Properties

Label 6825.2.a.bl.1.4
Level $6825$
Weight $2$
Character 6825.1
Self dual yes
Analytic conductor $54.498$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6825,2,Mod(1,6825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6825.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6825 = 3 \cdot 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.4978993795\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.14013.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 6x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.20800\) of defining polynomial
Character \(\chi\) \(=\) 6825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.20800 q^{2} +1.00000 q^{3} +2.87525 q^{4} +2.20800 q^{6} -1.00000 q^{7} +1.93254 q^{8} +1.00000 q^{9} -4.47504 q^{11} +2.87525 q^{12} -1.00000 q^{13} -2.20800 q^{14} -1.48345 q^{16} +2.32433 q^{17} +2.20800 q^{18} -5.93254 q^{19} -1.00000 q^{21} -9.88086 q^{22} -4.86508 q^{23} +1.93254 q^{24} -2.20800 q^{26} +1.00000 q^{27} -2.87525 q^{28} -0.932540 q^{29} +5.09902 q^{31} -7.14054 q^{32} -4.47504 q^{33} +5.13212 q^{34} +2.87525 q^{36} -2.63415 q^{37} -13.0990 q^{38} -1.00000 q^{39} -6.50940 q^{41} -2.20800 q^{42} -1.35028 q^{43} -12.8668 q^{44} -10.7421 q^{46} +0.0259483 q^{47} -1.48345 q^{48} +1.00000 q^{49} +2.32433 q^{51} -2.87525 q^{52} +0.734710 q^{53} +2.20800 q^{54} -1.93254 q^{56} -5.93254 q^{57} -2.05904 q^{58} +13.5741 q^{59} +4.56543 q^{61} +11.2586 q^{62} -1.00000 q^{63} -12.7994 q^{64} -9.88086 q^{66} -13.2052 q^{67} +6.68303 q^{68} -4.86508 q^{69} -6.63240 q^{71} +1.93254 q^{72} -14.2238 q^{73} -5.81620 q^{74} -17.0575 q^{76} +4.47504 q^{77} -2.20800 q^{78} -0.618372 q^{79} +1.00000 q^{81} -14.3727 q^{82} +2.10919 q^{83} -2.87525 q^{84} -2.98142 q^{86} -0.932540 q^{87} -8.64819 q^{88} -10.7818 q^{89} +1.00000 q^{91} -13.9883 q^{92} +5.09902 q^{93} +0.0572938 q^{94} -7.14054 q^{96} +0.464870 q^{97} +2.20800 q^{98} -4.47504 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + 4 q^{3} + 5 q^{4} + q^{6} - 4 q^{7} - 3 q^{8} + 4 q^{9} - 2 q^{11} + 5 q^{12} - 4 q^{13} - q^{14} - q^{16} - 3 q^{17} + q^{18} - 13 q^{19} - 4 q^{21} + 7 q^{22} + 2 q^{23} - 3 q^{24}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.20800 1.56129 0.780644 0.624975i \(-0.214891\pi\)
0.780644 + 0.624975i \(0.214891\pi\)
\(3\) 1.00000 0.577350
\(4\) 2.87525 1.43762
\(5\) 0 0
\(6\) 2.20800 0.901411
\(7\) −1.00000 −0.377964
\(8\) 1.93254 0.683256
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.47504 −1.34927 −0.674637 0.738150i \(-0.735700\pi\)
−0.674637 + 0.738150i \(0.735700\pi\)
\(12\) 2.87525 0.830012
\(13\) −1.00000 −0.277350
\(14\) −2.20800 −0.590112
\(15\) 0 0
\(16\) −1.48345 −0.370863
\(17\) 2.32433 0.563734 0.281867 0.959454i \(-0.409046\pi\)
0.281867 + 0.959454i \(0.409046\pi\)
\(18\) 2.20800 0.520430
\(19\) −5.93254 −1.36102 −0.680509 0.732740i \(-0.738241\pi\)
−0.680509 + 0.732740i \(0.738241\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) −9.88086 −2.10661
\(23\) −4.86508 −1.01444 −0.507220 0.861817i \(-0.669327\pi\)
−0.507220 + 0.861817i \(0.669327\pi\)
\(24\) 1.93254 0.394478
\(25\) 0 0
\(26\) −2.20800 −0.433024
\(27\) 1.00000 0.192450
\(28\) −2.87525 −0.543370
\(29\) −0.932540 −0.173168 −0.0865842 0.996245i \(-0.527595\pi\)
−0.0865842 + 0.996245i \(0.527595\pi\)
\(30\) 0 0
\(31\) 5.09902 0.915812 0.457906 0.889001i \(-0.348600\pi\)
0.457906 + 0.889001i \(0.348600\pi\)
\(32\) −7.14054 −1.26228
\(33\) −4.47504 −0.779004
\(34\) 5.13212 0.880151
\(35\) 0 0
\(36\) 2.87525 0.479208
\(37\) −2.63415 −0.433052 −0.216526 0.976277i \(-0.569473\pi\)
−0.216526 + 0.976277i \(0.569473\pi\)
\(38\) −13.0990 −2.12494
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) −6.50940 −1.01660 −0.508299 0.861181i \(-0.669725\pi\)
−0.508299 + 0.861181i \(0.669725\pi\)
\(42\) −2.20800 −0.340701
\(43\) −1.35028 −0.205916 −0.102958 0.994686i \(-0.532831\pi\)
−0.102958 + 0.994686i \(0.532831\pi\)
\(44\) −12.8668 −1.93975
\(45\) 0 0
\(46\) −10.7421 −1.58383
\(47\) 0.0259483 0.00378495 0.00189247 0.999998i \(-0.499398\pi\)
0.00189247 + 0.999998i \(0.499398\pi\)
\(48\) −1.48345 −0.214118
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 2.32433 0.325472
\(52\) −2.87525 −0.398725
\(53\) 0.734710 0.100920 0.0504601 0.998726i \(-0.483931\pi\)
0.0504601 + 0.998726i \(0.483931\pi\)
\(54\) 2.20800 0.300470
\(55\) 0 0
\(56\) −1.93254 −0.258247
\(57\) −5.93254 −0.785784
\(58\) −2.05904 −0.270366
\(59\) 13.5741 1.76719 0.883596 0.468250i \(-0.155115\pi\)
0.883596 + 0.468250i \(0.155115\pi\)
\(60\) 0 0
\(61\) 4.56543 0.584543 0.292271 0.956335i \(-0.405589\pi\)
0.292271 + 0.956335i \(0.405589\pi\)
\(62\) 11.2586 1.42985
\(63\) −1.00000 −0.125988
\(64\) −12.7994 −1.59992
\(65\) 0 0
\(66\) −9.88086 −1.21625
\(67\) −13.2052 −1.61327 −0.806636 0.591049i \(-0.798714\pi\)
−0.806636 + 0.591049i \(0.798714\pi\)
\(68\) 6.68303 0.810437
\(69\) −4.86508 −0.585687
\(70\) 0 0
\(71\) −6.63240 −0.787122 −0.393561 0.919299i \(-0.628757\pi\)
−0.393561 + 0.919299i \(0.628757\pi\)
\(72\) 1.93254 0.227752
\(73\) −14.2238 −1.66477 −0.832384 0.554200i \(-0.813024\pi\)
−0.832384 + 0.554200i \(0.813024\pi\)
\(74\) −5.81620 −0.676120
\(75\) 0 0
\(76\) −17.0575 −1.95663
\(77\) 4.47504 0.509978
\(78\) −2.20800 −0.250006
\(79\) −0.618372 −0.0695723 −0.0347862 0.999395i \(-0.511075\pi\)
−0.0347862 + 0.999395i \(0.511075\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −14.3727 −1.58720
\(83\) 2.10919 0.231514 0.115757 0.993278i \(-0.463071\pi\)
0.115757 + 0.993278i \(0.463071\pi\)
\(84\) −2.87525 −0.313715
\(85\) 0 0
\(86\) −2.98142 −0.321495
\(87\) −0.932540 −0.0999788
\(88\) −8.64819 −0.921900
\(89\) −10.7818 −1.14287 −0.571436 0.820646i \(-0.693614\pi\)
−0.571436 + 0.820646i \(0.693614\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) −13.9883 −1.45838
\(93\) 5.09902 0.528744
\(94\) 0.0572938 0.00590940
\(95\) 0 0
\(96\) −7.14054 −0.728778
\(97\) 0.464870 0.0472004 0.0236002 0.999721i \(-0.492487\pi\)
0.0236002 + 0.999721i \(0.492487\pi\)
\(98\) 2.20800 0.223041
\(99\) −4.47504 −0.449758
\(100\) 0 0
\(101\) −17.0659 −1.69812 −0.849062 0.528294i \(-0.822832\pi\)
−0.849062 + 0.528294i \(0.822832\pi\)
\(102\) 5.13212 0.508156
\(103\) −4.44067 −0.437552 −0.218776 0.975775i \(-0.570206\pi\)
−0.218776 + 0.975775i \(0.570206\pi\)
\(104\) −1.93254 −0.189501
\(105\) 0 0
\(106\) 1.62224 0.157566
\(107\) 2.27546 0.219977 0.109988 0.993933i \(-0.464919\pi\)
0.109988 + 0.993933i \(0.464919\pi\)
\(108\) 2.87525 0.276671
\(109\) 3.93254 0.376669 0.188335 0.982105i \(-0.439691\pi\)
0.188335 + 0.982105i \(0.439691\pi\)
\(110\) 0 0
\(111\) −2.63415 −0.250023
\(112\) 1.48345 0.140173
\(113\) 20.0214 1.88345 0.941727 0.336377i \(-0.109202\pi\)
0.941727 + 0.336377i \(0.109202\pi\)
\(114\) −13.0990 −1.22684
\(115\) 0 0
\(116\) −2.68128 −0.248951
\(117\) −1.00000 −0.0924500
\(118\) 29.9715 2.75910
\(119\) −2.32433 −0.213071
\(120\) 0 0
\(121\) 9.02595 0.820541
\(122\) 10.0804 0.912640
\(123\) −6.50940 −0.586933
\(124\) 14.6609 1.31659
\(125\) 0 0
\(126\) −2.20800 −0.196704
\(127\) 16.9170 1.50114 0.750569 0.660792i \(-0.229779\pi\)
0.750569 + 0.660792i \(0.229779\pi\)
\(128\) −13.9799 −1.23566
\(129\) −1.35028 −0.118886
\(130\) 0 0
\(131\) −1.73471 −0.151562 −0.0757812 0.997124i \(-0.524145\pi\)
−0.0757812 + 0.997124i \(0.524145\pi\)
\(132\) −12.8668 −1.11991
\(133\) 5.93254 0.514416
\(134\) −29.1570 −2.51878
\(135\) 0 0
\(136\) 4.49187 0.385174
\(137\) −3.94959 −0.337436 −0.168718 0.985664i \(-0.553963\pi\)
−0.168718 + 0.985664i \(0.553963\pi\)
\(138\) −10.7421 −0.914426
\(139\) 5.22378 0.443075 0.221538 0.975152i \(-0.428892\pi\)
0.221538 + 0.975152i \(0.428892\pi\)
\(140\) 0 0
\(141\) 0.0259483 0.00218524
\(142\) −14.6443 −1.22892
\(143\) 4.47504 0.374221
\(144\) −1.48345 −0.123621
\(145\) 0 0
\(146\) −31.4060 −2.59918
\(147\) 1.00000 0.0824786
\(148\) −7.57384 −0.622566
\(149\) 7.60541 0.623059 0.311530 0.950236i \(-0.399159\pi\)
0.311530 + 0.950236i \(0.399159\pi\)
\(150\) 0 0
\(151\) −1.43331 −0.116641 −0.0583204 0.998298i \(-0.518574\pi\)
−0.0583204 + 0.998298i \(0.518574\pi\)
\(152\) −11.4649 −0.929924
\(153\) 2.32433 0.187911
\(154\) 9.88086 0.796223
\(155\) 0 0
\(156\) −2.87525 −0.230204
\(157\) −9.42616 −0.752289 −0.376145 0.926561i \(-0.622750\pi\)
−0.376145 + 0.926561i \(0.622750\pi\)
\(158\) −1.36536 −0.108622
\(159\) 0.734710 0.0582663
\(160\) 0 0
\(161\) 4.86508 0.383422
\(162\) 2.20800 0.173477
\(163\) 14.6975 1.15120 0.575600 0.817731i \(-0.304768\pi\)
0.575600 + 0.817731i \(0.304768\pi\)
\(164\) −18.7161 −1.46148
\(165\) 0 0
\(166\) 4.65708 0.361460
\(167\) −21.4409 −1.65915 −0.829573 0.558398i \(-0.811416\pi\)
−0.829573 + 0.558398i \(0.811416\pi\)
\(168\) −1.93254 −0.149099
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −5.93254 −0.453673
\(172\) −3.88239 −0.296030
\(173\) 3.47329 0.264069 0.132035 0.991245i \(-0.457849\pi\)
0.132035 + 0.991245i \(0.457849\pi\)
\(174\) −2.05904 −0.156096
\(175\) 0 0
\(176\) 6.63850 0.500396
\(177\) 13.5741 1.02029
\(178\) −23.8063 −1.78435
\(179\) 8.86635 0.662702 0.331351 0.943508i \(-0.392496\pi\)
0.331351 + 0.943508i \(0.392496\pi\)
\(180\) 0 0
\(181\) 15.2912 1.13659 0.568294 0.822825i \(-0.307603\pi\)
0.568294 + 0.822825i \(0.307603\pi\)
\(182\) 2.20800 0.163668
\(183\) 4.56543 0.337486
\(184\) −9.40196 −0.693122
\(185\) 0 0
\(186\) 11.2586 0.825522
\(187\) −10.4015 −0.760631
\(188\) 0.0746078 0.00544133
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) −12.7994 −0.923715
\(193\) −14.2846 −1.02823 −0.514113 0.857722i \(-0.671879\pi\)
−0.514113 + 0.857722i \(0.671879\pi\)
\(194\) 1.02643 0.0736934
\(195\) 0 0
\(196\) 2.87525 0.205375
\(197\) −5.84650 −0.416546 −0.208273 0.978071i \(-0.566784\pi\)
−0.208273 + 0.978071i \(0.566784\pi\)
\(198\) −9.88086 −0.702202
\(199\) 1.41726 0.100467 0.0502335 0.998738i \(-0.484003\pi\)
0.0502335 + 0.998738i \(0.484003\pi\)
\(200\) 0 0
\(201\) −13.2052 −0.931423
\(202\) −37.6815 −2.65126
\(203\) 0.932540 0.0654515
\(204\) 6.68303 0.467906
\(205\) 0 0
\(206\) −9.80499 −0.683146
\(207\) −4.86508 −0.338146
\(208\) 1.48345 0.102859
\(209\) 26.5483 1.83639
\(210\) 0 0
\(211\) −23.0629 −1.58772 −0.793858 0.608103i \(-0.791931\pi\)
−0.793858 + 0.608103i \(0.791931\pi\)
\(212\) 2.11247 0.145085
\(213\) −6.63240 −0.454445
\(214\) 5.02420 0.343447
\(215\) 0 0
\(216\) 1.93254 0.131493
\(217\) −5.09902 −0.346144
\(218\) 8.68303 0.588089
\(219\) −14.2238 −0.961154
\(220\) 0 0
\(221\) −2.32433 −0.156352
\(222\) −5.81620 −0.390358
\(223\) 22.5375 1.50922 0.754610 0.656173i \(-0.227826\pi\)
0.754610 + 0.656173i \(0.227826\pi\)
\(224\) 7.14054 0.477097
\(225\) 0 0
\(226\) 44.2072 2.94062
\(227\) 14.6568 0.972807 0.486404 0.873734i \(-0.338308\pi\)
0.486404 + 0.873734i \(0.338308\pi\)
\(228\) −17.0575 −1.12966
\(229\) 0.814934 0.0538523 0.0269262 0.999637i \(-0.491428\pi\)
0.0269262 + 0.999637i \(0.491428\pi\)
\(230\) 0 0
\(231\) 4.47504 0.294436
\(232\) −1.80217 −0.118318
\(233\) 24.9241 1.63283 0.816417 0.577463i \(-0.195957\pi\)
0.816417 + 0.577463i \(0.195957\pi\)
\(234\) −2.20800 −0.144341
\(235\) 0 0
\(236\) 39.0288 2.54056
\(237\) −0.618372 −0.0401676
\(238\) −5.13212 −0.332666
\(239\) 18.9213 1.22392 0.611959 0.790889i \(-0.290382\pi\)
0.611959 + 0.790889i \(0.290382\pi\)
\(240\) 0 0
\(241\) −0.124754 −0.00803610 −0.00401805 0.999992i \(-0.501279\pi\)
−0.00401805 + 0.999992i \(0.501279\pi\)
\(242\) 19.9293 1.28110
\(243\) 1.00000 0.0641500
\(244\) 13.1267 0.840352
\(245\) 0 0
\(246\) −14.3727 −0.916372
\(247\) 5.93254 0.377478
\(248\) 9.85407 0.625734
\(249\) 2.10919 0.133665
\(250\) 0 0
\(251\) −13.5985 −0.858331 −0.429166 0.903226i \(-0.641192\pi\)
−0.429166 + 0.903226i \(0.641192\pi\)
\(252\) −2.87525 −0.181123
\(253\) 21.7714 1.36876
\(254\) 37.3526 2.34371
\(255\) 0 0
\(256\) −5.26879 −0.329299
\(257\) −17.5407 −1.09416 −0.547081 0.837080i \(-0.684261\pi\)
−0.547081 + 0.837080i \(0.684261\pi\)
\(258\) −2.98142 −0.185615
\(259\) 2.63415 0.163678
\(260\) 0 0
\(261\) −0.932540 −0.0577228
\(262\) −3.83023 −0.236633
\(263\) 17.9055 1.10410 0.552051 0.833810i \(-0.313845\pi\)
0.552051 + 0.833810i \(0.313845\pi\)
\(264\) −8.64819 −0.532259
\(265\) 0 0
\(266\) 13.0990 0.803153
\(267\) −10.7818 −0.659838
\(268\) −37.9682 −2.31928
\(269\) 30.7148 1.87272 0.936358 0.351048i \(-0.114174\pi\)
0.936358 + 0.351048i \(0.114174\pi\)
\(270\) 0 0
\(271\) −20.1016 −1.22109 −0.610543 0.791983i \(-0.709049\pi\)
−0.610543 + 0.791983i \(0.709049\pi\)
\(272\) −3.44804 −0.209068
\(273\) 1.00000 0.0605228
\(274\) −8.72068 −0.526835
\(275\) 0 0
\(276\) −13.9883 −0.841997
\(277\) −27.6899 −1.66373 −0.831863 0.554981i \(-0.812725\pi\)
−0.831863 + 0.554981i \(0.812725\pi\)
\(278\) 11.5341 0.691768
\(279\) 5.09902 0.305271
\(280\) 0 0
\(281\) −10.9929 −0.655779 −0.327889 0.944716i \(-0.606337\pi\)
−0.327889 + 0.944716i \(0.606337\pi\)
\(282\) 0.0572938 0.00341179
\(283\) 7.32687 0.435537 0.217769 0.976000i \(-0.430122\pi\)
0.217769 + 0.976000i \(0.430122\pi\)
\(284\) −19.0698 −1.13158
\(285\) 0 0
\(286\) 9.88086 0.584268
\(287\) 6.50940 0.384238
\(288\) −7.14054 −0.420760
\(289\) −11.5975 −0.682204
\(290\) 0 0
\(291\) 0.464870 0.0272511
\(292\) −40.8969 −2.39331
\(293\) 2.97427 0.173759 0.0868794 0.996219i \(-0.472311\pi\)
0.0868794 + 0.996219i \(0.472311\pi\)
\(294\) 2.20800 0.128773
\(295\) 0 0
\(296\) −5.09061 −0.295886
\(297\) −4.47504 −0.259668
\(298\) 16.7927 0.972775
\(299\) 4.86508 0.281355
\(300\) 0 0
\(301\) 1.35028 0.0778290
\(302\) −3.16473 −0.182110
\(303\) −17.0659 −0.980412
\(304\) 8.80064 0.504751
\(305\) 0 0
\(306\) 5.13212 0.293384
\(307\) −20.6843 −1.18052 −0.590258 0.807215i \(-0.700974\pi\)
−0.590258 + 0.807215i \(0.700974\pi\)
\(308\) 12.8668 0.733156
\(309\) −4.44067 −0.252621
\(310\) 0 0
\(311\) −24.9399 −1.41421 −0.707106 0.707107i \(-0.750000\pi\)
−0.707106 + 0.707107i \(0.750000\pi\)
\(312\) −1.93254 −0.109409
\(313\) −13.1896 −0.745522 −0.372761 0.927927i \(-0.621589\pi\)
−0.372761 + 0.927927i \(0.621589\pi\)
\(314\) −20.8129 −1.17454
\(315\) 0 0
\(316\) −1.77797 −0.100019
\(317\) 6.24538 0.350775 0.175388 0.984499i \(-0.443882\pi\)
0.175388 + 0.984499i \(0.443882\pi\)
\(318\) 1.62224 0.0909706
\(319\) 4.17315 0.233652
\(320\) 0 0
\(321\) 2.27546 0.127004
\(322\) 10.7421 0.598633
\(323\) −13.7892 −0.767252
\(324\) 2.87525 0.159736
\(325\) 0 0
\(326\) 32.4521 1.79736
\(327\) 3.93254 0.217470
\(328\) −12.5797 −0.694596
\(329\) −0.0259483 −0.00143058
\(330\) 0 0
\(331\) −18.3322 −1.00763 −0.503814 0.863812i \(-0.668070\pi\)
−0.503814 + 0.863812i \(0.668070\pi\)
\(332\) 6.06444 0.332829
\(333\) −2.63415 −0.144351
\(334\) −47.3414 −2.59041
\(335\) 0 0
\(336\) 1.48345 0.0809289
\(337\) 22.4391 1.22234 0.611169 0.791500i \(-0.290700\pi\)
0.611169 + 0.791500i \(0.290700\pi\)
\(338\) 2.20800 0.120099
\(339\) 20.0214 1.08741
\(340\) 0 0
\(341\) −22.8183 −1.23568
\(342\) −13.0990 −0.708314
\(343\) −1.00000 −0.0539949
\(344\) −2.60947 −0.140693
\(345\) 0 0
\(346\) 7.66900 0.412288
\(347\) −3.56410 −0.191331 −0.0956654 0.995414i \(-0.530498\pi\)
−0.0956654 + 0.995414i \(0.530498\pi\)
\(348\) −2.68128 −0.143732
\(349\) 16.2281 0.868672 0.434336 0.900751i \(-0.356983\pi\)
0.434336 + 0.900751i \(0.356983\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 31.9542 1.70316
\(353\) 12.4631 0.663345 0.331672 0.943395i \(-0.392387\pi\)
0.331672 + 0.943395i \(0.392387\pi\)
\(354\) 29.9715 1.59297
\(355\) 0 0
\(356\) −31.0004 −1.64302
\(357\) −2.32433 −0.123017
\(358\) 19.5769 1.03467
\(359\) −32.8365 −1.73305 −0.866523 0.499136i \(-0.833651\pi\)
−0.866523 + 0.499136i \(0.833651\pi\)
\(360\) 0 0
\(361\) 16.1950 0.852370
\(362\) 33.7630 1.77454
\(363\) 9.02595 0.473739
\(364\) 2.87525 0.150704
\(365\) 0 0
\(366\) 10.0804 0.526913
\(367\) −8.56494 −0.447086 −0.223543 0.974694i \(-0.571762\pi\)
−0.223543 + 0.974694i \(0.571762\pi\)
\(368\) 7.21711 0.376218
\(369\) −6.50940 −0.338866
\(370\) 0 0
\(371\) −0.734710 −0.0381443
\(372\) 14.6609 0.760135
\(373\) 12.9626 0.671177 0.335588 0.942009i \(-0.391065\pi\)
0.335588 + 0.942009i \(0.391065\pi\)
\(374\) −22.9664 −1.18757
\(375\) 0 0
\(376\) 0.0501461 0.00258609
\(377\) 0.932540 0.0480282
\(378\) −2.20800 −0.113567
\(379\) −9.69636 −0.498069 −0.249034 0.968495i \(-0.580113\pi\)
−0.249034 + 0.968495i \(0.580113\pi\)
\(380\) 0 0
\(381\) 16.9170 0.866683
\(382\) −6.62399 −0.338913
\(383\) 11.0048 0.562317 0.281159 0.959661i \(-0.409281\pi\)
0.281159 + 0.959661i \(0.409281\pi\)
\(384\) −13.9799 −0.713408
\(385\) 0 0
\(386\) −31.5403 −1.60536
\(387\) −1.35028 −0.0686387
\(388\) 1.33661 0.0678563
\(389\) 24.5226 1.24335 0.621673 0.783277i \(-0.286453\pi\)
0.621673 + 0.783277i \(0.286453\pi\)
\(390\) 0 0
\(391\) −11.3081 −0.571874
\(392\) 1.93254 0.0976080
\(393\) −1.73471 −0.0875046
\(394\) −12.9090 −0.650348
\(395\) 0 0
\(396\) −12.8668 −0.646583
\(397\) −19.9950 −1.00352 −0.501759 0.865007i \(-0.667314\pi\)
−0.501759 + 0.865007i \(0.667314\pi\)
\(398\) 3.12930 0.156858
\(399\) 5.93254 0.296998
\(400\) 0 0
\(401\) 29.4083 1.46858 0.734290 0.678836i \(-0.237515\pi\)
0.734290 + 0.678836i \(0.237515\pi\)
\(402\) −29.1570 −1.45422
\(403\) −5.09902 −0.254000
\(404\) −49.0687 −2.44126
\(405\) 0 0
\(406\) 2.05904 0.102189
\(407\) 11.7879 0.584306
\(408\) 4.49187 0.222381
\(409\) 10.3062 0.509607 0.254804 0.966993i \(-0.417989\pi\)
0.254804 + 0.966993i \(0.417989\pi\)
\(410\) 0 0
\(411\) −3.94959 −0.194819
\(412\) −12.7680 −0.629035
\(413\) −13.5741 −0.667936
\(414\) −10.7421 −0.527944
\(415\) 0 0
\(416\) 7.14054 0.350094
\(417\) 5.22378 0.255810
\(418\) 58.6186 2.86713
\(419\) −1.99698 −0.0975589 −0.0487795 0.998810i \(-0.515533\pi\)
−0.0487795 + 0.998810i \(0.515533\pi\)
\(420\) 0 0
\(421\) 32.1241 1.56563 0.782817 0.622251i \(-0.213782\pi\)
0.782817 + 0.622251i \(0.213782\pi\)
\(422\) −50.9228 −2.47888
\(423\) 0.0259483 0.00126165
\(424\) 1.41986 0.0689543
\(425\) 0 0
\(426\) −14.6443 −0.709520
\(427\) −4.56543 −0.220936
\(428\) 6.54250 0.316243
\(429\) 4.47504 0.216057
\(430\) 0 0
\(431\) 0.0501461 0.00241545 0.00120773 0.999999i \(-0.499616\pi\)
0.00120773 + 0.999999i \(0.499616\pi\)
\(432\) −1.48345 −0.0713726
\(433\) −1.14579 −0.0550630 −0.0275315 0.999621i \(-0.508765\pi\)
−0.0275315 + 0.999621i \(0.508765\pi\)
\(434\) −11.2586 −0.540431
\(435\) 0 0
\(436\) 11.3070 0.541508
\(437\) 28.8623 1.38067
\(438\) −31.4060 −1.50064
\(439\) −20.0300 −0.955981 −0.477991 0.878365i \(-0.658635\pi\)
−0.477991 + 0.878365i \(0.658635\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) −5.13212 −0.244110
\(443\) −35.5998 −1.69140 −0.845699 0.533660i \(-0.820816\pi\)
−0.845699 + 0.533660i \(0.820816\pi\)
\(444\) −7.57384 −0.359439
\(445\) 0 0
\(446\) 49.7626 2.35633
\(447\) 7.60541 0.359723
\(448\) 12.7994 0.604713
\(449\) 24.0649 1.13569 0.567846 0.823135i \(-0.307777\pi\)
0.567846 + 0.823135i \(0.307777\pi\)
\(450\) 0 0
\(451\) 29.1298 1.37167
\(452\) 57.5664 2.70770
\(453\) −1.43331 −0.0673426
\(454\) 32.3622 1.51883
\(455\) 0 0
\(456\) −11.4649 −0.536892
\(457\) 19.8273 0.927481 0.463741 0.885971i \(-0.346507\pi\)
0.463741 + 0.885971i \(0.346507\pi\)
\(458\) 1.79937 0.0840790
\(459\) 2.32433 0.108491
\(460\) 0 0
\(461\) 1.92062 0.0894523 0.0447262 0.998999i \(-0.485758\pi\)
0.0447262 + 0.998999i \(0.485758\pi\)
\(462\) 9.88086 0.459699
\(463\) 2.24109 0.104152 0.0520762 0.998643i \(-0.483416\pi\)
0.0520762 + 0.998643i \(0.483416\pi\)
\(464\) 1.38338 0.0642217
\(465\) 0 0
\(466\) 55.0324 2.54933
\(467\) 26.6543 1.23341 0.616707 0.787193i \(-0.288467\pi\)
0.616707 + 0.787193i \(0.288467\pi\)
\(468\) −2.87525 −0.132908
\(469\) 13.2052 0.609759
\(470\) 0 0
\(471\) −9.42616 −0.434334
\(472\) 26.2324 1.20744
\(473\) 6.04256 0.277837
\(474\) −1.36536 −0.0627132
\(475\) 0 0
\(476\) −6.68303 −0.306316
\(477\) 0.734710 0.0336401
\(478\) 41.7782 1.91089
\(479\) −38.5562 −1.76168 −0.880838 0.473417i \(-0.843020\pi\)
−0.880838 + 0.473417i \(0.843020\pi\)
\(480\) 0 0
\(481\) 2.63415 0.120107
\(482\) −0.275456 −0.0125467
\(483\) 4.86508 0.221369
\(484\) 25.9518 1.17963
\(485\) 0 0
\(486\) 2.20800 0.100157
\(487\) −26.9961 −1.22331 −0.611656 0.791124i \(-0.709496\pi\)
−0.611656 + 0.791124i \(0.709496\pi\)
\(488\) 8.82287 0.399392
\(489\) 14.6975 0.664646
\(490\) 0 0
\(491\) −15.0002 −0.676950 −0.338475 0.940975i \(-0.609911\pi\)
−0.338475 + 0.940975i \(0.609911\pi\)
\(492\) −18.7161 −0.843788
\(493\) −2.16753 −0.0976208
\(494\) 13.0990 0.589353
\(495\) 0 0
\(496\) −7.56416 −0.339641
\(497\) 6.63240 0.297504
\(498\) 4.65708 0.208689
\(499\) 6.47868 0.290026 0.145013 0.989430i \(-0.453678\pi\)
0.145013 + 0.989430i \(0.453678\pi\)
\(500\) 0 0
\(501\) −21.4409 −0.957908
\(502\) −30.0255 −1.34010
\(503\) −27.9939 −1.24819 −0.624094 0.781350i \(-0.714532\pi\)
−0.624094 + 0.781350i \(0.714532\pi\)
\(504\) −1.93254 −0.0860822
\(505\) 0 0
\(506\) 48.0712 2.13702
\(507\) 1.00000 0.0444116
\(508\) 48.6405 2.15807
\(509\) −29.3427 −1.30059 −0.650296 0.759681i \(-0.725355\pi\)
−0.650296 + 0.759681i \(0.725355\pi\)
\(510\) 0 0
\(511\) 14.2238 0.629223
\(512\) 16.3263 0.721527
\(513\) −5.93254 −0.261928
\(514\) −38.7299 −1.70830
\(515\) 0 0
\(516\) −3.88239 −0.170913
\(517\) −0.116120 −0.00510693
\(518\) 5.81620 0.255549
\(519\) 3.47329 0.152460
\(520\) 0 0
\(521\) −18.6876 −0.818719 −0.409359 0.912373i \(-0.634248\pi\)
−0.409359 + 0.912373i \(0.634248\pi\)
\(522\) −2.05904 −0.0901219
\(523\) 28.2173 1.23386 0.616929 0.787019i \(-0.288377\pi\)
0.616929 + 0.787019i \(0.288377\pi\)
\(524\) −4.98772 −0.217890
\(525\) 0 0
\(526\) 39.5354 1.72382
\(527\) 11.8518 0.516274
\(528\) 6.63850 0.288904
\(529\) 0.669001 0.0290870
\(530\) 0 0
\(531\) 13.5741 0.589064
\(532\) 17.0575 0.739537
\(533\) 6.50940 0.281953
\(534\) −23.8063 −1.03020
\(535\) 0 0
\(536\) −25.5196 −1.10228
\(537\) 8.86635 0.382611
\(538\) 67.8182 2.92385
\(539\) −4.47504 −0.192753
\(540\) 0 0
\(541\) −28.2108 −1.21288 −0.606439 0.795130i \(-0.707402\pi\)
−0.606439 + 0.795130i \(0.707402\pi\)
\(542\) −44.3843 −1.90647
\(543\) 15.2912 0.656210
\(544\) −16.5970 −0.711590
\(545\) 0 0
\(546\) 2.20800 0.0944935
\(547\) −13.9735 −0.597463 −0.298732 0.954337i \(-0.596564\pi\)
−0.298732 + 0.954337i \(0.596564\pi\)
\(548\) −11.3560 −0.485106
\(549\) 4.56543 0.194848
\(550\) 0 0
\(551\) 5.53233 0.235685
\(552\) −9.40196 −0.400174
\(553\) 0.618372 0.0262959
\(554\) −61.1392 −2.59756
\(555\) 0 0
\(556\) 15.0196 0.636975
\(557\) 12.0510 0.510617 0.255308 0.966860i \(-0.417823\pi\)
0.255308 + 0.966860i \(0.417823\pi\)
\(558\) 11.2586 0.476616
\(559\) 1.35028 0.0571109
\(560\) 0 0
\(561\) −10.4015 −0.439151
\(562\) −24.2722 −1.02386
\(563\) 25.2839 1.06559 0.532794 0.846245i \(-0.321142\pi\)
0.532794 + 0.846245i \(0.321142\pi\)
\(564\) 0.0746078 0.00314155
\(565\) 0 0
\(566\) 16.1777 0.679999
\(567\) −1.00000 −0.0419961
\(568\) −12.8174 −0.537806
\(569\) −16.4488 −0.689571 −0.344785 0.938682i \(-0.612048\pi\)
−0.344785 + 0.938682i \(0.612048\pi\)
\(570\) 0 0
\(571\) −34.6755 −1.45113 −0.725563 0.688156i \(-0.758421\pi\)
−0.725563 + 0.688156i \(0.758421\pi\)
\(572\) 12.8668 0.537989
\(573\) −3.00000 −0.125327
\(574\) 14.3727 0.599906
\(575\) 0 0
\(576\) −12.7994 −0.533307
\(577\) 38.8294 1.61649 0.808245 0.588847i \(-0.200418\pi\)
0.808245 + 0.588847i \(0.200418\pi\)
\(578\) −25.6072 −1.06512
\(579\) −14.2846 −0.593647
\(580\) 0 0
\(581\) −2.10919 −0.0875040
\(582\) 1.02643 0.0425469
\(583\) −3.28786 −0.136169
\(584\) −27.4880 −1.13746
\(585\) 0 0
\(586\) 6.56718 0.271288
\(587\) −7.64762 −0.315651 −0.157825 0.987467i \(-0.550448\pi\)
−0.157825 + 0.987467i \(0.550448\pi\)
\(588\) 2.87525 0.118573
\(589\) −30.2502 −1.24644
\(590\) 0 0
\(591\) −5.84650 −0.240493
\(592\) 3.90764 0.160603
\(593\) −16.7025 −0.685891 −0.342945 0.939355i \(-0.611425\pi\)
−0.342945 + 0.939355i \(0.611425\pi\)
\(594\) −9.88086 −0.405417
\(595\) 0 0
\(596\) 21.8674 0.895724
\(597\) 1.41726 0.0580046
\(598\) 10.7421 0.439276
\(599\) −4.20625 −0.171863 −0.0859313 0.996301i \(-0.527387\pi\)
−0.0859313 + 0.996301i \(0.527387\pi\)
\(600\) 0 0
\(601\) −15.1025 −0.616045 −0.308022 0.951379i \(-0.599667\pi\)
−0.308022 + 0.951379i \(0.599667\pi\)
\(602\) 2.98142 0.121514
\(603\) −13.2052 −0.537757
\(604\) −4.12111 −0.167685
\(605\) 0 0
\(606\) −37.6815 −1.53071
\(607\) 27.7546 1.12652 0.563262 0.826279i \(-0.309546\pi\)
0.563262 + 0.826279i \(0.309546\pi\)
\(608\) 42.3615 1.71799
\(609\) 0.932540 0.0377884
\(610\) 0 0
\(611\) −0.0259483 −0.00104976
\(612\) 6.68303 0.270146
\(613\) −8.43029 −0.340496 −0.170248 0.985401i \(-0.554457\pi\)
−0.170248 + 0.985401i \(0.554457\pi\)
\(614\) −45.6709 −1.84313
\(615\) 0 0
\(616\) 8.64819 0.348445
\(617\) 17.7233 0.713512 0.356756 0.934198i \(-0.383883\pi\)
0.356756 + 0.934198i \(0.383883\pi\)
\(618\) −9.80499 −0.394414
\(619\) −39.1390 −1.57313 −0.786565 0.617508i \(-0.788142\pi\)
−0.786565 + 0.617508i \(0.788142\pi\)
\(620\) 0 0
\(621\) −4.86508 −0.195229
\(622\) −55.0672 −2.20799
\(623\) 10.7818 0.431965
\(624\) 1.48345 0.0593856
\(625\) 0 0
\(626\) −29.1227 −1.16398
\(627\) 26.5483 1.06024
\(628\) −27.1025 −1.08151
\(629\) −6.12265 −0.244126
\(630\) 0 0
\(631\) 13.1016 0.521565 0.260782 0.965398i \(-0.416019\pi\)
0.260782 + 0.965398i \(0.416019\pi\)
\(632\) −1.19503 −0.0475357
\(633\) −23.0629 −0.916668
\(634\) 13.7898 0.547662
\(635\) 0 0
\(636\) 2.11247 0.0837650
\(637\) −1.00000 −0.0396214
\(638\) 9.21430 0.364798
\(639\) −6.63240 −0.262374
\(640\) 0 0
\(641\) 27.2594 1.07668 0.538341 0.842727i \(-0.319051\pi\)
0.538341 + 0.842727i \(0.319051\pi\)
\(642\) 5.02420 0.198289
\(643\) −5.59789 −0.220759 −0.110380 0.993889i \(-0.535207\pi\)
−0.110380 + 0.993889i \(0.535207\pi\)
\(644\) 13.9883 0.551216
\(645\) 0 0
\(646\) −30.4465 −1.19790
\(647\) 0.537931 0.0211482 0.0105741 0.999944i \(-0.496634\pi\)
0.0105741 + 0.999944i \(0.496634\pi\)
\(648\) 1.93254 0.0759173
\(649\) −60.7444 −2.38443
\(650\) 0 0
\(651\) −5.09902 −0.199847
\(652\) 42.2591 1.65499
\(653\) 27.5821 1.07937 0.539686 0.841866i \(-0.318543\pi\)
0.539686 + 0.841866i \(0.318543\pi\)
\(654\) 8.68303 0.339533
\(655\) 0 0
\(656\) 9.65638 0.377018
\(657\) −14.2238 −0.554922
\(658\) −0.0572938 −0.00223354
\(659\) −15.4625 −0.602333 −0.301167 0.953572i \(-0.597376\pi\)
−0.301167 + 0.953572i \(0.597376\pi\)
\(660\) 0 0
\(661\) 27.1392 1.05559 0.527797 0.849371i \(-0.323018\pi\)
0.527797 + 0.849371i \(0.323018\pi\)
\(662\) −40.4774 −1.57320
\(663\) −2.32433 −0.0902696
\(664\) 4.07609 0.158183
\(665\) 0 0
\(666\) −5.81620 −0.225373
\(667\) 4.53688 0.175669
\(668\) −61.6478 −2.38523
\(669\) 22.5375 0.871349
\(670\) 0 0
\(671\) −20.4304 −0.788709
\(672\) 7.14054 0.275452
\(673\) 44.3959 1.71134 0.855668 0.517526i \(-0.173147\pi\)
0.855668 + 0.517526i \(0.173147\pi\)
\(674\) 49.5455 1.90842
\(675\) 0 0
\(676\) 2.87525 0.110586
\(677\) 9.24999 0.355506 0.177753 0.984075i \(-0.443117\pi\)
0.177753 + 0.984075i \(0.443117\pi\)
\(678\) 44.2072 1.69777
\(679\) −0.464870 −0.0178401
\(680\) 0 0
\(681\) 14.6568 0.561651
\(682\) −50.3828 −1.92926
\(683\) −0.278739 −0.0106656 −0.00533282 0.999986i \(-0.501697\pi\)
−0.00533282 + 0.999986i \(0.501697\pi\)
\(684\) −17.0575 −0.652210
\(685\) 0 0
\(686\) −2.20800 −0.0843017
\(687\) 0.814934 0.0310917
\(688\) 2.00308 0.0763667
\(689\) −0.734710 −0.0279902
\(690\) 0 0
\(691\) −46.9622 −1.78653 −0.893264 0.449533i \(-0.851590\pi\)
−0.893264 + 0.449533i \(0.851590\pi\)
\(692\) 9.98655 0.379632
\(693\) 4.47504 0.169993
\(694\) −7.86951 −0.298723
\(695\) 0 0
\(696\) −1.80217 −0.0683111
\(697\) −15.1300 −0.573090
\(698\) 35.8316 1.35625
\(699\) 24.9241 0.942717
\(700\) 0 0
\(701\) −25.6464 −0.968652 −0.484326 0.874887i \(-0.660935\pi\)
−0.484326 + 0.874887i \(0.660935\pi\)
\(702\) −2.20800 −0.0833354
\(703\) 15.6272 0.589392
\(704\) 57.2776 2.15873
\(705\) 0 0
\(706\) 27.5185 1.03567
\(707\) 17.0659 0.641830
\(708\) 39.0288 1.46679
\(709\) 24.4080 0.916662 0.458331 0.888782i \(-0.348447\pi\)
0.458331 + 0.888782i \(0.348447\pi\)
\(710\) 0 0
\(711\) −0.618372 −0.0231908
\(712\) −20.8363 −0.780875
\(713\) −24.8072 −0.929035
\(714\) −5.13212 −0.192065
\(715\) 0 0
\(716\) 25.4929 0.952716
\(717\) 18.9213 0.706630
\(718\) −72.5030 −2.70579
\(719\) −10.8760 −0.405608 −0.202804 0.979219i \(-0.565005\pi\)
−0.202804 + 0.979219i \(0.565005\pi\)
\(720\) 0 0
\(721\) 4.44067 0.165379
\(722\) 35.7586 1.33080
\(723\) −0.124754 −0.00463965
\(724\) 43.9661 1.63399
\(725\) 0 0
\(726\) 19.9293 0.739644
\(727\) −4.82399 −0.178912 −0.0894559 0.995991i \(-0.528513\pi\)
−0.0894559 + 0.995991i \(0.528513\pi\)
\(728\) 1.93254 0.0716247
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −3.13851 −0.116082
\(732\) 13.1267 0.485178
\(733\) −21.6571 −0.799923 −0.399961 0.916532i \(-0.630976\pi\)
−0.399961 + 0.916532i \(0.630976\pi\)
\(734\) −18.9114 −0.698031
\(735\) 0 0
\(736\) 34.7393 1.28051
\(737\) 59.0937 2.17675
\(738\) −14.3727 −0.529067
\(739\) −27.9263 −1.02729 −0.513643 0.858004i \(-0.671704\pi\)
−0.513643 + 0.858004i \(0.671704\pi\)
\(740\) 0 0
\(741\) 5.93254 0.217937
\(742\) −1.62224 −0.0595542
\(743\) 42.0836 1.54390 0.771949 0.635685i \(-0.219282\pi\)
0.771949 + 0.635685i \(0.219282\pi\)
\(744\) 9.85407 0.361268
\(745\) 0 0
\(746\) 28.6213 1.04790
\(747\) 2.10919 0.0771712
\(748\) −29.9068 −1.09350
\(749\) −2.27546 −0.0831434
\(750\) 0 0
\(751\) −3.24214 −0.118307 −0.0591537 0.998249i \(-0.518840\pi\)
−0.0591537 + 0.998249i \(0.518840\pi\)
\(752\) −0.0384931 −0.00140370
\(753\) −13.5985 −0.495558
\(754\) 2.05904 0.0749860
\(755\) 0 0
\(756\) −2.87525 −0.104572
\(757\) 32.1576 1.16879 0.584394 0.811470i \(-0.301332\pi\)
0.584394 + 0.811470i \(0.301332\pi\)
\(758\) −21.4095 −0.777629
\(759\) 21.7714 0.790252
\(760\) 0 0
\(761\) −42.5786 −1.54347 −0.771737 0.635942i \(-0.780612\pi\)
−0.771737 + 0.635942i \(0.780612\pi\)
\(762\) 37.3526 1.35314
\(763\) −3.93254 −0.142368
\(764\) −8.62574 −0.312068
\(765\) 0 0
\(766\) 24.2985 0.877940
\(767\) −13.5741 −0.490131
\(768\) −5.26879 −0.190121
\(769\) 6.99263 0.252161 0.126080 0.992020i \(-0.459760\pi\)
0.126080 + 0.992020i \(0.459760\pi\)
\(770\) 0 0
\(771\) −17.5407 −0.631715
\(772\) −41.0717 −1.47820
\(773\) −30.6787 −1.10344 −0.551718 0.834031i \(-0.686028\pi\)
−0.551718 + 0.834031i \(0.686028\pi\)
\(774\) −2.98142 −0.107165
\(775\) 0 0
\(776\) 0.898379 0.0322499
\(777\) 2.63415 0.0944998
\(778\) 54.1458 1.94122
\(779\) 38.6173 1.38361
\(780\) 0 0
\(781\) 29.6802 1.06204
\(782\) −24.9682 −0.892860
\(783\) −0.932540 −0.0333263
\(784\) −1.48345 −0.0529804
\(785\) 0 0
\(786\) −3.83023 −0.136620
\(787\) −42.3381 −1.50919 −0.754595 0.656191i \(-0.772167\pi\)
−0.754595 + 0.656191i \(0.772167\pi\)
\(788\) −16.8101 −0.598836
\(789\) 17.9055 0.637454
\(790\) 0 0
\(791\) −20.0214 −0.711879
\(792\) −8.64819 −0.307300
\(793\) −4.56543 −0.162123
\(794\) −44.1488 −1.56678
\(795\) 0 0
\(796\) 4.07497 0.144434
\(797\) −19.8744 −0.703988 −0.351994 0.936002i \(-0.614496\pi\)
−0.351994 + 0.936002i \(0.614496\pi\)
\(798\) 13.0990 0.463700
\(799\) 0.0603125 0.00213370
\(800\) 0 0
\(801\) −10.7818 −0.380958
\(802\) 64.9334 2.29288
\(803\) 63.6519 2.24623
\(804\) −37.9682 −1.33903
\(805\) 0 0
\(806\) −11.2586 −0.396568
\(807\) 30.7148 1.08121
\(808\) −32.9806 −1.16025
\(809\) 29.7135 1.04467 0.522336 0.852740i \(-0.325061\pi\)
0.522336 + 0.852740i \(0.325061\pi\)
\(810\) 0 0
\(811\) −41.0407 −1.44113 −0.720567 0.693386i \(-0.756118\pi\)
−0.720567 + 0.693386i \(0.756118\pi\)
\(812\) 2.68128 0.0940945
\(813\) −20.1016 −0.704995
\(814\) 26.0277 0.912271
\(815\) 0 0
\(816\) −3.44804 −0.120705
\(817\) 8.01060 0.280256
\(818\) 22.7560 0.795645
\(819\) 1.00000 0.0349428
\(820\) 0 0
\(821\) 41.5476 1.45002 0.725011 0.688737i \(-0.241835\pi\)
0.725011 + 0.688737i \(0.241835\pi\)
\(822\) −8.72068 −0.304169
\(823\) 39.1253 1.36382 0.681912 0.731434i \(-0.261149\pi\)
0.681912 + 0.731434i \(0.261149\pi\)
\(824\) −8.58178 −0.298960
\(825\) 0 0
\(826\) −29.9715 −1.04284
\(827\) 11.3450 0.394505 0.197253 0.980353i \(-0.436798\pi\)
0.197253 + 0.980353i \(0.436798\pi\)
\(828\) −13.9883 −0.486127
\(829\) 9.29054 0.322674 0.161337 0.986899i \(-0.448419\pi\)
0.161337 + 0.986899i \(0.448419\pi\)
\(830\) 0 0
\(831\) −27.6899 −0.960553
\(832\) 12.7994 0.443738
\(833\) 2.32433 0.0805334
\(834\) 11.5341 0.399393
\(835\) 0 0
\(836\) 76.3330 2.64003
\(837\) 5.09902 0.176248
\(838\) −4.40933 −0.152318
\(839\) −3.90963 −0.134975 −0.0674876 0.997720i \(-0.521498\pi\)
−0.0674876 + 0.997720i \(0.521498\pi\)
\(840\) 0 0
\(841\) −28.1304 −0.970013
\(842\) 70.9300 2.44441
\(843\) −10.9929 −0.378614
\(844\) −66.3115 −2.28254
\(845\) 0 0
\(846\) 0.0572938 0.00196980
\(847\) −9.02595 −0.310135
\(848\) −1.08991 −0.0374276
\(849\) 7.32687 0.251458
\(850\) 0 0
\(851\) 12.8154 0.439305
\(852\) −19.0698 −0.653320
\(853\) −38.9862 −1.33486 −0.667431 0.744672i \(-0.732606\pi\)
−0.667431 + 0.744672i \(0.732606\pi\)
\(854\) −10.0804 −0.344946
\(855\) 0 0
\(856\) 4.39741 0.150300
\(857\) 27.4938 0.939172 0.469586 0.882887i \(-0.344403\pi\)
0.469586 + 0.882887i \(0.344403\pi\)
\(858\) 9.88086 0.337327
\(859\) 8.76978 0.299221 0.149610 0.988745i \(-0.452198\pi\)
0.149610 + 0.988745i \(0.452198\pi\)
\(860\) 0 0
\(861\) 6.50940 0.221840
\(862\) 0.110722 0.00377122
\(863\) −33.7732 −1.14965 −0.574826 0.818276i \(-0.694930\pi\)
−0.574826 + 0.818276i \(0.694930\pi\)
\(864\) −7.14054 −0.242926
\(865\) 0 0
\(866\) −2.52989 −0.0859693
\(867\) −11.5975 −0.393871
\(868\) −14.6609 −0.497625
\(869\) 2.76724 0.0938721
\(870\) 0 0
\(871\) 13.2052 0.447441
\(872\) 7.59979 0.257361
\(873\) 0.464870 0.0157335
\(874\) 63.7278 2.15562
\(875\) 0 0
\(876\) −40.8969 −1.38178
\(877\) 53.2805 1.79915 0.899577 0.436763i \(-0.143875\pi\)
0.899577 + 0.436763i \(0.143875\pi\)
\(878\) −44.2262 −1.49256
\(879\) 2.97427 0.100320
\(880\) 0 0
\(881\) −4.18625 −0.141038 −0.0705192 0.997510i \(-0.522466\pi\)
−0.0705192 + 0.997510i \(0.522466\pi\)
\(882\) 2.20800 0.0743471
\(883\) −21.3360 −0.718013 −0.359007 0.933335i \(-0.616884\pi\)
−0.359007 + 0.933335i \(0.616884\pi\)
\(884\) −6.68303 −0.224775
\(885\) 0 0
\(886\) −78.6042 −2.64076
\(887\) −30.1961 −1.01389 −0.506943 0.861980i \(-0.669224\pi\)
−0.506943 + 0.861980i \(0.669224\pi\)
\(888\) −5.09061 −0.170830
\(889\) −16.9170 −0.567377
\(890\) 0 0
\(891\) −4.47504 −0.149919
\(892\) 64.8008 2.16969
\(893\) −0.153939 −0.00515138
\(894\) 16.7927 0.561632
\(895\) 0 0
\(896\) 13.9799 0.467035
\(897\) 4.86508 0.162440
\(898\) 53.1352 1.77314
\(899\) −4.75504 −0.158590
\(900\) 0 0
\(901\) 1.70771 0.0568921
\(902\) 64.3185 2.14157
\(903\) 1.35028 0.0449346
\(904\) 38.6921 1.28688
\(905\) 0 0
\(906\) −3.16473 −0.105141
\(907\) 19.5703 0.649822 0.324911 0.945745i \(-0.394666\pi\)
0.324911 + 0.945745i \(0.394666\pi\)
\(908\) 42.1420 1.39853
\(909\) −17.0659 −0.566041
\(910\) 0 0
\(911\) −33.2612 −1.10199 −0.550997 0.834507i \(-0.685752\pi\)
−0.550997 + 0.834507i \(0.685752\pi\)
\(912\) 8.80064 0.291418
\(913\) −9.43870 −0.312375
\(914\) 43.7786 1.44807
\(915\) 0 0
\(916\) 2.34313 0.0774193
\(917\) 1.73471 0.0572852
\(918\) 5.13212 0.169385
\(919\) −14.5704 −0.480634 −0.240317 0.970695i \(-0.577251\pi\)
−0.240317 + 0.970695i \(0.577251\pi\)
\(920\) 0 0
\(921\) −20.6843 −0.681571
\(922\) 4.24073 0.139661
\(923\) 6.63240 0.218308
\(924\) 12.8668 0.423288
\(925\) 0 0
\(926\) 4.94832 0.162612
\(927\) −4.44067 −0.145851
\(928\) 6.65883 0.218587
\(929\) −50.6493 −1.66175 −0.830875 0.556459i \(-0.812160\pi\)
−0.830875 + 0.556459i \(0.812160\pi\)
\(930\) 0 0
\(931\) −5.93254 −0.194431
\(932\) 71.6630 2.34740
\(933\) −24.9399 −0.816496
\(934\) 58.8525 1.92571
\(935\) 0 0
\(936\) −1.93254 −0.0631670
\(937\) 11.9733 0.391150 0.195575 0.980689i \(-0.437343\pi\)
0.195575 + 0.980689i \(0.437343\pi\)
\(938\) 29.1570 0.952010
\(939\) −13.1896 −0.430427
\(940\) 0 0
\(941\) 5.56823 0.181519 0.0907595 0.995873i \(-0.471071\pi\)
0.0907595 + 0.995873i \(0.471071\pi\)
\(942\) −20.8129 −0.678122
\(943\) 31.6688 1.03128
\(944\) −20.1365 −0.655386
\(945\) 0 0
\(946\) 13.3420 0.433784
\(947\) 55.2586 1.79566 0.897832 0.440338i \(-0.145141\pi\)
0.897832 + 0.440338i \(0.145141\pi\)
\(948\) −1.77797 −0.0577459
\(949\) 14.2238 0.461723
\(950\) 0 0
\(951\) 6.24538 0.202520
\(952\) −4.49187 −0.145582
\(953\) −46.0046 −1.49023 −0.745117 0.666934i \(-0.767606\pi\)
−0.745117 + 0.666934i \(0.767606\pi\)
\(954\) 1.62224 0.0525219
\(955\) 0 0
\(956\) 54.4035 1.75953
\(957\) 4.17315 0.134899
\(958\) −85.1319 −2.75049
\(959\) 3.94959 0.127539
\(960\) 0 0
\(961\) −4.99995 −0.161289
\(962\) 5.81620 0.187522
\(963\) 2.27546 0.0733255
\(964\) −0.358698 −0.0115529
\(965\) 0 0
\(966\) 10.7421 0.345621
\(967\) −47.5913 −1.53043 −0.765217 0.643772i \(-0.777368\pi\)
−0.765217 + 0.643772i \(0.777368\pi\)
\(968\) 17.4430 0.560639
\(969\) −13.7892 −0.442973
\(970\) 0 0
\(971\) −32.4394 −1.04103 −0.520514 0.853853i \(-0.674260\pi\)
−0.520514 + 0.853853i \(0.674260\pi\)
\(972\) 2.87525 0.0922236
\(973\) −5.22378 −0.167467
\(974\) −59.6074 −1.90994
\(975\) 0 0
\(976\) −6.77259 −0.216785
\(977\) 48.4164 1.54898 0.774489 0.632587i \(-0.218007\pi\)
0.774489 + 0.632587i \(0.218007\pi\)
\(978\) 32.4521 1.03770
\(979\) 48.2491 1.54205
\(980\) 0 0
\(981\) 3.93254 0.125556
\(982\) −33.1204 −1.05692
\(983\) 1.54054 0.0491357 0.0245678 0.999698i \(-0.492179\pi\)
0.0245678 + 0.999698i \(0.492179\pi\)
\(984\) −12.5797 −0.401025
\(985\) 0 0
\(986\) −4.78591 −0.152414
\(987\) −0.0259483 −0.000825944 0
\(988\) 17.0575 0.542672
\(989\) 6.56923 0.208889
\(990\) 0 0
\(991\) −46.5319 −1.47813 −0.739067 0.673632i \(-0.764733\pi\)
−0.739067 + 0.673632i \(0.764733\pi\)
\(992\) −36.4098 −1.15601
\(993\) −18.3322 −0.581754
\(994\) 14.6443 0.464490
\(995\) 0 0
\(996\) 6.06444 0.192159
\(997\) 23.8997 0.756910 0.378455 0.925620i \(-0.376455\pi\)
0.378455 + 0.925620i \(0.376455\pi\)
\(998\) 14.3049 0.452814
\(999\) −2.63415 −0.0833410
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6825.2.a.bl.1.4 yes 4
5.4 even 2 6825.2.a.bf.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6825.2.a.bf.1.1 4 5.4 even 2
6825.2.a.bl.1.4 yes 4 1.1 even 1 trivial