Properties

Label 6825.2.a.bm.1.1
Level $6825$
Weight $2$
Character 6825.1
Self dual yes
Analytic conductor $54.498$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6825,2,Mod(1,6825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6825.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6825 = 3 \cdot 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.4978993795\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1365)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.17557\) of defining polynomial
Character \(\chi\) \(=\) 6825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.618034 q^{2} -1.00000 q^{3} -1.61803 q^{4} +0.618034 q^{6} -1.00000 q^{7} +2.23607 q^{8} +1.00000 q^{9} -3.35114 q^{11} +1.61803 q^{12} -1.00000 q^{13} +0.618034 q^{14} +1.85410 q^{16} -2.63522 q^{17} -0.618034 q^{18} +3.69572 q^{19} +1.00000 q^{21} +2.07112 q^{22} +6.13818 q^{23} -2.23607 q^{24} +0.618034 q^{26} -1.00000 q^{27} +1.61803 q^{28} -1.10851 q^{29} -9.67551 q^{31} -5.61803 q^{32} +3.35114 q^{33} +1.62866 q^{34} -1.61803 q^{36} +0.206396 q^{37} -2.28408 q^{38} +1.00000 q^{39} +0.726543 q^{41} -0.618034 q^{42} +0.360723 q^{43} +5.42226 q^{44} -3.79360 q^{46} -2.31375 q^{47} -1.85410 q^{48} +1.00000 q^{49} +2.63522 q^{51} +1.61803 q^{52} -0.874305 q^{53} +0.618034 q^{54} -2.23607 q^{56} -3.69572 q^{57} +0.685096 q^{58} +2.29064 q^{59} -2.03739 q^{61} +5.97980 q^{62} -1.00000 q^{63} -0.236068 q^{64} -2.07112 q^{66} -0.691660 q^{67} +4.26388 q^{68} -6.13818 q^{69} -3.71998 q^{71} +2.23607 q^{72} +2.60085 q^{73} -0.127559 q^{74} -5.97980 q^{76} +3.35114 q^{77} -0.618034 q^{78} -11.5373 q^{79} +1.00000 q^{81} -0.449028 q^{82} +5.80236 q^{83} -1.61803 q^{84} -0.222939 q^{86} +1.10851 q^{87} -7.49338 q^{88} +2.48642 q^{89} +1.00000 q^{91} -9.93179 q^{92} +9.67551 q^{93} +1.42998 q^{94} +5.61803 q^{96} -0.864724 q^{97} -0.618034 q^{98} -3.35114 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 4 q^{3} - 2 q^{4} - 2 q^{6} - 4 q^{7} + 4 q^{9} - 4 q^{11} + 2 q^{12} - 4 q^{13} - 2 q^{14} - 6 q^{16} + 2 q^{17} + 2 q^{18} - 2 q^{19} + 4 q^{21} - 2 q^{22} + 8 q^{23} - 2 q^{26} - 4 q^{27}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.618034 −0.437016 −0.218508 0.975835i \(-0.570119\pi\)
−0.218508 + 0.975835i \(0.570119\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.61803 −0.809017
\(5\) 0 0
\(6\) 0.618034 0.252311
\(7\) −1.00000 −0.377964
\(8\) 2.23607 0.790569
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.35114 −1.01041 −0.505204 0.863000i \(-0.668583\pi\)
−0.505204 + 0.863000i \(0.668583\pi\)
\(12\) 1.61803 0.467086
\(13\) −1.00000 −0.277350
\(14\) 0.618034 0.165177
\(15\) 0 0
\(16\) 1.85410 0.463525
\(17\) −2.63522 −0.639135 −0.319567 0.947564i \(-0.603538\pi\)
−0.319567 + 0.947564i \(0.603538\pi\)
\(18\) −0.618034 −0.145672
\(19\) 3.69572 0.847856 0.423928 0.905696i \(-0.360651\pi\)
0.423928 + 0.905696i \(0.360651\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 2.07112 0.441564
\(23\) 6.13818 1.27990 0.639950 0.768417i \(-0.278955\pi\)
0.639950 + 0.768417i \(0.278955\pi\)
\(24\) −2.23607 −0.456435
\(25\) 0 0
\(26\) 0.618034 0.121206
\(27\) −1.00000 −0.192450
\(28\) 1.61803 0.305780
\(29\) −1.10851 −0.205845 −0.102922 0.994689i \(-0.532819\pi\)
−0.102922 + 0.994689i \(0.532819\pi\)
\(30\) 0 0
\(31\) −9.67551 −1.73777 −0.868887 0.495011i \(-0.835164\pi\)
−0.868887 + 0.495011i \(0.835164\pi\)
\(32\) −5.61803 −0.993137
\(33\) 3.35114 0.583359
\(34\) 1.62866 0.279312
\(35\) 0 0
\(36\) −1.61803 −0.269672
\(37\) 0.206396 0.0339312 0.0169656 0.999856i \(-0.494599\pi\)
0.0169656 + 0.999856i \(0.494599\pi\)
\(38\) −2.28408 −0.370527
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) 0.726543 0.113467 0.0567334 0.998389i \(-0.481931\pi\)
0.0567334 + 0.998389i \(0.481931\pi\)
\(42\) −0.618034 −0.0953647
\(43\) 0.360723 0.0550097 0.0275049 0.999622i \(-0.491244\pi\)
0.0275049 + 0.999622i \(0.491244\pi\)
\(44\) 5.42226 0.817436
\(45\) 0 0
\(46\) −3.79360 −0.559336
\(47\) −2.31375 −0.337495 −0.168748 0.985659i \(-0.553972\pi\)
−0.168748 + 0.985659i \(0.553972\pi\)
\(48\) −1.85410 −0.267617
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 2.63522 0.369005
\(52\) 1.61803 0.224381
\(53\) −0.874305 −0.120095 −0.0600475 0.998196i \(-0.519125\pi\)
−0.0600475 + 0.998196i \(0.519125\pi\)
\(54\) 0.618034 0.0841038
\(55\) 0 0
\(56\) −2.23607 −0.298807
\(57\) −3.69572 −0.489510
\(58\) 0.685096 0.0899575
\(59\) 2.29064 0.298216 0.149108 0.988821i \(-0.452360\pi\)
0.149108 + 0.988821i \(0.452360\pi\)
\(60\) 0 0
\(61\) −2.03739 −0.260861 −0.130430 0.991457i \(-0.541636\pi\)
−0.130430 + 0.991457i \(0.541636\pi\)
\(62\) 5.97980 0.759435
\(63\) −1.00000 −0.125988
\(64\) −0.236068 −0.0295085
\(65\) 0 0
\(66\) −2.07112 −0.254937
\(67\) −0.691660 −0.0844998 −0.0422499 0.999107i \(-0.513453\pi\)
−0.0422499 + 0.999107i \(0.513453\pi\)
\(68\) 4.26388 0.517071
\(69\) −6.13818 −0.738950
\(70\) 0 0
\(71\) −3.71998 −0.441480 −0.220740 0.975333i \(-0.570847\pi\)
−0.220740 + 0.975333i \(0.570847\pi\)
\(72\) 2.23607 0.263523
\(73\) 2.60085 0.304406 0.152203 0.988349i \(-0.451363\pi\)
0.152203 + 0.988349i \(0.451363\pi\)
\(74\) −0.127559 −0.0148285
\(75\) 0 0
\(76\) −5.97980 −0.685930
\(77\) 3.35114 0.381898
\(78\) −0.618034 −0.0699786
\(79\) −11.5373 −1.29805 −0.649026 0.760766i \(-0.724823\pi\)
−0.649026 + 0.760766i \(0.724823\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −0.449028 −0.0495868
\(83\) 5.80236 0.636892 0.318446 0.947941i \(-0.396839\pi\)
0.318446 + 0.947941i \(0.396839\pi\)
\(84\) −1.61803 −0.176542
\(85\) 0 0
\(86\) −0.222939 −0.0240401
\(87\) 1.10851 0.118845
\(88\) −7.49338 −0.798797
\(89\) 2.48642 0.263560 0.131780 0.991279i \(-0.457931\pi\)
0.131780 + 0.991279i \(0.457931\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) −9.93179 −1.03546
\(93\) 9.67551 1.00330
\(94\) 1.42998 0.147491
\(95\) 0 0
\(96\) 5.61803 0.573388
\(97\) −0.864724 −0.0877994 −0.0438997 0.999036i \(-0.513978\pi\)
−0.0438997 + 0.999036i \(0.513978\pi\)
\(98\) −0.618034 −0.0624309
\(99\) −3.35114 −0.336802
\(100\) 0 0
\(101\) −10.3434 −1.02921 −0.514605 0.857428i \(-0.672061\pi\)
−0.514605 + 0.857428i \(0.672061\pi\)
\(102\) −1.62866 −0.161261
\(103\) 15.3552 1.51299 0.756496 0.653998i \(-0.226910\pi\)
0.756496 + 0.653998i \(0.226910\pi\)
\(104\) −2.23607 −0.219265
\(105\) 0 0
\(106\) 0.540350 0.0524835
\(107\) −16.6487 −1.60950 −0.804748 0.593617i \(-0.797699\pi\)
−0.804748 + 0.593617i \(0.797699\pi\)
\(108\) 1.61803 0.155695
\(109\) −18.9615 −1.81618 −0.908089 0.418777i \(-0.862459\pi\)
−0.908089 + 0.418777i \(0.862459\pi\)
\(110\) 0 0
\(111\) −0.206396 −0.0195902
\(112\) −1.85410 −0.175196
\(113\) −6.85108 −0.644496 −0.322248 0.946655i \(-0.604438\pi\)
−0.322248 + 0.946655i \(0.604438\pi\)
\(114\) 2.28408 0.213924
\(115\) 0 0
\(116\) 1.79360 0.166532
\(117\) −1.00000 −0.0924500
\(118\) −1.41570 −0.130325
\(119\) 2.63522 0.241570
\(120\) 0 0
\(121\) 0.230146 0.0209224
\(122\) 1.25918 0.114000
\(123\) −0.726543 −0.0655101
\(124\) 15.6553 1.40589
\(125\) 0 0
\(126\) 0.618034 0.0550588
\(127\) 0.211095 0.0187317 0.00936583 0.999956i \(-0.497019\pi\)
0.00936583 + 0.999956i \(0.497019\pi\)
\(128\) 11.3820 1.00603
\(129\) −0.360723 −0.0317599
\(130\) 0 0
\(131\) 6.50587 0.568420 0.284210 0.958762i \(-0.408269\pi\)
0.284210 + 0.958762i \(0.408269\pi\)
\(132\) −5.42226 −0.471947
\(133\) −3.69572 −0.320459
\(134\) 0.427470 0.0369278
\(135\) 0 0
\(136\) −5.89253 −0.505280
\(137\) −13.4934 −1.15282 −0.576409 0.817162i \(-0.695546\pi\)
−0.576409 + 0.817162i \(0.695546\pi\)
\(138\) 3.79360 0.322933
\(139\) −5.10266 −0.432802 −0.216401 0.976305i \(-0.569432\pi\)
−0.216401 + 0.976305i \(0.569432\pi\)
\(140\) 0 0
\(141\) 2.31375 0.194853
\(142\) 2.29907 0.192934
\(143\) 3.35114 0.280236
\(144\) 1.85410 0.154508
\(145\) 0 0
\(146\) −1.60741 −0.133030
\(147\) −1.00000 −0.0824786
\(148\) −0.333955 −0.0274509
\(149\) 15.2976 1.25323 0.626614 0.779330i \(-0.284440\pi\)
0.626614 + 0.779330i \(0.284440\pi\)
\(150\) 0 0
\(151\) −2.18515 −0.177825 −0.0889126 0.996039i \(-0.528339\pi\)
−0.0889126 + 0.996039i \(0.528339\pi\)
\(152\) 8.26388 0.670289
\(153\) −2.63522 −0.213045
\(154\) −2.07112 −0.166896
\(155\) 0 0
\(156\) −1.61803 −0.129546
\(157\) 21.6267 1.72600 0.862998 0.505207i \(-0.168584\pi\)
0.862998 + 0.505207i \(0.168584\pi\)
\(158\) 7.13046 0.567269
\(159\) 0.874305 0.0693369
\(160\) 0 0
\(161\) −6.13818 −0.483756
\(162\) −0.618034 −0.0485573
\(163\) 20.1440 1.57780 0.788900 0.614522i \(-0.210651\pi\)
0.788900 + 0.614522i \(0.210651\pi\)
\(164\) −1.17557 −0.0917966
\(165\) 0 0
\(166\) −3.58606 −0.278332
\(167\) 11.1532 0.863059 0.431529 0.902099i \(-0.357974\pi\)
0.431529 + 0.902099i \(0.357974\pi\)
\(168\) 2.23607 0.172516
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 3.69572 0.282619
\(172\) −0.583662 −0.0445038
\(173\) −15.7763 −1.19945 −0.599725 0.800206i \(-0.704723\pi\)
−0.599725 + 0.800206i \(0.704723\pi\)
\(174\) −0.685096 −0.0519370
\(175\) 0 0
\(176\) −6.21336 −0.468349
\(177\) −2.29064 −0.172175
\(178\) −1.53669 −0.115180
\(179\) −21.9229 −1.63860 −0.819298 0.573368i \(-0.805636\pi\)
−0.819298 + 0.573368i \(0.805636\pi\)
\(180\) 0 0
\(181\) −10.9929 −0.817098 −0.408549 0.912736i \(-0.633965\pi\)
−0.408549 + 0.912736i \(0.633965\pi\)
\(182\) −0.618034 −0.0458117
\(183\) 2.03739 0.150608
\(184\) 13.7254 1.01185
\(185\) 0 0
\(186\) −5.97980 −0.438460
\(187\) 8.83099 0.645786
\(188\) 3.74373 0.273039
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 11.6382 0.842113 0.421057 0.907034i \(-0.361659\pi\)
0.421057 + 0.907034i \(0.361659\pi\)
\(192\) 0.236068 0.0170367
\(193\) −9.78101 −0.704052 −0.352026 0.935990i \(-0.614507\pi\)
−0.352026 + 0.935990i \(0.614507\pi\)
\(194\) 0.534429 0.0383697
\(195\) 0 0
\(196\) −1.61803 −0.115574
\(197\) 15.3606 1.09440 0.547199 0.837002i \(-0.315694\pi\)
0.547199 + 0.837002i \(0.315694\pi\)
\(198\) 2.07112 0.147188
\(199\) −17.7788 −1.26031 −0.630153 0.776471i \(-0.717008\pi\)
−0.630153 + 0.776471i \(0.717008\pi\)
\(200\) 0 0
\(201\) 0.691660 0.0487860
\(202\) 6.39259 0.449781
\(203\) 1.10851 0.0778020
\(204\) −4.26388 −0.298531
\(205\) 0 0
\(206\) −9.49003 −0.661202
\(207\) 6.13818 0.426633
\(208\) −1.85410 −0.128559
\(209\) −12.3849 −0.856679
\(210\) 0 0
\(211\) 19.3414 1.33152 0.665760 0.746166i \(-0.268107\pi\)
0.665760 + 0.746166i \(0.268107\pi\)
\(212\) 1.41466 0.0971590
\(213\) 3.71998 0.254889
\(214\) 10.2895 0.703375
\(215\) 0 0
\(216\) −2.23607 −0.152145
\(217\) 9.67551 0.656817
\(218\) 11.7188 0.793699
\(219\) −2.60085 −0.175749
\(220\) 0 0
\(221\) 2.63522 0.177264
\(222\) 0.127559 0.00856123
\(223\) 19.6755 1.31757 0.658785 0.752331i \(-0.271071\pi\)
0.658785 + 0.752331i \(0.271071\pi\)
\(224\) 5.61803 0.375371
\(225\) 0 0
\(226\) 4.23420 0.281655
\(227\) 13.4981 0.895904 0.447952 0.894058i \(-0.352154\pi\)
0.447952 + 0.894058i \(0.352154\pi\)
\(228\) 5.97980 0.396022
\(229\) −13.9138 −0.919448 −0.459724 0.888062i \(-0.652052\pi\)
−0.459724 + 0.888062i \(0.652052\pi\)
\(230\) 0 0
\(231\) −3.35114 −0.220489
\(232\) −2.47870 −0.162735
\(233\) 21.7103 1.42229 0.711144 0.703046i \(-0.248177\pi\)
0.711144 + 0.703046i \(0.248177\pi\)
\(234\) 0.618034 0.0404021
\(235\) 0 0
\(236\) −3.70634 −0.241262
\(237\) 11.5373 0.749430
\(238\) −1.62866 −0.105570
\(239\) −2.40090 −0.155302 −0.0776508 0.996981i \(-0.524742\pi\)
−0.0776508 + 0.996981i \(0.524742\pi\)
\(240\) 0 0
\(241\) 15.5953 1.00458 0.502292 0.864698i \(-0.332490\pi\)
0.502292 + 0.864698i \(0.332490\pi\)
\(242\) −0.142238 −0.00914341
\(243\) −1.00000 −0.0641500
\(244\) 3.29657 0.211041
\(245\) 0 0
\(246\) 0.449028 0.0286290
\(247\) −3.69572 −0.235153
\(248\) −21.6351 −1.37383
\(249\) −5.80236 −0.367710
\(250\) 0 0
\(251\) −28.5238 −1.80040 −0.900202 0.435473i \(-0.856581\pi\)
−0.900202 + 0.435473i \(0.856581\pi\)
\(252\) 1.61803 0.101927
\(253\) −20.5699 −1.29322
\(254\) −0.130464 −0.00818604
\(255\) 0 0
\(256\) −6.56231 −0.410144
\(257\) 8.56108 0.534026 0.267013 0.963693i \(-0.413963\pi\)
0.267013 + 0.963693i \(0.413963\pi\)
\(258\) 0.222939 0.0138796
\(259\) −0.206396 −0.0128248
\(260\) 0 0
\(261\) −1.10851 −0.0686150
\(262\) −4.02085 −0.248409
\(263\) 13.9681 0.861312 0.430656 0.902516i \(-0.358282\pi\)
0.430656 + 0.902516i \(0.358282\pi\)
\(264\) 7.49338 0.461186
\(265\) 0 0
\(266\) 2.28408 0.140046
\(267\) −2.48642 −0.152166
\(268\) 1.11913 0.0683618
\(269\) 7.68760 0.468721 0.234361 0.972150i \(-0.424700\pi\)
0.234361 + 0.972150i \(0.424700\pi\)
\(270\) 0 0
\(271\) −24.0948 −1.46365 −0.731826 0.681491i \(-0.761332\pi\)
−0.731826 + 0.681491i \(0.761332\pi\)
\(272\) −4.88597 −0.296255
\(273\) −1.00000 −0.0605228
\(274\) 8.33937 0.503800
\(275\) 0 0
\(276\) 9.93179 0.597823
\(277\) 11.9524 0.718149 0.359075 0.933309i \(-0.383092\pi\)
0.359075 + 0.933309i \(0.383092\pi\)
\(278\) 3.15362 0.189141
\(279\) −9.67551 −0.579258
\(280\) 0 0
\(281\) 0.437581 0.0261039 0.0130520 0.999915i \(-0.495845\pi\)
0.0130520 + 0.999915i \(0.495845\pi\)
\(282\) −1.42998 −0.0851539
\(283\) 9.50733 0.565152 0.282576 0.959245i \(-0.408811\pi\)
0.282576 + 0.959245i \(0.408811\pi\)
\(284\) 6.01905 0.357165
\(285\) 0 0
\(286\) −2.07112 −0.122468
\(287\) −0.726543 −0.0428864
\(288\) −5.61803 −0.331046
\(289\) −10.0556 −0.591507
\(290\) 0 0
\(291\) 0.864724 0.0506910
\(292\) −4.20826 −0.246270
\(293\) 8.55805 0.499966 0.249983 0.968250i \(-0.419575\pi\)
0.249983 + 0.968250i \(0.419575\pi\)
\(294\) 0.618034 0.0360445
\(295\) 0 0
\(296\) 0.461514 0.0268250
\(297\) 3.35114 0.194453
\(298\) −9.45444 −0.547681
\(299\) −6.13818 −0.354980
\(300\) 0 0
\(301\) −0.360723 −0.0207917
\(302\) 1.35050 0.0777125
\(303\) 10.3434 0.594214
\(304\) 6.85224 0.393003
\(305\) 0 0
\(306\) 1.62866 0.0931040
\(307\) −23.3100 −1.33037 −0.665185 0.746678i \(-0.731647\pi\)
−0.665185 + 0.746678i \(0.731647\pi\)
\(308\) −5.42226 −0.308962
\(309\) −15.3552 −0.873527
\(310\) 0 0
\(311\) 22.1564 1.25637 0.628187 0.778062i \(-0.283797\pi\)
0.628187 + 0.778062i \(0.283797\pi\)
\(312\) 2.23607 0.126592
\(313\) −33.9218 −1.91737 −0.958686 0.284467i \(-0.908183\pi\)
−0.958686 + 0.284467i \(0.908183\pi\)
\(314\) −13.3660 −0.754288
\(315\) 0 0
\(316\) 18.6678 1.05015
\(317\) 1.74861 0.0982118 0.0491059 0.998794i \(-0.484363\pi\)
0.0491059 + 0.998794i \(0.484363\pi\)
\(318\) −0.540350 −0.0303013
\(319\) 3.71477 0.207987
\(320\) 0 0
\(321\) 16.6487 0.929242
\(322\) 3.79360 0.211409
\(323\) −9.73903 −0.541894
\(324\) −1.61803 −0.0898908
\(325\) 0 0
\(326\) −12.4497 −0.689523
\(327\) 18.9615 1.04857
\(328\) 1.62460 0.0897034
\(329\) 2.31375 0.127561
\(330\) 0 0
\(331\) 31.0973 1.70926 0.854632 0.519234i \(-0.173783\pi\)
0.854632 + 0.519234i \(0.173783\pi\)
\(332\) −9.38842 −0.515256
\(333\) 0.206396 0.0113104
\(334\) −6.89304 −0.377170
\(335\) 0 0
\(336\) 1.85410 0.101150
\(337\) −22.0366 −1.20041 −0.600206 0.799845i \(-0.704915\pi\)
−0.600206 + 0.799845i \(0.704915\pi\)
\(338\) −0.618034 −0.0336166
\(339\) 6.85108 0.372100
\(340\) 0 0
\(341\) 32.4240 1.75586
\(342\) −2.28408 −0.123509
\(343\) −1.00000 −0.0539949
\(344\) 0.806601 0.0434890
\(345\) 0 0
\(346\) 9.75029 0.524179
\(347\) 28.9108 1.55201 0.776005 0.630726i \(-0.217243\pi\)
0.776005 + 0.630726i \(0.217243\pi\)
\(348\) −1.79360 −0.0961473
\(349\) −0.741404 −0.0396864 −0.0198432 0.999803i \(-0.506317\pi\)
−0.0198432 + 0.999803i \(0.506317\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 18.8268 1.00347
\(353\) 3.65259 0.194408 0.0972038 0.995264i \(-0.469010\pi\)
0.0972038 + 0.995264i \(0.469010\pi\)
\(354\) 1.41570 0.0752434
\(355\) 0 0
\(356\) −4.02311 −0.213224
\(357\) −2.63522 −0.139471
\(358\) 13.5491 0.716093
\(359\) −18.4661 −0.974604 −0.487302 0.873234i \(-0.662019\pi\)
−0.487302 + 0.873234i \(0.662019\pi\)
\(360\) 0 0
\(361\) −5.34167 −0.281141
\(362\) 6.79400 0.357085
\(363\) −0.230146 −0.0120795
\(364\) −1.61803 −0.0848080
\(365\) 0 0
\(366\) −1.25918 −0.0658182
\(367\) 27.8760 1.45511 0.727557 0.686047i \(-0.240656\pi\)
0.727557 + 0.686047i \(0.240656\pi\)
\(368\) 11.3808 0.593266
\(369\) 0.726543 0.0378223
\(370\) 0 0
\(371\) 0.874305 0.0453917
\(372\) −15.6553 −0.811690
\(373\) −9.46018 −0.489830 −0.244915 0.969545i \(-0.578760\pi\)
−0.244915 + 0.969545i \(0.578760\pi\)
\(374\) −5.45785 −0.282219
\(375\) 0 0
\(376\) −5.17371 −0.266813
\(377\) 1.10851 0.0570911
\(378\) −0.618034 −0.0317882
\(379\) 4.05812 0.208452 0.104226 0.994554i \(-0.466764\pi\)
0.104226 + 0.994554i \(0.466764\pi\)
\(380\) 0 0
\(381\) −0.211095 −0.0108147
\(382\) −7.19283 −0.368017
\(383\) −6.46725 −0.330461 −0.165231 0.986255i \(-0.552837\pi\)
−0.165231 + 0.986255i \(0.552837\pi\)
\(384\) −11.3820 −0.580834
\(385\) 0 0
\(386\) 6.04499 0.307682
\(387\) 0.360723 0.0183366
\(388\) 1.39915 0.0710312
\(389\) −12.7738 −0.647657 −0.323829 0.946116i \(-0.604970\pi\)
−0.323829 + 0.946116i \(0.604970\pi\)
\(390\) 0 0
\(391\) −16.1755 −0.818028
\(392\) 2.23607 0.112938
\(393\) −6.50587 −0.328178
\(394\) −9.49338 −0.478270
\(395\) 0 0
\(396\) 5.42226 0.272479
\(397\) 19.9100 0.999256 0.499628 0.866240i \(-0.333470\pi\)
0.499628 + 0.866240i \(0.333470\pi\)
\(398\) 10.9879 0.550774
\(399\) 3.69572 0.185017
\(400\) 0 0
\(401\) 7.50870 0.374967 0.187483 0.982268i \(-0.439967\pi\)
0.187483 + 0.982268i \(0.439967\pi\)
\(402\) −0.427470 −0.0213202
\(403\) 9.67551 0.481972
\(404\) 16.7360 0.832648
\(405\) 0 0
\(406\) −0.685096 −0.0340007
\(407\) −0.691660 −0.0342843
\(408\) 5.89253 0.291724
\(409\) 19.4922 0.963829 0.481914 0.876218i \(-0.339942\pi\)
0.481914 + 0.876218i \(0.339942\pi\)
\(410\) 0 0
\(411\) 13.4934 0.665579
\(412\) −24.8452 −1.22404
\(413\) −2.29064 −0.112715
\(414\) −3.79360 −0.186445
\(415\) 0 0
\(416\) 5.61803 0.275447
\(417\) 5.10266 0.249878
\(418\) 7.65427 0.374383
\(419\) 1.47265 0.0719435 0.0359717 0.999353i \(-0.488547\pi\)
0.0359717 + 0.999353i \(0.488547\pi\)
\(420\) 0 0
\(421\) 30.6014 1.49142 0.745712 0.666269i \(-0.232110\pi\)
0.745712 + 0.666269i \(0.232110\pi\)
\(422\) −11.9537 −0.581896
\(423\) −2.31375 −0.112498
\(424\) −1.95501 −0.0949435
\(425\) 0 0
\(426\) −2.29907 −0.111390
\(427\) 2.03739 0.0985962
\(428\) 26.9382 1.30211
\(429\) −3.35114 −0.161795
\(430\) 0 0
\(431\) 34.8057 1.67653 0.838265 0.545264i \(-0.183570\pi\)
0.838265 + 0.545264i \(0.183570\pi\)
\(432\) −1.85410 −0.0892055
\(433\) 39.9493 1.91984 0.959919 0.280276i \(-0.0904261\pi\)
0.959919 + 0.280276i \(0.0904261\pi\)
\(434\) −5.97980 −0.287039
\(435\) 0 0
\(436\) 30.6803 1.46932
\(437\) 22.6850 1.08517
\(438\) 1.60741 0.0768051
\(439\) 29.4245 1.40436 0.702178 0.712002i \(-0.252211\pi\)
0.702178 + 0.712002i \(0.252211\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) −1.62866 −0.0774672
\(443\) −3.02060 −0.143513 −0.0717565 0.997422i \(-0.522860\pi\)
−0.0717565 + 0.997422i \(0.522860\pi\)
\(444\) 0.333955 0.0158488
\(445\) 0 0
\(446\) −12.1601 −0.575799
\(447\) −15.2976 −0.723552
\(448\) 0.236068 0.0111532
\(449\) 25.7734 1.21632 0.608160 0.793814i \(-0.291908\pi\)
0.608160 + 0.793814i \(0.291908\pi\)
\(450\) 0 0
\(451\) −2.43475 −0.114648
\(452\) 11.0853 0.521408
\(453\) 2.18515 0.102667
\(454\) −8.34231 −0.391524
\(455\) 0 0
\(456\) −8.26388 −0.386991
\(457\) 0.0785087 0.00367248 0.00183624 0.999998i \(-0.499416\pi\)
0.00183624 + 0.999998i \(0.499416\pi\)
\(458\) 8.59919 0.401814
\(459\) 2.63522 0.123002
\(460\) 0 0
\(461\) 22.0395 1.02648 0.513240 0.858245i \(-0.328445\pi\)
0.513240 + 0.858245i \(0.328445\pi\)
\(462\) 2.07112 0.0963572
\(463\) 12.5200 0.581852 0.290926 0.956746i \(-0.406037\pi\)
0.290926 + 0.956746i \(0.406037\pi\)
\(464\) −2.05529 −0.0954143
\(465\) 0 0
\(466\) −13.4177 −0.621563
\(467\) −30.7347 −1.42223 −0.711117 0.703073i \(-0.751810\pi\)
−0.711117 + 0.703073i \(0.751810\pi\)
\(468\) 1.61803 0.0747936
\(469\) 0.691660 0.0319379
\(470\) 0 0
\(471\) −21.6267 −0.996505
\(472\) 5.12203 0.235761
\(473\) −1.20883 −0.0555822
\(474\) −7.13046 −0.327513
\(475\) 0 0
\(476\) −4.26388 −0.195434
\(477\) −0.874305 −0.0400317
\(478\) 1.48384 0.0678693
\(479\) 32.4830 1.48418 0.742092 0.670298i \(-0.233834\pi\)
0.742092 + 0.670298i \(0.233834\pi\)
\(480\) 0 0
\(481\) −0.206396 −0.00941083
\(482\) −9.63844 −0.439019
\(483\) 6.13818 0.279297
\(484\) −0.372384 −0.0169266
\(485\) 0 0
\(486\) 0.618034 0.0280346
\(487\) −1.01783 −0.0461222 −0.0230611 0.999734i \(-0.507341\pi\)
−0.0230611 + 0.999734i \(0.507341\pi\)
\(488\) −4.55574 −0.206229
\(489\) −20.1440 −0.910943
\(490\) 0 0
\(491\) 9.36330 0.422560 0.211280 0.977426i \(-0.432237\pi\)
0.211280 + 0.977426i \(0.432237\pi\)
\(492\) 1.17557 0.0529988
\(493\) 2.92116 0.131563
\(494\) 2.28408 0.102766
\(495\) 0 0
\(496\) −17.9394 −0.805502
\(497\) 3.71998 0.166864
\(498\) 3.58606 0.160695
\(499\) −16.5095 −0.739069 −0.369534 0.929217i \(-0.620483\pi\)
−0.369534 + 0.929217i \(0.620483\pi\)
\(500\) 0 0
\(501\) −11.1532 −0.498287
\(502\) 17.6287 0.786805
\(503\) 36.9170 1.64605 0.823024 0.568007i \(-0.192285\pi\)
0.823024 + 0.568007i \(0.192285\pi\)
\(504\) −2.23607 −0.0996024
\(505\) 0 0
\(506\) 12.7129 0.565157
\(507\) −1.00000 −0.0444116
\(508\) −0.341559 −0.0151542
\(509\) 20.9424 0.928256 0.464128 0.885768i \(-0.346368\pi\)
0.464128 + 0.885768i \(0.346368\pi\)
\(510\) 0 0
\(511\) −2.60085 −0.115055
\(512\) −18.7082 −0.826794
\(513\) −3.69572 −0.163170
\(514\) −5.29104 −0.233378
\(515\) 0 0
\(516\) 0.583662 0.0256943
\(517\) 7.75371 0.341008
\(518\) 0.127559 0.00560464
\(519\) 15.7763 0.692503
\(520\) 0 0
\(521\) 22.7354 0.996055 0.498027 0.867161i \(-0.334058\pi\)
0.498027 + 0.867161i \(0.334058\pi\)
\(522\) 0.685096 0.0299858
\(523\) −12.1732 −0.532295 −0.266147 0.963932i \(-0.585751\pi\)
−0.266147 + 0.963932i \(0.585751\pi\)
\(524\) −10.5267 −0.459862
\(525\) 0 0
\(526\) −8.63278 −0.376407
\(527\) 25.4971 1.11067
\(528\) 6.21336 0.270402
\(529\) 14.6773 0.638142
\(530\) 0 0
\(531\) 2.29064 0.0994055
\(532\) 5.97980 0.259257
\(533\) −0.726543 −0.0314701
\(534\) 1.53669 0.0664991
\(535\) 0 0
\(536\) −1.54660 −0.0668029
\(537\) 21.9229 0.946044
\(538\) −4.75120 −0.204839
\(539\) −3.35114 −0.144344
\(540\) 0 0
\(541\) 3.44016 0.147904 0.0739520 0.997262i \(-0.476439\pi\)
0.0739520 + 0.997262i \(0.476439\pi\)
\(542\) 14.8914 0.639639
\(543\) 10.9929 0.471752
\(544\) 14.8048 0.634749
\(545\) 0 0
\(546\) 0.618034 0.0264494
\(547\) 12.0570 0.515519 0.257759 0.966209i \(-0.417016\pi\)
0.257759 + 0.966209i \(0.417016\pi\)
\(548\) 21.8327 0.932649
\(549\) −2.03739 −0.0869537
\(550\) 0 0
\(551\) −4.09673 −0.174527
\(552\) −13.7254 −0.584191
\(553\) 11.5373 0.490617
\(554\) −7.38698 −0.313843
\(555\) 0 0
\(556\) 8.25627 0.350144
\(557\) 23.9499 1.01479 0.507395 0.861714i \(-0.330609\pi\)
0.507395 + 0.861714i \(0.330609\pi\)
\(558\) 5.97980 0.253145
\(559\) −0.360723 −0.0152570
\(560\) 0 0
\(561\) −8.83099 −0.372845
\(562\) −0.270440 −0.0114078
\(563\) 29.7854 1.25531 0.627653 0.778493i \(-0.284015\pi\)
0.627653 + 0.778493i \(0.284015\pi\)
\(564\) −3.74373 −0.157639
\(565\) 0 0
\(566\) −5.87586 −0.246981
\(567\) −1.00000 −0.0419961
\(568\) −8.31812 −0.349021
\(569\) 26.0033 1.09012 0.545058 0.838399i \(-0.316508\pi\)
0.545058 + 0.838399i \(0.316508\pi\)
\(570\) 0 0
\(571\) −28.8335 −1.20664 −0.603322 0.797498i \(-0.706156\pi\)
−0.603322 + 0.797498i \(0.706156\pi\)
\(572\) −5.42226 −0.226716
\(573\) −11.6382 −0.486194
\(574\) 0.449028 0.0187421
\(575\) 0 0
\(576\) −0.236068 −0.00983617
\(577\) −35.8525 −1.49256 −0.746280 0.665632i \(-0.768162\pi\)
−0.746280 + 0.665632i \(0.768162\pi\)
\(578\) 6.21471 0.258498
\(579\) 9.78101 0.406485
\(580\) 0 0
\(581\) −5.80236 −0.240723
\(582\) −0.534429 −0.0221528
\(583\) 2.92992 0.121345
\(584\) 5.81567 0.240654
\(585\) 0 0
\(586\) −5.28916 −0.218493
\(587\) 40.2255 1.66029 0.830143 0.557551i \(-0.188259\pi\)
0.830143 + 0.557551i \(0.188259\pi\)
\(588\) 1.61803 0.0667266
\(589\) −35.7580 −1.47338
\(590\) 0 0
\(591\) −15.3606 −0.631851
\(592\) 0.382678 0.0157280
\(593\) 4.57569 0.187901 0.0939506 0.995577i \(-0.470050\pi\)
0.0939506 + 0.995577i \(0.470050\pi\)
\(594\) −2.07112 −0.0849790
\(595\) 0 0
\(596\) −24.7520 −1.01388
\(597\) 17.7788 0.727638
\(598\) 3.79360 0.155132
\(599\) 45.7310 1.86852 0.934258 0.356597i \(-0.116063\pi\)
0.934258 + 0.356597i \(0.116063\pi\)
\(600\) 0 0
\(601\) −3.01519 −0.122992 −0.0614961 0.998107i \(-0.519587\pi\)
−0.0614961 + 0.998107i \(0.519587\pi\)
\(602\) 0.222939 0.00908632
\(603\) −0.691660 −0.0281666
\(604\) 3.53565 0.143864
\(605\) 0 0
\(606\) −6.39259 −0.259681
\(607\) −8.89145 −0.360893 −0.180446 0.983585i \(-0.557754\pi\)
−0.180446 + 0.983585i \(0.557754\pi\)
\(608\) −20.7627 −0.842037
\(609\) −1.10851 −0.0449190
\(610\) 0 0
\(611\) 2.31375 0.0936044
\(612\) 4.26388 0.172357
\(613\) −5.00295 −0.202067 −0.101034 0.994883i \(-0.532215\pi\)
−0.101034 + 0.994883i \(0.532215\pi\)
\(614\) 14.4064 0.581393
\(615\) 0 0
\(616\) 7.49338 0.301917
\(617\) 7.38558 0.297332 0.148666 0.988887i \(-0.452502\pi\)
0.148666 + 0.988887i \(0.452502\pi\)
\(618\) 9.49003 0.381745
\(619\) −26.6538 −1.07131 −0.535653 0.844438i \(-0.679934\pi\)
−0.535653 + 0.844438i \(0.679934\pi\)
\(620\) 0 0
\(621\) −6.13818 −0.246317
\(622\) −13.6934 −0.549056
\(623\) −2.48642 −0.0996162
\(624\) 1.85410 0.0742235
\(625\) 0 0
\(626\) 20.9648 0.837922
\(627\) 12.3849 0.494604
\(628\) −34.9927 −1.39636
\(629\) −0.543898 −0.0216866
\(630\) 0 0
\(631\) −28.4686 −1.13332 −0.566659 0.823953i \(-0.691764\pi\)
−0.566659 + 0.823953i \(0.691764\pi\)
\(632\) −25.7983 −1.02620
\(633\) −19.3414 −0.768753
\(634\) −1.08070 −0.0429201
\(635\) 0 0
\(636\) −1.41466 −0.0560948
\(637\) −1.00000 −0.0396214
\(638\) −2.29585 −0.0908937
\(639\) −3.71998 −0.147160
\(640\) 0 0
\(641\) −36.9595 −1.45981 −0.729906 0.683548i \(-0.760436\pi\)
−0.729906 + 0.683548i \(0.760436\pi\)
\(642\) −10.2895 −0.406094
\(643\) 38.6067 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(644\) 9.93179 0.391367
\(645\) 0 0
\(646\) 6.01905 0.236816
\(647\) 7.11213 0.279607 0.139803 0.990179i \(-0.455353\pi\)
0.139803 + 0.990179i \(0.455353\pi\)
\(648\) 2.23607 0.0878410
\(649\) −7.67627 −0.301320
\(650\) 0 0
\(651\) −9.67551 −0.379213
\(652\) −32.5937 −1.27647
\(653\) 28.7474 1.12497 0.562487 0.826806i \(-0.309845\pi\)
0.562487 + 0.826806i \(0.309845\pi\)
\(654\) −11.7188 −0.458242
\(655\) 0 0
\(656\) 1.34708 0.0525948
\(657\) 2.60085 0.101469
\(658\) −1.42998 −0.0557463
\(659\) 47.7956 1.86185 0.930925 0.365210i \(-0.119003\pi\)
0.930925 + 0.365210i \(0.119003\pi\)
\(660\) 0 0
\(661\) −21.8950 −0.851617 −0.425808 0.904813i \(-0.640010\pi\)
−0.425808 + 0.904813i \(0.640010\pi\)
\(662\) −19.2192 −0.746976
\(663\) −2.63522 −0.102343
\(664\) 12.9745 0.503507
\(665\) 0 0
\(666\) −0.127559 −0.00494283
\(667\) −6.80423 −0.263461
\(668\) −18.0462 −0.698229
\(669\) −19.6755 −0.760699
\(670\) 0 0
\(671\) 6.82758 0.263576
\(672\) −5.61803 −0.216720
\(673\) −16.5433 −0.637696 −0.318848 0.947806i \(-0.603296\pi\)
−0.318848 + 0.947806i \(0.603296\pi\)
\(674\) 13.6194 0.524599
\(675\) 0 0
\(676\) −1.61803 −0.0622321
\(677\) −6.40173 −0.246038 −0.123019 0.992404i \(-0.539258\pi\)
−0.123019 + 0.992404i \(0.539258\pi\)
\(678\) −4.23420 −0.162614
\(679\) 0.864724 0.0331850
\(680\) 0 0
\(681\) −13.4981 −0.517250
\(682\) −20.0391 −0.767338
\(683\) −34.5834 −1.32330 −0.661649 0.749814i \(-0.730143\pi\)
−0.661649 + 0.749814i \(0.730143\pi\)
\(684\) −5.97980 −0.228643
\(685\) 0 0
\(686\) 0.618034 0.0235966
\(687\) 13.9138 0.530844
\(688\) 0.668817 0.0254984
\(689\) 0.874305 0.0333084
\(690\) 0 0
\(691\) 34.0179 1.29410 0.647051 0.762447i \(-0.276002\pi\)
0.647051 + 0.762447i \(0.276002\pi\)
\(692\) 25.5266 0.970376
\(693\) 3.35114 0.127299
\(694\) −17.8678 −0.678254
\(695\) 0 0
\(696\) 2.47870 0.0939549
\(697\) −1.91460 −0.0725206
\(698\) 0.458213 0.0173436
\(699\) −21.7103 −0.821158
\(700\) 0 0
\(701\) −28.4911 −1.07609 −0.538047 0.842915i \(-0.680838\pi\)
−0.538047 + 0.842915i \(0.680838\pi\)
\(702\) −0.618034 −0.0233262
\(703\) 0.762779 0.0287688
\(704\) 0.791097 0.0298156
\(705\) 0 0
\(706\) −2.25742 −0.0849593
\(707\) 10.3434 0.389004
\(708\) 3.70634 0.139293
\(709\) −19.2329 −0.722306 −0.361153 0.932507i \(-0.617617\pi\)
−0.361153 + 0.932507i \(0.617617\pi\)
\(710\) 0 0
\(711\) −11.5373 −0.432684
\(712\) 5.55980 0.208362
\(713\) −59.3901 −2.22418
\(714\) 1.62866 0.0609509
\(715\) 0 0
\(716\) 35.4720 1.32565
\(717\) 2.40090 0.0896634
\(718\) 11.4127 0.425917
\(719\) 18.3317 0.683658 0.341829 0.939762i \(-0.388954\pi\)
0.341829 + 0.939762i \(0.388954\pi\)
\(720\) 0 0
\(721\) −15.3552 −0.571857
\(722\) 3.30133 0.122863
\(723\) −15.5953 −0.579996
\(724\) 17.7869 0.661046
\(725\) 0 0
\(726\) 0.142238 0.00527895
\(727\) −42.6667 −1.58242 −0.791209 0.611545i \(-0.790548\pi\)
−0.791209 + 0.611545i \(0.790548\pi\)
\(728\) 2.23607 0.0828742
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −0.950584 −0.0351586
\(732\) −3.29657 −0.121845
\(733\) 6.05562 0.223669 0.111835 0.993727i \(-0.464327\pi\)
0.111835 + 0.993727i \(0.464327\pi\)
\(734\) −17.2283 −0.635908
\(735\) 0 0
\(736\) −34.4845 −1.27112
\(737\) 2.31785 0.0853792
\(738\) −0.449028 −0.0165289
\(739\) 25.7066 0.945631 0.472815 0.881161i \(-0.343238\pi\)
0.472815 + 0.881161i \(0.343238\pi\)
\(740\) 0 0
\(741\) 3.69572 0.135766
\(742\) −0.540350 −0.0198369
\(743\) −13.8400 −0.507741 −0.253871 0.967238i \(-0.581704\pi\)
−0.253871 + 0.967238i \(0.581704\pi\)
\(744\) 21.6351 0.793182
\(745\) 0 0
\(746\) 5.84671 0.214063
\(747\) 5.80236 0.212297
\(748\) −14.2888 −0.522452
\(749\) 16.6487 0.608332
\(750\) 0 0
\(751\) 35.2777 1.28730 0.643651 0.765319i \(-0.277419\pi\)
0.643651 + 0.765319i \(0.277419\pi\)
\(752\) −4.28993 −0.156438
\(753\) 28.5238 1.03946
\(754\) −0.685096 −0.0249497
\(755\) 0 0
\(756\) −1.61803 −0.0588473
\(757\) −27.4699 −0.998411 −0.499205 0.866484i \(-0.666375\pi\)
−0.499205 + 0.866484i \(0.666375\pi\)
\(758\) −2.50806 −0.0910968
\(759\) 20.5699 0.746640
\(760\) 0 0
\(761\) −8.60763 −0.312026 −0.156013 0.987755i \(-0.549864\pi\)
−0.156013 + 0.987755i \(0.549864\pi\)
\(762\) 0.130464 0.00472621
\(763\) 18.9615 0.686451
\(764\) −18.8311 −0.681284
\(765\) 0 0
\(766\) 3.99698 0.144417
\(767\) −2.29064 −0.0827103
\(768\) 6.56231 0.236797
\(769\) 4.50149 0.162328 0.0811640 0.996701i \(-0.474136\pi\)
0.0811640 + 0.996701i \(0.474136\pi\)
\(770\) 0 0
\(771\) −8.56108 −0.308320
\(772\) 15.8260 0.569590
\(773\) 25.7292 0.925416 0.462708 0.886511i \(-0.346878\pi\)
0.462708 + 0.886511i \(0.346878\pi\)
\(774\) −0.222939 −0.00801338
\(775\) 0 0
\(776\) −1.93358 −0.0694115
\(777\) 0.206396 0.00740440
\(778\) 7.89464 0.283037
\(779\) 2.68510 0.0962035
\(780\) 0 0
\(781\) 12.4662 0.446075
\(782\) 9.99698 0.357491
\(783\) 1.10851 0.0396149
\(784\) 1.85410 0.0662179
\(785\) 0 0
\(786\) 4.02085 0.143419
\(787\) 8.36864 0.298310 0.149155 0.988814i \(-0.452345\pi\)
0.149155 + 0.988814i \(0.452345\pi\)
\(788\) −24.8540 −0.885387
\(789\) −13.9681 −0.497279
\(790\) 0 0
\(791\) 6.85108 0.243597
\(792\) −7.49338 −0.266266
\(793\) 2.03739 0.0723498
\(794\) −12.3051 −0.436691
\(795\) 0 0
\(796\) 28.7667 1.01961
\(797\) 21.6426 0.766619 0.383310 0.923620i \(-0.374784\pi\)
0.383310 + 0.923620i \(0.374784\pi\)
\(798\) −2.28408 −0.0808555
\(799\) 6.09724 0.215705
\(800\) 0 0
\(801\) 2.48642 0.0878532
\(802\) −4.64063 −0.163866
\(803\) −8.71581 −0.307574
\(804\) −1.11913 −0.0394687
\(805\) 0 0
\(806\) −5.97980 −0.210629
\(807\) −7.68760 −0.270616
\(808\) −23.1286 −0.813661
\(809\) 24.2264 0.851753 0.425877 0.904781i \(-0.359966\pi\)
0.425877 + 0.904781i \(0.359966\pi\)
\(810\) 0 0
\(811\) −13.1236 −0.460831 −0.230416 0.973092i \(-0.574009\pi\)
−0.230416 + 0.973092i \(0.574009\pi\)
\(812\) −1.79360 −0.0629432
\(813\) 24.0948 0.845040
\(814\) 0.427470 0.0149828
\(815\) 0 0
\(816\) 4.88597 0.171043
\(817\) 1.33313 0.0466403
\(818\) −12.0469 −0.421209
\(819\) 1.00000 0.0349428
\(820\) 0 0
\(821\) 2.93114 0.102298 0.0511488 0.998691i \(-0.483712\pi\)
0.0511488 + 0.998691i \(0.483712\pi\)
\(822\) −8.33937 −0.290869
\(823\) 19.5519 0.681536 0.340768 0.940147i \(-0.389313\pi\)
0.340768 + 0.940147i \(0.389313\pi\)
\(824\) 34.3353 1.19613
\(825\) 0 0
\(826\) 1.41570 0.0492583
\(827\) −28.9405 −1.00636 −0.503180 0.864182i \(-0.667837\pi\)
−0.503180 + 0.864182i \(0.667837\pi\)
\(828\) −9.93179 −0.345153
\(829\) 7.12403 0.247428 0.123714 0.992318i \(-0.460519\pi\)
0.123714 + 0.992318i \(0.460519\pi\)
\(830\) 0 0
\(831\) −11.9524 −0.414624
\(832\) 0.236068 0.00818418
\(833\) −2.63522 −0.0913050
\(834\) −3.15362 −0.109201
\(835\) 0 0
\(836\) 20.0391 0.693068
\(837\) 9.67551 0.334435
\(838\) −0.910145 −0.0314404
\(839\) 49.6349 1.71359 0.856794 0.515659i \(-0.172453\pi\)
0.856794 + 0.515659i \(0.172453\pi\)
\(840\) 0 0
\(841\) −27.7712 −0.957628
\(842\) −18.9127 −0.651776
\(843\) −0.437581 −0.0150711
\(844\) −31.2951 −1.07722
\(845\) 0 0
\(846\) 1.42998 0.0491636
\(847\) −0.230146 −0.00790791
\(848\) −1.62105 −0.0556671
\(849\) −9.50733 −0.326291
\(850\) 0 0
\(851\) 1.26689 0.0434285
\(852\) −6.01905 −0.206209
\(853\) −14.2794 −0.488919 −0.244460 0.969660i \(-0.578611\pi\)
−0.244460 + 0.969660i \(0.578611\pi\)
\(854\) −1.25918 −0.0430881
\(855\) 0 0
\(856\) −37.2277 −1.27242
\(857\) −13.4333 −0.458872 −0.229436 0.973324i \(-0.573688\pi\)
−0.229436 + 0.973324i \(0.573688\pi\)
\(858\) 2.07112 0.0707068
\(859\) −40.3190 −1.37567 −0.687833 0.725869i \(-0.741438\pi\)
−0.687833 + 0.725869i \(0.741438\pi\)
\(860\) 0 0
\(861\) 0.726543 0.0247605
\(862\) −21.5111 −0.732670
\(863\) 42.9000 1.46033 0.730166 0.683270i \(-0.239443\pi\)
0.730166 + 0.683270i \(0.239443\pi\)
\(864\) 5.61803 0.191129
\(865\) 0 0
\(866\) −24.6900 −0.839000
\(867\) 10.0556 0.341507
\(868\) −15.6553 −0.531376
\(869\) 38.6632 1.31156
\(870\) 0 0
\(871\) 0.691660 0.0234360
\(872\) −42.3991 −1.43582
\(873\) −0.864724 −0.0292665
\(874\) −14.0201 −0.474237
\(875\) 0 0
\(876\) 4.20826 0.142184
\(877\) −50.8231 −1.71617 −0.858086 0.513506i \(-0.828347\pi\)
−0.858086 + 0.513506i \(0.828347\pi\)
\(878\) −18.1854 −0.613726
\(879\) −8.55805 −0.288656
\(880\) 0 0
\(881\) 44.4756 1.49842 0.749211 0.662331i \(-0.230433\pi\)
0.749211 + 0.662331i \(0.230433\pi\)
\(882\) −0.618034 −0.0208103
\(883\) 41.0957 1.38298 0.691490 0.722386i \(-0.256955\pi\)
0.691490 + 0.722386i \(0.256955\pi\)
\(884\) −4.26388 −0.143410
\(885\) 0 0
\(886\) 1.86683 0.0627175
\(887\) −4.72082 −0.158510 −0.0792549 0.996854i \(-0.525254\pi\)
−0.0792549 + 0.996854i \(0.525254\pi\)
\(888\) −0.461514 −0.0154874
\(889\) −0.211095 −0.00707990
\(890\) 0 0
\(891\) −3.35114 −0.112267
\(892\) −31.8357 −1.06594
\(893\) −8.55097 −0.286147
\(894\) 9.45444 0.316204
\(895\) 0 0
\(896\) −11.3820 −0.380245
\(897\) 6.13818 0.204948
\(898\) −15.9288 −0.531551
\(899\) 10.7254 0.357712
\(900\) 0 0
\(901\) 2.30399 0.0767569
\(902\) 1.50476 0.0501029
\(903\) 0.360723 0.0120041
\(904\) −15.3195 −0.509519
\(905\) 0 0
\(906\) −1.35050 −0.0448673
\(907\) −43.5266 −1.44528 −0.722639 0.691226i \(-0.757071\pi\)
−0.722639 + 0.691226i \(0.757071\pi\)
\(908\) −21.8405 −0.724801
\(909\) −10.3434 −0.343070
\(910\) 0 0
\(911\) −43.9500 −1.45613 −0.728065 0.685508i \(-0.759580\pi\)
−0.728065 + 0.685508i \(0.759580\pi\)
\(912\) −6.85224 −0.226900
\(913\) −19.4445 −0.643520
\(914\) −0.0485210 −0.00160493
\(915\) 0 0
\(916\) 22.5130 0.743849
\(917\) −6.50587 −0.214843
\(918\) −1.62866 −0.0537536
\(919\) 28.6274 0.944330 0.472165 0.881510i \(-0.343473\pi\)
0.472165 + 0.881510i \(0.343473\pi\)
\(920\) 0 0
\(921\) 23.3100 0.768090
\(922\) −13.6211 −0.448588
\(923\) 3.71998 0.122445
\(924\) 5.42226 0.178379
\(925\) 0 0
\(926\) −7.73776 −0.254279
\(927\) 15.3552 0.504331
\(928\) 6.22764 0.204432
\(929\) −20.0266 −0.657052 −0.328526 0.944495i \(-0.606552\pi\)
−0.328526 + 0.944495i \(0.606552\pi\)
\(930\) 0 0
\(931\) 3.69572 0.121122
\(932\) −35.1280 −1.15066
\(933\) −22.1564 −0.725368
\(934\) 18.9951 0.621539
\(935\) 0 0
\(936\) −2.23607 −0.0730882
\(937\) 14.1187 0.461237 0.230619 0.973044i \(-0.425925\pi\)
0.230619 + 0.973044i \(0.425925\pi\)
\(938\) −0.427470 −0.0139574
\(939\) 33.9218 1.10699
\(940\) 0 0
\(941\) 55.0872 1.79579 0.897896 0.440208i \(-0.145095\pi\)
0.897896 + 0.440208i \(0.145095\pi\)
\(942\) 13.3660 0.435489
\(943\) 4.45965 0.145226
\(944\) 4.24709 0.138231
\(945\) 0 0
\(946\) 0.747100 0.0242903
\(947\) 29.0137 0.942820 0.471410 0.881914i \(-0.343745\pi\)
0.471410 + 0.881914i \(0.343745\pi\)
\(948\) −18.6678 −0.606302
\(949\) −2.60085 −0.0844271
\(950\) 0 0
\(951\) −1.74861 −0.0567026
\(952\) 5.89253 0.190978
\(953\) 28.8354 0.934072 0.467036 0.884238i \(-0.345322\pi\)
0.467036 + 0.884238i \(0.345322\pi\)
\(954\) 0.540350 0.0174945
\(955\) 0 0
\(956\) 3.88474 0.125642
\(957\) −3.71477 −0.120081
\(958\) −20.0756 −0.648612
\(959\) 13.4934 0.435724
\(960\) 0 0
\(961\) 62.6156 2.01986
\(962\) 0.127559 0.00411268
\(963\) −16.6487 −0.536498
\(964\) −25.2338 −0.812725
\(965\) 0 0
\(966\) −3.79360 −0.122057
\(967\) −7.99397 −0.257069 −0.128534 0.991705i \(-0.541027\pi\)
−0.128534 + 0.991705i \(0.541027\pi\)
\(968\) 0.514622 0.0165406
\(969\) 9.73903 0.312863
\(970\) 0 0
\(971\) 15.7672 0.505992 0.252996 0.967467i \(-0.418584\pi\)
0.252996 + 0.967467i \(0.418584\pi\)
\(972\) 1.61803 0.0518985
\(973\) 5.10266 0.163584
\(974\) 0.629053 0.0201561
\(975\) 0 0
\(976\) −3.77753 −0.120916
\(977\) 8.57921 0.274473 0.137237 0.990538i \(-0.456178\pi\)
0.137237 + 0.990538i \(0.456178\pi\)
\(978\) 12.4497 0.398097
\(979\) −8.33234 −0.266303
\(980\) 0 0
\(981\) −18.9615 −0.605393
\(982\) −5.78684 −0.184665
\(983\) −20.3519 −0.649123 −0.324562 0.945865i \(-0.605217\pi\)
−0.324562 + 0.945865i \(0.605217\pi\)
\(984\) −1.62460 −0.0517903
\(985\) 0 0
\(986\) −1.80538 −0.0574950
\(987\) −2.31375 −0.0736475
\(988\) 5.97980 0.190243
\(989\) 2.21418 0.0704069
\(990\) 0 0
\(991\) −11.2052 −0.355946 −0.177973 0.984035i \(-0.556954\pi\)
−0.177973 + 0.984035i \(0.556954\pi\)
\(992\) 54.3574 1.72585
\(993\) −31.0973 −0.986844
\(994\) −2.29907 −0.0729222
\(995\) 0 0
\(996\) 9.38842 0.297483
\(997\) −26.6899 −0.845277 −0.422638 0.906298i \(-0.638896\pi\)
−0.422638 + 0.906298i \(0.638896\pi\)
\(998\) 10.2035 0.322985
\(999\) −0.206396 −0.00653006
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6825.2.a.bm.1.1 4
5.2 odd 4 1365.2.f.c.274.3 8
5.3 odd 4 1365.2.f.c.274.5 yes 8
5.4 even 2 6825.2.a.be.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1365.2.f.c.274.3 8 5.2 odd 4
1365.2.f.c.274.5 yes 8 5.3 odd 4
6825.2.a.be.1.3 4 5.4 even 2
6825.2.a.bm.1.1 4 1.1 even 1 trivial