 4.08451i 0.901380 + 0.328076i
\(156\) 0 0
\(157\) 3.72999 + 21.1538i 0.297686 + 1.68826i 0.656081 + 0.754690i \(0.272213\pi\)
−0.358396 + 0.933570i \(0.616676\pi\)
\(158\) 6.42622 + 4.25344i 0.511243 + 0.338385i
\(159\) 0 0
\(160\) 11.8760 7.56569i 0.938877 0.598120i
\(161\) 4.23189 + 3.55098i 0.333519 + 0.279856i
\(162\) 0 0
\(163\) 15.0288 8.67686i 1.17714 0.679624i 0.221792 0.975094i \(-0.428810\pi\)
0.955352 + 0.295470i \(0.0954762\pi\)
\(164\) −17.0475 + 15.8969i −1.33119 + 1.24134i
\(165\) 0 0
\(166\) 7.52675 + 7.14265i 0.584189 + 0.554377i
\(167\) −0.162857 + 0.923607i −0.0126022 + 0.0714709i −0.990460 0.137798i \(-0.955997\pi\)
0.977858 + 0.209269i \(0.0671085\pi\)
\(168\) 0 0
\(169\) 6.97892 5.85601i 0.536840 0.450462i
\(170\) −12.5555 16.9678i −0.962963 1.30137i
\(171\) 0 0
\(172\) −2.92039 0.892862i −0.222678 0.0680801i
\(173\) 7.00083 + 8.34327i 0.532264 + 0.634327i 0.963435 0.267943i \(-0.0863439\pi\)
−0.431171 + 0.902270i \(0.641900\pi\)
\(174\) 0 0
\(175\) 2.66420 + 0.469770i 0.201394 + 0.0355113i
\(176\) 14.8075 + 6.59283i 1.11616 + 0.496953i
\(177\) 0 0
\(178\) 2.00804 + 17.6245i 0.150509 + 1.32102i
\(179\) 11.1484 + 19.3096i 0.833271 + 1.44327i 0.895431 + 0.445201i \(0.146868\pi\)
−0.0621601 + 0.998066i \(0.519799\pi\)
\(180\) 0 0
\(181\) −13.8765 + 16.5374i −1.03143 + 1.22922i −0.0584634 + 0.998290i \(0.518620\pi\)
−0.972971 + 0.230926i \(0.925824\pi\)
\(182\) −2.51528 + 5.78473i −0.186445 + 0.428793i
\(183\) 0 0
\(184\) −4.39459 5.33112i −0.323974 0.393015i
\(185\) −3.58512 + 0.632154i −0.263583 + 0.0464769i
\(186\) 0 0
\(187\) 8.31025 22.8322i 0.607706 1.66966i
\(188\) −2.66140 + 1.12969i −0.194102 + 0.0823909i
\(189\) 0 0
\(190\) 14.3258 + 5.49780i 1.03931 + 0.398852i
\(191\) 7.01677i 0.507716i −0.967242 0.253858i \(-0.918300\pi\)
0.967242 0.253858i \(-0.0816996\pi\)
\(192\) 0 0
\(193\) −1.55617 + 4.27555i −0.112016 + 0.307761i −0.983015 0.183523i \(-0.941250\pi\)
0.871000 + 0.491284i \(0.163472\pi\)
\(194\) −3.08007 6.17769i −0.221136 0.443532i
\(195\) 0 0
\(196\) −0.197315 3.76522i −0.0140939 0.268944i
\(197\) 5.76009 9.97676i 0.410389 0.710815i −0.584543 0.811363i \(-0.698726\pi\)
0.994932 + 0.100548i \(0.0320595\pi\)
\(198\) 0 0
\(199\) 10.6595 12.7035i 0.755633 0.900528i −0.241931 0.970294i \(-0.577781\pi\)
0.997563 + 0.0697654i \(0.0222251\pi\)
\(200\) −3.16907 1.18488i −0.224087 0.0837839i
\(201\) 0 0
\(202\) −2.85925 + 0.325766i −0.201176 + 0.0229208i
\(203\) −20.7499 + 7.55234i −1.45636 + 0.530070i
\(204\) 0 0
\(205\) 28.5704 + 5.03772i 1.99544 + 0.351850i
\(206\) 0.418011 + 1.41119i 0.0291242 + 0.0983221i
\(207\) 0 0
\(208\) 4.41145 6.54016i 0.305879 0.453478i
\(209\) 3.82448 + 17.2442i 0.264545 + 1.19280i
\(210\) 0 0
\(211\) −13.2623 + 11.1284i −0.913013 + 0.766109i −0.972690 0.232109i \(-0.925437\pi\)
0.0596769 + 0.998218i \(0.480993\pi\)
\(212\) −3.67409 2.76865i −0.252338 0.190151i
\(213\) 0 0
\(214\) 3.84720 4.05409i 0.262989 0.277132i
\(215\) 1.29996 + 3.57160i 0.0886563 + 0.243581i
\(216\) 0 0
\(217\) 9.39661 5.42513i 0.637883 0.368282i
\(218\) 18.7554 + 1.14716i 1.27028 + 0.0776953i
\(219\) 0 0
\(220\) −4.53803 19.6566i −0.305954 1.32525i
\(221\) −10.2413 5.91284i −0.688907 0.397740i
\(222\) 0 0
\(223\) −1.26802 7.19130i −0.0849129 0.481565i −0.997375 0.0724046i \(-0.976933\pi\)
0.912462 0.409161i \(-0.134178\pi\)
\(224\) 1.66999 12.6840i 0.111581 0.847488i
\(225\) 0 0
\(226\) 2.49713 10.4012i 0.166107 0.691879i
\(227\) 22.5097 1.49402 0.747009 0.664814i \(-0.231489\pi\)
0.747009 + 0.664814i \(0.231489\pi\)
\(228\) 0 0
\(229\) −19.8331 −1.31061 −0.655303 0.755366i \(-0.727459\pi\)
−0.655303 + 0.755366i \(0.727459\pi\)
\(230\) −2.00739 + 8.36131i −0.132363 + 0.551328i
\(231\) 0 0
\(232\) 27.2372 4.55782i 1.78821 0.299236i
\(233\) −0.592771 3.36177i −0.0388337 0.220237i 0.959215 0.282678i \(-0.0912227\pi\)
−0.998049 + 0.0624407i \(0.980112\pi\)
\(234\) 0 0
\(235\) 3.11635 + 1.79922i 0.203288 + 0.117368i
\(236\) −22.2316 + 5.13250i −1.44715 + 0.334097i
\(237\) 0 0
\(238\) −19.1421 1.17081i −1.24080 0.0758922i
\(239\) 9.19023 5.30598i 0.594467 0.343215i −0.172395 0.985028i \(-0.555151\pi\)
0.766862 + 0.641812i \(0.221817\pi\)
\(240\) 0 0
\(241\) 2.64845 + 7.27656i 0.170602 + 0.468725i 0.995299 0.0968500i \(-0.0308767\pi\)
−0.824697 + 0.565574i \(0.808654\pi\)
\(242\) 5.27670 5.56047i 0.339199 0.357440i
\(243\) 0 0
\(244\) −12.4990 + 16.5866i −0.800165 + 1.06185i
\(245\) −3.59478 + 3.01637i −0.229662 + 0.192709i
\(246\) 0 0
\(247\) 8.58851 0.375715i 0.546474 0.0239061i
\(248\) −12.7914 + 4.52960i −0.812254 + 0.287630i
\(249\) 0 0
\(250\) −3.80308 12.8391i −0.240528 0.812014i
\(251\) 4.52615 + 0.798083i 0.285688 + 0.0503745i 0.314656 0.949206i \(-0.398111\pi\)
−0.0289677 + 0.999580i \(0.509222\pi\)
\(252\) 0 0
\(253\) −9.30130 + 3.38540i −0.584768 + 0.212838i
\(254\) −17.3898 + 1.98129i −1.09113 + 0.124317i
\(255\) 0 0
\(256\) −4.94446 + 15.2168i −0.309029 + 0.951053i
\(257\) 18.5753 22.1372i 1.15869 1.38088i 0.247508 0.968886i \(-0.420388\pi\)
0.911187 0.411993i \(-0.135167\pi\)
\(258\) 0 0
\(259\) −1.65377 + 2.86441i −0.102760 + 0.177986i
\(260\) −9.80512 + 0.513834i −0.608088 + 0.0318666i
\(261\) 0 0
\(262\) −10.9219 21.9061i −0.674759 1.35336i
\(263\) 5.38375 14.7917i 0.331976 0.912097i −0.655622 0.755090i \(-0.727593\pi\)
0.987598 0.157007i \(-0.0501845\pi\)
\(264\) 0 0
\(265\) 5.72578i 0.351732i
\(266\) 12.1929 6.75995i 0.747592 0.414479i
\(267\) 0 0
\(268\) 8.65821 + 20.3976i 0.528884 + 1.24598i
\(269\) −0.00677455 + 0.0186129i −0.000413051 + 0.00113485i −0.939899 0.341453i \(-0.889081\pi\)
0.939486 + 0.342588i \(0.111303\pi\)
\(270\) 0 0
\(271\) 15.6646 2.76209i 0.951556 0.167785i 0.323739 0.946146i \(-0.395060\pi\)
0.627817 + 0.778361i \(0.283949\pi\)
\(272\) 23.2720 + 5.80251i 1.41107 + 0.351829i
\(273\) 0 0
\(274\) −2.01109 + 4.62517i −0.121494 + 0.279417i
\(275\) −3.11573 + 3.71318i −0.187886 + 0.223913i
\(276\) 0 0
\(277\) 9.76647 + 16.9160i 0.586810 + 1.01639i 0.994647 + 0.103330i \(0.0329499\pi\)
−0.407837 + 0.913055i \(0.633717\pi\)
\(278\) 1.08979 + 9.56509i 0.0653612 + 0.573676i
\(279\) 0 0
\(280\) −13.8586 + 7.84074i −0.828211 + 0.468574i
\(281\) −19.9458 3.51698i −1.18987 0.209805i −0.456552 0.889697i \(-0.650916\pi\)
−0.733313 + 0.679891i \(0.762027\pi\)
\(282\) 0 0
\(283\) −16.4205 19.5692i −0.976098 1.16327i −0.986573 0.163323i \(-0.947779\pi\)
0.0104743 0.999945i \(-0.496666\pi\)
\(284\) 3.54511 11.5954i 0.210364 0.688060i
\(285\) 0 0
\(286\) −6.72280 9.08537i −0.397527 0.537229i
\(287\) 20.1916 16.9428i 1.19187 1.00010i
\(288\) 0 0
\(289\) 3.29122 18.6654i 0.193601 1.09797i
\(290\) −24.9318 23.6595i −1.46405 1.38933i
\(291\) 0 0
\(292\) −4.70180 5.04210i −0.275152 0.295066i
\(293\) 19.0136 10.9775i 1.11078 0.641312i 0.171752 0.985140i \(-0.445057\pi\)
0.939032 + 0.343829i \(0.111724\pi\)
\(294\) 0 0
\(295\) 21.7537 + 18.2535i 1.26655 + 1.06276i
\(296\) 2.68647 3.14542i 0.156148 0.182824i
\(297\) 0 0
\(298\) −14.8535 9.83134i −0.860440 0.569514i
\(299\) 0.836550 + 4.74431i 0.0483789 + 0.274370i
\(300\) 0 0
\(301\) 3.24500 + 1.18108i 0.187039 + 0.0680766i
\(302\) −22.1644 5.32124i −1.27542 0.306203i
\(303\) 0 0
\(304\) −16.5342 + 5.53370i −0.948299 + 0.317380i
\(305\) 25.8489 1.48010
\(306\) 0 0
\(307\) −25.5611 9.30349i −1.45885 0.530978i −0.513802 0.857909i \(-0.671763\pi\)
−0.945048 + 0.326931i \(0.893986\pi\)
\(308\) −16.3312 8.32121i −0.930555 0.474145i
\(309\) 0 0
\(310\) 14.0835 + 9.32167i 0.799886 + 0.529435i
\(311\) −6.39367 3.69139i −0.362552 0.209319i 0.307648 0.951500i \(-0.400458\pi\)
−0.670199 + 0.742181i \(0.733791\pi\)
\(312\) 0 0
\(313\) 20.4596 + 17.1676i 1.15644 + 0.970371i 0.999850 0.0172922i \(-0.00550456\pi\)
0.156593 + 0.987663i \(0.449949\pi\)
\(314\) −1.85455 + 30.3209i −0.104658 + 1.71111i
\(315\) 0 0
\(316\) 7.43270 + 7.97064i 0.418122 + 0.448383i
\(317\) 3.01956 + 8.29617i 0.169595 + 0.465959i 0.995151 0.0983617i \(-0.0313602\pi\)
−0.825555 + 0.564321i \(0.809138\pi\)
\(318\) 0 0
\(319\) 6.87033 38.9636i 0.384665 2.18154i
\(320\) 18.8288 6.48310i 1.05256 0.362416i
\(321\) 0 0
\(322\) 4.64710 + 6.28021i 0.258973 + 0.349983i
\(323\) 10.0040 + 24.1461i 0.556640 + 1.34352i
\(324\) 0 0
\(325\) 1.51643 + 1.80722i 0.0841166 + 0.100246i
\(326\) 23.5312 6.97023i 1.30327 0.386045i
\(327\) 0 0
\(328\) −28.6909 + 16.2324i −1.58419 + 0.896283i
\(329\) 3.07223 1.11820i 0.169377 0.0616484i
\(330\) 0 0
\(331\) 11.7362 + 20.3277i 0.645081 + 1.11731i 0.984283 + 0.176600i \(0.0565098\pi\)
−0.339201 + 0.940714i \(0.610157\pi\)
\(332\) 7.99223 + 12.3070i 0.438631 + 0.675436i
\(333\) 0 0
\(334\) −0.528874 + 1.21632i −0.0289387 + 0.0665541i
\(335\) 13.7897 23.8845i 0.753413 1.30495i
\(336\) 0 0
\(337\) 4.11975 0.726423i 0.224417 0.0395708i −0.0603088 0.998180i \(-0.519209\pi\)
0.284726 + 0.958609i \(0.408097\pi\)
\(338\) 11.5303 5.74878i 0.627166 0.312692i
\(339\) 0 0
\(340\) −11.6637 27.4782i −0.632554 1.49022i
\(341\) 19.4410i 1.05279i
\(342\) 0 0
\(343\) 20.0947i 1.08501i
\(344\) −3.72116 2.19196i −0.200632 0.118182i
\(345\) 0 0
\(346\) 6.87264 + 13.7844i 0.369475 + 0.741055i
\(347\) −28.3131 + 4.99237i −1.51993 + 0.268005i −0.870405 0.492336i \(-0.836143\pi\)
−0.649524 + 0.760341i \(0.725032\pi\)
\(348\) 0 0
\(349\) 8.81928 15.2754i 0.472085 0.817676i −0.527404 0.849614i \(-0.676835\pi\)
0.999490 + 0.0319385i \(0.0101681\pi\)
\(350\) 3.50855 + 1.52557i 0.187540 + 0.0815449i
\(351\) 0 0
\(352\) 18.1858 + 13.9546i 0.969304 + 0.743785i
\(353\) 6.17019 + 10.6871i 0.328406 + 0.568816i 0.982196 0.187861i \(-0.0601553\pi\)
−0.653790 + 0.756676i \(0.726822\pi\)
\(354\) 0 0
\(355\) −14.1810 + 5.16148i −0.752651 + 0.273943i
\(356\) −3.05731 + 24.8991i −0.162037 + 1.31965i
\(357\) 0 0
\(358\) 8.95565 + 30.2339i 0.473321 + 1.59791i
\(359\) −16.2599 19.3778i −0.858166 1.02272i −0.999463 0.0327557i \(-0.989572\pi\)
0.141297 0.989967i \(-0.454873\pi\)
\(360\) 0 0
\(361\) −15.5657 10.8953i −0.819250 0.573437i
\(362\) −24.5419 + 18.1600i −1.28989 + 0.954467i
\(363\) 0 0
\(364\) −5.36865 + 7.12440i −0.281394 + 0.373420i
\(365\) −1.49000 + 8.45019i −0.0779899 + 0.442303i
\(366\) 0 0
\(367\) −10.2694 28.2149i −0.536058 1.47281i −0.851751 0.523946i \(-0.824459\pi\)
0.315693 0.948861i \(-0.397763\pi\)
\(368\) −4.28314 8.78187i −0.223274 0.457787i
\(369\) 0 0
\(370\) −5.13874 0.314307i −0.267150 0.0163400i
\(371\) 3.98512 + 3.34391i 0.206897 + 0.173607i
\(372\) 0 0
\(373\) 10.3596 + 5.98112i 0.536400 + 0.309690i 0.743618 0.668604i \(-0.233108\pi\)
−0.207219 + 0.978295i \(0.566441\pi\)
\(374\) 18.9657 28.6539i 0.980691 1.48166i
\(375\) 0 0
\(376\) −4.03275 + 0.674832i −0.207973 + 0.0348018i
\(377\) −18.0949 6.58601i −0.931936 0.339197i
\(378\) 0 0
\(379\) −4.07439 −0.209287 −0.104644 0.994510i \(-0.533370\pi\)
−0.104644 + 0.994510i \(0.533370\pi\)
\(380\) 17.8849 + 12.2898i 0.917478 + 0.630454i
\(381\) 0 0
\(382\) 2.31654 9.64903i 0.118525 0.493687i
\(383\) −25.4516 9.26361i −1.30051 0.473348i −0.403350 0.915046i \(-0.632154\pi\)
−0.897164 + 0.441697i \(0.854376\pi\)
\(384\) 0 0
\(385\) 3.96132 + 22.4658i 0.201887 + 1.14496i
\(386\) −3.55150 + 5.36571i −0.180766 + 0.273107i
\(387\) 0 0
\(388\) −2.19600 9.51204i −0.111485 0.482901i
\(389\) 15.4284 + 12.9460i 0.782250 + 0.656386i 0.943814 0.330476i \(-0.107209\pi\)
−0.161564 + 0.986862i \(0.551654\pi\)
\(390\) 0 0
\(391\) −12.6843 + 7.32328i −0.641472 + 0.370354i
\(392\) 0.971727 5.24284i 0.0490796 0.264803i
\(393\) 0 0
\(394\) 11.2147 11.8178i 0.564987 0.595371i
\(395\) 2.35541 13.3582i 0.118514 0.672124i
\(396\) 0 0
\(397\) −18.8533 + 15.8198i −0.946219 + 0.793972i −0.978657 0.205502i \(-0.934117\pi\)
0.0324379 + 0.999474i \(0.489673\pi\)
\(398\) 18.8523 13.9499i 0.944980 0.699246i
\(399\) 0 0
\(400\) −3.96673 2.67563i −0.198336 0.133781i
\(401\) 0.321043 + 0.382604i 0.0160321 + 0.0191063i 0.774001 0.633184i \(-0.218253\pi\)
−0.757969 + 0.652291i \(0.773808\pi\)
\(402\) 0 0
\(403\) 9.31822 + 1.64305i 0.464174 + 0.0818464i
\(404\) −4.03941 0.495990i −0.200968 0.0246764i
\(405\) 0 0
\(406\) −31.0273 + 3.53507i −1.53986 + 0.175442i
\(407\) −2.96314 5.13231i −0.146877 0.254399i
\(408\) 0 0
\(409\) 19.0013 22.6449i 0.939555 1.11972i −0.0530814 0.998590i \(-0.516904\pi\)
0.992637 0.121128i \(-0.0386513\pi\)
\(410\) 37.6250 + 16.3599i 1.85817 + 0.807957i
\(411\) 0 0
\(412\) 0.108927 + 2.07858i 0.00536647 + 0.102404i
\(413\) 25.4087 4.48024i 1.25028 0.220458i
\(414\) 0 0
\(415\) 6.24662 17.1625i 0.306635 0.842472i
\(416\) 8.22555 7.53721i 0.403291 0.369542i
\(417\) 0 0
\(418\) −0.433866 + 24.9758i −0.0212211 + 1.22160i
\(419\) 1.30584i 0.0637944i 0.999491 + 0.0318972i \(0.0101549\pi\)
−0.999491 + 0.0318972i \(0.989845\pi\)
\(420\) 0 0
\(421\) −3.72752 + 10.2413i −0.181668 + 0.499129i −0.996781 0.0801730i \(-0.974453\pi\)
0.815113 + 0.579302i \(0.196675\pi\)
\(422\) −21.9114 + 10.9246i −1.06663 + 0.531801i
\(423\) 0 0
\(424\) −4.13834 5.02025i −0.200975 0.243805i
\(425\) −3.58625 + 6.21156i −0.173958 + 0.301305i
\(426\) 0 0
\(427\) 15.0960 17.9907i 0.730546 0.870631i
\(428\) 6.62886 4.30480i 0.320418 0.208081i
\(429\) 0 0
\(430\) 0.608478 + 5.34062i 0.0293434 + 0.257547i
\(431\) −2.24231 + 0.816132i −0.108008 + 0.0393117i −0.395459 0.918484i \(-0.629414\pi\)
0.287451 + 0.957795i \(0.407192\pi\)
\(432\) 0 0
\(433\) 2.57802 + 0.454574i 0.123892 + 0.0218454i 0.235250 0.971935i \(-0.424409\pi\)
−0.111358 + 0.993780i \(0.535520\pi\)
\(434\) 14.7127 4.35808i 0.706232 0.209194i
\(435\) 0 0
\(436\) 25.4125 + 7.76947i 1.21704 + 0.372090i
\(437\) 4.91560 9.44475i 0.235145 0.451804i
\(438\) 0 0
\(439\) 23.4760 19.6987i 1.12045 0.940168i 0.121822 0.992552i \(-0.461126\pi\)
0.998627 + 0.0523836i \(0.0166819\pi\)
\(440\) 0.249099 28.5288i 0.0118753 1.36006i
\(441\) 0 0
\(442\) −12.1312 11.5121i −0.577021 0.547574i
\(443\) −7.62297 20.9440i −0.362178 0.995077i −0.978258 0.207393i \(-0.933502\pi\)
0.616079 0.787684i \(-0.288720\pi\)
\(444\) 0 0
\(445\) 27.0394 15.6112i 1.28179 0.740041i
\(446\) 0.630460 10.3077i 0.0298531 0.488082i
\(447\) 0 0
\(448\) 6.48402 16.8910i 0.306341 0.798024i
\(449\) −11.1844 6.45731i −0.527824 0.304739i 0.212306 0.977203i \(-0.431903\pi\)
−0.740130 + 0.672464i \(0.765236\pi\)
\(450\) 0 0
\(451\) 8.20095 + 46.5099i 0.386168 + 2.19007i
\(452\) 6.86780 13.4787i 0.323034 0.633985i
\(453\) 0 0
\(454\) 30.9539 + 7.43142i 1.45274 + 0.348774i
\(455\) 11.1028 0.520508
\(456\) 0 0
\(457\) 3.99249 0.186761 0.0933805 0.995630i \(-0.470233\pi\)
0.0933805 + 0.995630i \(0.470233\pi\)
\(458\) −27.2732 6.54776i −1.27439 0.305957i
\(459\) 0 0
\(460\) −5.52087 + 10.8352i −0.257412 + 0.505195i
\(461\) −1.62577 9.22018i −0.0757195 0.429427i −0.998976 0.0452425i \(-0.985594\pi\)
0.923257 0.384184i \(-0.125517\pi\)
\(462\) 0 0
\(463\) 9.62591 + 5.55752i 0.447354 + 0.258280i 0.706712 0.707501i \(-0.250178\pi\)
−0.259358 + 0.965781i \(0.583511\pi\)
\(464\) 38.9597 + 2.72457i 1.80866 + 0.126485i
\(465\) 0 0
\(466\) 0.294726 4.81860i 0.0136529 0.223217i
\(467\) −18.0455 + 10.4186i −0.835048 + 0.482115i −0.855578 0.517674i \(-0.826798\pi\)
0.0205298 + 0.999789i \(0.493465\pi\)
\(468\) 0 0
\(469\) −8.57017 23.5464i −0.395734 1.08727i
\(470\) 3.69141 + 3.50303i 0.170272 + 0.161583i
\(471\) 0 0
\(472\) −32.2660 0.281730i −1.48516 0.0129677i
\(473\) −4.73981 + 3.97717i −0.217937 + 0.182871i
\(474\) 0 0
\(475\) −0.227878 5.20909i −0.0104558 0.239009i
\(476\) −25.9364 7.92965i −1.18880 0.363455i
\(477\) 0 0
\(478\) 14.3896 4.26236i 0.658164 0.194956i
\(479\) 10.6190 + 1.87242i 0.485196 + 0.0855532i 0.410895 0.911683i \(-0.365216\pi\)
0.0743012 + 0.997236i \(0.476327\pi\)
\(480\) 0 0
\(481\) −2.71039 + 0.986501i −0.123583 + 0.0449806i
\(482\) 1.23968 + 10.8806i 0.0564657 + 0.495600i
\(483\) 0 0
\(484\) 9.09195 5.90434i 0.413270 0.268379i
\(485\) −7.80997 + 9.30756i −0.354633 + 0.422635i
\(486\) 0 0
\(487\) −7.31947 + 12.6777i −0.331677 + 0.574481i −0.982841 0.184456i \(-0.940948\pi\)
0.651164 + 0.758937i \(0.274281\pi\)
\(488\) −22.6638 + 18.6824i −1.02594 + 0.845712i
\(489\) 0 0
\(490\) −5.93915 + 2.96114i −0.268303 + 0.133771i
\(491\) −11.8169 + 32.4667i −0.533290 + 1.46520i 0.321844 + 0.946793i \(0.395697\pi\)
−0.855133 + 0.518408i \(0.826525\pi\)
\(492\) 0 0
\(493\) 58.5443i 2.63670i
\(494\) 11.9344 + 2.31878i 0.536955 + 0.104327i
\(495\) 0 0
\(496\) −19.0854 + 2.00583i −0.856958 + 0.0900646i
\(497\) −4.68950 + 12.8843i −0.210353 + 0.577939i
\(498\) 0 0
\(499\) −3.46259 + 0.610547i −0.155007 + 0.0273319i −0.250613 0.968087i \(-0.580632\pi\)
0.0956063 + 0.995419i \(0.469521\pi\)
\(500\) −0.991028 18.9111i −0.0443201 0.845728i
\(501\) 0 0
\(502\) 5.96060 + 2.59176i 0.266035 + 0.115676i
\(503\) −2.89245 + 3.44708i −0.128968 + 0.153698i −0.826664 0.562696i \(-0.809764\pi\)
0.697696 + 0.716394i \(0.254209\pi\)
\(504\) 0 0
\(505\) 2.53262 + 4.38662i 0.112700 + 0.195202i
\(506\) −13.9082 + 1.58462i −0.618297 + 0.0704451i
\(507\) 0 0
\(508\) −24.5675 3.01659i −1.09001 0.133839i
\(509\) 4.85022 + 0.855225i 0.214982 + 0.0379072i 0.280102 0.959970i \(-0.409632\pi\)
−0.0651195 + 0.997877i \(0.520743\pi\)
\(510\) 0 0
\(511\) 5.01112 + 5.97202i 0.221679 + 0.264187i
\(512\) −11.8231 + 19.2929i −0.522510 + 0.852633i
\(513\) 0 0
\(514\) 32.8520 24.3092i 1.44904 1.07223i
\(515\) 1.98449 1.66519i 0.0874471 0.0733768i
\(516\) 0 0
\(517\) −1.01722 + 5.76895i −0.0447374 + 0.253718i
\(518\) −3.21983 + 3.39298i −0.141471 + 0.149079i
\(519\) 0 0
\(520\) −13.6530 2.53050i −0.598725 0.110970i
\(521\) 10.5634 6.09880i 0.462793 0.267193i −0.250425 0.968136i \(-0.580570\pi\)
0.713218 + 0.700943i \(0.247237\pi\)
\(522\) 0 0
\(523\) −1.21616 1.02048i −0.0531791 0.0446226i 0.615811 0.787894i \(-0.288829\pi\)
−0.668990 + 0.743272i \(0.733273\pi\)
\(524\) −7.78701 33.7297i −0.340177 1.47349i
\(525\) 0 0
\(526\) 12.2868 18.5633i 0.535729 0.809396i
\(527\) 4.99535 + 28.3300i 0.217601 + 1.23408i
\(528\) 0 0
\(529\) −16.0061 5.82575i −0.695918 0.253293i
\(530\) −1.89033 + 7.87374i −0.0821108 + 0.342014i
\(531\) 0 0
\(532\) 18.9986 5.27046i 0.823695 0.228504i
\(533\) 22.9857 0.995621
\(534\) 0 0
\(535\) −9.24410 3.36458i −0.399657 0.145463i
\(536\) 5.17208 + 30.9080i 0.223400 + 1.33502i
\(537\) 0 0
\(538\) −0.0154609 + 0.0233588i −0.000666566 + 0.00100707i
\(539\) −6.61574 3.81960i −0.284960 0.164522i
\(540\) 0 0
\(541\) 10.6180 + 8.90954i 0.456502 + 0.383051i 0.841842 0.539724i \(-0.181471\pi\)
−0.385340 + 0.922775i \(0.625916\pi\)
\(542\) 22.4529 + 1.37331i 0.964433 + 0.0589887i
\(543\) 0 0
\(544\) 30.0865 + 15.6623i 1.28995 + 0.671518i
\(545\) −11.3119 31.0792i −0.484549 1.33129i
\(546\) 0 0
\(547\) 3.81045 21.6102i 0.162923 0.923984i −0.788257 0.615347i \(-0.789016\pi\)
0.951180 0.308637i \(-0.0998728\pi\)
\(548\) −4.29250 + 5.69630i −0.183366 + 0.243334i
\(549\) 0 0
\(550\) −5.51045 + 4.07750i −0.234966 + 0.173865i
\(551\) 22.8700 + 35.8920i 0.974295 + 1.52905i
\(552\) 0 0
\(553\) −7.92167 9.44068i −0.336864 0.401458i
\(554\) 7.84553 + 26.4862i 0.333325 + 1.12529i
\(555\) 0 0
\(556\) −1.65924 + 13.5131i −0.0703676 + 0.573083i
\(557\) −36.9095 + 13.4340i −1.56391 + 0.569216i −0.971627 0.236517i \(-0.923994\pi\)
−0.592280 + 0.805732i \(0.701772\pi\)
\(558\) 0 0
\(559\) 1.50571 + 2.60796i 0.0636846 + 0.110305i
\(560\) −21.6461 + 6.20677i −0.914714 + 0.262284i
\(561\) 0 0
\(562\) −26.2671 11.4213i −1.10801 0.481779i
\(563\) 8.94085 15.4860i 0.376812 0.652657i −0.613785 0.789474i \(-0.710354\pi\)
0.990596 + 0.136816i \(0.0436870\pi\)
\(564\) 0 0
\(565\) −18.5418 + 3.26942i −0.780059 + 0.137545i
\(566\) −16.1198 32.3315i −0.677567 1.35899i
\(567\) 0 0
\(568\) 8.70316 14.7749i 0.365177 0.619940i
\(569\) 9.37031i 0.392824i 0.980521 + 0.196412i \(0.0629290\pi\)
−0.980521 + 0.196412i \(0.937071\pi\)
\(570\) 0 0
\(571\) 4.40498i 0.184343i 0.995743 + 0.0921714i \(0.0293808\pi\)
−0.995743 + 0.0921714i \(0.970619\pi\)
\(572\) −6.24530 14.7131i −0.261129 0.615187i
\(573\) 0 0
\(574\) 33.3598 16.6325i 1.39241 0.694227i
\(575\) 2.87751 0.507383i 0.120001 0.0211593i
\(576\) 0 0
\(577\) −4.73531 + 8.20180i −0.197134 + 0.341445i −0.947598 0.319466i \(-0.896497\pi\)
0.750464 + 0.660911i \(0.229830\pi\)
\(578\) 10.6882 24.5810i 0.444569 1.02243i
\(579\) 0 0
\(580\) −26.4737 40.7661i −1.09926 1.69272i
\(581\) −8.29690 14.3707i −0.344213 0.596195i
\(582\) 0 0
\(583\) −8.75893 + 3.18799i −0.362758 + 0.132033i
\(584\) −4.80101 8.48585i −0.198667 0.351147i
\(585\) 0 0
\(586\) 29.7704 8.81835i 1.22980 0.364283i
\(587\) 11.9820 + 14.2796i 0.494549 + 0.589381i 0.954368 0.298632i \(-0.0965302\pi\)
−0.459819 + 0.888013i \(0.652086\pi\)
\(588\) 0 0
\(589\) −14.1295 15.4170i −0.582195 0.635246i
\(590\) 23.8880 + 32.2829i 0.983455 + 1.32907i
\(591\) 0 0
\(592\) 4.73271 3.43847i 0.194513 0.141320i
\(593\) −3.78045 + 21.4400i −0.155244 + 0.880435i 0.803318 + 0.595551i \(0.203066\pi\)
−0.958562 + 0.284884i \(0.908045\pi\)
\(594\) 0 0
\(595\) 11.5451 + 31.7200i 0.473304 + 1.30039i
\(596\) −17.1798 18.4232i −0.703714 0.754645i
\(597\) 0 0
\(598\) −0.415932 + 6.80026i −0.0170087 + 0.278083i
\(599\) −21.8252 18.3135i −0.891752 0.748269i 0.0768090 0.997046i \(-0.475527\pi\)
−0.968561 + 0.248777i \(0.919971\pi\)
\(600\) 0 0
\(601\) −14.9421 8.62681i −0.609500 0.351895i 0.163270 0.986581i \(-0.447796\pi\)
−0.772770 + 0.634686i \(0.781129\pi\)
\(602\) 4.07240 + 2.69547i 0.165979 + 0.109859i
\(603\) 0 0
\(604\) −28.7224 14.6349i −1.16870 0.595485i
\(605\) −12.6789 4.61476i −0.515472 0.187617i
\(606\) 0 0
\(607\) 26.6273 1.08077 0.540384 0.841418i \(-0.318279\pi\)
0.540384 + 0.841418i \(0.318279\pi\)
\(608\) −24.5637 + 2.15096i −0.996188 + 0.0872329i
\(609\) 0 0
\(610\) 35.5458 + 8.53385i 1.43921 + 0.345525i
\(611\) 2.67914 + 0.975126i 0.108386 + 0.0394494i
\(612\) 0 0
\(613\) −0.471362 2.67323i −0.0190381 0.107971i 0.973808 0.227372i \(-0.0730135\pi\)
−0.992846 + 0.119402i \(0.961902\pi\)
\(614\) −32.0786 21.2324i −1.29459 0.856871i
\(615\) 0 0
\(616\) −19.7104 16.8344i −0.794156 0.678279i
\(617\) −29.3580 24.6343i −1.18191 0.991740i −0.999964 0.00843082i \(-0.997316\pi\)
−0.181945 0.983309i \(-0.558239\pi\)
\(618\) 0 0
\(619\) −2.88998 + 1.66853i −0.116158 + 0.0670639i −0.556953 0.830544i \(-0.688030\pi\)
0.440795 + 0.897608i \(0.354696\pi\)
\(620\) 16.2892 + 17.4681i 0.654190 + 0.701538i
\(621\) 0 0
\(622\) −7.57349 7.18699i −0.303669 0.288172i
\(623\) 4.92593 27.9363i 0.197353 1.11925i
\(624\) 0 0
\(625\) −22.6367 + 18.9944i −0.905467 + 0.759777i
\(626\) 22.4670 + 30.3624i 0.897960 + 1.21353i
\(627\) 0 0
\(628\) −12.5605 + 41.0831i −0.501219 + 1.63940i
\(629\) −5.63673 6.71760i −0.224751 0.267848i
\(630\) 0 0
\(631\) −37.2451 6.56731i −1.48270 0.261441i −0.627045 0.778983i \(-0.715736\pi\)
−0.855658 + 0.517542i \(0.826847\pi\)
\(632\) 7.58953 + 13.4146i 0.301895 + 0.533604i
\(633\) 0 0
\(634\) 1.41338 + 12.4053i 0.0561326 + 0.492676i
\(635\) 15.4033 + 26.6792i 0.611260 + 1.05873i
\(636\) 0 0
\(637\) −2.38990 + 2.84817i −0.0946911 + 0.112848i
\(638\) 22.3112 51.3121i 0.883310 2.03147i
\(639\) 0 0
\(640\) 28.0326 2.69893i 1.10809 0.106685i
\(641\) −11.1604 + 1.96789i −0.440811 + 0.0777269i −0.389649 0.920963i \(-0.627404\pi\)
−0.0511622 + 0.998690i \(0.516293\pi\)
\(642\) 0 0
\(643\) −7.33180 + 20.1439i −0.289138 + 0.794400i 0.707050 + 0.707164i \(0.250026\pi\)
−0.996188 + 0.0872359i \(0.972197\pi\)
\(644\) 4.31703 + 10.1704i 0.170115 + 0.400769i
\(645\) 0 0
\(646\) 5.78526 + 36.5070i 0.227618 + 1.43635i
\(647\) 31.6669i 1.24495i −0.782638 0.622477i \(-0.786127\pi\)
0.782638 0.622477i \(-0.213873\pi\)
\(648\) 0 0
\(649\) −15.8111 + 43.4405i −0.620638 + 1.70519i
\(650\) 1.48867 + 2.98581i 0.0583903 + 0.117113i
\(651\) 0 0
\(652\) 34.6599 1.81634i 1.35739 0.0711334i
\(653\) 3.45916 5.99144i 0.135367 0.234463i −0.790370 0.612629i \(-0.790112\pi\)
0.925738 + 0.378166i \(0.123445\pi\)
\(654\) 0 0
\(655\) −27.6942 + 33.0046i −1.08210 + 1.28960i
\(656\) −44.8130 + 12.8496i −1.74965 + 0.501694i
\(657\) 0 0
\(658\) 4.59391 0.523402i 0.179089 0.0204043i
\(659\) −25.2667 + 9.19631i −0.984249 + 0.358237i −0.783491 0.621403i \(-0.786563\pi\)
−0.200758 + 0.979641i \(0.564341\pi\)
\(660\) 0 0
\(661\) −23.4306 4.13145i −0.911346 0.160695i −0.301731 0.953393i \(-0.597565\pi\)
−0.609614 + 0.792698i \(0.708676\pi\)
\(662\) 9.42786 + 31.8281i 0.366424 + 1.23703i
\(663\) 0 0
\(664\) 6.92733 + 19.5625i 0.268832 + 0.759171i
\(665\) −19.4692 14.9366i −0.754985 0.579218i
\(666\) 0 0
\(667\) −18.2698 + 15.3302i −0.707411 + 0.593588i
\(668\) −1.12884 + 1.49801i −0.0436760 + 0.0579596i
\(669\) 0 0
\(670\) 26.8481 28.2919i 1.03723 1.09301i
\(671\) 14.3921 + 39.5419i 0.555600 + 1.52650i
\(672\) 0 0
\(673\) −20.2132 + 11.6701i −0.779161 + 0.449849i −0.836133 0.548527i \(-0.815189\pi\)
0.0569720 + 0.998376i \(0.481855\pi\)
\(674\) 5.90505 + 0.361177i 0.227454 + 0.0139120i
\(675\) 0 0
\(676\) 17.7537 4.09871i 0.682834 0.157643i
\(677\) 11.0256 + 6.36563i 0.423748 + 0.244651i 0.696680 0.717382i \(-0.254660\pi\)
−0.272932 + 0.962033i \(0.587993\pi\)
\(678\) 0 0
\(679\) 1.91692 + 10.8714i 0.0735647 + 0.417206i
\(680\) −6.96746 41.6371i −0.267190 1.59671i
\(681\) 0 0
\(682\) −6.41832 + 26.7340i −0.245770 + 1.02370i
\(683\) 31.4554 1.20361 0.601804 0.798644i \(-0.294449\pi\)
0.601804 + 0.798644i \(0.294449\pi\)
\(684\) 0 0
\(685\) 8.87723 0.339182
\(686\) −6.63414 + 27.6330i −0.253293 + 1.05503i
\(687\) 0 0
\(688\) −4.39345 4.24276i −0.167499 0.161754i
\(689\) 0.787769 + 4.46766i 0.0300116 + 0.170204i
\(690\) 0 0
\(691\) −28.7335 16.5893i −1.09308 0.631087i −0.158682 0.987330i \(-0.550724\pi\)
−0.934394 + 0.356242i \(0.884058\pi\)
\(692\) 4.89998 + 21.2245i 0.186269 + 0.806833i
\(693\) 0 0
\(694\) −40.5827 2.48221i −1.54050 0.0942233i
\(695\) 14.6746 8.47241i 0.556641 0.321377i
\(696\) 0 0
\(697\) 23.9014 + 65.6686i 0.905330 + 2.48737i
\(698\) 17.1708 18.0942i 0.649925 0.684876i
\(699\) 0 0
\(700\) 4.32108 + 3.25619i 0.163322 + 0.123072i
\(701\) −40.4379 + 33.9314i −1.52732 + 1.28157i −0.712965 + 0.701200i \(0.752648\pi\)
−0.814352 + 0.580371i \(0.802908\pi\)
\(702\) 0 0
\(703\) 6.07992 + 1.91642i 0.229309 + 0.0722793i
\(704\) 20.4009 + 25.1935i 0.768888 + 0.949515i
\(705\) 0 0
\(706\) 4.95659 + 16.7333i 0.186544 + 0.629764i
\(707\) 4.53214 + 0.799139i 0.170449 + 0.0300547i
\(708\) 0 0
\(709\) 28.2332 10.2761i 1.06032 0.385926i 0.247773 0.968818i \(-0.420301\pi\)
0.812549 + 0.582893i \(0.198079\pi\)
\(710\) −21.2049 + 2.41596i −0.795806 + 0.0906694i
\(711\) 0 0
\(712\) −12.4245 + 33.2304i −0.465628 + 1.24536i
\(713\) 7.53284 8.97729i 0.282107 0.336202i
\(714\) 0 0
\(715\) −9.94674 + 17.2283i −0.371987 + 0.644300i
\(716\) 2.33371 + 44.5325i 0.0872149 + 1.66426i
\(717\) 0 0
\(718\) −15.9622 32.0153i −0.595703 1.19480i
\(719\) 9.63485 26.4715i 0.359319 0.987222i −0.619947 0.784644i \(-0.712846\pi\)
0.979266 0.202578i \(-0.0649319\pi\)
\(720\) 0 0
\(721\) 2.35368i 0.0876556i
\(722\) −17.8080 20.1215i −0.662746 0.748844i
\(723\) 0 0
\(724\) −39.7439 + 16.8701i −1.47707 + 0.626973i
\(725\) −3.99454 + 10.9749i −0.148354 + 0.407598i
\(726\) 0 0
\(727\) −39.3678 + 6.94161i −1.46007 + 0.257450i −0.846584 0.532255i \(-0.821345\pi\)
−0.613487 + 0.789705i \(0.710234\pi\)
\(728\) −9.73472 + 8.02461i −0.360793 + 0.297412i
\(729\) 0 0
\(730\) −4.83873 + 11.1283i −0.179089 + 0.411875i
\(731\) −5.88508 + 7.01356i −0.217667 + 0.259406i
\(732\) 0 0
\(733\) 15.2457 + 26.4064i 0.563114 + 0.975342i 0.997222 + 0.0744815i \(0.0237302\pi\)
−0.434108 + 0.900861i \(0.642936\pi\)
\(734\) −4.80686 42.1898i −0.177424 1.55725i
\(735\) 0 0
\(736\) −2.99063 13.4903i −0.110236 0.497260i
\(737\) 44.2147 + 7.79625i 1.62867 + 0.287179i
\(738\) 0 0
\(739\) 1.68167 + 2.00414i 0.0618614 + 0.0737235i 0.796088 0.605181i \(-0.206899\pi\)
−0.734226 + 0.678905i \(0.762455\pi\)
\(740\) −6.96271 2.12874i −0.255954 0.0782539i
\(741\) 0 0
\(742\) 4.37612 + 5.91400i 0.160652 + 0.217110i
\(743\) −32.3606 + 27.1537i −1.18719 + 0.996174i −0.187290 + 0.982305i \(0.559970\pi\)
−0.999904 + 0.0138689i \(0.995585\pi\)
\(744\) 0 0
\(745\) −5.44427 + 30.8760i −0.199463 + 1.13121i
\(746\) 12.2712 + 11.6450i 0.449282 + 0.426354i
\(747\) 0 0
\(748\) 35.5403 33.1417i 1.29948 1.21178i
\(749\) −7.74037 + 4.46891i −0.282827 + 0.163290i
\(750\) 0 0
\(751\) 13.8883 + 11.6537i 0.506791 + 0.425248i 0.859998 0.510297i \(-0.170465\pi\)
−0.353208 + 0.935545i \(0.614909\pi\)
\(752\) −5.76838 0.403400i −0.210351 0.0147105i
\(753\) 0 0
\(754\) −22.7087 15.0306i −0.827002 0.547382i
\(755\) 6.96695 + 39.5115i 0.253553 + 1.43797i
\(756\) 0 0
\(757\) −24.4898 8.91355i −0.890096 0.323968i −0.143819 0.989604i \(-0.545938\pi\)
−0.746277 + 0.665636i \(0.768161\pi\)
\(758\) −5.60285 1.34513i −0.203505 0.0488574i
\(759\) 0 0
\(760\) 20.5369 + 22.8048i 0.744950 + 0.827217i
\(761\) −0.510156 −0.0184931 −0.00924657 0.999957i \(-0.502943\pi\)
−0.00924657 + 0.999957i \(0.502943\pi\)
\(762\) 0 0
\(763\) −28.2373 10.2775i −1.02226 0.372071i
\(764\) 6.37114 12.5040i 0.230500 0.452377i
\(765\) 0 0
\(766\) −31.9411 21.1414i −1.15408 0.763870i
\(767\) 19.4851 + 11.2497i 0.703567 + 0.406205i
\(768\) 0 0
\(769\) −21.8261 18.3143i −0.787069 0.660429i 0.157949 0.987447i \(-0.449512\pi\)
−0.945018 + 0.327018i \(0.893956\pi\)
\(770\) −1.96957 + 32.2013i −0.0709783 + 1.16045i
\(771\) 0 0
\(772\) −6.65526 + 6.20609i −0.239528 + 0.223362i
\(773\) −3.00658 8.26050i −0.108139 0.297109i 0.873806 0.486274i \(-0.161644\pi\)
−0.981945 + 0.189164i \(0.939422\pi\)
\(774\) 0 0
\(775\) 0.996543 5.65168i 0.0357969 0.203014i
\(776\) 0.120541 13.8054i 0.00432718 0.495584i
\(777\) 0 0
\(778\) 16.9421 + 22.8961i 0.607405 + 0.820863i
\(779\) −40.3064 30.9227i −1.44413 1.10792i
\(780\) 0 0
\(781\) −15.7914 18.8194i −0.565060 0.673412i
\(782\) −19.8604 + 5.88288i −0.710206 + 0.210371i
\(783\) 0 0
\(784\) 3.06715 6.88881i 0.109541 0.246029i
\(785\) 50.2442 18.2874i 1.79329 0.652705i
\(786\) 0 0
\(787\) −0.866337 1.50054i −0.0308816 0.0534885i 0.850172 0.526506i \(-0.176498\pi\)
−0.881053 + 0.473017i \(0.843165\pi\)
\(788\) 19.3233 12.5486i 0.688364 0.447026i
\(789\) 0 0
\(790\) 7.64915 17.5918i 0.272144 0.625887i
\(791\) −8.55308 + 14.8144i −0.304113 + 0.526739i
\(792\) 0 0
\(793\) 20.1691 3.55636i 0.716227 0.126290i
\(794\) −31.1487 + 15.5301i −1.10542 + 0.551142i
\(795\) 0 0
\(796\) 30.5300 12.9591i 1.08211 0.459323i
\(797\) 6.82560i 0.241775i −0.992666 0.120888i \(-0.961426\pi\)
0.992666 0.120888i \(-0.0385741\pi\)
\(798\) 0 0
\(799\) 8.66808i 0.306655i
\(800\) −4.57146 4.98895i −0.161625 0.176386i
\(801\) 0 0
\(802\) 0.315164 + 0.632123i 0.0111288 + 0.0223211i
\(803\) −13.7561 + 2.42558i −0.485443 + 0.0855968i
\(804\) 0 0
\(805\) 6.87563 11.9089i 0.242334 0.419735i
\(806\) 12.2714 + 5.33578i 0.432242 + 0.187945i
\(807\) 0 0
\(808\) −5.39100 2.01564i −0.189655 0.0709100i
\(809\) −16.9821 29.4139i −0.597059 1.03414i −0.993253 0.115970i \(-0.963002\pi\)
0.396193 0.918167i \(-0.370331\pi\)
\(810\) 0 0
\(811\) 20.0616 7.30184i 0.704460 0.256402i 0.0351458 0.999382i \(-0.488810\pi\)
0.669314 + 0.742980i \(0.266588\pi\)
\(812\) −43.8339 5.38226i −1.53827 0.188880i
\(813\) 0 0
\(814\) −2.38033 8.03590i −0.0834305 0.281658i
\(815\) −27.7666 33.0909i −0.972621 1.15912i
\(816\) 0 0
\(817\) 0.868177 6.59880i 0.0303737 0.230863i
\(818\) 33.6055 24.8667i 1.17499 0.869444i
\(819\) 0 0
\(820\) 46.3385 + 34.9188i 1.61821 + 1.21942i
\(821\) 0.405861 2.30175i 0.0141647 0.0803317i −0.976906 0.213670i \(-0.931458\pi\)
0.991071 + 0.133338i \(0.0425695\pi\)
\(822\) 0 0
\(823\) −9.76490 26.8288i −0.340383 0.935195i −0.985284 0.170928i \(-0.945323\pi\)
0.644901 0.764267i \(-0.276899\pi\)
\(824\) −0.536441 + 2.89430i −0.0186878 + 0.100828i
\(825\) 0 0
\(826\) 36.4196 + 2.22758i 1.26720 + 0.0775073i
\(827\) −10.2530 8.60330i −0.356532 0.299166i 0.446875 0.894597i \(-0.352537\pi\)
−0.803407 + 0.595431i \(0.796981\pi\)
\(828\) 0 0
\(829\) −33.8489 19.5427i −1.17562 0.678746i −0.220625 0.975359i \(-0.570810\pi\)
−0.954998 + 0.296613i \(0.904143\pi\)
\(830\) 14.2560 21.5385i 0.494835 0.747611i
\(831\) 0 0
\(832\) 13.7996 7.64909i 0.478416 0.265185i
\(833\) −10.6221 3.86614i −0.368035 0.133954i
\(834\) 0 0
\(835\) 2.33452 0.0807895
\(836\) −8.84222 + 34.2019i −0.305814 + 1.18290i
\(837\) 0 0
\(838\) −0.431114 + 1.79571i −0.0148926 + 0.0620317i
\(839\) 4.89669 + 1.78225i 0.169053 + 0.0615301i 0.425160 0.905118i \(-0.360218\pi\)
−0.256107 + 0.966648i \(0.582440\pi\)
\(840\) 0 0
\(841\) −11.5181 65.3224i −0.397176 2.25250i
\(842\) −8.50695 + 12.8526i −0.293169 + 0.442928i
\(843\) 0 0
\(844\) −33.7379 + 7.78891i −1.16131 + 0.268105i
\(845\) −17.3720 14.5769i −0.597616 0.501460i
\(846\) 0 0
\(847\) −10.6165 + 6.12942i −0.364786 + 0.210609i
\(848\) −4.03338 8.26978i −0.138507 0.283985i
\(849\) 0 0
\(850\) −6.98229 + 7.35778i −0.239491 + 0.252370i
\(851\) −0.620334 + 3.51809i −0.0212648 + 0.120599i
\(852\) 0 0
\(853\) −33.5818 + 28.1785i −1.14982 + 0.964812i −0.999715 0.0238580i \(-0.992405\pi\)
−0.150103 + 0.988670i \(0.547961\pi\)
\(854\) 26.6986 19.7559i 0.913607 0.676032i
\(855\) 0 0
\(856\) 10.5368 3.73122i 0.360141 0.127531i
\(857\) −29.6672 35.3560i −1.01341 1.20774i −0.978052 0.208363i \(-0.933186\pi\)
−0.0353606 0.999375i \(-0.511258\pi\)
\(858\) 0 0
\(859\) −10.4649 1.84524i −0.357057 0.0629588i −0.00775759 0.999970i \(-0.502469\pi\)
−0.349300 + 0.937011i \(0.613580\pi\)
\(860\) −0.926429 + 7.54497i −0.0315910 + 0.257281i
\(861\) 0 0
\(862\) −3.35292 + 0.382012i −0.114201 + 0.0130114i
\(863\) −12.8994 22.3425i −0.439102 0.760547i 0.558519 0.829492i \(-0.311370\pi\)
−0.997620 + 0.0689453i \(0.978037\pi\)
\(864\) 0 0
\(865\) 17.4266 20.7682i 0.592521 0.706140i
\(866\) 3.39506 + 1.47622i 0.115369 + 0.0501640i
\(867\) 0 0
\(868\) 21.6708 1.13565i 0.735555 0.0385465i
\(869\) 21.7459 3.83440i 0.737681 0.130073i
\(870\) 0 0
\(871\) 7.47362 20.5336i 0.253234 0.695754i
\(872\) 32.3807 + 19.0739i 1.09655 + 0.645923i
\(873\) 0 0
\(874\) 9.87776 11.3650i 0.334120 0.384426i
\(875\) 21.4139i 0.723922i
\(876\) 0 0
\(877\) 8.46940 23.2695i 0.285991 0.785755i −0.710626 0.703570i \(-0.751588\pi\)
0.996617 0.0821845i \(-0.0261897\pi\)
\(878\) 38.7862 19.3380i 1.30897 0.652626i
\(879\) 0 0
\(880\) 9.76114 39.1488i 0.329048 1.31971i
\(881\) −16.7092 + 28.9413i −0.562949 + 0.975056i 0.434288 + 0.900774i \(0.357000\pi\)
−0.997237 + 0.0742821i \(0.976333\pi\)
\(882\) 0 0
\(883\) 25.9883 30.9716i 0.874575 1.04228i −0.124173 0.992261i \(-0.539628\pi\)
0.998748 0.0500172i \(-0.0159276\pi\)
\(884\) −12.8814 19.8357i −0.433248 0.667148i
\(885\) 0 0
\(886\) −3.56813 31.3175i −0.119874 1.05213i
\(887\) 30.6358 11.1505i 1.02865 0.374398i 0.228084 0.973642i \(-0.426754\pi\)
0.800567 + 0.599243i \(0.204532\pi\)
\(888\) 0 0
\(889\) 27.5643 + 4.86033i 0.924476 + 0.163010i
\(890\) 42.3368 12.5407i 1.41913 0.420364i
\(891\) 0 0
\(892\) 4.26998 13.9663i 0.142969 0.467627i
\(893\) −3.38614 5.31417i −0.113313 0.177832i
\(894\) 0 0
\(895\) 42.5166 35.6757i 1.42117 1.19251i
\(896\) 14.4929 21.0868i 0.484173 0.704460i
\(897\) 0 0
\(898\) −13.2482 12.5722i −0.442100 0.419538i
\(899\) 16.0211 + 44.0176i 0.534334 + 1.46807i
\(900\) 0 0
\(901\) −11.9446 + 6.89624i −0.397934 + 0.229747i
\(902\) −4.07751 + 66.6651i −0.135766 + 2.21970i
\(903\) 0 0
\(904\) 13.8941 16.2677i 0.462110 0.541056i
\(905\) 46.5379 + 26.8687i 1.54697 + 0.893144i
\(906\) 0 0
\(907\) 7.91708 + 44.9000i 0.262882 + 1.49088i 0.774999 + 0.631963i \(0.217751\pi\)
−0.512116 + 0.858916i \(0.671138\pi\)
\(908\) 40.1124 + 20.4385i 1.33118 + 0.678274i
\(909\) 0 0
\(910\) 15.2679 + 3.66552i 0.506126 + 0.121511i
\(911\) 8.16448 0.270501 0.135251 0.990811i \(-0.456816\pi\)
0.135251 + 0.990811i \(0.456816\pi\)
\(912\) 0 0
\(913\) 29.7320 0.983984
\(914\) 5.49023 + 1.31810i 0.181601 + 0.0435987i
\(915\) 0 0
\(916\) −35.3427 18.0082i −1.16776 0.595006i
\(917\) 6.79741 + 38.5500i 0.224470 + 1.27303i
\(918\) 0 0
\(919\) 27.0189 + 15.5994i 0.891270 + 0.514575i 0.874358 0.485282i \(-0.161283\pi\)
0.0169126 + 0.999857i \(0.494616\pi\)
\(920\) −11.1691 + 13.0773i −0.368236 + 0.431144i
\(921\) 0 0
\(922\) 0.808331 13.2158i 0.0266210 0.435238i
\(923\) −10.3549 + 5.97841i −0.340836 + 0.196782i
\(924\) 0 0
\(925\) 0.598331 + 1.64390i 0.0196730 + 0.0540512i
\(926\) 11.4022 + 10.8203i 0.374699 + 0.355577i
\(927\) 0 0
\(928\) 52.6755 + 16.6090i 1.72916 + 0.545216i
\(929\) 1.58407 1.32920i 0.0519718 0.0436095i −0.616432 0.787408i \(-0.711422\pi\)
0.668404 + 0.743799i \(0.266978\pi\)
\(930\) 0 0
\(931\) 8.02242 1.77924i 0.262924 0.0583124i
\(932\) 1.99612 6.52894i 0.0653851 0.213863i
\(933\) 0 0
\(934\) −28.2548 + 8.36939i −0.924524 + 0.273855i
\(935\) −59.5629 10.5026i −1.94792 0.343470i
\(936\) 0 0
\(937\) 41.4174 15.0747i 1.35305 0.492469i 0.439150 0.898414i \(-0.355280\pi\)
0.913898 + 0.405945i \(0.133058\pi\)
\(938\) −4.01149 35.2089i −0.130980 1.14961i
\(939\) 0 0
\(940\) 3.91969 + 6.03584i 0.127846 + 0.196867i
\(941\) −10.0883 + 12.0228i −0.328869 + 0.391931i −0.904990 0.425434i \(-0.860122\pi\)
0.576120 + 0.817365i \(0.304566\pi\)
\(942\) 0 0
\(943\) 14.2343 24.6546i 0.463534 0.802864i
\(944\) −44.2772 11.0398i −1.44110 0.359316i
\(945\) 0 0
\(946\) −7.83093 + 3.90435i −0.254606 + 0.126941i
\(947\) 12.9798 35.6618i 0.421788 1.15885i −0.528894 0.848688i \(-0.677393\pi\)
0.950682 0.310166i \(-0.100385\pi\)
\(948\) 0 0
\(949\) 6.79843i 0.220686i
\(950\) 1.40638 7.23845i 0.0456291 0.234846i
\(951\) 0 0
\(952\) −33.0483 19.4671i −1.07110 0.630933i
\(953\) −2.21624 + 6.08908i −0.0717912 + 0.197245i −0.970399 0.241509i \(-0.922358\pi\)
0.898607 + 0.438754i \(0.144580\pi\)
\(954\) 0 0
\(955\) −17.2009 + 3.03298i −0.556608 + 0.0981450i
\(956\) 21.1948 1.11071i 0.685490 0.0359229i
\(957\) 0 0
\(958\) 13.9845 + 6.08065i 0.451818 + 0.196457i
\(959\) 5.18439 6.17851i 0.167413 0.199515i
\(960\) 0 0
\(961\) 3.99143 + 6.91336i 0.128756 + 0.223012i
\(962\) −4.05285 + 0.461757i −0.130669 + 0.0148877i
\(963\) 0 0
\(964\) −1.88745 + 15.3717i −0.0607907 + 0.495088i
\(965\) 11.1537 + 1.96670i 0.359051 + 0.0633104i
\(966\) 0 0
\(967\) −18.5789 22.1415i −0.597458 0.712023i 0.379563 0.925166i \(-0.376074\pi\)
−0.977021 + 0.213143i \(0.931630\pi\)
\(968\) 14.4520 5.11764i 0.464504 0.164487i
\(969\) 0 0
\(970\) −13.8126 + 10.2208i −0.443497 + 0.328169i
\(971\) 15.3572 12.8863i 0.492837 0.413540i −0.362204 0.932099i \(-0.617976\pi\)
0.855042 + 0.518559i \(0.173531\pi\)
\(972\) 0 0
\(973\) 2.67337 15.1614i 0.0857044 0.486054i
\(974\) −14.2507 + 15.0171i −0.456623 + 0.481179i
\(975\) 0 0
\(976\) −37.3337 + 18.2086i −1.19502 + 0.582842i
\(977\) 14.0909 8.13540i 0.450809 0.260275i −0.257363 0.966315i \(-0.582854\pi\)
0.708172 + 0.706040i \(0.249520\pi\)
\(978\) 0 0
\(979\) 38.9359 + 32.6711i 1.24440 + 1.04417i
\(980\) −9.14475 + 2.11120i −0.292118 + 0.0674399i
\(981\) 0 0
\(982\) −26.9686 + 40.7449i −0.860601 + 1.30022i
\(983\) −2.90923 16.4991i −0.0927902 0.526239i −0.995402 0.0957840i \(-0.969464\pi\)
0.902612 0.430455i \(-0.141647\pi\)
\(984\) 0 0
\(985\) −26.9468 9.80783i −0.858596 0.312504i
\(986\) 19.3280 80.5066i 0.615530 2.56385i
\(987\) 0 0
\(988\) 15.6459 + 7.12872i 0.497764 + 0.226795i
\(989\) 3.72975 0.118599
\(990\) 0 0
\(991\) −6.08761 2.21571i −0.193379 0.0703843i 0.243515 0.969897i \(-0.421699\pi\)
−0.436894 + 0.899513i \(0.643922\pi\)
\(992\) −26.9072 3.54261i −0.854305 0.112478i
\(993\) 0 0
\(994\) −10.7024 + 16.1695i −0.339459 + 0.512864i
\(995\) −35.7489 20.6396i −1.13332 0.654321i
\(996\) 0 0
\(997\) −19.8420 16.6494i −0.628403 0.527293i 0.272029 0.962289i \(-0.412305\pi\)
−0.900432 + 0.434996i \(0.856750\pi\)
\(998\) −4.96310 0.303564i −0.157104 0.00960915i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.cf.b.127.10 60
3.2 odd 2 228.2.w.b.127.1 yes 60
4.3 odd 2 684.2.cf.c.127.5 60
12.11 even 2 228.2.w.a.127.6 yes 60
19.3 odd 18 684.2.cf.c.307.5 60
57.41 even 18 228.2.w.a.79.6 60
76.3 even 18 inner 684.2.cf.b.307.10 60
228.155 odd 18 228.2.w.b.79.1 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.2.w.a.79.6 60 57.41 even 18
228.2.w.a.127.6 yes 60 12.11 even 2
228.2.w.b.79.1 yes 60 228.155 odd 18
228.2.w.b.127.1 yes 60 3.2 odd 2
684.2.cf.b.127.10 60 1.1 even 1 trivial
684.2.cf.b.307.10 60 76.3 even 18 inner
684.2.cf.c.127.5 60 4.3 odd 2
684.2.cf.c.307.5 60 19.3 odd 18