Properties

Label 6825.2.a.bm.1.2
Level $6825$
Weight $2$
Character 6825.1
Self dual yes
Analytic conductor $54.498$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6825,2,Mod(1,6825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6825.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6825 = 3 \cdot 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.4978993795\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1365)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.17557\) of defining polynomial
Character \(\chi\) \(=\) 6825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.618034 q^{2} -1.00000 q^{3} -1.61803 q^{4} +0.618034 q^{6} -1.00000 q^{7} +2.23607 q^{8} +1.00000 q^{9} +1.35114 q^{11} +1.61803 q^{12} -1.00000 q^{13} +0.618034 q^{14} +1.85410 q^{16} +5.87129 q^{17} -0.618034 q^{18} -2.45965 q^{19} +1.00000 q^{21} -0.835051 q^{22} +2.33395 q^{23} -2.23607 q^{24} +0.618034 q^{26} -1.00000 q^{27} +1.61803 q^{28} +0.344577 q^{29} +6.43945 q^{31} -5.61803 q^{32} -1.35114 q^{33} -3.62866 q^{34} -1.61803 q^{36} +2.55754 q^{37} +1.52015 q^{38} +1.00000 q^{39} -0.726543 q^{41} -0.618034 q^{42} +10.8753 q^{43} -2.18619 q^{44} -1.44246 q^{46} +3.84162 q^{47} -1.85410 q^{48} +1.00000 q^{49} -5.87129 q^{51} +1.61803 q^{52} -10.8339 q^{53} +0.618034 q^{54} -2.23607 q^{56} +2.45965 q^{57} -0.212960 q^{58} -4.76278 q^{59} -3.49047 q^{61} -3.97980 q^{62} -1.00000 q^{63} -0.236068 q^{64} +0.835051 q^{66} +3.45559 q^{67} -9.49994 q^{68} -2.33395 q^{69} -5.51609 q^{71} +2.23607 q^{72} +11.1074 q^{73} -1.58064 q^{74} +3.97980 q^{76} -1.35114 q^{77} -0.618034 q^{78} +0.773401 q^{79} +1.00000 q^{81} +0.449028 q^{82} -13.2188 q^{83} -1.61803 q^{84} -6.72133 q^{86} -0.344577 q^{87} +3.02124 q^{88} +3.04145 q^{89} +1.00000 q^{91} -3.77642 q^{92} -6.43945 q^{93} -2.37425 q^{94} +5.61803 q^{96} +4.39259 q^{97} -0.618034 q^{98} +1.35114 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 4 q^{3} - 2 q^{4} - 2 q^{6} - 4 q^{7} + 4 q^{9} - 4 q^{11} + 2 q^{12} - 4 q^{13} - 2 q^{14} - 6 q^{16} + 2 q^{17} + 2 q^{18} - 2 q^{19} + 4 q^{21} - 2 q^{22} + 8 q^{23} - 2 q^{26} - 4 q^{27}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.618034 −0.437016 −0.218508 0.975835i \(-0.570119\pi\)
−0.218508 + 0.975835i \(0.570119\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.61803 −0.809017
\(5\) 0 0
\(6\) 0.618034 0.252311
\(7\) −1.00000 −0.377964
\(8\) 2.23607 0.790569
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.35114 0.407384 0.203692 0.979035i \(-0.434706\pi\)
0.203692 + 0.979035i \(0.434706\pi\)
\(12\) 1.61803 0.467086
\(13\) −1.00000 −0.277350
\(14\) 0.618034 0.165177
\(15\) 0 0
\(16\) 1.85410 0.463525
\(17\) 5.87129 1.42400 0.711998 0.702181i \(-0.247790\pi\)
0.711998 + 0.702181i \(0.247790\pi\)
\(18\) −0.618034 −0.145672
\(19\) −2.45965 −0.564282 −0.282141 0.959373i \(-0.591045\pi\)
−0.282141 + 0.959373i \(0.591045\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) −0.835051 −0.178033
\(23\) 2.33395 0.486663 0.243332 0.969943i \(-0.421760\pi\)
0.243332 + 0.969943i \(0.421760\pi\)
\(24\) −2.23607 −0.456435
\(25\) 0 0
\(26\) 0.618034 0.121206
\(27\) −1.00000 −0.192450
\(28\) 1.61803 0.305780
\(29\) 0.344577 0.0639863 0.0319931 0.999488i \(-0.489815\pi\)
0.0319931 + 0.999488i \(0.489815\pi\)
\(30\) 0 0
\(31\) 6.43945 1.15656 0.578279 0.815839i \(-0.303724\pi\)
0.578279 + 0.815839i \(0.303724\pi\)
\(32\) −5.61803 −0.993137
\(33\) −1.35114 −0.235203
\(34\) −3.62866 −0.622309
\(35\) 0 0
\(36\) −1.61803 −0.269672
\(37\) 2.55754 0.420456 0.210228 0.977652i \(-0.432579\pi\)
0.210228 + 0.977652i \(0.432579\pi\)
\(38\) 1.52015 0.246600
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) −0.726543 −0.113467 −0.0567334 0.998389i \(-0.518069\pi\)
−0.0567334 + 0.998389i \(0.518069\pi\)
\(42\) −0.618034 −0.0953647
\(43\) 10.8753 1.65847 0.829237 0.558897i \(-0.188775\pi\)
0.829237 + 0.558897i \(0.188775\pi\)
\(44\) −2.18619 −0.329581
\(45\) 0 0
\(46\) −1.44246 −0.212680
\(47\) 3.84162 0.560357 0.280179 0.959948i \(-0.409606\pi\)
0.280179 + 0.959948i \(0.409606\pi\)
\(48\) −1.85410 −0.267617
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −5.87129 −0.822145
\(52\) 1.61803 0.224381
\(53\) −10.8339 −1.48815 −0.744075 0.668096i \(-0.767110\pi\)
−0.744075 + 0.668096i \(0.767110\pi\)
\(54\) 0.618034 0.0841038
\(55\) 0 0
\(56\) −2.23607 −0.298807
\(57\) 2.45965 0.325789
\(58\) −0.212960 −0.0279630
\(59\) −4.76278 −0.620061 −0.310031 0.950727i \(-0.600339\pi\)
−0.310031 + 0.950727i \(0.600339\pi\)
\(60\) 0 0
\(61\) −3.49047 −0.446909 −0.223455 0.974714i \(-0.571733\pi\)
−0.223455 + 0.974714i \(0.571733\pi\)
\(62\) −3.97980 −0.505435
\(63\) −1.00000 −0.125988
\(64\) −0.236068 −0.0295085
\(65\) 0 0
\(66\) 0.835051 0.102788
\(67\) 3.45559 0.422168 0.211084 0.977468i \(-0.432301\pi\)
0.211084 + 0.977468i \(0.432301\pi\)
\(68\) −9.49994 −1.15204
\(69\) −2.33395 −0.280975
\(70\) 0 0
\(71\) −5.51609 −0.654639 −0.327320 0.944914i \(-0.606145\pi\)
−0.327320 + 0.944914i \(0.606145\pi\)
\(72\) 2.23607 0.263523
\(73\) 11.1074 1.30002 0.650009 0.759927i \(-0.274765\pi\)
0.650009 + 0.759927i \(0.274765\pi\)
\(74\) −1.58064 −0.183746
\(75\) 0 0
\(76\) 3.97980 0.456514
\(77\) −1.35114 −0.153977
\(78\) −0.618034 −0.0699786
\(79\) 0.773401 0.0870144 0.0435072 0.999053i \(-0.486147\pi\)
0.0435072 + 0.999053i \(0.486147\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0.449028 0.0495868
\(83\) −13.2188 −1.45095 −0.725474 0.688249i \(-0.758380\pi\)
−0.725474 + 0.688249i \(0.758380\pi\)
\(84\) −1.61803 −0.176542
\(85\) 0 0
\(86\) −6.72133 −0.724780
\(87\) −0.344577 −0.0369425
\(88\) 3.02124 0.322066
\(89\) 3.04145 0.322393 0.161196 0.986922i \(-0.448465\pi\)
0.161196 + 0.986922i \(0.448465\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) −3.77642 −0.393719
\(93\) −6.43945 −0.667739
\(94\) −2.37425 −0.244885
\(95\) 0 0
\(96\) 5.61803 0.573388
\(97\) 4.39259 0.446000 0.223000 0.974818i \(-0.428415\pi\)
0.223000 + 0.974818i \(0.428415\pi\)
\(98\) −0.618034 −0.0624309
\(99\) 1.35114 0.135795
\(100\) 0 0
\(101\) −1.83692 −0.182780 −0.0913900 0.995815i \(-0.529131\pi\)
−0.0913900 + 0.995815i \(0.529131\pi\)
\(102\) 3.62866 0.359290
\(103\) 8.64480 0.851798 0.425899 0.904771i \(-0.359958\pi\)
0.425899 + 0.904771i \(0.359958\pi\)
\(104\) −2.23607 −0.219265
\(105\) 0 0
\(106\) 6.69572 0.650346
\(107\) 6.17661 0.597115 0.298558 0.954392i \(-0.403494\pi\)
0.298558 + 0.954392i \(0.403494\pi\)
\(108\) 1.61803 0.155695
\(109\) −10.4549 −1.00140 −0.500701 0.865620i \(-0.666924\pi\)
−0.500701 + 0.865620i \(0.666924\pi\)
\(110\) 0 0
\(111\) −2.55754 −0.242751
\(112\) −1.85410 −0.175196
\(113\) 11.6150 1.09265 0.546324 0.837574i \(-0.316027\pi\)
0.546324 + 0.837574i \(0.316027\pi\)
\(114\) −1.52015 −0.142375
\(115\) 0 0
\(116\) −0.557537 −0.0517660
\(117\) −1.00000 −0.0924500
\(118\) 2.94356 0.270977
\(119\) −5.87129 −0.538220
\(120\) 0 0
\(121\) −9.17442 −0.834038
\(122\) 2.15723 0.195307
\(123\) 0.726543 0.0655101
\(124\) −10.4192 −0.935676
\(125\) 0 0
\(126\) 0.618034 0.0550588
\(127\) −12.0996 −1.07367 −0.536835 0.843687i \(-0.680380\pi\)
−0.536835 + 0.843687i \(0.680380\pi\)
\(128\) 11.3820 1.00603
\(129\) −10.8753 −0.957521
\(130\) 0 0
\(131\) 2.14661 0.187550 0.0937751 0.995593i \(-0.470107\pi\)
0.0937751 + 0.995593i \(0.470107\pi\)
\(132\) 2.18619 0.190284
\(133\) 2.45965 0.213279
\(134\) −2.13567 −0.184494
\(135\) 0 0
\(136\) 13.1286 1.12577
\(137\) −2.97876 −0.254492 −0.127246 0.991871i \(-0.540614\pi\)
−0.127246 + 0.991871i \(0.540614\pi\)
\(138\) 1.44246 0.122791
\(139\) −11.2580 −0.954893 −0.477447 0.878661i \(-0.658438\pi\)
−0.477447 + 0.878661i \(0.658438\pi\)
\(140\) 0 0
\(141\) −3.84162 −0.323522
\(142\) 3.40913 0.286088
\(143\) −1.35114 −0.112988
\(144\) 1.85410 0.154508
\(145\) 0 0
\(146\) −6.86472 −0.568129
\(147\) −1.00000 −0.0824786
\(148\) −4.13818 −0.340156
\(149\) −2.82547 −0.231471 −0.115736 0.993280i \(-0.536923\pi\)
−0.115736 + 0.993280i \(0.536923\pi\)
\(150\) 0 0
\(151\) −15.0509 −1.22483 −0.612413 0.790538i \(-0.709801\pi\)
−0.612413 + 0.790538i \(0.709801\pi\)
\(152\) −5.49994 −0.446104
\(153\) 5.87129 0.474666
\(154\) 0.835051 0.0672903
\(155\) 0 0
\(156\) −1.61803 −0.129546
\(157\) −22.5709 −1.80136 −0.900679 0.434485i \(-0.856930\pi\)
−0.900679 + 0.434485i \(0.856930\pi\)
\(158\) −0.477988 −0.0380267
\(159\) 10.8339 0.859184
\(160\) 0 0
\(161\) −2.33395 −0.183941
\(162\) −0.618034 −0.0485573
\(163\) −1.78331 −0.139680 −0.0698398 0.997558i \(-0.522249\pi\)
−0.0698398 + 0.997558i \(0.522249\pi\)
\(164\) 1.17557 0.0917966
\(165\) 0 0
\(166\) 8.16965 0.634088
\(167\) 12.2632 0.948957 0.474479 0.880267i \(-0.342637\pi\)
0.474479 + 0.880267i \(0.342637\pi\)
\(168\) 2.23607 0.172516
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −2.45965 −0.188094
\(172\) −17.5967 −1.34173
\(173\) 5.59597 0.425453 0.212727 0.977112i \(-0.431766\pi\)
0.212727 + 0.977112i \(0.431766\pi\)
\(174\) 0.212960 0.0161445
\(175\) 0 0
\(176\) 2.50515 0.188833
\(177\) 4.76278 0.357992
\(178\) −1.87972 −0.140891
\(179\) −4.90990 −0.366983 −0.183492 0.983021i \(-0.558740\pi\)
−0.183492 + 0.983021i \(0.558740\pi\)
\(180\) 0 0
\(181\) 5.46506 0.406215 0.203107 0.979156i \(-0.434896\pi\)
0.203107 + 0.979156i \(0.434896\pi\)
\(182\) −0.618034 −0.0458117
\(183\) 3.49047 0.258023
\(184\) 5.21888 0.384741
\(185\) 0 0
\(186\) 3.97980 0.291813
\(187\) 7.93294 0.580114
\(188\) −6.21586 −0.453339
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 21.5978 1.56276 0.781382 0.624053i \(-0.214515\pi\)
0.781382 + 0.624053i \(0.214515\pi\)
\(192\) 0.236068 0.0170367
\(193\) 26.2531 1.88974 0.944871 0.327442i \(-0.106187\pi\)
0.944871 + 0.327442i \(0.106187\pi\)
\(194\) −2.71477 −0.194909
\(195\) 0 0
\(196\) −1.61803 −0.115574
\(197\) −1.65241 −0.117729 −0.0588645 0.998266i \(-0.518748\pi\)
−0.0588645 + 0.998266i \(0.518748\pi\)
\(198\) −0.835051 −0.0593445
\(199\) 4.83454 0.342712 0.171356 0.985209i \(-0.445185\pi\)
0.171356 + 0.985209i \(0.445185\pi\)
\(200\) 0 0
\(201\) −3.45559 −0.243739
\(202\) 1.13528 0.0798778
\(203\) −0.344577 −0.0241845
\(204\) 9.49994 0.665129
\(205\) 0 0
\(206\) −5.34278 −0.372249
\(207\) 2.33395 0.162221
\(208\) −1.85410 −0.128559
\(209\) −3.32333 −0.229880
\(210\) 0 0
\(211\) −28.1054 −1.93485 −0.967427 0.253150i \(-0.918533\pi\)
−0.967427 + 0.253150i \(0.918533\pi\)
\(212\) 17.5296 1.20394
\(213\) 5.51609 0.377956
\(214\) −3.81736 −0.260949
\(215\) 0 0
\(216\) −2.23607 −0.152145
\(217\) −6.43945 −0.437138
\(218\) 6.46151 0.437629
\(219\) −11.1074 −0.750566
\(220\) 0 0
\(221\) −5.87129 −0.394946
\(222\) 1.58064 0.106086
\(223\) 3.56055 0.238432 0.119216 0.992868i \(-0.461962\pi\)
0.119216 + 0.992868i \(0.461962\pi\)
\(224\) 5.61803 0.375371
\(225\) 0 0
\(226\) −7.17848 −0.477505
\(227\) 5.33467 0.354074 0.177037 0.984204i \(-0.443349\pi\)
0.177037 + 0.984204i \(0.443349\pi\)
\(228\) −3.97980 −0.263568
\(229\) 15.6220 1.03233 0.516165 0.856489i \(-0.327359\pi\)
0.516165 + 0.856489i \(0.327359\pi\)
\(230\) 0 0
\(231\) 1.35114 0.0888986
\(232\) 0.770497 0.0505856
\(233\) −19.2381 −1.26033 −0.630166 0.776460i \(-0.717013\pi\)
−0.630166 + 0.776460i \(0.717013\pi\)
\(234\) 0.618034 0.0404021
\(235\) 0 0
\(236\) 7.70634 0.501640
\(237\) −0.773401 −0.0502378
\(238\) 3.62866 0.235211
\(239\) 22.2206 1.43733 0.718664 0.695357i \(-0.244754\pi\)
0.718664 + 0.695357i \(0.244754\pi\)
\(240\) 0 0
\(241\) 6.87681 0.442974 0.221487 0.975163i \(-0.428909\pi\)
0.221487 + 0.975163i \(0.428909\pi\)
\(242\) 5.67010 0.364488
\(243\) −1.00000 −0.0641500
\(244\) 5.64771 0.361557
\(245\) 0 0
\(246\) −0.449028 −0.0286290
\(247\) 2.45965 0.156504
\(248\) 14.3990 0.914340
\(249\) 13.2188 0.837705
\(250\) 0 0
\(251\) −20.0173 −1.26348 −0.631739 0.775181i \(-0.717659\pi\)
−0.631739 + 0.775181i \(0.717659\pi\)
\(252\) 1.61803 0.101927
\(253\) 3.15350 0.198259
\(254\) 7.47799 0.469211
\(255\) 0 0
\(256\) −6.56231 −0.410144
\(257\) −15.5054 −0.967198 −0.483599 0.875290i \(-0.660671\pi\)
−0.483599 + 0.875290i \(0.660671\pi\)
\(258\) 6.72133 0.418452
\(259\) −2.55754 −0.158918
\(260\) 0 0
\(261\) 0.344577 0.0213288
\(262\) −1.32668 −0.0819624
\(263\) 29.7401 1.83385 0.916926 0.399058i \(-0.130663\pi\)
0.916926 + 0.399058i \(0.130663\pi\)
\(264\) −3.02124 −0.185945
\(265\) 0 0
\(266\) −1.52015 −0.0932062
\(267\) −3.04145 −0.186134
\(268\) −5.59127 −0.341541
\(269\) 5.54846 0.338296 0.169148 0.985591i \(-0.445898\pi\)
0.169148 + 0.985591i \(0.445898\pi\)
\(270\) 0 0
\(271\) 18.0948 1.09918 0.549589 0.835435i \(-0.314784\pi\)
0.549589 + 0.835435i \(0.314784\pi\)
\(272\) 10.8860 0.660059
\(273\) −1.00000 −0.0605228
\(274\) 1.84097 0.111217
\(275\) 0 0
\(276\) 3.77642 0.227314
\(277\) 7.93616 0.476838 0.238419 0.971162i \(-0.423371\pi\)
0.238419 + 0.971162i \(0.423371\pi\)
\(278\) 6.95784 0.417304
\(279\) 6.43945 0.385520
\(280\) 0 0
\(281\) −27.0901 −1.61606 −0.808029 0.589143i \(-0.799465\pi\)
−0.808029 + 0.589143i \(0.799465\pi\)
\(282\) 2.37425 0.141384
\(283\) 24.3812 1.44931 0.724656 0.689111i \(-0.241999\pi\)
0.724656 + 0.689111i \(0.241999\pi\)
\(284\) 8.92522 0.529614
\(285\) 0 0
\(286\) 0.835051 0.0493776
\(287\) 0.726543 0.0428864
\(288\) −5.61803 −0.331046
\(289\) 17.4720 1.02777
\(290\) 0 0
\(291\) −4.39259 −0.257498
\(292\) −17.9721 −1.05174
\(293\) 25.9141 1.51392 0.756959 0.653463i \(-0.226684\pi\)
0.756959 + 0.653463i \(0.226684\pi\)
\(294\) 0.618034 0.0360445
\(295\) 0 0
\(296\) 5.71883 0.332400
\(297\) −1.35114 −0.0784012
\(298\) 1.74624 0.101157
\(299\) −2.33395 −0.134976
\(300\) 0 0
\(301\) −10.8753 −0.626844
\(302\) 9.30198 0.535269
\(303\) 1.83692 0.105528
\(304\) −4.56044 −0.261559
\(305\) 0 0
\(306\) −3.62866 −0.207436
\(307\) 16.1854 0.923748 0.461874 0.886946i \(-0.347177\pi\)
0.461874 + 0.886946i \(0.347177\pi\)
\(308\) 2.18619 0.124570
\(309\) −8.64480 −0.491786
\(310\) 0 0
\(311\) −10.6285 −0.602689 −0.301345 0.953515i \(-0.597435\pi\)
−0.301345 + 0.953515i \(0.597435\pi\)
\(312\) 2.23607 0.126592
\(313\) −9.85532 −0.557056 −0.278528 0.960428i \(-0.589846\pi\)
−0.278528 + 0.960428i \(0.589846\pi\)
\(314\) 13.9496 0.787222
\(315\) 0 0
\(316\) −1.25139 −0.0703961
\(317\) 21.6678 1.21698 0.608492 0.793560i \(-0.291775\pi\)
0.608492 + 0.793560i \(0.291775\pi\)
\(318\) −6.69572 −0.375477
\(319\) 0.465571 0.0260670
\(320\) 0 0
\(321\) −6.17661 −0.344745
\(322\) 1.44246 0.0803853
\(323\) −14.4413 −0.803536
\(324\) −1.61803 −0.0898908
\(325\) 0 0
\(326\) 1.10215 0.0610422
\(327\) 10.4549 0.578160
\(328\) −1.62460 −0.0897034
\(329\) −3.84162 −0.211795
\(330\) 0 0
\(331\) 4.67975 0.257223 0.128611 0.991695i \(-0.458948\pi\)
0.128611 + 0.991695i \(0.458948\pi\)
\(332\) 21.3884 1.17384
\(333\) 2.55754 0.140152
\(334\) −7.57909 −0.414710
\(335\) 0 0
\(336\) 1.85410 0.101150
\(337\) −8.61584 −0.469335 −0.234667 0.972076i \(-0.575400\pi\)
−0.234667 + 0.972076i \(0.575400\pi\)
\(338\) −0.618034 −0.0336166
\(339\) −11.6150 −0.630841
\(340\) 0 0
\(341\) 8.70060 0.471164
\(342\) 1.52015 0.0822001
\(343\) −1.00000 −0.0539949
\(344\) 24.3180 1.31114
\(345\) 0 0
\(346\) −3.45850 −0.185930
\(347\) −19.0911 −1.02486 −0.512432 0.858728i \(-0.671255\pi\)
−0.512432 + 0.858728i \(0.671255\pi\)
\(348\) 0.557537 0.0298871
\(349\) −36.5635 −1.95720 −0.978601 0.205767i \(-0.934031\pi\)
−0.978601 + 0.205767i \(0.934031\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) −7.59076 −0.404589
\(353\) 31.1802 1.65956 0.829778 0.558094i \(-0.188467\pi\)
0.829778 + 0.558094i \(0.188467\pi\)
\(354\) −2.94356 −0.156448
\(355\) 0 0
\(356\) −4.92116 −0.260821
\(357\) 5.87129 0.310742
\(358\) 3.03448 0.160378
\(359\) 18.4661 0.974604 0.487302 0.873234i \(-0.337981\pi\)
0.487302 + 0.873234i \(0.337981\pi\)
\(360\) 0 0
\(361\) −12.9501 −0.681585
\(362\) −3.37759 −0.177522
\(363\) 9.17442 0.481532
\(364\) −1.61803 −0.0848080
\(365\) 0 0
\(366\) −2.15723 −0.112760
\(367\) 4.70760 0.245735 0.122867 0.992423i \(-0.460791\pi\)
0.122867 + 0.992423i \(0.460791\pi\)
\(368\) 4.32739 0.225581
\(369\) −0.726543 −0.0378223
\(370\) 0 0
\(371\) 10.8339 0.562468
\(372\) 10.4192 0.540213
\(373\) 36.8766 1.90940 0.954699 0.297574i \(-0.0961776\pi\)
0.954699 + 0.297574i \(0.0961776\pi\)
\(374\) −4.90283 −0.253519
\(375\) 0 0
\(376\) 8.59011 0.443001
\(377\) −0.344577 −0.0177466
\(378\) −0.618034 −0.0317882
\(379\) −24.7106 −1.26930 −0.634649 0.772800i \(-0.718855\pi\)
−0.634649 + 0.772800i \(0.718855\pi\)
\(380\) 0 0
\(381\) 12.0996 0.619883
\(382\) −13.3482 −0.682953
\(383\) 23.4115 1.19627 0.598137 0.801394i \(-0.295908\pi\)
0.598137 + 0.801394i \(0.295908\pi\)
\(384\) −11.3820 −0.580834
\(385\) 0 0
\(386\) −16.2253 −0.825848
\(387\) 10.8753 0.552825
\(388\) −7.10736 −0.360821
\(389\) 7.35739 0.373034 0.186517 0.982452i \(-0.440280\pi\)
0.186517 + 0.982452i \(0.440280\pi\)
\(390\) 0 0
\(391\) 13.7033 0.693007
\(392\) 2.23607 0.112938
\(393\) −2.14661 −0.108282
\(394\) 1.02124 0.0514495
\(395\) 0 0
\(396\) −2.18619 −0.109860
\(397\) 4.56210 0.228965 0.114483 0.993425i \(-0.463479\pi\)
0.114483 + 0.993425i \(0.463479\pi\)
\(398\) −2.98791 −0.149770
\(399\) −2.45965 −0.123136
\(400\) 0 0
\(401\) −22.9251 −1.14483 −0.572413 0.819966i \(-0.693992\pi\)
−0.572413 + 0.819966i \(0.693992\pi\)
\(402\) 2.13567 0.106518
\(403\) −6.43945 −0.320772
\(404\) 2.97219 0.147872
\(405\) 0 0
\(406\) 0.212960 0.0105690
\(407\) 3.45559 0.171287
\(408\) −13.1286 −0.649963
\(409\) 1.92418 0.0951446 0.0475723 0.998868i \(-0.484852\pi\)
0.0475723 + 0.998868i \(0.484852\pi\)
\(410\) 0 0
\(411\) 2.97876 0.146931
\(412\) −13.9876 −0.689119
\(413\) 4.76278 0.234361
\(414\) −1.44246 −0.0708932
\(415\) 0 0
\(416\) 5.61803 0.275447
\(417\) 11.2580 0.551308
\(418\) 2.05393 0.100461
\(419\) 21.1798 1.03470 0.517351 0.855773i \(-0.326918\pi\)
0.517351 + 0.855773i \(0.326918\pi\)
\(420\) 0 0
\(421\) 15.9396 0.776847 0.388424 0.921481i \(-0.373020\pi\)
0.388424 + 0.921481i \(0.373020\pi\)
\(422\) 17.3701 0.845562
\(423\) 3.84162 0.186786
\(424\) −24.2253 −1.17649
\(425\) 0 0
\(426\) −3.40913 −0.165173
\(427\) 3.49047 0.168916
\(428\) −9.99397 −0.483077
\(429\) 1.35114 0.0652337
\(430\) 0 0
\(431\) 35.9157 1.73000 0.864999 0.501773i \(-0.167319\pi\)
0.864999 + 0.501773i \(0.167319\pi\)
\(432\) −1.85410 −0.0892055
\(433\) −10.0607 −0.483487 −0.241743 0.970340i \(-0.577719\pi\)
−0.241743 + 0.970340i \(0.577719\pi\)
\(434\) 3.97980 0.191036
\(435\) 0 0
\(436\) 16.9165 0.810152
\(437\) −5.74071 −0.274615
\(438\) 6.86472 0.328009
\(439\) 25.4083 1.21267 0.606336 0.795209i \(-0.292639\pi\)
0.606336 + 0.795209i \(0.292639\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 3.62866 0.172598
\(443\) −5.15974 −0.245147 −0.122573 0.992459i \(-0.539115\pi\)
−0.122573 + 0.992459i \(0.539115\pi\)
\(444\) 4.13818 0.196389
\(445\) 0 0
\(446\) −2.20054 −0.104199
\(447\) 2.82547 0.133640
\(448\) 0.236068 0.0111532
\(449\) 2.94800 0.139125 0.0695624 0.997578i \(-0.477840\pi\)
0.0695624 + 0.997578i \(0.477840\pi\)
\(450\) 0 0
\(451\) −0.981661 −0.0462246
\(452\) −18.7935 −0.883971
\(453\) 15.0509 0.707154
\(454\) −3.29701 −0.154736
\(455\) 0 0
\(456\) 5.49994 0.257558
\(457\) 25.8100 1.20734 0.603671 0.797233i \(-0.293704\pi\)
0.603671 + 0.797233i \(0.293704\pi\)
\(458\) −9.65491 −0.451144
\(459\) −5.87129 −0.274048
\(460\) 0 0
\(461\) −17.4559 −0.813001 −0.406501 0.913651i \(-0.633251\pi\)
−0.406501 + 0.913651i \(0.633251\pi\)
\(462\) −0.835051 −0.0388501
\(463\) −35.8249 −1.66493 −0.832463 0.554081i \(-0.813070\pi\)
−0.832463 + 0.554081i \(0.813070\pi\)
\(464\) 0.638880 0.0296593
\(465\) 0 0
\(466\) 11.8898 0.550786
\(467\) 17.6101 0.814900 0.407450 0.913228i \(-0.366418\pi\)
0.407450 + 0.913228i \(0.366418\pi\)
\(468\) 1.61803 0.0747936
\(469\) −3.45559 −0.159564
\(470\) 0 0
\(471\) 22.5709 1.04001
\(472\) −10.6499 −0.490201
\(473\) 14.6941 0.675637
\(474\) 0.477988 0.0219547
\(475\) 0 0
\(476\) 9.49994 0.435429
\(477\) −10.8339 −0.496050
\(478\) −13.7331 −0.628136
\(479\) 11.8777 0.542707 0.271353 0.962480i \(-0.412529\pi\)
0.271353 + 0.962480i \(0.412529\pi\)
\(480\) 0 0
\(481\) −2.55754 −0.116614
\(482\) −4.25010 −0.193587
\(483\) 2.33395 0.106199
\(484\) 14.8445 0.674751
\(485\) 0 0
\(486\) 0.618034 0.0280346
\(487\) 20.1424 0.912741 0.456371 0.889790i \(-0.349149\pi\)
0.456371 + 0.889790i \(0.349149\pi\)
\(488\) −7.80494 −0.353313
\(489\) 1.78331 0.0806441
\(490\) 0 0
\(491\) 35.6499 1.60886 0.804428 0.594051i \(-0.202472\pi\)
0.804428 + 0.594051i \(0.202472\pi\)
\(492\) −1.17557 −0.0529988
\(493\) 2.02311 0.0911162
\(494\) −1.52015 −0.0683946
\(495\) 0 0
\(496\) 11.9394 0.536094
\(497\) 5.51609 0.247430
\(498\) −8.16965 −0.366091
\(499\) 41.9260 1.87686 0.938432 0.345465i \(-0.112279\pi\)
0.938432 + 0.345465i \(0.112279\pi\)
\(500\) 0 0
\(501\) −12.2632 −0.547881
\(502\) 12.3713 0.552160
\(503\) 10.4994 0.468146 0.234073 0.972219i \(-0.424795\pi\)
0.234073 + 0.972219i \(0.424795\pi\)
\(504\) −2.23607 −0.0996024
\(505\) 0 0
\(506\) −1.94897 −0.0866424
\(507\) −1.00000 −0.0444116
\(508\) 19.5776 0.868617
\(509\) 9.52973 0.422398 0.211199 0.977443i \(-0.432263\pi\)
0.211199 + 0.977443i \(0.432263\pi\)
\(510\) 0 0
\(511\) −11.1074 −0.491361
\(512\) −18.7082 −0.826794
\(513\) 2.45965 0.108596
\(514\) 9.58284 0.422681
\(515\) 0 0
\(516\) 17.5967 0.774651
\(517\) 5.19056 0.228281
\(518\) 1.58064 0.0694495
\(519\) −5.59597 −0.245636
\(520\) 0 0
\(521\) 21.6253 0.947422 0.473711 0.880680i \(-0.342914\pi\)
0.473711 + 0.880680i \(0.342914\pi\)
\(522\) −0.212960 −0.00932101
\(523\) 31.8125 1.39106 0.695531 0.718496i \(-0.255169\pi\)
0.695531 + 0.718496i \(0.255169\pi\)
\(524\) −3.47329 −0.151731
\(525\) 0 0
\(526\) −18.3804 −0.801422
\(527\) 37.8078 1.64694
\(528\) −2.50515 −0.109023
\(529\) −17.5527 −0.763159
\(530\) 0 0
\(531\) −4.76278 −0.206687
\(532\) −3.97980 −0.172546
\(533\) 0.726543 0.0314701
\(534\) 1.87972 0.0813433
\(535\) 0 0
\(536\) 7.72694 0.333753
\(537\) 4.90990 0.211878
\(538\) −3.42914 −0.147841
\(539\) 1.35114 0.0581978
\(540\) 0 0
\(541\) −8.31555 −0.357513 −0.178757 0.983893i \(-0.557207\pi\)
−0.178757 + 0.983893i \(0.557207\pi\)
\(542\) −11.1832 −0.480358
\(543\) −5.46506 −0.234528
\(544\) −32.9851 −1.41422
\(545\) 0 0
\(546\) 0.618034 0.0264494
\(547\) −23.7652 −1.01613 −0.508063 0.861320i \(-0.669638\pi\)
−0.508063 + 0.861320i \(0.669638\pi\)
\(548\) 4.81973 0.205889
\(549\) −3.49047 −0.148970
\(550\) 0 0
\(551\) −0.847537 −0.0361063
\(552\) −5.21888 −0.222130
\(553\) −0.773401 −0.0328884
\(554\) −4.90482 −0.208386
\(555\) 0 0
\(556\) 18.2159 0.772525
\(557\) −38.7138 −1.64036 −0.820179 0.572107i \(-0.806126\pi\)
−0.820179 + 0.572107i \(0.806126\pi\)
\(558\) −3.97980 −0.168478
\(559\) −10.8753 −0.459978
\(560\) 0 0
\(561\) −7.93294 −0.334929
\(562\) 16.7426 0.706243
\(563\) 20.9359 0.882344 0.441172 0.897423i \(-0.354563\pi\)
0.441172 + 0.897423i \(0.354563\pi\)
\(564\) 6.21586 0.261735
\(565\) 0 0
\(566\) −15.0684 −0.633373
\(567\) −1.00000 −0.0419961
\(568\) −12.3344 −0.517538
\(569\) 9.12131 0.382385 0.191193 0.981553i \(-0.438764\pi\)
0.191193 + 0.981553i \(0.438764\pi\)
\(570\) 0 0
\(571\) 20.8335 0.871854 0.435927 0.899982i \(-0.356421\pi\)
0.435927 + 0.899982i \(0.356421\pi\)
\(572\) 2.18619 0.0914093
\(573\) −21.5978 −0.902262
\(574\) −0.449028 −0.0187421
\(575\) 0 0
\(576\) −0.236068 −0.00983617
\(577\) 10.9082 0.454116 0.227058 0.973881i \(-0.427089\pi\)
0.227058 + 0.973881i \(0.427089\pi\)
\(578\) −10.7983 −0.449150
\(579\) −26.2531 −1.09104
\(580\) 0 0
\(581\) 13.2188 0.548407
\(582\) 2.71477 0.112531
\(583\) −14.6381 −0.606249
\(584\) 24.8368 1.02775
\(585\) 0 0
\(586\) −16.0158 −0.661606
\(587\) 2.60728 0.107614 0.0538070 0.998551i \(-0.482864\pi\)
0.0538070 + 0.998551i \(0.482864\pi\)
\(588\) 1.61803 0.0667266
\(589\) −15.8388 −0.652626
\(590\) 0 0
\(591\) 1.65241 0.0679709
\(592\) 4.74193 0.194892
\(593\) −43.7692 −1.79739 −0.898693 0.438579i \(-0.855482\pi\)
−0.898693 + 0.438579i \(0.855482\pi\)
\(594\) 0.835051 0.0342626
\(595\) 0 0
\(596\) 4.57171 0.187264
\(597\) −4.83454 −0.197865
\(598\) 1.44246 0.0589867
\(599\) −35.9539 −1.46904 −0.734518 0.678589i \(-0.762592\pi\)
−0.734518 + 0.678589i \(0.762592\pi\)
\(600\) 0 0
\(601\) −15.4569 −0.630502 −0.315251 0.949008i \(-0.602089\pi\)
−0.315251 + 0.949008i \(0.602089\pi\)
\(602\) 6.72133 0.273941
\(603\) 3.45559 0.140723
\(604\) 24.3529 0.990905
\(605\) 0 0
\(606\) −1.13528 −0.0461175
\(607\) 0.170089 0.00690369 0.00345185 0.999994i \(-0.498901\pi\)
0.00345185 + 0.999994i \(0.498901\pi\)
\(608\) 13.8184 0.560410
\(609\) 0.344577 0.0139629
\(610\) 0 0
\(611\) −3.84162 −0.155415
\(612\) −9.49994 −0.384012
\(613\) −6.45603 −0.260757 −0.130378 0.991464i \(-0.541619\pi\)
−0.130378 + 0.991464i \(0.541619\pi\)
\(614\) −10.0031 −0.403693
\(615\) 0 0
\(616\) −3.02124 −0.121729
\(617\) 2.68330 0.108026 0.0540128 0.998540i \(-0.482799\pi\)
0.0540128 + 0.998540i \(0.482799\pi\)
\(618\) 5.34278 0.214918
\(619\) −1.34624 −0.0541099 −0.0270550 0.999634i \(-0.508613\pi\)
−0.0270550 + 0.999634i \(0.508613\pi\)
\(620\) 0 0
\(621\) −2.33395 −0.0936584
\(622\) 6.56880 0.263385
\(623\) −3.04145 −0.121853
\(624\) 1.85410 0.0742235
\(625\) 0 0
\(626\) 6.09093 0.243442
\(627\) 3.32333 0.132721
\(628\) 36.5206 1.45733
\(629\) 15.0160 0.598728
\(630\) 0 0
\(631\) 9.70468 0.386337 0.193169 0.981166i \(-0.438124\pi\)
0.193169 + 0.981166i \(0.438124\pi\)
\(632\) 1.72938 0.0687909
\(633\) 28.1054 1.11709
\(634\) −13.3914 −0.531842
\(635\) 0 0
\(636\) −17.5296 −0.695094
\(637\) −1.00000 −0.0396214
\(638\) −0.287739 −0.0113917
\(639\) −5.51609 −0.218213
\(640\) 0 0
\(641\) 10.4873 0.414225 0.207113 0.978317i \(-0.433593\pi\)
0.207113 + 0.978317i \(0.433593\pi\)
\(642\) 3.81736 0.150659
\(643\) −30.8985 −1.21852 −0.609258 0.792972i \(-0.708533\pi\)
−0.609258 + 0.792972i \(0.708533\pi\)
\(644\) 3.77642 0.148812
\(645\) 0 0
\(646\) 8.92522 0.351158
\(647\) 0.956758 0.0376141 0.0188070 0.999823i \(-0.494013\pi\)
0.0188070 + 0.999823i \(0.494013\pi\)
\(648\) 2.23607 0.0878410
\(649\) −6.43519 −0.252603
\(650\) 0 0
\(651\) 6.43945 0.252382
\(652\) 2.88546 0.113003
\(653\) 31.0986 1.21698 0.608490 0.793561i \(-0.291775\pi\)
0.608490 + 0.793561i \(0.291775\pi\)
\(654\) −6.46151 −0.252665
\(655\) 0 0
\(656\) −1.34708 −0.0525948
\(657\) 11.1074 0.433339
\(658\) 2.37425 0.0925579
\(659\) 13.9815 0.544643 0.272322 0.962206i \(-0.412209\pi\)
0.272322 + 0.962206i \(0.412209\pi\)
\(660\) 0 0
\(661\) 8.88184 0.345464 0.172732 0.984969i \(-0.444741\pi\)
0.172732 + 0.984969i \(0.444741\pi\)
\(662\) −2.89225 −0.112410
\(663\) 5.87129 0.228022
\(664\) −29.5581 −1.14708
\(665\) 0 0
\(666\) −1.58064 −0.0612487
\(667\) 0.804226 0.0311398
\(668\) −19.8423 −0.767723
\(669\) −3.56055 −0.137659
\(670\) 0 0
\(671\) −4.71612 −0.182064
\(672\) −5.61803 −0.216720
\(673\) −13.6371 −0.525671 −0.262835 0.964841i \(-0.584658\pi\)
−0.262835 + 0.964841i \(0.584658\pi\)
\(674\) 5.32488 0.205107
\(675\) 0 0
\(676\) −1.61803 −0.0622321
\(677\) −13.6672 −0.525271 −0.262636 0.964895i \(-0.584592\pi\)
−0.262636 + 0.964895i \(0.584592\pi\)
\(678\) 7.17848 0.275688
\(679\) −4.39259 −0.168572
\(680\) 0 0
\(681\) −5.33467 −0.204425
\(682\) −5.37727 −0.205906
\(683\) 3.45882 0.132348 0.0661741 0.997808i \(-0.478921\pi\)
0.0661741 + 0.997808i \(0.478921\pi\)
\(684\) 3.97980 0.152171
\(685\) 0 0
\(686\) 0.618034 0.0235966
\(687\) −15.6220 −0.596016
\(688\) 20.1640 0.768745
\(689\) 10.8339 0.412739
\(690\) 0 0
\(691\) 29.8706 1.13633 0.568166 0.822914i \(-0.307653\pi\)
0.568166 + 0.822914i \(0.307653\pi\)
\(692\) −9.05446 −0.344199
\(693\) −1.35114 −0.0513256
\(694\) 11.7989 0.447882
\(695\) 0 0
\(696\) −0.770497 −0.0292056
\(697\) −4.26574 −0.161576
\(698\) 22.5975 0.855329
\(699\) 19.2381 0.727654
\(700\) 0 0
\(701\) −3.86961 −0.146153 −0.0730765 0.997326i \(-0.523282\pi\)
−0.0730765 + 0.997326i \(0.523282\pi\)
\(702\) −0.618034 −0.0233262
\(703\) −6.29064 −0.237256
\(704\) −0.318961 −0.0120213
\(705\) 0 0
\(706\) −19.2704 −0.725253
\(707\) 1.83692 0.0690843
\(708\) −7.70634 −0.289622
\(709\) 43.7739 1.64396 0.821981 0.569514i \(-0.192869\pi\)
0.821981 + 0.569514i \(0.192869\pi\)
\(710\) 0 0
\(711\) 0.773401 0.0290048
\(712\) 6.80088 0.254874
\(713\) 15.0294 0.562855
\(714\) −3.62866 −0.135799
\(715\) 0 0
\(716\) 7.94438 0.296896
\(717\) −22.2206 −0.829842
\(718\) −11.4127 −0.425917
\(719\) 25.0421 0.933913 0.466957 0.884280i \(-0.345350\pi\)
0.466957 + 0.884280i \(0.345350\pi\)
\(720\) 0 0
\(721\) −8.64480 −0.321949
\(722\) 8.00362 0.297864
\(723\) −6.87681 −0.255751
\(724\) −8.84266 −0.328635
\(725\) 0 0
\(726\) −5.67010 −0.210437
\(727\) 44.1945 1.63908 0.819542 0.573019i \(-0.194228\pi\)
0.819542 + 0.573019i \(0.194228\pi\)
\(728\) 2.23607 0.0828742
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 63.8523 2.36166
\(732\) −5.64771 −0.208745
\(733\) −21.4720 −0.793087 −0.396544 0.918016i \(-0.629790\pi\)
−0.396544 + 0.918016i \(0.629790\pi\)
\(734\) −2.90946 −0.107390
\(735\) 0 0
\(736\) −13.1122 −0.483324
\(737\) 4.66899 0.171985
\(738\) 0.449028 0.0165289
\(739\) −38.0672 −1.40033 −0.700163 0.713983i \(-0.746889\pi\)
−0.700163 + 0.713983i \(0.746889\pi\)
\(740\) 0 0
\(741\) −2.45965 −0.0903575
\(742\) −6.69572 −0.245808
\(743\) 2.06294 0.0756818 0.0378409 0.999284i \(-0.487952\pi\)
0.0378409 + 0.999284i \(0.487952\pi\)
\(744\) −14.3990 −0.527894
\(745\) 0 0
\(746\) −22.7910 −0.834437
\(747\) −13.2188 −0.483649
\(748\) −12.8358 −0.469322
\(749\) −6.17661 −0.225688
\(750\) 0 0
\(751\) 19.3748 0.706995 0.353497 0.935435i \(-0.384992\pi\)
0.353497 + 0.935435i \(0.384992\pi\)
\(752\) 7.12275 0.259740
\(753\) 20.0173 0.729469
\(754\) 0.212960 0.00775555
\(755\) 0 0
\(756\) −1.61803 −0.0588473
\(757\) −30.3761 −1.10404 −0.552019 0.833832i \(-0.686142\pi\)
−0.552019 + 0.833832i \(0.686142\pi\)
\(758\) 15.2720 0.554704
\(759\) −3.15350 −0.114465
\(760\) 0 0
\(761\) 38.4962 1.39549 0.697743 0.716349i \(-0.254188\pi\)
0.697743 + 0.716349i \(0.254188\pi\)
\(762\) −7.47799 −0.270899
\(763\) 10.4549 0.378495
\(764\) −34.9460 −1.26430
\(765\) 0 0
\(766\) −14.4691 −0.522791
\(767\) 4.76278 0.171974
\(768\) 6.56231 0.236797
\(769\) −10.0294 −0.361668 −0.180834 0.983514i \(-0.557880\pi\)
−0.180834 + 0.983514i \(0.557880\pi\)
\(770\) 0 0
\(771\) 15.5054 0.558412
\(772\) −42.4785 −1.52883
\(773\) −39.8407 −1.43297 −0.716485 0.697603i \(-0.754250\pi\)
−0.716485 + 0.697603i \(0.754250\pi\)
\(774\) −6.72133 −0.241593
\(775\) 0 0
\(776\) 9.82212 0.352594
\(777\) 2.55754 0.0917511
\(778\) −4.54712 −0.163022
\(779\) 1.78704 0.0640274
\(780\) 0 0
\(781\) −7.45302 −0.266690
\(782\) −8.46912 −0.302855
\(783\) −0.344577 −0.0123142
\(784\) 1.85410 0.0662179
\(785\) 0 0
\(786\) 1.32668 0.0473210
\(787\) 7.33956 0.261627 0.130814 0.991407i \(-0.458241\pi\)
0.130814 + 0.991407i \(0.458241\pi\)
\(788\) 2.67365 0.0952448
\(789\) −29.7401 −1.05877
\(790\) 0 0
\(791\) −11.6150 −0.412982
\(792\) 3.02124 0.107355
\(793\) 3.49047 0.123950
\(794\) −2.81954 −0.100062
\(795\) 0 0
\(796\) −7.82245 −0.277259
\(797\) 31.2591 1.10726 0.553628 0.832764i \(-0.313243\pi\)
0.553628 + 0.832764i \(0.313243\pi\)
\(798\) 1.52015 0.0538126
\(799\) 22.5552 0.797947
\(800\) 0 0
\(801\) 3.04145 0.107464
\(802\) 14.1685 0.500307
\(803\) 15.0076 0.529607
\(804\) 5.59127 0.197189
\(805\) 0 0
\(806\) 3.97980 0.140182
\(807\) −5.54846 −0.195315
\(808\) −4.10747 −0.144500
\(809\) 41.3704 1.45451 0.727253 0.686370i \(-0.240797\pi\)
0.727253 + 0.686370i \(0.240797\pi\)
\(810\) 0 0
\(811\) 3.41538 0.119930 0.0599651 0.998200i \(-0.480901\pi\)
0.0599651 + 0.998200i \(0.480901\pi\)
\(812\) 0.557537 0.0195657
\(813\) −18.0948 −0.634611
\(814\) −2.13567 −0.0748553
\(815\) 0 0
\(816\) −10.8860 −0.381085
\(817\) −26.7495 −0.935848
\(818\) −1.18921 −0.0415797
\(819\) 1.00000 0.0349428
\(820\) 0 0
\(821\) 9.42954 0.329093 0.164547 0.986369i \(-0.447384\pi\)
0.164547 + 0.986369i \(0.447384\pi\)
\(822\) −1.84097 −0.0642113
\(823\) 9.46127 0.329799 0.164900 0.986310i \(-0.447270\pi\)
0.164900 + 0.986310i \(0.447270\pi\)
\(824\) 19.3304 0.673405
\(825\) 0 0
\(826\) −2.94356 −0.102420
\(827\) 4.39948 0.152985 0.0764924 0.997070i \(-0.475628\pi\)
0.0764924 + 0.997070i \(0.475628\pi\)
\(828\) −3.77642 −0.131240
\(829\) −29.5962 −1.02792 −0.513959 0.857815i \(-0.671822\pi\)
−0.513959 + 0.857815i \(0.671822\pi\)
\(830\) 0 0
\(831\) −7.93616 −0.275302
\(832\) 0.236068 0.00818418
\(833\) 5.87129 0.203428
\(834\) −6.95784 −0.240930
\(835\) 0 0
\(836\) 5.37727 0.185977
\(837\) −6.43945 −0.222580
\(838\) −13.0899 −0.452182
\(839\) −30.9399 −1.06816 −0.534082 0.845433i \(-0.679342\pi\)
−0.534082 + 0.845433i \(0.679342\pi\)
\(840\) 0 0
\(841\) −28.8813 −0.995906
\(842\) −9.85120 −0.339495
\(843\) 27.0901 0.933031
\(844\) 45.4755 1.56533
\(845\) 0 0
\(846\) −2.37425 −0.0816284
\(847\) 9.17442 0.315237
\(848\) −20.0872 −0.689796
\(849\) −24.3812 −0.836761
\(850\) 0 0
\(851\) 5.96917 0.204621
\(852\) −8.92522 −0.305773
\(853\) −42.1501 −1.44319 −0.721596 0.692314i \(-0.756591\pi\)
−0.721596 + 0.692314i \(0.756591\pi\)
\(854\) −2.15723 −0.0738190
\(855\) 0 0
\(856\) 13.8113 0.472061
\(857\) −29.7602 −1.01659 −0.508295 0.861183i \(-0.669724\pi\)
−0.508295 + 0.861183i \(0.669724\pi\)
\(858\) −0.835051 −0.0285082
\(859\) 20.6797 0.705581 0.352790 0.935702i \(-0.385233\pi\)
0.352790 + 0.935702i \(0.385233\pi\)
\(860\) 0 0
\(861\) −0.726543 −0.0247605
\(862\) −22.1971 −0.756037
\(863\) −44.3852 −1.51089 −0.755446 0.655211i \(-0.772580\pi\)
−0.755446 + 0.655211i \(0.772580\pi\)
\(864\) 5.61803 0.191129
\(865\) 0 0
\(866\) 6.21786 0.211292
\(867\) −17.4720 −0.593381
\(868\) 10.4192 0.353652
\(869\) 1.04497 0.0354483
\(870\) 0 0
\(871\) −3.45559 −0.117088
\(872\) −23.3780 −0.791678
\(873\) 4.39259 0.148667
\(874\) 3.54795 0.120011
\(875\) 0 0
\(876\) 17.9721 0.607220
\(877\) 8.93451 0.301697 0.150848 0.988557i \(-0.451799\pi\)
0.150848 + 0.988557i \(0.451799\pi\)
\(878\) −15.7032 −0.529957
\(879\) −25.9141 −0.874061
\(880\) 0 0
\(881\) 12.2457 0.412569 0.206284 0.978492i \(-0.433863\pi\)
0.206284 + 0.978492i \(0.433863\pi\)
\(882\) −0.618034 −0.0208103
\(883\) −49.0957 −1.65220 −0.826101 0.563523i \(-0.809446\pi\)
−0.826101 + 0.563523i \(0.809446\pi\)
\(884\) 9.49994 0.319518
\(885\) 0 0
\(886\) 3.18889 0.107133
\(887\) 21.4848 0.721387 0.360694 0.932684i \(-0.382540\pi\)
0.360694 + 0.932684i \(0.382540\pi\)
\(888\) −5.71883 −0.191911
\(889\) 12.0996 0.405809
\(890\) 0 0
\(891\) 1.35114 0.0452649
\(892\) −5.76110 −0.192896
\(893\) −9.44903 −0.316200
\(894\) −1.74624 −0.0584029
\(895\) 0 0
\(896\) −11.3820 −0.380245
\(897\) 2.33395 0.0779285
\(898\) −1.82197 −0.0607998
\(899\) 2.21888 0.0740039
\(900\) 0 0
\(901\) −63.6089 −2.11912
\(902\) 0.606700 0.0202009
\(903\) 10.8753 0.361909
\(904\) 25.9720 0.863815
\(905\) 0 0
\(906\) −9.30198 −0.309037
\(907\) 50.9430 1.69154 0.845768 0.533551i \(-0.179143\pi\)
0.845768 + 0.533551i \(0.179143\pi\)
\(908\) −8.63167 −0.286452
\(909\) −1.83692 −0.0609267
\(910\) 0 0
\(911\) 51.0746 1.69218 0.846089 0.533041i \(-0.178951\pi\)
0.846089 + 0.533041i \(0.178951\pi\)
\(912\) 4.56044 0.151011
\(913\) −17.8604 −0.591094
\(914\) −15.9515 −0.527628
\(915\) 0 0
\(916\) −25.2769 −0.835172
\(917\) −2.14661 −0.0708873
\(918\) 3.62866 0.119763
\(919\) −11.2110 −0.369816 −0.184908 0.982756i \(-0.559199\pi\)
−0.184908 + 0.982756i \(0.559199\pi\)
\(920\) 0 0
\(921\) −16.1854 −0.533326
\(922\) 10.7883 0.355295
\(923\) 5.51609 0.181564
\(924\) −2.18619 −0.0719204
\(925\) 0 0
\(926\) 22.1410 0.727599
\(927\) 8.64480 0.283933
\(928\) −1.93584 −0.0635471
\(929\) 11.3053 0.370913 0.185457 0.982652i \(-0.440624\pi\)
0.185457 + 0.982652i \(0.440624\pi\)
\(930\) 0 0
\(931\) −2.45965 −0.0806118
\(932\) 31.1280 1.01963
\(933\) 10.6285 0.347963
\(934\) −10.8837 −0.356124
\(935\) 0 0
\(936\) −2.23607 −0.0730882
\(937\) 4.71413 0.154004 0.0770019 0.997031i \(-0.475465\pi\)
0.0770019 + 0.997031i \(0.475465\pi\)
\(938\) 2.13567 0.0697322
\(939\) 9.85532 0.321616
\(940\) 0 0
\(941\) 53.6341 1.74842 0.874211 0.485545i \(-0.161379\pi\)
0.874211 + 0.485545i \(0.161379\pi\)
\(942\) −13.9496 −0.454503
\(943\) −1.69572 −0.0552202
\(944\) −8.83068 −0.287414
\(945\) 0 0
\(946\) −9.08147 −0.295264
\(947\) −37.6662 −1.22399 −0.611994 0.790863i \(-0.709632\pi\)
−0.611994 + 0.790863i \(0.709632\pi\)
\(948\) 1.25139 0.0406432
\(949\) −11.1074 −0.360560
\(950\) 0 0
\(951\) −21.6678 −0.702626
\(952\) −13.1286 −0.425500
\(953\) 18.1088 0.586602 0.293301 0.956020i \(-0.405246\pi\)
0.293301 + 0.956020i \(0.405246\pi\)
\(954\) 6.69572 0.216782
\(955\) 0 0
\(956\) −35.9536 −1.16282
\(957\) −0.465571 −0.0150498
\(958\) −7.34083 −0.237172
\(959\) 2.97876 0.0961891
\(960\) 0 0
\(961\) 10.4665 0.337628
\(962\) 1.58064 0.0509620
\(963\) 6.17661 0.199038
\(964\) −11.1269 −0.358374
\(965\) 0 0
\(966\) −1.44246 −0.0464105
\(967\) 28.9382 0.930591 0.465295 0.885155i \(-0.345948\pi\)
0.465295 + 0.885155i \(0.345948\pi\)
\(968\) −20.5146 −0.659365
\(969\) 14.4413 0.463922
\(970\) 0 0
\(971\) −18.1278 −0.581750 −0.290875 0.956761i \(-0.593946\pi\)
−0.290875 + 0.956761i \(0.593946\pi\)
\(972\) 1.61803 0.0518985
\(973\) 11.2580 0.360916
\(974\) −12.4487 −0.398882
\(975\) 0 0
\(976\) −6.47170 −0.207154
\(977\) 35.4208 1.13321 0.566606 0.823989i \(-0.308256\pi\)
0.566606 + 0.823989i \(0.308256\pi\)
\(978\) −1.10215 −0.0352428
\(979\) 4.10942 0.131338
\(980\) 0 0
\(981\) −10.4549 −0.333801
\(982\) −22.0328 −0.703096
\(983\) −20.0088 −0.638182 −0.319091 0.947724i \(-0.603378\pi\)
−0.319091 + 0.947724i \(0.603378\pi\)
\(984\) 1.62460 0.0517903
\(985\) 0 0
\(986\) −1.25035 −0.0398192
\(987\) 3.84162 0.122280
\(988\) −3.97980 −0.126614
\(989\) 25.3826 0.807119
\(990\) 0 0
\(991\) −6.50296 −0.206573 −0.103287 0.994652i \(-0.532936\pi\)
−0.103287 + 0.994652i \(0.532936\pi\)
\(992\) −36.1770 −1.14862
\(993\) −4.67975 −0.148507
\(994\) −3.40913 −0.108131
\(995\) 0 0
\(996\) −21.3884 −0.677718
\(997\) −28.1430 −0.891296 −0.445648 0.895208i \(-0.647027\pi\)
−0.445648 + 0.895208i \(0.647027\pi\)
\(998\) −25.9117 −0.820219
\(999\) −2.55754 −0.0809169
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6825.2.a.bm.1.2 4
5.2 odd 4 1365.2.f.c.274.4 8
5.3 odd 4 1365.2.f.c.274.6 yes 8
5.4 even 2 6825.2.a.be.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1365.2.f.c.274.4 8 5.2 odd 4
1365.2.f.c.274.6 yes 8 5.3 odd 4
6825.2.a.be.1.4 4 5.4 even 2
6825.2.a.bm.1.2 4 1.1 even 1 trivial