Properties

Label 684.2.cf.b.127.1
Level $684$
Weight $2$
Character 684.127
Analytic conductor $5.462$
Analytic rank $0$
Dimension $60$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [684,2,Mod(91,684)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(684, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 0, 11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("684.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.cf (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 228)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 127.1
Character \(\chi\) \(=\) 684.127
Dual form 684.2.cf.b.307.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.39185 + 0.250479i) q^{2} +(1.87452 - 0.697261i) q^{4} +(-0.683388 - 3.87569i) q^{5} +(0.181667 + 0.104885i) q^{7} +(-2.43441 + 1.44001i) q^{8} +(1.92196 + 5.22322i) q^{10} +(-0.749928 + 0.432971i) q^{11} +(-0.989139 - 2.71764i) q^{13} +(-0.279125 - 0.100482i) q^{14} +(3.02765 - 2.61406i) q^{16} +(2.09737 - 1.75990i) q^{17} +(-0.105352 - 4.35763i) q^{19} +(-3.98339 - 6.78856i) q^{20} +(0.935341 - 0.790474i) q^{22} +(2.73529 + 0.482305i) q^{23} +(-9.85547 + 3.58710i) q^{25} +(2.05745 + 3.53480i) q^{26} +(0.413671 + 0.0699406i) q^{28} +(-5.73119 + 6.83016i) q^{29} +(-2.99093 + 5.18044i) q^{31} +(-3.55929 + 4.39676i) q^{32} +(-2.47841 + 2.97487i) q^{34} +(0.282354 - 0.775761i) q^{35} -0.151178i q^{37} +(1.23813 + 6.03879i) q^{38} +(7.24470 + 8.45093i) q^{40} +(1.95326 - 5.36654i) q^{41} +(-10.1816 + 1.79529i) q^{43} +(-1.10386 + 1.33451i) q^{44} +(-3.92793 + 0.0138338i) q^{46} +(2.13422 - 2.54346i) q^{47} +(-3.47800 - 6.02407i) q^{49} +(12.8189 - 7.46131i) q^{50} +(-3.74906 - 4.40458i) q^{52} +(-9.34894 - 1.64847i) q^{53} +(2.19055 + 2.61060i) q^{55} +(-0.593288 + 0.00626872i) q^{56} +(6.26617 - 10.9421i) q^{58} +(2.89615 - 2.43016i) q^{59} +(1.46504 - 8.30867i) q^{61} +(2.86535 - 7.95958i) q^{62} +(3.85272 - 7.01118i) q^{64} +(-9.85675 + 5.69080i) q^{65} +(-7.42773 - 6.23260i) q^{67} +(2.70445 - 4.76139i) q^{68} +(-0.198684 + 1.15047i) q^{70} +(2.01679 + 11.4378i) q^{71} +(6.12889 + 2.23073i) q^{73} +(0.0378669 + 0.210418i) q^{74} +(-3.23589 - 8.09500i) q^{76} -0.181649 q^{77} +(16.0953 + 5.85822i) q^{79} +(-12.2003 - 9.94782i) q^{80} +(-1.37445 + 7.95870i) q^{82} +(-13.7430 - 7.93452i) q^{83} +(-8.25415 - 6.92605i) q^{85} +(13.7216 - 5.04907i) q^{86} +(1.20215 - 2.13394i) q^{88} +(-0.622825 - 1.71120i) q^{89} +(0.105347 - 0.597451i) q^{91} +(5.46365 - 1.00312i) q^{92} +(-2.33344 + 4.07470i) q^{94} +(-16.8168 + 3.38626i) q^{95} +(-6.40106 - 7.62849i) q^{97} +(6.34977 + 7.51347i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 3 q^{2} - 3 q^{4} + 3 q^{8} - 6 q^{10} - 6 q^{13} + 9 q^{14} + 21 q^{16} + 18 q^{19} - 30 q^{20} - 12 q^{22} - 18 q^{28} - 12 q^{31} - 33 q^{32} - 15 q^{34} + 84 q^{38} - 87 q^{40} + 12 q^{41} - 18 q^{43}+ \cdots + 105 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.39185 + 0.250479i −0.984190 + 0.177115i
\(3\) 0 0
\(4\) 1.87452 0.697261i 0.937260 0.348631i
\(5\) −0.683388 3.87569i −0.305621 1.73326i −0.620569 0.784152i \(-0.713098\pi\)
0.314949 0.949109i \(-0.398013\pi\)
\(6\) 0 0
\(7\) 0.181667 + 0.104885i 0.0686636 + 0.0396430i 0.533939 0.845523i \(-0.320711\pi\)
−0.465275 + 0.885166i \(0.654045\pi\)
\(8\) −2.43441 + 1.44001i −0.860694 + 0.509122i
\(9\) 0 0
\(10\) 1.92196 + 5.22322i 0.607776 + 1.65173i
\(11\) −0.749928 + 0.432971i −0.226112 + 0.130546i −0.608777 0.793341i \(-0.708340\pi\)
0.382665 + 0.923887i \(0.375006\pi\)
\(12\) 0 0
\(13\) −0.989139 2.71764i −0.274338 0.753737i −0.997978 0.0635596i \(-0.979755\pi\)
0.723640 0.690177i \(-0.242468\pi\)
\(14\) −0.279125 0.100482i −0.0745994 0.0268548i
\(15\) 0 0
\(16\) 3.02765 2.61406i 0.756913 0.653515i
\(17\) 2.09737 1.75990i 0.508687 0.426839i −0.351980 0.936008i \(-0.614492\pi\)
0.860667 + 0.509169i \(0.170047\pi\)
\(18\) 0 0
\(19\) −0.105352 4.35763i −0.0241694 0.999708i
\(20\) −3.98339 6.78856i −0.890714 1.51797i
\(21\) 0 0
\(22\) 0.935341 0.790474i 0.199415 0.168530i
\(23\) 2.73529 + 0.482305i 0.570347 + 0.100568i 0.451382 0.892331i \(-0.350931\pi\)
0.118965 + 0.992898i \(0.462042\pi\)
\(24\) 0 0
\(25\) −9.85547 + 3.58710i −1.97109 + 0.717420i
\(26\) 2.05745 + 3.53480i 0.403499 + 0.693231i
\(27\) 0 0
\(28\) 0.413671 + 0.0699406i 0.0781764 + 0.0132175i
\(29\) −5.73119 + 6.83016i −1.06425 + 1.26833i −0.102408 + 0.994743i \(0.532655\pi\)
−0.961847 + 0.273587i \(0.911790\pi\)
\(30\) 0 0
\(31\) −2.99093 + 5.18044i −0.537186 + 0.930434i 0.461868 + 0.886949i \(0.347179\pi\)
−0.999054 + 0.0434852i \(0.986154\pi\)
\(32\) −3.55929 + 4.39676i −0.629199 + 0.777244i
\(33\) 0 0
\(34\) −2.47841 + 2.97487i −0.425045 + 0.510187i
\(35\) 0.282354 0.775761i 0.0477265 0.131128i
\(36\) 0 0
\(37\) 0.151178i 0.0248535i −0.999923 0.0124267i \(-0.996044\pi\)
0.999923 0.0124267i \(-0.00395566\pi\)
\(38\) 1.23813 + 6.03879i 0.200851 + 0.979622i
\(39\) 0 0
\(40\) 7.24470 + 8.45093i 1.14549 + 1.33621i
\(41\) 1.95326 5.36654i 0.305048 0.838113i −0.688555 0.725184i \(-0.741755\pi\)
0.993603 0.112929i \(-0.0360232\pi\)
\(42\) 0 0
\(43\) −10.1816 + 1.79529i −1.55268 + 0.273780i −0.883181 0.469032i \(-0.844603\pi\)
−0.669501 + 0.742812i \(0.733492\pi\)
\(44\) −1.10386 + 1.33451i −0.166413 + 0.201185i
\(45\) 0 0
\(46\) −3.92793 + 0.0138338i −0.579142 + 0.00203968i
\(47\) 2.13422 2.54346i 0.311307 0.371002i −0.587592 0.809158i \(-0.699924\pi\)
0.898899 + 0.438156i \(0.144368\pi\)
\(48\) 0 0
\(49\) −3.47800 6.02407i −0.496857 0.860581i
\(50\) 12.8189 7.46131i 1.81287 1.05519i
\(51\) 0 0
\(52\) −3.74906 4.40458i −0.519902 0.610805i
\(53\) −9.34894 1.64847i −1.28418 0.226435i −0.510423 0.859923i \(-0.670511\pi\)
−0.773752 + 0.633488i \(0.781622\pi\)
\(54\) 0 0
\(55\) 2.19055 + 2.61060i 0.295374 + 0.352013i
\(56\) −0.593288 + 0.00626872i −0.0792815 + 0.000837692i
\(57\) 0 0
\(58\) 6.26617 10.9421i 0.822788 1.43677i
\(59\) 2.89615 2.43016i 0.377047 0.316380i −0.434495 0.900674i \(-0.643073\pi\)
0.811542 + 0.584295i \(0.198629\pi\)
\(60\) 0 0
\(61\) 1.46504 8.30867i 0.187579 1.06382i −0.735017 0.678049i \(-0.762826\pi\)
0.922596 0.385767i \(-0.126063\pi\)
\(62\) 2.86535 7.95958i 0.363899 1.01087i
\(63\) 0 0
\(64\) 3.85272 7.01118i 0.481589 0.876397i
\(65\) −9.85675 + 5.69080i −1.22258 + 0.705856i
\(66\) 0 0
\(67\) −7.42773 6.23260i −0.907442 0.761434i 0.0641890 0.997938i \(-0.479554\pi\)
−0.971631 + 0.236504i \(0.923998\pi\)
\(68\) 2.70445 4.76139i 0.327963 0.577403i
\(69\) 0 0
\(70\) −0.198684 + 1.15047i −0.0237473 + 0.137508i
\(71\) 2.01679 + 11.4378i 0.239349 + 1.35742i 0.833257 + 0.552885i \(0.186473\pi\)
−0.593908 + 0.804533i \(0.702416\pi\)
\(72\) 0 0
\(73\) 6.12889 + 2.23073i 0.717332 + 0.261088i 0.674793 0.738007i \(-0.264233\pi\)
0.0425394 + 0.999095i \(0.486455\pi\)
\(74\) 0.0378669 + 0.210418i 0.00440194 + 0.0244605i
\(75\) 0 0
\(76\) −3.23589 8.09500i −0.371182 0.928560i
\(77\) −0.181649 −0.0207009
\(78\) 0 0
\(79\) 16.0953 + 5.85822i 1.81087 + 0.659101i 0.996943 + 0.0781264i \(0.0248938\pi\)
0.813922 + 0.580975i \(0.197328\pi\)
\(80\) −12.2003 9.94782i −1.36404 1.11220i
\(81\) 0 0
\(82\) −1.37445 + 7.95870i −0.151783 + 0.878891i
\(83\) −13.7430 7.93452i −1.50849 0.870926i −0.999951 0.00988648i \(-0.996853\pi\)
−0.508538 0.861040i \(-0.669814\pi\)
\(84\) 0 0
\(85\) −8.25415 6.92605i −0.895288 0.751236i
\(86\) 13.7216 5.04907i 1.47964 0.544455i
\(87\) 0 0
\(88\) 1.20215 2.13394i 0.128149 0.227478i
\(89\) −0.622825 1.71120i −0.0660193 0.181387i 0.902296 0.431117i \(-0.141880\pi\)
−0.968315 + 0.249730i \(0.919658\pi\)
\(90\) 0 0
\(91\) 0.105347 0.597451i 0.0110433 0.0626299i
\(92\) 5.46365 1.00312i 0.569624 0.104582i
\(93\) 0 0
\(94\) −2.33344 + 4.07470i −0.240676 + 0.420274i
\(95\) −16.8168 + 3.38626i −1.72537 + 0.347423i
\(96\) 0 0
\(97\) −6.40106 7.62849i −0.649929 0.774555i 0.335974 0.941871i \(-0.390935\pi\)
−0.985903 + 0.167316i \(0.946490\pi\)
\(98\) 6.34977 + 7.51347i 0.641424 + 0.758975i
\(99\) 0 0
\(100\) −15.9731 + 13.5959i −1.59731 + 1.35959i
\(101\) 12.3259 4.48627i 1.22647 0.446400i 0.354086 0.935213i \(-0.384792\pi\)
0.872389 + 0.488813i \(0.162570\pi\)
\(102\) 0 0
\(103\) 3.05588 + 5.29294i 0.301105 + 0.521529i 0.976386 0.216031i \(-0.0693113\pi\)
−0.675282 + 0.737560i \(0.735978\pi\)
\(104\) 6.32141 + 5.19147i 0.619865 + 0.509066i
\(105\) 0 0
\(106\) 13.4253 0.0472825i 1.30398 0.00459248i
\(107\) −0.977120 + 1.69242i −0.0944618 + 0.163613i −0.909384 0.415958i \(-0.863446\pi\)
0.814922 + 0.579571i \(0.196780\pi\)
\(108\) 0 0
\(109\) 6.99424 1.23327i 0.669927 0.118126i 0.171669 0.985155i \(-0.445084\pi\)
0.498258 + 0.867029i \(0.333973\pi\)
\(110\) −3.70283 3.08489i −0.353051 0.294132i
\(111\) 0 0
\(112\) 0.824201 0.157331i 0.0778797 0.0148664i
\(113\) 10.4870i 0.986531i −0.869879 0.493265i \(-0.835803\pi\)
0.869879 0.493265i \(-0.164197\pi\)
\(114\) 0 0
\(115\) 10.9307i 1.01930i
\(116\) −5.98082 + 16.7994i −0.555305 + 1.55979i
\(117\) 0 0
\(118\) −3.42232 + 4.10785i −0.315050 + 0.378158i
\(119\) 0.565610 0.0997324i 0.0518494 0.00914245i
\(120\) 0 0
\(121\) −5.12507 + 8.87689i −0.465916 + 0.806990i
\(122\) 0.0420213 + 11.9314i 0.00380443 + 1.08022i
\(123\) 0 0
\(124\) −1.99444 + 11.7963i −0.179106 + 1.05934i
\(125\) 10.7989 + 18.7042i 0.965883 + 1.67296i
\(126\) 0 0
\(127\) −17.1366 + 6.23722i −1.52063 + 0.553464i −0.961305 0.275486i \(-0.911161\pi\)
−0.559324 + 0.828949i \(0.688939\pi\)
\(128\) −3.60627 + 10.7236i −0.318752 + 0.947838i
\(129\) 0 0
\(130\) 12.2937 10.3897i 1.07823 0.911235i
\(131\) −7.78238 9.27469i −0.679950 0.810333i 0.310151 0.950687i \(-0.399620\pi\)
−0.990101 + 0.140354i \(0.955176\pi\)
\(132\) 0 0
\(133\) 0.437912 0.802686i 0.0379718 0.0696017i
\(134\) 11.8995 + 6.81439i 1.02796 + 0.588674i
\(135\) 0 0
\(136\) −2.57157 + 7.30457i −0.220511 + 0.626361i
\(137\) 2.48319 14.0829i 0.212153 1.20318i −0.673625 0.739073i \(-0.735264\pi\)
0.885778 0.464109i \(-0.153625\pi\)
\(138\) 0 0
\(139\) 4.90177 + 13.4675i 0.415763 + 1.14230i 0.954079 + 0.299556i \(0.0968386\pi\)
−0.538316 + 0.842743i \(0.680939\pi\)
\(140\) −0.0116298 1.65105i −0.000982902 0.139540i
\(141\) 0 0
\(142\) −5.67202 15.4146i −0.475985 1.29357i
\(143\) 1.91844 + 1.60976i 0.160428 + 0.134615i
\(144\) 0 0
\(145\) 30.3882 + 17.5446i 2.52360 + 1.45700i
\(146\) −9.08928 1.56970i −0.752234 0.129909i
\(147\) 0 0
\(148\) −0.105410 0.283386i −0.00866468 0.0232942i
\(149\) 8.96072 + 3.26144i 0.734091 + 0.267187i 0.681895 0.731450i \(-0.261156\pi\)
0.0521954 + 0.998637i \(0.483378\pi\)
\(150\) 0 0
\(151\) 13.8409 1.12636 0.563180 0.826334i \(-0.309578\pi\)
0.563180 + 0.826334i \(0.309578\pi\)
\(152\) 6.53151 + 10.4565i 0.529776 + 0.848138i
\(153\) 0 0
\(154\) 0.252830 0.0454994i 0.0203736 0.00366644i
\(155\) 22.1217 + 8.05165i 1.77686 + 0.646724i
\(156\) 0 0
\(157\) −0.644692 3.65623i −0.0514520 0.291799i 0.948214 0.317631i \(-0.102887\pi\)
−0.999666 + 0.0258325i \(0.991776\pi\)
\(158\) −23.8697 4.12225i −1.89897 0.327948i
\(159\) 0 0
\(160\) 19.4728 + 10.7900i 1.53946 + 0.853024i
\(161\) 0.446324 + 0.374511i 0.0351753 + 0.0295156i
\(162\) 0 0
\(163\) 6.98080 4.03037i 0.546778 0.315683i −0.201043 0.979582i \(-0.564433\pi\)
0.747822 + 0.663900i \(0.231100\pi\)
\(164\) −0.0804527 11.4216i −0.00628230 0.891879i
\(165\) 0 0
\(166\) 21.1157 + 7.60137i 1.63889 + 0.589980i
\(167\) 1.63408 9.26731i 0.126449 0.717126i −0.853988 0.520292i \(-0.825823\pi\)
0.980437 0.196834i \(-0.0630659\pi\)
\(168\) 0 0
\(169\) 3.55142 2.98000i 0.273186 0.229230i
\(170\) 13.2234 + 7.57257i 1.01419 + 0.580789i
\(171\) 0 0
\(172\) −17.8339 + 10.4646i −1.35982 + 0.797915i
\(173\) 9.44603 + 11.2573i 0.718169 + 0.855880i 0.994451 0.105196i \(-0.0335471\pi\)
−0.276283 + 0.961076i \(0.589103\pi\)
\(174\) 0 0
\(175\) −2.16665 0.382038i −0.163783 0.0288794i
\(176\) −1.13871 + 3.27124i −0.0858334 + 0.246579i
\(177\) 0 0
\(178\) 1.29550 + 2.22573i 0.0971019 + 0.166826i
\(179\) −4.06680 7.04391i −0.303967 0.526486i 0.673064 0.739584i \(-0.264978\pi\)
−0.977031 + 0.213098i \(0.931645\pi\)
\(180\) 0 0
\(181\) 2.72615 3.24890i 0.202633 0.241489i −0.655152 0.755497i \(-0.727396\pi\)
0.857785 + 0.514008i \(0.171840\pi\)
\(182\) 0.00302162 + 0.857952i 0.000223978 + 0.0635956i
\(183\) 0 0
\(184\) −7.35334 + 2.76473i −0.542096 + 0.203818i
\(185\) −0.585918 + 0.103313i −0.0430775 + 0.00759573i
\(186\) 0 0
\(187\) −0.810889 + 2.22790i −0.0592981 + 0.162920i
\(188\) 2.22718 6.25587i 0.162434 0.456256i
\(189\) 0 0
\(190\) 22.5584 8.92544i 1.63656 0.647520i
\(191\) 12.9422i 0.936468i 0.883605 + 0.468234i \(0.155109\pi\)
−0.883605 + 0.468234i \(0.844891\pi\)
\(192\) 0 0
\(193\) 0.0498843 0.137056i 0.00359075 0.00986551i −0.937884 0.346948i \(-0.887218\pi\)
0.941475 + 0.337083i \(0.109440\pi\)
\(194\) 10.8201 + 9.01441i 0.776840 + 0.647197i
\(195\) 0 0
\(196\) −10.7199 8.86717i −0.765709 0.633369i
\(197\) 5.67982 9.83775i 0.404671 0.700910i −0.589612 0.807686i \(-0.700719\pi\)
0.994283 + 0.106776i \(0.0340528\pi\)
\(198\) 0 0
\(199\) 2.97672 3.54752i 0.211014 0.251477i −0.650148 0.759808i \(-0.725293\pi\)
0.861162 + 0.508331i \(0.169737\pi\)
\(200\) 18.8268 22.9245i 1.33126 1.62101i
\(201\) 0 0
\(202\) −16.0322 + 9.33162i −1.12802 + 0.656570i
\(203\) −1.75755 + 0.639696i −0.123356 + 0.0448979i
\(204\) 0 0
\(205\) −22.1339 3.90280i −1.54590 0.272583i
\(206\) −5.57911 6.60157i −0.388715 0.459953i
\(207\) 0 0
\(208\) −10.0988 5.64240i −0.700229 0.391230i
\(209\) 1.96573 + 3.22229i 0.135973 + 0.222890i
\(210\) 0 0
\(211\) 1.45050 1.21712i 0.0998568 0.0837898i −0.591492 0.806311i \(-0.701461\pi\)
0.691349 + 0.722521i \(0.257017\pi\)
\(212\) −18.6742 + 3.42856i −1.28255 + 0.235475i
\(213\) 0 0
\(214\) 0.936093 2.60035i 0.0639900 0.177757i
\(215\) 13.9160 + 38.2339i 0.949063 + 2.60753i
\(216\) 0 0
\(217\) −1.08670 + 0.627409i −0.0737703 + 0.0425913i
\(218\) −9.42606 + 3.46845i −0.638414 + 0.234913i
\(219\) 0 0
\(220\) 5.92650 + 3.36623i 0.399565 + 0.226951i
\(221\) −6.85736 3.95910i −0.461276 0.266318i
\(222\) 0 0
\(223\) −1.35879 7.70607i −0.0909911 0.516036i −0.995902 0.0904358i \(-0.971174\pi\)
0.904911 0.425600i \(-0.139937\pi\)
\(224\) −1.10776 + 0.425428i −0.0740153 + 0.0284251i
\(225\) 0 0
\(226\) 2.62677 + 14.5963i 0.174730 + 0.970934i
\(227\) 27.2136 1.80623 0.903114 0.429400i \(-0.141275\pi\)
0.903114 + 0.429400i \(0.141275\pi\)
\(228\) 0 0
\(229\) 7.86096 0.519467 0.259733 0.965680i \(-0.416365\pi\)
0.259733 + 0.965680i \(0.416365\pi\)
\(230\) 2.73792 + 15.2140i 0.180533 + 1.00318i
\(231\) 0 0
\(232\) 4.11653 24.8804i 0.270264 1.63348i
\(233\) 0.324927 + 1.84275i 0.0212866 + 0.120723i 0.993599 0.112960i \(-0.0360333\pi\)
−0.972313 + 0.233683i \(0.924922\pi\)
\(234\) 0 0
\(235\) −11.3162 6.53338i −0.738185 0.426191i
\(236\) 3.73444 6.57475i 0.243091 0.427980i
\(237\) 0 0
\(238\) −0.762267 + 0.280487i −0.0494104 + 0.0181812i
\(239\) 3.69843 2.13529i 0.239232 0.138121i −0.375592 0.926785i \(-0.622561\pi\)
0.614824 + 0.788665i \(0.289227\pi\)
\(240\) 0 0
\(241\) 1.49461 + 4.10641i 0.0962764 + 0.264517i 0.978477 0.206357i \(-0.0661608\pi\)
−0.882200 + 0.470874i \(0.843939\pi\)
\(242\) 4.90988 13.6391i 0.315619 0.876752i
\(243\) 0 0
\(244\) −3.04706 16.5963i −0.195068 1.06247i
\(245\) −20.9706 + 17.5964i −1.33976 + 1.12419i
\(246\) 0 0
\(247\) −11.7382 + 4.59661i −0.746886 + 0.292475i
\(248\) −0.178760 16.9183i −0.0113512 1.07431i
\(249\) 0 0
\(250\) −19.7155 23.3287i −1.24692 1.47544i
\(251\) −9.14449 1.61242i −0.577195 0.101775i −0.122573 0.992460i \(-0.539115\pi\)
−0.454622 + 0.890684i \(0.650226\pi\)
\(252\) 0 0
\(253\) −2.26009 + 0.822606i −0.142091 + 0.0517168i
\(254\) 22.2894 12.9737i 1.39856 0.814040i
\(255\) 0 0
\(256\) 2.33337 15.8289i 0.145836 0.989309i
\(257\) 9.61171 11.4548i 0.599562 0.714530i −0.377851 0.925866i \(-0.623337\pi\)
0.977414 + 0.211336i \(0.0677814\pi\)
\(258\) 0 0
\(259\) 0.0158563 0.0274640i 0.000985265 0.00170653i
\(260\) −14.5087 + 17.5402i −0.899792 + 1.08780i
\(261\) 0 0
\(262\) 13.1551 + 10.9597i 0.812723 + 0.677092i
\(263\) 8.49957 23.3524i 0.524106 1.43997i −0.341805 0.939771i \(-0.611038\pi\)
0.865911 0.500198i \(-0.166739\pi\)
\(264\) 0 0
\(265\) 37.3601i 2.29501i
\(266\) −0.408454 + 1.22691i −0.0250439 + 0.0752267i
\(267\) 0 0
\(268\) −18.2692 6.50408i −1.11597 0.397300i
\(269\) 2.09029 5.74304i 0.127448 0.350159i −0.859515 0.511111i \(-0.829234\pi\)
0.986962 + 0.160952i \(0.0514563\pi\)
\(270\) 0 0
\(271\) 3.74612 0.660543i 0.227561 0.0401251i −0.0587049 0.998275i \(-0.518697\pi\)
0.286266 + 0.958150i \(0.407586\pi\)
\(272\) 1.74962 10.8110i 0.106086 0.655514i
\(273\) 0 0
\(274\) 0.0712245 + 20.2233i 0.00430283 + 1.22174i
\(275\) 5.83778 6.95720i 0.352032 0.419535i
\(276\) 0 0
\(277\) 8.61685 + 14.9248i 0.517736 + 0.896745i 0.999788 + 0.0206025i \(0.00655846\pi\)
−0.482052 + 0.876143i \(0.660108\pi\)
\(278\) −10.1959 17.5170i −0.611509 1.05060i
\(279\) 0 0
\(280\) 0.429742 + 2.29512i 0.0256820 + 0.137159i
\(281\) 18.1477 + 3.19992i 1.08260 + 0.190891i 0.686364 0.727258i \(-0.259206\pi\)
0.396234 + 0.918149i \(0.370317\pi\)
\(282\) 0 0
\(283\) −0.208397 0.248357i −0.0123879 0.0147633i 0.759815 0.650139i \(-0.225290\pi\)
−0.772203 + 0.635376i \(0.780845\pi\)
\(284\) 11.7557 + 20.0342i 0.697570 + 1.18881i
\(285\) 0 0
\(286\) −3.07340 1.76003i −0.181734 0.104073i
\(287\) 0.917715 0.770054i 0.0541710 0.0454548i
\(288\) 0 0
\(289\) −1.65032 + 9.35941i −0.0970774 + 0.550553i
\(290\) −46.6905 16.8080i −2.74176 0.986999i
\(291\) 0 0
\(292\) 13.0441 0.0918814i 0.763350 0.00537695i
\(293\) −24.6394 + 14.2255i −1.43945 + 0.831065i −0.997811 0.0661289i \(-0.978935\pi\)
−0.441636 + 0.897194i \(0.645602\pi\)
\(294\) 0 0
\(295\) −11.3977 9.56383i −0.663601 0.556828i
\(296\) 0.217698 + 0.368029i 0.0126535 + 0.0213912i
\(297\) 0 0
\(298\) −13.2889 2.29497i −0.769808 0.132944i
\(299\) −1.39485 7.91059i −0.0806663 0.457481i
\(300\) 0 0
\(301\) −2.03796 0.741757i −0.117466 0.0427542i
\(302\) −19.2646 + 3.46687i −1.10855 + 0.199496i
\(303\) 0 0
\(304\) −11.7101 12.9180i −0.671618 0.740897i
\(305\) −33.2030 −1.90120
\(306\) 0 0
\(307\) 7.20630 + 2.62288i 0.411285 + 0.149696i 0.539372 0.842067i \(-0.318662\pi\)
−0.128087 + 0.991763i \(0.540884\pi\)
\(308\) −0.340505 + 0.126657i −0.0194021 + 0.00721695i
\(309\) 0 0
\(310\) −32.8070 5.66570i −1.86331 0.321790i
\(311\) −23.6264 13.6407i −1.33973 0.773493i −0.352962 0.935638i \(-0.614826\pi\)
−0.986767 + 0.162144i \(0.948159\pi\)
\(312\) 0 0
\(313\) −22.1900 18.6196i −1.25425 1.05244i −0.996270 0.0862959i \(-0.972497\pi\)
−0.257985 0.966149i \(-0.583059\pi\)
\(314\) 1.81313 + 4.92746i 0.102321 + 0.278073i
\(315\) 0 0
\(316\) 34.2557 0.241294i 1.92703 0.0135738i
\(317\) 3.22555 + 8.86213i 0.181165 + 0.497747i 0.996719 0.0809336i \(-0.0257902\pi\)
−0.815555 + 0.578680i \(0.803568\pi\)
\(318\) 0 0
\(319\) 1.34071 7.60357i 0.0750656 0.425718i
\(320\) −29.8060 10.1406i −1.66621 0.566875i
\(321\) 0 0
\(322\) −0.715026 0.409469i −0.0398468 0.0228188i
\(323\) −7.88995 8.95414i −0.439009 0.498222i
\(324\) 0 0
\(325\) 19.4969 + 23.2355i 1.08149 + 1.28887i
\(326\) −8.70674 + 7.35823i −0.482222 + 0.407535i
\(327\) 0 0
\(328\) 2.97286 + 15.8771i 0.164149 + 0.876666i
\(329\) 0.654488 0.238214i 0.0360831 0.0131332i
\(330\) 0 0
\(331\) −10.9079 18.8930i −0.599552 1.03846i −0.992887 0.119060i \(-0.962012\pi\)
0.393335 0.919395i \(-0.371321\pi\)
\(332\) −31.2939 5.29096i −1.71748 0.290379i
\(333\) 0 0
\(334\) 0.0468697 + 13.3081i 0.00256459 + 0.728184i
\(335\) −19.0796 + 33.0468i −1.04243 + 1.80554i
\(336\) 0 0
\(337\) 14.5666 2.56848i 0.793492 0.139914i 0.237813 0.971311i \(-0.423569\pi\)
0.555679 + 0.831397i \(0.312458\pi\)
\(338\) −4.19664 + 5.03728i −0.228267 + 0.273992i
\(339\) 0 0
\(340\) −20.3018 7.22773i −1.10102 0.391979i
\(341\) 5.17994i 0.280509i
\(342\) 0 0
\(343\) 2.92756i 0.158073i
\(344\) 22.2010 19.0322i 1.19700 1.02615i
\(345\) 0 0
\(346\) −15.9672 13.3026i −0.858404 0.715150i
\(347\) 6.08482 1.07292i 0.326650 0.0575972i −0.00791847 0.999969i \(-0.502521\pi\)
0.334568 + 0.942371i \(0.391409\pi\)
\(348\) 0 0
\(349\) 5.62591 9.74437i 0.301148 0.521604i −0.675248 0.737591i \(-0.735963\pi\)
0.976396 + 0.215987i \(0.0692967\pi\)
\(350\) 3.11135 0.0109579i 0.166309 0.000585723i
\(351\) 0 0
\(352\) 0.765540 4.83832i 0.0408034 0.257883i
\(353\) 9.41068 + 16.2998i 0.500880 + 0.867550i 0.999999 + 0.00101645i \(0.000323547\pi\)
−0.499119 + 0.866533i \(0.666343\pi\)
\(354\) 0 0
\(355\) 42.9511 15.6329i 2.27961 0.829710i
\(356\) −2.36065 2.77340i −0.125114 0.146990i
\(357\) 0 0
\(358\) 7.42475 + 8.78545i 0.392410 + 0.464325i
\(359\) 7.58505 + 9.03951i 0.400324 + 0.477087i 0.928119 0.372285i \(-0.121425\pi\)
−0.527795 + 0.849372i \(0.676981\pi\)
\(360\) 0 0
\(361\) −18.9778 + 0.918170i −0.998832 + 0.0483247i
\(362\) −2.98062 + 5.20483i −0.156658 + 0.273560i
\(363\) 0 0
\(364\) −0.219105 1.19339i −0.0114842 0.0625505i
\(365\) 4.45721 25.2781i 0.233301 1.32312i
\(366\) 0 0
\(367\) −5.33801 14.6661i −0.278642 0.765562i −0.997517 0.0704230i \(-0.977565\pi\)
0.718875 0.695139i \(-0.244657\pi\)
\(368\) 9.54228 5.68996i 0.497426 0.296609i
\(369\) 0 0
\(370\) 0.789635 0.290557i 0.0410512 0.0151053i
\(371\) −1.52549 1.28004i −0.0791996 0.0664563i
\(372\) 0 0
\(373\) 13.4824 + 7.78405i 0.698090 + 0.403043i 0.806636 0.591049i \(-0.201286\pi\)
−0.108545 + 0.994091i \(0.534619\pi\)
\(374\) 0.570598 3.30402i 0.0295049 0.170847i
\(375\) 0 0
\(376\) −1.53294 + 9.26513i −0.0790554 + 0.477813i
\(377\) 24.2308 + 8.81931i 1.24795 + 0.454217i
\(378\) 0 0
\(379\) 22.0194 1.13106 0.565530 0.824728i \(-0.308672\pi\)
0.565530 + 0.824728i \(0.308672\pi\)
\(380\) −29.1623 + 18.0733i −1.49600 + 0.927142i
\(381\) 0 0
\(382\) −3.24176 18.0137i −0.165863 0.921662i
\(383\) −21.8207 7.94210i −1.11499 0.405822i −0.282167 0.959365i \(-0.591053\pi\)
−0.832821 + 0.553543i \(0.813275\pi\)
\(384\) 0 0
\(385\) 0.124137 + 0.704016i 0.00632661 + 0.0358800i
\(386\) −0.0351021 + 0.203257i −0.00178665 + 0.0103455i
\(387\) 0 0
\(388\) −17.3180 9.83654i −0.879187 0.499375i
\(389\) 4.51226 + 3.78624i 0.228781 + 0.191970i 0.749971 0.661471i \(-0.230067\pi\)
−0.521190 + 0.853440i \(0.674512\pi\)
\(390\) 0 0
\(391\) 6.58572 3.80227i 0.333054 0.192289i
\(392\) 17.1416 + 9.65669i 0.865783 + 0.487737i
\(393\) 0 0
\(394\) −5.44134 + 15.1154i −0.274131 + 0.761502i
\(395\) 11.7053 66.3839i 0.588956 3.34014i
\(396\) 0 0
\(397\) −3.96864 + 3.33009i −0.199180 + 0.167132i −0.736923 0.675977i \(-0.763722\pi\)
0.537742 + 0.843109i \(0.319277\pi\)
\(398\) −3.25458 + 5.68323i −0.163138 + 0.284875i
\(399\) 0 0
\(400\) −20.4621 + 36.6233i −1.02310 + 1.83116i
\(401\) −16.6724 19.8694i −0.832582 0.992232i −0.999980 0.00634288i \(-0.997981\pi\)
0.167398 0.985889i \(-0.446463\pi\)
\(402\) 0 0
\(403\) 17.0370 + 3.00408i 0.848673 + 0.149644i
\(404\) 19.9771 17.0040i 0.993897 0.845980i
\(405\) 0 0
\(406\) 2.28603 1.33059i 0.113454 0.0660363i
\(407\) 0.0654556 + 0.113372i 0.00324451 + 0.00561966i
\(408\) 0 0
\(409\) 7.25219 8.64283i 0.358598 0.427360i −0.556340 0.830955i \(-0.687795\pi\)
0.914938 + 0.403594i \(0.132239\pi\)
\(410\) 31.7847 0.111943i 1.56974 0.00552845i
\(411\) 0 0
\(412\) 9.41887 + 7.79097i 0.464034 + 0.383834i
\(413\) 0.781022 0.137715i 0.0384316 0.00677653i
\(414\) 0 0
\(415\) −21.3599 + 58.6859i −1.04852 + 2.88078i
\(416\) 15.4694 + 5.32385i 0.758451 + 0.261023i
\(417\) 0 0
\(418\) −3.54313 3.99259i −0.173300 0.195284i
\(419\) 15.2915i 0.747037i 0.927623 + 0.373518i \(0.121849\pi\)
−0.927623 + 0.373518i \(0.878151\pi\)
\(420\) 0 0
\(421\) 13.5067 37.1092i 0.658274 1.80859i 0.0736575 0.997284i \(-0.476533\pi\)
0.584617 0.811310i \(-0.301245\pi\)
\(422\) −1.71403 + 2.05737i −0.0834376 + 0.100151i
\(423\) 0 0
\(424\) 25.1330 9.44955i 1.22057 0.458911i
\(425\) −14.3576 + 24.8681i −0.696447 + 1.20628i
\(426\) 0 0
\(427\) 1.13761 1.35575i 0.0550527 0.0656092i
\(428\) −0.651572 + 3.85379i −0.0314949 + 0.186280i
\(429\) 0 0
\(430\) −28.9458 49.7303i −1.39589 2.39821i
\(431\) 8.12496 2.95725i 0.391366 0.142445i −0.138839 0.990315i \(-0.544337\pi\)
0.530205 + 0.847869i \(0.322115\pi\)
\(432\) 0 0
\(433\) −7.20103 1.26974i −0.346059 0.0610196i −0.00208276 0.999998i \(-0.500663\pi\)
−0.343977 + 0.938978i \(0.611774\pi\)
\(434\) 1.35538 1.14546i 0.0650604 0.0549838i
\(435\) 0 0
\(436\) 12.2509 7.18861i 0.586714 0.344272i
\(437\) 1.81354 11.9702i 0.0867532 0.572611i
\(438\) 0 0
\(439\) 11.4550 9.61190i 0.546718 0.458751i −0.327110 0.944986i \(-0.606075\pi\)
0.873828 + 0.486235i \(0.161630\pi\)
\(440\) −9.09201 3.20084i −0.433444 0.152594i
\(441\) 0 0
\(442\) 10.5361 + 3.79287i 0.501153 + 0.180408i
\(443\) −6.11614 16.8039i −0.290586 0.798380i −0.995981 0.0895648i \(-0.971452\pi\)
0.705395 0.708815i \(-0.250770\pi\)
\(444\) 0 0
\(445\) −6.20644 + 3.58329i −0.294213 + 0.169864i
\(446\) 3.82144 + 10.3854i 0.180951 + 0.491762i
\(447\) 0 0
\(448\) 1.43528 0.869604i 0.0678106 0.0410849i
\(449\) 15.4628 + 8.92745i 0.729735 + 0.421313i 0.818325 0.574756i \(-0.194903\pi\)
−0.0885903 + 0.996068i \(0.528236\pi\)
\(450\) 0 0
\(451\) 0.858752 + 4.87022i 0.0404371 + 0.229330i
\(452\) −7.31215 19.6580i −0.343935 0.924636i
\(453\) 0 0
\(454\) −37.8774 + 6.81643i −1.77767 + 0.319911i
\(455\) −2.38753 −0.111929
\(456\) 0 0
\(457\) 33.7501 1.57876 0.789382 0.613902i \(-0.210401\pi\)
0.789382 + 0.613902i \(0.210401\pi\)
\(458\) −10.9413 + 1.96901i −0.511254 + 0.0920056i
\(459\) 0 0
\(460\) −7.62157 20.4899i −0.355357 0.955345i
\(461\) −2.27764 12.9171i −0.106080 0.601611i −0.990783 0.135456i \(-0.956750\pi\)
0.884703 0.466155i \(-0.154361\pi\)
\(462\) 0 0
\(463\) −28.6823 16.5597i −1.33298 0.769595i −0.347223 0.937783i \(-0.612875\pi\)
−0.985755 + 0.168188i \(0.946208\pi\)
\(464\) 0.502410 + 35.6610i 0.0233238 + 1.65552i
\(465\) 0 0
\(466\) −0.913821 2.48345i −0.0423319 0.115044i
\(467\) 16.1123 9.30244i 0.745588 0.430465i −0.0785095 0.996913i \(-0.525016\pi\)
0.824098 + 0.566448i \(0.191683\pi\)
\(468\) 0 0
\(469\) −0.695663 1.91132i −0.0321227 0.0882565i
\(470\) 17.3869 + 6.25906i 0.801999 + 0.288709i
\(471\) 0 0
\(472\) −3.55096 + 10.0865i −0.163446 + 0.464269i
\(473\) 6.85817 5.75469i 0.315339 0.264601i
\(474\) 0 0
\(475\) 16.6695 + 42.5686i 0.764850 + 1.95318i
\(476\) 0.990709 0.581328i 0.0454091 0.0266451i
\(477\) 0 0
\(478\) −4.61284 + 3.89840i −0.210986 + 0.178309i
\(479\) −15.1913 2.67863i −0.694106 0.122390i −0.184545 0.982824i \(-0.559081\pi\)
−0.509561 + 0.860434i \(0.670192\pi\)
\(480\) 0 0
\(481\) −0.410846 + 0.149536i −0.0187330 + 0.00681825i
\(482\) −3.10885 5.34116i −0.141604 0.243283i
\(483\) 0 0
\(484\) −3.41754 + 20.2134i −0.155343 + 0.918792i
\(485\) −25.1912 + 30.0217i −1.14387 + 1.36322i
\(486\) 0 0
\(487\) 0.954158 1.65265i 0.0432370 0.0748887i −0.843597 0.536977i \(-0.819566\pi\)
0.886834 + 0.462088i \(0.152900\pi\)
\(488\) 8.39809 + 22.3364i 0.380164 + 1.01112i
\(489\) 0 0
\(490\) 24.7805 29.7444i 1.11947 1.34371i
\(491\) −12.5011 + 34.3464i −0.564166 + 1.55003i 0.249304 + 0.968425i \(0.419798\pi\)
−0.813469 + 0.581608i \(0.802424\pi\)
\(492\) 0 0
\(493\) 24.4117i 1.09945i
\(494\) 15.1866 9.33799i 0.683276 0.420136i
\(495\) 0 0
\(496\) 4.48649 + 23.5030i 0.201449 + 1.05532i
\(497\) −0.833274 + 2.28940i −0.0373775 + 0.102694i
\(498\) 0 0
\(499\) −8.46805 + 1.49315i −0.379082 + 0.0668424i −0.359943 0.932974i \(-0.617204\pi\)
−0.0191394 + 0.999817i \(0.506093\pi\)
\(500\) 33.2845 + 27.5318i 1.48853 + 1.23126i
\(501\) 0 0
\(502\) 13.1317 0.0462485i 0.586096 0.00206417i
\(503\) −11.4192 + 13.6089i −0.509159 + 0.606792i −0.957982 0.286829i \(-0.907399\pi\)
0.448823 + 0.893621i \(0.351843\pi\)
\(504\) 0 0
\(505\) −25.8108 44.7055i −1.14856 1.98937i
\(506\) 2.93968 1.71105i 0.130685 0.0760657i
\(507\) 0 0
\(508\) −27.7740 + 23.6405i −1.23227 + 1.04888i
\(509\) 13.5154 + 2.38313i 0.599059 + 0.105630i 0.464951 0.885336i \(-0.346072\pi\)
0.134108 + 0.990967i \(0.457183\pi\)
\(510\) 0 0
\(511\) 0.879444 + 1.04808i 0.0389043 + 0.0463644i
\(512\) 0.717101 + 22.6161i 0.0316917 + 0.999498i
\(513\) 0 0
\(514\) −10.5089 + 18.3509i −0.463529 + 0.809426i
\(515\) 18.4254 15.4608i 0.811921 0.681283i
\(516\) 0 0
\(517\) −0.499264 + 2.83146i −0.0219576 + 0.124528i
\(518\) −0.0151906 + 0.0421976i −0.000667435 + 0.00185405i
\(519\) 0 0
\(520\) 15.8005 28.0476i 0.692900 1.22997i
\(521\) 6.24273 3.60424i 0.273499 0.157905i −0.356978 0.934113i \(-0.616193\pi\)
0.630477 + 0.776208i \(0.282859\pi\)
\(522\) 0 0
\(523\) −28.6996 24.0819i −1.25495 1.05303i −0.996201 0.0870811i \(-0.972246\pi\)
−0.258747 0.965945i \(-0.583309\pi\)
\(524\) −21.0551 11.9592i −0.919797 0.522441i
\(525\) 0 0
\(526\) −5.98088 + 34.6321i −0.260779 + 1.51003i
\(527\) 2.84398 + 16.1290i 0.123886 + 0.702591i
\(528\) 0 0
\(529\) −14.3637 5.22798i −0.624511 0.227303i
\(530\) −9.35793 51.9999i −0.406482 2.25873i
\(531\) 0 0
\(532\) 0.261194 1.80999i 0.0113242 0.0784730i
\(533\) −16.5164 −0.715403
\(534\) 0 0
\(535\) 7.22705 + 2.63043i 0.312453 + 0.113723i
\(536\) 27.0572 + 4.47668i 1.16869 + 0.193363i
\(537\) 0 0
\(538\) −1.47088 + 8.51705i −0.0634140 + 0.367196i
\(539\) 5.21650 + 3.01174i 0.224690 + 0.129725i
\(540\) 0 0
\(541\) −1.58880 1.33316i −0.0683079 0.0573172i 0.607994 0.793941i \(-0.291974\pi\)
−0.676302 + 0.736624i \(0.736419\pi\)
\(542\) −5.04861 + 1.85771i −0.216856 + 0.0797953i
\(543\) 0 0
\(544\) 0.272721 + 15.4856i 0.0116928 + 0.663940i
\(545\) −9.55957 26.2647i −0.409487 1.12506i
\(546\) 0 0
\(547\) 2.71682 15.4078i 0.116163 0.658791i −0.870005 0.493042i \(-0.835885\pi\)
0.986168 0.165749i \(-0.0530041\pi\)
\(548\) −5.16465 28.1301i −0.220623 1.20166i
\(549\) 0 0
\(550\) −6.38272 + 11.1457i −0.272160 + 0.475252i
\(551\) 30.3671 + 24.2548i 1.29368 + 1.03329i
\(552\) 0 0
\(553\) 2.30954 + 2.75241i 0.0982118 + 0.117044i
\(554\) −15.7318 18.6148i −0.668378 0.790869i
\(555\) 0 0
\(556\) 18.5788 + 21.8273i 0.787919 + 0.925684i
\(557\) 1.47433 0.536611i 0.0624693 0.0227370i −0.310597 0.950542i \(-0.600529\pi\)
0.373066 + 0.927805i \(0.378307\pi\)
\(558\) 0 0
\(559\) 14.9500 + 25.8941i 0.632317 + 1.09521i
\(560\) −1.17302 3.08683i −0.0495690 0.130442i
\(561\) 0 0
\(562\) −26.0604 + 0.0917822i −1.09929 + 0.00387160i
\(563\) 2.67277 4.62937i 0.112644 0.195105i −0.804192 0.594370i \(-0.797401\pi\)
0.916835 + 0.399265i \(0.130735\pi\)
\(564\) 0 0
\(565\) −40.6442 + 7.16667i −1.70991 + 0.301504i
\(566\) 0.352266 + 0.293479i 0.0148069 + 0.0123358i
\(567\) 0 0
\(568\) −21.3803 24.9401i −0.897098 1.04646i
\(569\) 7.29290i 0.305734i 0.988247 + 0.152867i \(0.0488507\pi\)
−0.988247 + 0.152867i \(0.951149\pi\)
\(570\) 0 0
\(571\) 35.8008i 1.49822i 0.662448 + 0.749108i \(0.269518\pi\)
−0.662448 + 0.749108i \(0.730482\pi\)
\(572\) 4.71858 + 1.67988i 0.197294 + 0.0702393i
\(573\) 0 0
\(574\) −1.08444 + 1.30167i −0.0452638 + 0.0543307i
\(575\) −28.6876 + 5.05840i −1.19636 + 0.210950i
\(576\) 0 0
\(577\) −7.89890 + 13.6813i −0.328836 + 0.569560i −0.982281 0.187414i \(-0.939990\pi\)
0.653445 + 0.756974i \(0.273323\pi\)
\(578\) −0.0473354 13.4403i −0.00196889 0.559043i
\(579\) 0 0
\(580\) 69.1965 + 11.6993i 2.87323 + 0.485786i
\(581\) −1.66443 2.88288i −0.0690522 0.119602i
\(582\) 0 0
\(583\) 7.72477 2.81159i 0.319927 0.116444i
\(584\) −18.1325 + 3.39517i −0.750329 + 0.140493i
\(585\) 0 0
\(586\) 30.7312 25.9715i 1.26950 1.07287i
\(587\) 11.0661 + 13.1881i 0.456749 + 0.544332i 0.944440 0.328684i \(-0.106605\pi\)
−0.487691 + 0.873016i \(0.662161\pi\)
\(588\) 0 0
\(589\) 22.8895 + 12.4876i 0.943146 + 0.514541i
\(590\) 18.2595 + 10.4566i 0.751733 + 0.430490i
\(591\) 0 0
\(592\) −0.395188 0.457714i −0.0162421 0.0188119i
\(593\) −0.342331 + 1.94146i −0.0140579 + 0.0797260i −0.991030 0.133643i \(-0.957333\pi\)
0.976972 + 0.213369i \(0.0684436\pi\)
\(594\) 0 0
\(595\) −0.773063 2.12397i −0.0316925 0.0870744i
\(596\) 19.0711 0.134335i 0.781184 0.00550257i
\(597\) 0 0
\(598\) 3.92287 + 10.6610i 0.160418 + 0.435961i
\(599\) −17.5707 14.7435i −0.717918 0.602404i 0.208891 0.977939i \(-0.433015\pi\)
−0.926808 + 0.375535i \(0.877459\pi\)
\(600\) 0 0
\(601\) 7.34871 + 4.24278i 0.299760 + 0.173067i 0.642335 0.766424i \(-0.277966\pi\)
−0.342575 + 0.939491i \(0.611299\pi\)
\(602\) 3.02234 + 0.521952i 0.123181 + 0.0212732i
\(603\) 0 0
\(604\) 25.9451 9.65075i 1.05569 0.392683i
\(605\) 37.9065 + 13.7968i 1.54112 + 0.560920i
\(606\) 0 0
\(607\) −16.4542 −0.667855 −0.333928 0.942599i \(-0.608374\pi\)
−0.333928 + 0.942599i \(0.608374\pi\)
\(608\) 19.5344 + 15.0468i 0.792225 + 0.610230i
\(609\) 0 0
\(610\) 46.2138 8.31666i 1.87114 0.336732i
\(611\) −9.02324 3.28419i −0.365041 0.132864i
\(612\) 0 0
\(613\) −3.12517 17.7237i −0.126224 0.715853i −0.980573 0.196154i \(-0.937155\pi\)
0.854349 0.519700i \(-0.173956\pi\)
\(614\) −10.6871 1.84564i −0.431296 0.0744839i
\(615\) 0 0
\(616\) 0.442209 0.261578i 0.0178171 0.0105393i
\(617\) 0.667321 + 0.559949i 0.0268653 + 0.0225427i 0.656121 0.754655i \(-0.272196\pi\)
−0.629256 + 0.777198i \(0.716640\pi\)
\(618\) 0 0
\(619\) 17.2683 9.96987i 0.694073 0.400723i −0.111063 0.993813i \(-0.535426\pi\)
0.805136 + 0.593090i \(0.202092\pi\)
\(620\) 47.0817 0.331639i 1.89085 0.0133189i
\(621\) 0 0
\(622\) 36.3012 + 13.0680i 1.45555 + 0.523977i
\(623\) 0.0663330 0.376193i 0.00265757 0.0150719i
\(624\) 0 0
\(625\) 24.9407 20.9277i 0.997628 0.837109i
\(626\) 35.5491 + 20.3577i 1.42083 + 0.813658i
\(627\) 0 0
\(628\) −3.75783 6.40416i −0.149954 0.255554i
\(629\) −0.266058 0.317076i −0.0106084 0.0126426i
\(630\) 0 0
\(631\) −22.0544 3.88878i −0.877970 0.154810i −0.283543 0.958959i \(-0.591510\pi\)
−0.594427 + 0.804150i \(0.702621\pi\)
\(632\) −47.6185 + 8.91619i −1.89416 + 0.354667i
\(633\) 0 0
\(634\) −6.70927 11.5269i −0.266459 0.457790i
\(635\) 35.8845 + 62.1537i 1.42403 + 2.46650i
\(636\) 0 0
\(637\) −12.9310 + 15.4106i −0.512345 + 0.610589i
\(638\) 0.0384552 + 10.9189i 0.00152246 + 0.432283i
\(639\) 0 0
\(640\) 44.0257 + 6.64841i 1.74027 + 0.262802i
\(641\) −45.2010 + 7.97015i −1.78533 + 0.314802i −0.966005 0.258525i \(-0.916764\pi\)
−0.819327 + 0.573327i \(0.805653\pi\)
\(642\) 0 0
\(643\) 7.82012 21.4856i 0.308395 0.847310i −0.684575 0.728943i \(-0.740012\pi\)
0.992970 0.118367i \(-0.0377658\pi\)
\(644\) 1.09778 + 0.390823i 0.0432584 + 0.0154006i
\(645\) 0 0
\(646\) 13.2245 + 10.4866i 0.520311 + 0.412590i
\(647\) 6.37749i 0.250725i 0.992111 + 0.125362i \(0.0400094\pi\)
−0.992111 + 0.125362i \(0.959991\pi\)
\(648\) 0 0
\(649\) −1.11972 + 3.07639i −0.0439527 + 0.120759i
\(650\) −32.9568 27.4568i −1.29267 1.07695i
\(651\) 0 0
\(652\) 10.2754 12.4224i 0.402417 0.486501i
\(653\) 20.6208 35.7162i 0.806953 1.39768i −0.108011 0.994150i \(-0.534448\pi\)
0.914964 0.403535i \(-0.132219\pi\)
\(654\) 0 0
\(655\) −30.6274 + 36.5003i −1.19671 + 1.42618i
\(656\) −8.11467 21.3540i −0.316824 0.833733i
\(657\) 0 0
\(658\) −0.851285 + 0.495495i −0.0331865 + 0.0193164i
\(659\) −11.8817 + 4.32460i −0.462847 + 0.168462i −0.562909 0.826519i \(-0.690318\pi\)
0.100062 + 0.994981i \(0.468096\pi\)
\(660\) 0 0
\(661\) 0.353109 + 0.0622626i 0.0137343 + 0.00242173i 0.180511 0.983573i \(-0.442225\pi\)
−0.166777 + 0.985995i \(0.553336\pi\)
\(662\) 19.9145 + 23.5642i 0.774000 + 0.915847i
\(663\) 0 0
\(664\) 44.8819 0.474225i 1.74176 0.0184035i
\(665\) −3.41022 1.14867i −0.132243 0.0445433i
\(666\) 0 0
\(667\) −18.9707 + 15.9183i −0.734547 + 0.616358i
\(668\) −3.39863 18.5111i −0.131497 0.716218i
\(669\) 0 0
\(670\) 18.2785 50.7755i 0.706160 1.96163i
\(671\) 2.49874 + 6.86522i 0.0964627 + 0.265029i
\(672\) 0 0
\(673\) −6.45905 + 3.72913i −0.248978 + 0.143747i −0.619296 0.785157i \(-0.712582\pi\)
0.370318 + 0.928905i \(0.379249\pi\)
\(674\) −19.6312 + 7.22358i −0.756166 + 0.278242i
\(675\) 0 0
\(676\) 4.57937 8.06233i 0.176130 0.310090i
\(677\) −9.14972 5.28259i −0.351652 0.203026i 0.313761 0.949502i \(-0.398411\pi\)
−0.665413 + 0.746476i \(0.731744\pi\)
\(678\) 0 0
\(679\) −0.362743 2.05722i −0.0139208 0.0789489i
\(680\) 30.0676 + 4.97477i 1.15304 + 0.190774i
\(681\) 0 0
\(682\) 1.29747 + 7.20972i 0.0496826 + 0.276075i
\(683\) 0.943220 0.0360913 0.0180457 0.999837i \(-0.494256\pi\)
0.0180457 + 0.999837i \(0.494256\pi\)
\(684\) 0 0
\(685\) −56.2778 −2.15027
\(686\) 0.733293 + 4.07474i 0.0279972 + 0.155574i
\(687\) 0 0
\(688\) −26.1334 + 32.0509i −0.996326 + 1.22193i
\(689\) 4.76746 + 27.0376i 0.181626 + 1.03005i
\(690\) 0 0
\(691\) −10.4176 6.01463i −0.396306 0.228807i 0.288583 0.957455i \(-0.406816\pi\)
−0.684889 + 0.728648i \(0.740149\pi\)
\(692\) 25.5561 + 14.5158i 0.971497 + 0.551807i
\(693\) 0 0
\(694\) −8.20044 + 3.01746i −0.311284 + 0.114541i
\(695\) 48.8461 28.2013i 1.85284 1.06974i
\(696\) 0 0
\(697\) −5.34787 14.6932i −0.202565 0.556543i
\(698\) −5.38970 + 14.9719i −0.204003 + 0.566696i
\(699\) 0 0
\(700\) −4.32780 + 0.794580i −0.163576 + 0.0300323i
\(701\) 21.1942 17.7840i 0.800494 0.671694i −0.147825 0.989014i \(-0.547227\pi\)
0.948319 + 0.317320i \(0.102783\pi\)
\(702\) 0 0
\(703\) −0.658776 + 0.0159269i −0.0248462 + 0.000600694i
\(704\) 0.146377 + 6.92599i 0.00551679 + 0.261033i
\(705\) 0 0
\(706\) −17.1811 20.3297i −0.646618 0.765120i
\(707\) 2.70975 + 0.477803i 0.101911 + 0.0179696i
\(708\) 0 0
\(709\) 18.1451 6.60427i 0.681453 0.248029i 0.0219818 0.999758i \(-0.493002\pi\)
0.659471 + 0.751730i \(0.270780\pi\)
\(710\) −55.8660 + 32.5171i −2.09661 + 1.22035i
\(711\) 0 0
\(712\) 3.98036 + 3.26888i 0.149170 + 0.122506i
\(713\) −10.6796 + 12.7274i −0.399954 + 0.476647i
\(714\) 0 0
\(715\) 4.92790 8.53537i 0.184293 0.319205i
\(716\) −12.5347 10.3683i −0.468446 0.387483i
\(717\) 0 0
\(718\) −12.8215 10.6818i −0.478494 0.398641i
\(719\) −4.78669 + 13.1513i −0.178513 + 0.490462i −0.996386 0.0849373i \(-0.972931\pi\)
0.817873 + 0.575399i \(0.195153\pi\)
\(720\) 0 0
\(721\) 1.28207i 0.0477467i
\(722\) 26.1844 6.03150i 0.974481 0.224469i
\(723\) 0 0
\(724\) 2.84489 7.99096i 0.105730 0.296982i
\(725\) 31.9831 87.8728i 1.18782 3.26352i
\(726\) 0 0
\(727\) −7.95695 + 1.40303i −0.295107 + 0.0520353i −0.319241 0.947673i \(-0.603428\pi\)
0.0241345 + 0.999709i \(0.492317\pi\)
\(728\) 0.603881 + 1.60614i 0.0223813 + 0.0595276i
\(729\) 0 0
\(730\) 0.127845 + 36.2999i 0.00473174 + 1.34352i
\(731\) −18.1951 + 21.6840i −0.672969 + 0.802013i
\(732\) 0 0
\(733\) −11.3292 19.6227i −0.418452 0.724780i 0.577332 0.816509i \(-0.304094\pi\)
−0.995784 + 0.0917295i \(0.970760\pi\)
\(734\) 11.1033 + 19.0760i 0.409829 + 0.704107i
\(735\) 0 0
\(736\) −11.8563 + 10.3097i −0.437027 + 0.380022i
\(737\) 8.26880 + 1.45801i 0.304585 + 0.0537066i
\(738\) 0 0
\(739\) 9.18420 + 10.9453i 0.337846 + 0.402630i 0.908042 0.418879i \(-0.137577\pi\)
−0.570195 + 0.821509i \(0.693133\pi\)
\(740\) −1.02628 + 0.602200i −0.0377268 + 0.0221373i
\(741\) 0 0
\(742\) 2.44389 + 1.39953i 0.0897179 + 0.0513782i
\(743\) −31.0594 + 26.0620i −1.13946 + 0.956121i −0.999421 0.0340249i \(-0.989167\pi\)
−0.140040 + 0.990146i \(0.544723\pi\)
\(744\) 0 0
\(745\) 6.51665 36.9578i 0.238752 1.35403i
\(746\) −20.7152 7.45721i −0.758439 0.273028i
\(747\) 0 0
\(748\) 0.0333996 + 4.74164i 0.00122121 + 0.173372i
\(749\) −0.355021 + 0.204971i −0.0129722 + 0.00748949i
\(750\) 0 0
\(751\) −13.7493 11.5370i −0.501718 0.420991i 0.356486 0.934301i \(-0.383975\pi\)
−0.858204 + 0.513310i \(0.828419\pi\)
\(752\) −0.187091 13.2797i −0.00682249 0.484260i
\(753\) 0 0
\(754\) −35.9349 6.20588i −1.30867 0.226005i
\(755\) −9.45874 53.6432i −0.344239 1.95227i
\(756\) 0 0
\(757\) 44.5914 + 16.2299i 1.62070 + 0.589887i 0.983516 0.180824i \(-0.0578764\pi\)
0.637185 + 0.770711i \(0.280099\pi\)
\(758\) −30.6478 + 5.51539i −1.11318 + 0.200328i
\(759\) 0 0
\(760\) 36.0627 32.4600i 1.30813 1.17745i
\(761\) 35.8628 1.30003 0.650014 0.759923i \(-0.274763\pi\)
0.650014 + 0.759923i \(0.274763\pi\)
\(762\) 0 0
\(763\) 1.39997 + 0.509549i 0.0506825 + 0.0184469i
\(764\) 9.02412 + 24.2605i 0.326481 + 0.877714i
\(765\) 0 0
\(766\) 32.3606 + 5.58861i 1.16924 + 0.201925i
\(767\) −9.46898 5.46692i −0.341905 0.197399i
\(768\) 0 0
\(769\) 12.1897 + 10.2284i 0.439573 + 0.368845i 0.835550 0.549415i \(-0.185149\pi\)
−0.395977 + 0.918261i \(0.629594\pi\)
\(770\) −0.349122 0.948795i −0.0125815 0.0341922i
\(771\) 0 0
\(772\) −0.00205468 0.291697i −7.39495e−5 0.0104984i
\(773\) 2.36474 + 6.49707i 0.0850538 + 0.233683i 0.974927 0.222524i \(-0.0714296\pi\)
−0.889873 + 0.456208i \(0.849207\pi\)
\(774\) 0 0
\(775\) 10.8943 61.7844i 0.391333 2.21936i
\(776\) 26.5679 + 9.35325i 0.953734 + 0.335762i
\(777\) 0 0
\(778\) −7.22879 4.13967i −0.259165 0.148414i
\(779\) −23.5912 7.94621i −0.845241 0.284702i
\(780\) 0 0
\(781\) −6.46469 7.70432i −0.231325 0.275682i
\(782\) −8.21397 + 6.94179i −0.293731 + 0.248238i
\(783\) 0 0
\(784\) −26.2775 9.14710i −0.938481 0.326682i
\(785\) −13.7298 + 4.99725i −0.490039 + 0.178359i
\(786\) 0 0
\(787\) −24.7329 42.8387i −0.881633 1.52703i −0.849525 0.527549i \(-0.823111\pi\)
−0.0321080 0.999484i \(-0.510222\pi\)
\(788\) 3.78747 22.4014i 0.134923 0.798016i
\(789\) 0 0
\(790\) 0.335738 + 95.3287i 0.0119450 + 3.39164i
\(791\) 1.09993 1.90513i 0.0391090 0.0677387i
\(792\) 0 0
\(793\) −24.0291 + 4.23698i −0.853298 + 0.150459i
\(794\) 4.68966 5.62906i 0.166430 0.199768i
\(795\) 0 0
\(796\) 3.10638 8.72544i 0.110103 0.309265i
\(797\) 10.0163i 0.354797i 0.984139 + 0.177398i \(0.0567681\pi\)
−0.984139 + 0.177398i \(0.943232\pi\)
\(798\) 0 0
\(799\) 9.09058i 0.321602i
\(800\) 19.3069 56.0996i 0.682601 1.98342i
\(801\) 0 0
\(802\) 28.1825 + 23.4793i 0.995158 + 0.829082i
\(803\) −5.56207 + 0.980742i −0.196281 + 0.0346097i
\(804\) 0 0
\(805\) 1.14647 1.98575i 0.0404079 0.0699885i
\(806\) −24.4655 + 0.0861650i −0.861760 + 0.00303503i
\(807\) 0 0
\(808\) −23.5461 + 28.6709i −0.828348 + 1.00864i
\(809\) −18.8758 32.6938i −0.663638 1.14945i −0.979653 0.200700i \(-0.935678\pi\)
0.316015 0.948754i \(-0.397655\pi\)
\(810\) 0 0
\(811\) −13.3406 + 4.85559i −0.468453 + 0.170503i −0.565451 0.824782i \(-0.691298\pi\)
0.0969984 + 0.995285i \(0.469076\pi\)
\(812\) −2.84853 + 2.42460i −0.0999638 + 0.0850866i
\(813\) 0 0
\(814\) −0.119502 0.141403i −0.00418855 0.00495616i
\(815\) −20.3910 24.3011i −0.714267 0.851230i
\(816\) 0 0
\(817\) 8.89587 + 44.1785i 0.311227 + 1.54561i
\(818\) −7.92915 + 13.8461i −0.277236 + 0.484117i
\(819\) 0 0
\(820\) −44.2117 + 8.11721i −1.54394 + 0.283465i
\(821\) −4.21822 + 23.9227i −0.147217 + 0.834909i 0.818343 + 0.574730i \(0.194893\pi\)
−0.965560 + 0.260179i \(0.916218\pi\)
\(822\) 0 0
\(823\) 8.50271 + 23.3610i 0.296386 + 0.814313i 0.995097 + 0.0989088i \(0.0315352\pi\)
−0.698711 + 0.715404i \(0.746243\pi\)
\(824\) −15.0612 8.48468i −0.524681 0.295578i
\(825\) 0 0
\(826\) −1.05258 + 0.387310i −0.0366238 + 0.0134762i
\(827\) 19.8813 + 16.6824i 0.691341 + 0.580104i 0.919296 0.393568i \(-0.128759\pi\)
−0.227954 + 0.973672i \(0.573204\pi\)
\(828\) 0 0
\(829\) −18.9765 10.9561i −0.659081 0.380521i 0.132846 0.991137i \(-0.457589\pi\)
−0.791927 + 0.610616i \(0.790922\pi\)
\(830\) 15.0303 87.0324i 0.521710 3.02094i
\(831\) 0 0
\(832\) −22.8647 3.53526i −0.792691 0.122563i
\(833\) −17.8964 6.51376i −0.620074 0.225688i
\(834\) 0 0
\(835\) −37.0339 −1.28161
\(836\) 5.93158 + 4.66962i 0.205148 + 0.161502i
\(837\) 0 0
\(838\) −3.83019 21.2835i −0.132312 0.735226i
\(839\) 25.2502 + 9.19034i 0.871735 + 0.317286i 0.738870 0.673848i \(-0.235360\pi\)
0.132866 + 0.991134i \(0.457582\pi\)
\(840\) 0 0
\(841\) −8.76882 49.7305i −0.302373 1.71484i
\(842\) −9.50422 + 55.0338i −0.327537 + 1.89659i
\(843\) 0 0
\(844\) 1.87035 3.29289i 0.0643801 0.113346i
\(845\) −13.9765 11.7277i −0.480807 0.403445i
\(846\) 0 0
\(847\) −1.86211 + 1.07509i −0.0639829 + 0.0369405i
\(848\) −32.6146 + 19.4477i −1.11999 + 0.667837i
\(849\) 0 0
\(850\) 13.7548 38.2091i 0.471785 1.31056i
\(851\) 0.0729138 0.413515i 0.00249945 0.0141751i
\(852\) 0 0
\(853\) −1.64649 + 1.38157i −0.0563748 + 0.0473041i −0.670540 0.741874i \(-0.733937\pi\)
0.614165 + 0.789178i \(0.289493\pi\)
\(854\) −1.24380 + 2.17195i −0.0425619 + 0.0743227i
\(855\) 0 0
\(856\) −0.0583998 5.52712i −0.00199606 0.188913i
\(857\) 33.5911 + 40.0323i 1.14745 + 1.36748i 0.919160 + 0.393885i \(0.128869\pi\)
0.228291 + 0.973593i \(0.426686\pi\)
\(858\) 0 0
\(859\) 20.1780 + 3.55792i 0.688463 + 0.121395i 0.506926 0.861989i \(-0.330782\pi\)
0.181537 + 0.983384i \(0.441893\pi\)
\(860\) 52.7448 + 61.9671i 1.79858 + 2.11306i
\(861\) 0 0
\(862\) −10.5680 + 6.15119i −0.359949 + 0.209510i
\(863\) −0.450739 0.780702i −0.0153433 0.0265754i 0.858252 0.513229i \(-0.171551\pi\)
−0.873595 + 0.486653i \(0.838217\pi\)
\(864\) 0 0
\(865\) 37.1746 44.3030i 1.26398 1.50635i
\(866\) 10.3408 0.0364194i 0.351396 0.00123758i
\(867\) 0 0
\(868\) −1.59958 + 1.93381i −0.0542933 + 0.0656377i
\(869\) −14.6068 + 2.57557i −0.495501 + 0.0873701i
\(870\) 0 0
\(871\) −9.59090 + 26.3508i −0.324975 + 0.892862i
\(872\) −15.2509 + 13.0741i −0.516462 + 0.442745i
\(873\) 0 0
\(874\) 0.474098 + 17.1150i 0.0160366 + 0.578923i
\(875\) 4.53059i 0.153162i
\(876\) 0 0
\(877\) −8.87885 + 24.3944i −0.299817 + 0.823742i 0.694712 + 0.719288i \(0.255532\pi\)
−0.994530 + 0.104454i \(0.966691\pi\)
\(878\) −13.5361 + 16.2476i −0.456823 + 0.548330i
\(879\) 0 0
\(880\) 13.4565 + 2.17775i 0.453618 + 0.0734120i
\(881\) 10.6496 18.4456i 0.358793 0.621448i −0.628966 0.777432i \(-0.716522\pi\)
0.987759 + 0.155985i \(0.0498551\pi\)
\(882\) 0 0
\(883\) −30.6480 + 36.5249i −1.03139 + 1.22916i −0.0584021 + 0.998293i \(0.518601\pi\)
−0.972985 + 0.230867i \(0.925844\pi\)
\(884\) −15.6148 2.64004i −0.525182 0.0887942i
\(885\) 0 0
\(886\) 12.7218 + 21.8567i 0.427398 + 0.734290i
\(887\) −2.16889 + 0.789412i −0.0728242 + 0.0265059i −0.378175 0.925734i \(-0.623448\pi\)
0.305351 + 0.952240i \(0.401226\pi\)
\(888\) 0 0
\(889\) −3.76735 0.664285i −0.126353 0.0222794i
\(890\) 7.74092 6.54200i 0.259476 0.219288i
\(891\) 0 0
\(892\) −7.92021 13.4977i −0.265188 0.451938i
\(893\) −11.3083 9.03216i −0.378417 0.302250i
\(894\) 0 0
\(895\) −24.5208 + 20.5754i −0.819639 + 0.687759i
\(896\) −1.77988 + 1.56987i −0.0594618 + 0.0524457i
\(897\) 0 0
\(898\) −23.7581 8.55261i −0.792819 0.285404i
\(899\) −18.2417 50.1186i −0.608394 1.67155i
\(900\) 0 0
\(901\) −22.5093 + 12.9958i −0.749894 + 0.432952i
\(902\) −2.41515 6.56355i −0.0804156 0.218542i
\(903\) 0 0
\(904\) 15.1014 + 25.5296i 0.502264 + 0.849101i
\(905\) −14.4547 8.34544i −0.480491 0.277412i
\(906\) 0 0
\(907\) −2.26633 12.8530i −0.0752523 0.426777i −0.999037 0.0438658i \(-0.986033\pi\)
0.923785 0.382911i \(-0.125079\pi\)
\(908\) 51.0124 18.9750i 1.69291 0.629707i
\(909\) 0 0
\(910\) 3.32309 0.598025i 0.110159 0.0198243i
\(911\) −40.1054 −1.32875 −0.664376 0.747398i \(-0.731303\pi\)
−0.664376 + 0.747398i \(0.731303\pi\)
\(912\) 0 0
\(913\) 13.7417 0.454783
\(914\) −46.9753 + 8.45370i −1.55380 + 0.279624i
\(915\) 0 0
\(916\) 14.7355 5.48114i 0.486875 0.181102i
\(917\) −0.441022 2.50116i −0.0145638 0.0825956i
\(918\) 0 0
\(919\) 38.9363 + 22.4799i 1.28439 + 0.741544i 0.977648 0.210249i \(-0.0674274\pi\)
0.306743 + 0.951792i \(0.400761\pi\)
\(920\) 15.7404 + 26.6099i 0.518946 + 0.877302i
\(921\) 0 0
\(922\) 6.40561 + 17.4083i 0.210958 + 0.573311i
\(923\) 29.0889 16.7945i 0.957474 0.552798i
\(924\) 0 0
\(925\) 0.542290 + 1.48993i 0.0178304 + 0.0489886i
\(926\) 44.0694 + 15.8644i 1.44821 + 0.521337i
\(927\) 0 0
\(928\) −9.63163 49.5092i −0.316174 1.62522i
\(929\) 28.4647 23.8847i 0.933896 0.783632i −0.0426166 0.999092i \(-0.513569\pi\)
0.976513 + 0.215460i \(0.0691249\pi\)
\(930\) 0 0
\(931\) −25.8842 + 15.7905i −0.848321 + 0.517511i
\(932\) 1.89396 + 3.22771i 0.0620387 + 0.105727i
\(933\) 0 0
\(934\) −20.0959 + 16.9834i −0.657558 + 0.555715i
\(935\) 9.18879 + 1.62023i 0.300506 + 0.0529873i
\(936\) 0 0
\(937\) −10.4385 + 3.79929i −0.341010 + 0.124117i −0.506848 0.862036i \(-0.669189\pi\)
0.165838 + 0.986153i \(0.446967\pi\)
\(938\) 1.44701 + 2.48603i 0.0472464 + 0.0811717i
\(939\) 0 0
\(940\) −25.7678 4.35665i −0.840454 0.142098i
\(941\) −11.3300 + 13.5026i −0.369348 + 0.440172i −0.918422 0.395602i \(-0.870536\pi\)
0.549074 + 0.835774i \(0.314980\pi\)
\(942\) 0 0
\(943\) 7.93104 13.7370i 0.258270 0.447337i
\(944\) 2.41596 14.9284i 0.0786327 0.485878i
\(945\) 0 0
\(946\) −8.10414 + 9.72751i −0.263488 + 0.316269i
\(947\) 7.23906 19.8892i 0.235238 0.646311i −0.764760 0.644315i \(-0.777143\pi\)
0.999998 0.00199576i \(-0.000635272\pi\)
\(948\) 0 0
\(949\) 18.8626i 0.612306i
\(950\) −33.8641 55.0739i −1.09870 1.78683i
\(951\) 0 0
\(952\) −1.23331 + 1.05728i −0.0399719 + 0.0342665i
\(953\) −20.9991 + 57.6945i −0.680227 + 1.86891i −0.241033 + 0.970517i \(0.577486\pi\)
−0.439194 + 0.898392i \(0.644736\pi\)
\(954\) 0 0
\(955\) 50.1601 8.84458i 1.62314 0.286204i
\(956\) 5.44393 6.58142i 0.176069 0.212858i
\(957\) 0 0
\(958\) 21.8150 0.0768302i 0.704810 0.00248227i
\(959\) 1.92820 2.29794i 0.0622649 0.0742044i
\(960\) 0 0
\(961\) −2.39129 4.14183i −0.0771384 0.133608i
\(962\) 0.534383 0.311041i 0.0172292 0.0100284i
\(963\) 0 0
\(964\) 5.66492 + 6.65542i 0.182455 + 0.214357i
\(965\) −0.565277 0.0996736i −0.0181969 0.00320861i
\(966\) 0 0
\(967\) 34.6635 + 41.3104i 1.11470 + 1.32845i 0.938964 + 0.344017i \(0.111788\pi\)
0.175741 + 0.984436i \(0.443768\pi\)
\(968\) −0.306312 28.9902i −0.00984523 0.931779i
\(969\) 0 0
\(970\) 27.5427 48.0958i 0.884343 1.54426i
\(971\) 24.1138 20.2338i 0.773847 0.649335i −0.167844 0.985814i \(-0.553680\pi\)
0.941691 + 0.336479i \(0.109236\pi\)
\(972\) 0 0
\(973\) −0.522056 + 2.96072i −0.0167363 + 0.0949165i
\(974\) −0.914095 + 2.53925i −0.0292895 + 0.0813627i
\(975\) 0 0
\(976\) −17.2837 28.9855i −0.553239 0.927803i
\(977\) 7.25341 4.18776i 0.232057 0.133978i −0.379464 0.925207i \(-0.623891\pi\)
0.611521 + 0.791228i \(0.290558\pi\)
\(978\) 0 0
\(979\) 1.20797 + 1.01361i 0.0386070 + 0.0323951i
\(980\) −27.0405 + 47.6068i −0.863777 + 1.52074i
\(981\) 0 0
\(982\) 8.79663 50.9365i 0.280712 1.62545i
\(983\) 3.94998 + 22.4014i 0.125985 + 0.714495i 0.980718 + 0.195428i \(0.0626095\pi\)
−0.854733 + 0.519067i \(0.826279\pi\)
\(984\) 0 0
\(985\) −42.0096 15.2902i −1.33854 0.487187i
\(986\) −6.11462 33.9775i −0.194729 1.08207i
\(987\) 0 0
\(988\) −18.7985 + 16.8011i −0.598061 + 0.534513i
\(989\) −28.7155 −0.913101
\(990\) 0 0
\(991\) 47.7300 + 17.3723i 1.51619 + 0.551849i 0.960194 0.279335i \(-0.0901139\pi\)
0.555998 + 0.831184i \(0.312336\pi\)
\(992\) −12.1316 31.5890i −0.385177 1.00295i
\(993\) 0 0
\(994\) 0.586350 3.39523i 0.0185979 0.107690i
\(995\) −15.7833 9.11250i −0.500365 0.288886i
\(996\) 0 0
\(997\) 40.2848 + 33.8029i 1.27583 + 1.07055i 0.993804 + 0.111143i \(0.0354512\pi\)
0.282027 + 0.959407i \(0.408993\pi\)
\(998\) 11.4123 4.19931i 0.361250 0.132927i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.cf.b.127.1 60
3.2 odd 2 228.2.w.b.127.10 yes 60
4.3 odd 2 684.2.cf.c.127.6 60
12.11 even 2 228.2.w.a.127.5 yes 60
19.3 odd 18 684.2.cf.c.307.6 60
57.41 even 18 228.2.w.a.79.5 60
76.3 even 18 inner 684.2.cf.b.307.1 60
228.155 odd 18 228.2.w.b.79.10 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.2.w.a.79.5 60 57.41 even 18
228.2.w.a.127.5 yes 60 12.11 even 2
228.2.w.b.79.10 yes 60 228.155 odd 18
228.2.w.b.127.10 yes 60 3.2 odd 2
684.2.cf.b.127.1 60 1.1 even 1 trivial
684.2.cf.b.307.1 60 76.3 even 18 inner
684.2.cf.c.127.6 60 4.3 odd 2
684.2.cf.c.307.6 60 19.3 odd 18