gp: [N,k,chi] = [684,2,Mod(91,684)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(684, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 0, 11]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("684.91");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [60,-3]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(684, [\chi])\):
\( T_{5}^{60} - 12 T_{5}^{57} - 69 T_{5}^{56} - 528 T_{5}^{55} + 4170 T_{5}^{54} + 4236 T_{5}^{53} + \cdots + 2228834013184 \)
T5^60 - 12*T5^57 - 69*T5^56 - 528*T5^55 + 4170*T5^54 + 4236*T5^53 + 14970*T5^52 + 33288*T5^51 - 124710*T5^50 - 1816512*T5^49 + 11799794*T5^48 - 4878744*T5^47 - 19720092*T5^46 + 66915548*T5^45 + 395418510*T5^44 - 3425740236*T5^43 + 10891605048*T5^42 - 148581504*T5^41 - 9145426617*T5^40 - 81602956836*T5^39 + 586041960348*T5^38 - 2265162142752*T5^37 + 7911763498395*T5^36 - 14900875929396*T5^35 + 25826687303130*T5^34 - 63970355103156*T5^33 + 196016189745591*T5^32 - 464927169043404*T5^31 + 1007399143122072*T5^30 - 1311950424994812*T5^29 + 1349192107949202*T5^28 - 2613852644857320*T5^27 + 7292234776513212*T5^26 - 9561210673828752*T5^25 + 18927657002138066*T5^24 - 16868932885286136*T5^23 - 21678863351478210*T5^22 + 68078775299723496*T5^21 + 67651589357876022*T5^20 - 202022201417009088*T5^19 + 332481128620679424*T5^18 - 419484386204372220*T5^17 + 235456743849756441*T5^16 + 566636766196684712*T5^15 - 614915527123433694*T5^14 + 89964688125199524*T5^13 + 820757635895327497*T5^12 - 1679883370242945612*T5^11 + 2343220412545141488*T5^10 - 1013097197658889376*T5^9 + 986524076867100672*T5^8 + 150859511600956800*T5^7 - 214935883074670464*T5^6 + 113198375875951104*T5^5 + 83954521805872128*T5^4 + 4237968621316096*T5^3 + 1292497656437760*T5^2 + 98235140136960*T5 + 2228834013184
\( T_{7}^{60} - 120 T_{7}^{58} + 8037 T_{7}^{56} + 234 T_{7}^{55} - 370070 T_{7}^{54} + \cdots + 54\!\cdots\!89 \)
T7^60 - 120*T7^58 + 8037*T7^56 + 234*T7^55 - 370070*T7^54 - 29574*T7^53 + 12934554*T7^52 + 2059938*T7^51 - 359272269*T7^50 - 96327522*T7^49 + 8170753318*T7^48 + 3356218926*T7^47 - 154764257628*T7^46 - 91079104158*T7^45 + 2469074283402*T7^44 + 1986657052050*T7^43 - 33345456306363*T7^42 - 35401650243678*T7^41 + 381563010696498*T7^40 + 521634241760922*T7^39 - 3680700422984244*T7^38 - 6385737050123994*T7^37 + 29602133140810225*T7^36 + 65087095322585970*T7^35 - 193989447554728989*T7^34 - 550216456928849106*T7^33 + 991253984641605843*T7^32 + 3833461602930816360*T7^31 - 3521634755852535222*T7^30 - 21711411228947158476*T7^29 + 4950665315259135615*T7^28 + 98377755344960395500*T7^27 + 35015516496819467970*T7^26 - 346157326729320998832*T7^25 - 310893877549135041835*T7^24 + 915636084122337193242*T7^23 + 1398909792966113732136*T7^22 - 1633949505841174111134*T7^21 - 4208900948421046969695*T7^20 + 1363381040686653649638*T7^19 + 9115672803636779140533*T7^18 + 2372324998058204307462*T7^17 - 13471396787037050612691*T7^16 - 10240763830249480497900*T7^15 + 12636971634912501301602*T7^14 + 18868194056200281105996*T7^13 - 2677729382342398384031*T7^12 - 17841795498798352647912*T7^11 - 6834996325645274467878*T7^10 + 8926835554637882205948*T7^9 + 10002361010471992851615*T7^8 + 3278579759432276816358*T7^7 - 231971433527704589680*T7^6 - 297958833287476364826*T7^5 + 9485552142792598779*T7^4 + 18328986384069643650*T7^3 + 16405142275425129*T7^2 - 550225364474215350*T7 + 54794648173309489