Properties

Label 6825.2.a.bi.1.4
Level $6825$
Weight $2$
Character 6825.1
Self dual yes
Analytic conductor $54.498$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6825,2,Mod(1,6825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6825.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6825 = 3 \cdot 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.4978993795\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.3981.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.75080\) of defining polynomial
Character \(\chi\) \(=\) 6825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.75080 q^{2} +1.00000 q^{3} +1.06530 q^{4} +1.75080 q^{6} +1.00000 q^{7} -1.63647 q^{8} +1.00000 q^{9} -2.38727 q^{11} +1.06530 q^{12} +1.00000 q^{13} +1.75080 q^{14} -4.99574 q^{16} -2.20764 q^{17} +1.75080 q^{18} -4.49413 q^{19} +1.00000 q^{21} -4.17963 q^{22} -1.85767 q^{23} -1.63647 q^{24} +1.75080 q^{26} +1.00000 q^{27} +1.06530 q^{28} +5.12634 q^{29} -4.63647 q^{31} -5.47360 q^{32} -2.38727 q^{33} -3.86513 q^{34} +1.06530 q^{36} -2.41256 q^{37} -7.86833 q^{38} +1.00000 q^{39} -1.33553 q^{41} +1.75080 q^{42} -8.53890 q^{43} -2.54316 q^{44} -3.25240 q^{46} -2.34299 q^{47} -4.99574 q^{48} +1.00000 q^{49} -2.20764 q^{51} +1.06530 q^{52} -3.90669 q^{53} +1.75080 q^{54} -1.63647 q^{56} -4.49413 q^{57} +8.97520 q^{58} -12.4693 q^{59} +0.0447645 q^{61} -8.11753 q^{62} +1.00000 q^{63} +0.408295 q^{64} -4.17963 q^{66} -9.30414 q^{67} -2.35180 q^{68} -1.85767 q^{69} -6.26441 q^{71} -1.63647 q^{72} +14.1506 q^{73} -4.22391 q^{74} -4.78761 q^{76} -2.38727 q^{77} +1.75080 q^{78} +10.9989 q^{79} +1.00000 q^{81} -2.33824 q^{82} +9.37603 q^{83} +1.06530 q^{84} -14.9499 q^{86} +5.12634 q^{87} +3.90669 q^{88} +6.73298 q^{89} +1.00000 q^{91} -1.97897 q^{92} -4.63647 q^{93} -4.10211 q^{94} -5.47360 q^{96} -7.19457 q^{97} +1.75080 q^{98} -2.38727 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 4 q^{3} + q^{4} - q^{6} + 4 q^{7} - 3 q^{8} + 4 q^{9} + 2 q^{11} + q^{12} + 4 q^{13} - q^{14} - q^{16} - 5 q^{17} - q^{18} - 15 q^{19} + 4 q^{21} - 9 q^{22} - 8 q^{23} - 3 q^{24} - q^{26}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.75080 1.23800 0.619001 0.785390i \(-0.287538\pi\)
0.619001 + 0.785390i \(0.287538\pi\)
\(3\) 1.00000 0.577350
\(4\) 1.06530 0.532651
\(5\) 0 0
\(6\) 1.75080 0.714761
\(7\) 1.00000 0.377964
\(8\) −1.63647 −0.578579
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.38727 −0.719789 −0.359894 0.932993i \(-0.617187\pi\)
−0.359894 + 0.932993i \(0.617187\pi\)
\(12\) 1.06530 0.307526
\(13\) 1.00000 0.277350
\(14\) 1.75080 0.467921
\(15\) 0 0
\(16\) −4.99574 −1.24893
\(17\) −2.20764 −0.535431 −0.267715 0.963498i \(-0.586269\pi\)
−0.267715 + 0.963498i \(0.586269\pi\)
\(18\) 1.75080 0.412668
\(19\) −4.49413 −1.03103 −0.515513 0.856882i \(-0.672398\pi\)
−0.515513 + 0.856882i \(0.672398\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) −4.17963 −0.891101
\(23\) −1.85767 −0.387350 −0.193675 0.981066i \(-0.562041\pi\)
−0.193675 + 0.981066i \(0.562041\pi\)
\(24\) −1.63647 −0.334043
\(25\) 0 0
\(26\) 1.75080 0.343360
\(27\) 1.00000 0.192450
\(28\) 1.06530 0.201323
\(29\) 5.12634 0.951937 0.475969 0.879462i \(-0.342098\pi\)
0.475969 + 0.879462i \(0.342098\pi\)
\(30\) 0 0
\(31\) −4.63647 −0.832734 −0.416367 0.909197i \(-0.636697\pi\)
−0.416367 + 0.909197i \(0.636697\pi\)
\(32\) −5.47360 −0.967604
\(33\) −2.38727 −0.415570
\(34\) −3.86513 −0.662865
\(35\) 0 0
\(36\) 1.06530 0.177550
\(37\) −2.41256 −0.396622 −0.198311 0.980139i \(-0.563546\pi\)
−0.198311 + 0.980139i \(0.563546\pi\)
\(38\) −7.86833 −1.27641
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) −1.33553 −0.208574 −0.104287 0.994547i \(-0.533256\pi\)
−0.104287 + 0.994547i \(0.533256\pi\)
\(42\) 1.75080 0.270154
\(43\) −8.53890 −1.30217 −0.651085 0.759005i \(-0.725686\pi\)
−0.651085 + 0.759005i \(0.725686\pi\)
\(44\) −2.54316 −0.383396
\(45\) 0 0
\(46\) −3.25240 −0.479540
\(47\) −2.34299 −0.341761 −0.170880 0.985292i \(-0.554661\pi\)
−0.170880 + 0.985292i \(0.554661\pi\)
\(48\) −4.99574 −0.721072
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.20764 −0.309131
\(52\) 1.06530 0.147731
\(53\) −3.90669 −0.536626 −0.268313 0.963332i \(-0.586466\pi\)
−0.268313 + 0.963332i \(0.586466\pi\)
\(54\) 1.75080 0.238254
\(55\) 0 0
\(56\) −1.63647 −0.218682
\(57\) −4.49413 −0.595263
\(58\) 8.97520 1.17850
\(59\) −12.4693 −1.62337 −0.811684 0.584096i \(-0.801449\pi\)
−0.811684 + 0.584096i \(0.801449\pi\)
\(60\) 0 0
\(61\) 0.0447645 0.00573151 0.00286575 0.999996i \(-0.499088\pi\)
0.00286575 + 0.999996i \(0.499088\pi\)
\(62\) −8.11753 −1.03093
\(63\) 1.00000 0.125988
\(64\) 0.408295 0.0510369
\(65\) 0 0
\(66\) −4.17963 −0.514477
\(67\) −9.30414 −1.13668 −0.568341 0.822793i \(-0.692415\pi\)
−0.568341 + 0.822793i \(0.692415\pi\)
\(68\) −2.35180 −0.285198
\(69\) −1.85767 −0.223637
\(70\) 0 0
\(71\) −6.26441 −0.743449 −0.371724 0.928343i \(-0.621233\pi\)
−0.371724 + 0.928343i \(0.621233\pi\)
\(72\) −1.63647 −0.192860
\(73\) 14.1506 1.65620 0.828099 0.560581i \(-0.189422\pi\)
0.828099 + 0.560581i \(0.189422\pi\)
\(74\) −4.22391 −0.491020
\(75\) 0 0
\(76\) −4.78761 −0.549177
\(77\) −2.38727 −0.272055
\(78\) 1.75080 0.198239
\(79\) 10.9989 1.23748 0.618739 0.785597i \(-0.287644\pi\)
0.618739 + 0.785597i \(0.287644\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −2.33824 −0.258216
\(83\) 9.37603 1.02915 0.514576 0.857445i \(-0.327949\pi\)
0.514576 + 0.857445i \(0.327949\pi\)
\(84\) 1.06530 0.116234
\(85\) 0 0
\(86\) −14.9499 −1.61209
\(87\) 5.12634 0.549601
\(88\) 3.90669 0.416455
\(89\) 6.73298 0.713694 0.356847 0.934163i \(-0.383852\pi\)
0.356847 + 0.934163i \(0.383852\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) −1.97897 −0.206322
\(93\) −4.63647 −0.480779
\(94\) −4.10211 −0.423101
\(95\) 0 0
\(96\) −5.47360 −0.558647
\(97\) −7.19457 −0.730497 −0.365249 0.930910i \(-0.619016\pi\)
−0.365249 + 0.930910i \(0.619016\pi\)
\(98\) 1.75080 0.176858
\(99\) −2.38727 −0.239930
\(100\) 0 0
\(101\) −4.28040 −0.425916 −0.212958 0.977061i \(-0.568310\pi\)
−0.212958 + 0.977061i \(0.568310\pi\)
\(102\) −3.86513 −0.382705
\(103\) 1.80681 0.178030 0.0890150 0.996030i \(-0.471628\pi\)
0.0890150 + 0.996030i \(0.471628\pi\)
\(104\) −1.63647 −0.160469
\(105\) 0 0
\(106\) −6.83984 −0.664344
\(107\) −0.612730 −0.0592349 −0.0296174 0.999561i \(-0.509429\pi\)
−0.0296174 + 0.999561i \(0.509429\pi\)
\(108\) 1.06530 0.102509
\(109\) 0.149801 0.0143483 0.00717415 0.999974i \(-0.497716\pi\)
0.00717415 + 0.999974i \(0.497716\pi\)
\(110\) 0 0
\(111\) −2.41256 −0.228990
\(112\) −4.99574 −0.472053
\(113\) −4.13990 −0.389449 −0.194724 0.980858i \(-0.562381\pi\)
−0.194724 + 0.980858i \(0.562381\pi\)
\(114\) −7.86833 −0.736937
\(115\) 0 0
\(116\) 5.46110 0.507050
\(117\) 1.00000 0.0924500
\(118\) −21.8313 −2.00974
\(119\) −2.20764 −0.202374
\(120\) 0 0
\(121\) −5.30094 −0.481904
\(122\) 0.0783737 0.00709562
\(123\) −1.33553 −0.120420
\(124\) −4.93924 −0.443557
\(125\) 0 0
\(126\) 1.75080 0.155974
\(127\) −18.3353 −1.62700 −0.813500 0.581565i \(-0.802440\pi\)
−0.813500 + 0.581565i \(0.802440\pi\)
\(128\) 11.6620 1.03079
\(129\) −8.53890 −0.751808
\(130\) 0 0
\(131\) −7.42911 −0.649084 −0.324542 0.945871i \(-0.605210\pi\)
−0.324542 + 0.945871i \(0.605210\pi\)
\(132\) −2.54316 −0.221354
\(133\) −4.49413 −0.389691
\(134\) −16.2897 −1.40722
\(135\) 0 0
\(136\) 3.61273 0.309789
\(137\) 9.67271 0.826395 0.413197 0.910641i \(-0.364412\pi\)
0.413197 + 0.910641i \(0.364412\pi\)
\(138\) −3.25240 −0.276863
\(139\) −12.2034 −1.03508 −0.517538 0.855660i \(-0.673151\pi\)
−0.517538 + 0.855660i \(0.673151\pi\)
\(140\) 0 0
\(141\) −2.34299 −0.197316
\(142\) −10.9677 −0.920392
\(143\) −2.38727 −0.199634
\(144\) −4.99574 −0.416311
\(145\) 0 0
\(146\) 24.7748 2.05038
\(147\) 1.00000 0.0824786
\(148\) −2.57010 −0.211261
\(149\) 14.6298 1.19852 0.599259 0.800555i \(-0.295462\pi\)
0.599259 + 0.800555i \(0.295462\pi\)
\(150\) 0 0
\(151\) 3.08478 0.251036 0.125518 0.992091i \(-0.459941\pi\)
0.125518 + 0.992091i \(0.459941\pi\)
\(152\) 7.35451 0.596530
\(153\) −2.20764 −0.178477
\(154\) −4.17963 −0.336804
\(155\) 0 0
\(156\) 1.06530 0.0852924
\(157\) −22.6564 −1.80818 −0.904090 0.427342i \(-0.859450\pi\)
−0.904090 + 0.427342i \(0.859450\pi\)
\(158\) 19.2569 1.53200
\(159\) −3.90669 −0.309821
\(160\) 0 0
\(161\) −1.85767 −0.146405
\(162\) 1.75080 0.137556
\(163\) −6.01384 −0.471040 −0.235520 0.971869i \(-0.575679\pi\)
−0.235520 + 0.971869i \(0.575679\pi\)
\(164\) −1.42274 −0.111097
\(165\) 0 0
\(166\) 16.4156 1.27409
\(167\) −2.02103 −0.156392 −0.0781958 0.996938i \(-0.524916\pi\)
−0.0781958 + 0.996938i \(0.524916\pi\)
\(168\) −1.63647 −0.126256
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −4.49413 −0.343675
\(172\) −9.09651 −0.693602
\(173\) −5.00137 −0.380247 −0.190124 0.981760i \(-0.560889\pi\)
−0.190124 + 0.981760i \(0.560889\pi\)
\(174\) 8.97520 0.680408
\(175\) 0 0
\(176\) 11.9262 0.898969
\(177\) −12.4693 −0.937252
\(178\) 11.7881 0.883555
\(179\) 4.85660 0.363000 0.181500 0.983391i \(-0.441905\pi\)
0.181500 + 0.983391i \(0.441905\pi\)
\(180\) 0 0
\(181\) 9.75672 0.725211 0.362606 0.931943i \(-0.381887\pi\)
0.362606 + 0.931943i \(0.381887\pi\)
\(182\) 1.75080 0.129778
\(183\) 0.0447645 0.00330909
\(184\) 3.04001 0.224113
\(185\) 0 0
\(186\) −8.11753 −0.595206
\(187\) 5.27022 0.385397
\(188\) −2.49600 −0.182039
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −14.1338 −1.02269 −0.511343 0.859377i \(-0.670852\pi\)
−0.511343 + 0.859377i \(0.670852\pi\)
\(192\) 0.408295 0.0294662
\(193\) 7.29153 0.524856 0.262428 0.964952i \(-0.415477\pi\)
0.262428 + 0.964952i \(0.415477\pi\)
\(194\) −12.5962 −0.904358
\(195\) 0 0
\(196\) 1.06530 0.0760930
\(197\) 7.14282 0.508905 0.254453 0.967085i \(-0.418105\pi\)
0.254453 + 0.967085i \(0.418105\pi\)
\(198\) −4.17963 −0.297034
\(199\) −18.7400 −1.32844 −0.664220 0.747537i \(-0.731236\pi\)
−0.664220 + 0.747537i \(0.731236\pi\)
\(200\) 0 0
\(201\) −9.30414 −0.656264
\(202\) −7.49413 −0.527285
\(203\) 5.12634 0.359799
\(204\) −2.35180 −0.164659
\(205\) 0 0
\(206\) 3.16336 0.220402
\(207\) −1.85767 −0.129117
\(208\) −4.99574 −0.346392
\(209\) 10.7287 0.742121
\(210\) 0 0
\(211\) 8.73298 0.601203 0.300601 0.953750i \(-0.402813\pi\)
0.300601 + 0.953750i \(0.402813\pi\)
\(212\) −4.16181 −0.285834
\(213\) −6.26441 −0.429230
\(214\) −1.07277 −0.0733329
\(215\) 0 0
\(216\) −1.63647 −0.111348
\(217\) −4.63647 −0.314744
\(218\) 0.262271 0.0177632
\(219\) 14.1506 0.956207
\(220\) 0 0
\(221\) −2.20764 −0.148502
\(222\) −4.22391 −0.283490
\(223\) −16.7726 −1.12318 −0.561588 0.827417i \(-0.689809\pi\)
−0.561588 + 0.827417i \(0.689809\pi\)
\(224\) −5.47360 −0.365720
\(225\) 0 0
\(226\) −7.24814 −0.482139
\(227\) 5.38727 0.357566 0.178783 0.983889i \(-0.442784\pi\)
0.178783 + 0.983889i \(0.442784\pi\)
\(228\) −4.78761 −0.317067
\(229\) 28.2058 1.86389 0.931946 0.362598i \(-0.118110\pi\)
0.931946 + 0.362598i \(0.118110\pi\)
\(230\) 0 0
\(231\) −2.38727 −0.157071
\(232\) −8.38910 −0.550771
\(233\) 17.6905 1.15895 0.579473 0.814992i \(-0.303259\pi\)
0.579473 + 0.814992i \(0.303259\pi\)
\(234\) 1.75080 0.114453
\(235\) 0 0
\(236\) −13.2836 −0.864689
\(237\) 10.9989 0.714458
\(238\) −3.86513 −0.250539
\(239\) 1.87608 0.121353 0.0606767 0.998157i \(-0.480674\pi\)
0.0606767 + 0.998157i \(0.480674\pi\)
\(240\) 0 0
\(241\) −1.90215 −0.122528 −0.0612642 0.998122i \(-0.519513\pi\)
−0.0612642 + 0.998122i \(0.519513\pi\)
\(242\) −9.28089 −0.596598
\(243\) 1.00000 0.0641500
\(244\) 0.0476877 0.00305289
\(245\) 0 0
\(246\) −2.33824 −0.149081
\(247\) −4.49413 −0.285955
\(248\) 7.58744 0.481803
\(249\) 9.37603 0.594182
\(250\) 0 0
\(251\) −15.5613 −0.982220 −0.491110 0.871097i \(-0.663409\pi\)
−0.491110 + 0.871097i \(0.663409\pi\)
\(252\) 1.06530 0.0671077
\(253\) 4.43475 0.278810
\(254\) −32.1015 −2.01423
\(255\) 0 0
\(256\) 19.6013 1.22508
\(257\) −9.17245 −0.572161 −0.286081 0.958206i \(-0.592353\pi\)
−0.286081 + 0.958206i \(0.592353\pi\)
\(258\) −14.9499 −0.930741
\(259\) −2.41256 −0.149909
\(260\) 0 0
\(261\) 5.12634 0.317312
\(262\) −13.0069 −0.803568
\(263\) 6.18256 0.381233 0.190616 0.981665i \(-0.438951\pi\)
0.190616 + 0.981665i \(0.438951\pi\)
\(264\) 3.90669 0.240440
\(265\) 0 0
\(266\) −7.86833 −0.482438
\(267\) 6.73298 0.412051
\(268\) −9.91172 −0.605455
\(269\) 25.9036 1.57937 0.789685 0.613513i \(-0.210244\pi\)
0.789685 + 0.613513i \(0.210244\pi\)
\(270\) 0 0
\(271\) 0.515160 0.0312937 0.0156469 0.999878i \(-0.495019\pi\)
0.0156469 + 0.999878i \(0.495019\pi\)
\(272\) 11.0288 0.668717
\(273\) 1.00000 0.0605228
\(274\) 16.9350 1.02308
\(275\) 0 0
\(276\) −1.97897 −0.119120
\(277\) 1.73801 0.104427 0.0522134 0.998636i \(-0.483372\pi\)
0.0522134 + 0.998636i \(0.483372\pi\)
\(278\) −21.3657 −1.28143
\(279\) −4.63647 −0.277578
\(280\) 0 0
\(281\) 20.0227 1.19445 0.597226 0.802073i \(-0.296269\pi\)
0.597226 + 0.802073i \(0.296269\pi\)
\(282\) −4.10211 −0.244277
\(283\) 19.3952 1.15293 0.576463 0.817123i \(-0.304432\pi\)
0.576463 + 0.817123i \(0.304432\pi\)
\(284\) −6.67349 −0.395999
\(285\) 0 0
\(286\) −4.17963 −0.247147
\(287\) −1.33553 −0.0788337
\(288\) −5.47360 −0.322535
\(289\) −12.1263 −0.713314
\(290\) 0 0
\(291\) −7.19457 −0.421753
\(292\) 15.0746 0.882176
\(293\) 11.5360 0.673939 0.336969 0.941516i \(-0.390598\pi\)
0.336969 + 0.941516i \(0.390598\pi\)
\(294\) 1.75080 0.102109
\(295\) 0 0
\(296\) 3.94808 0.229477
\(297\) −2.38727 −0.138523
\(298\) 25.6138 1.48377
\(299\) −1.85767 −0.107432
\(300\) 0 0
\(301\) −8.53890 −0.492174
\(302\) 5.40083 0.310783
\(303\) −4.28040 −0.245903
\(304\) 22.4515 1.28768
\(305\) 0 0
\(306\) −3.86513 −0.220955
\(307\) 8.06287 0.460172 0.230086 0.973170i \(-0.426099\pi\)
0.230086 + 0.973170i \(0.426099\pi\)
\(308\) −2.54316 −0.144910
\(309\) 1.80681 0.102786
\(310\) 0 0
\(311\) −7.16559 −0.406323 −0.203162 0.979145i \(-0.565122\pi\)
−0.203162 + 0.979145i \(0.565122\pi\)
\(312\) −1.63647 −0.0926468
\(313\) −12.6139 −0.712979 −0.356490 0.934299i \(-0.616027\pi\)
−0.356490 + 0.934299i \(0.616027\pi\)
\(314\) −39.6669 −2.23853
\(315\) 0 0
\(316\) 11.7172 0.659144
\(317\) −0.985378 −0.0553444 −0.0276722 0.999617i \(-0.508809\pi\)
−0.0276722 + 0.999617i \(0.508809\pi\)
\(318\) −6.83984 −0.383559
\(319\) −12.2380 −0.685194
\(320\) 0 0
\(321\) −0.612730 −0.0341993
\(322\) −3.25240 −0.181249
\(323\) 9.92142 0.552042
\(324\) 1.06530 0.0591835
\(325\) 0 0
\(326\) −10.5290 −0.583149
\(327\) 0.149801 0.00828400
\(328\) 2.18555 0.120677
\(329\) −2.34299 −0.129173
\(330\) 0 0
\(331\) −8.24676 −0.453283 −0.226642 0.973978i \(-0.572775\pi\)
−0.226642 + 0.973978i \(0.572775\pi\)
\(332\) 9.98830 0.548179
\(333\) −2.41256 −0.132207
\(334\) −3.53841 −0.193613
\(335\) 0 0
\(336\) −4.99574 −0.272540
\(337\) −34.1282 −1.85908 −0.929541 0.368719i \(-0.879796\pi\)
−0.929541 + 0.368719i \(0.879796\pi\)
\(338\) 1.75080 0.0952310
\(339\) −4.13990 −0.224848
\(340\) 0 0
\(341\) 11.0685 0.599393
\(342\) −7.86833 −0.425471
\(343\) 1.00000 0.0539949
\(344\) 13.9736 0.753409
\(345\) 0 0
\(346\) −8.75641 −0.470747
\(347\) 0.114331 0.00613761 0.00306880 0.999995i \(-0.499023\pi\)
0.00306880 + 0.999995i \(0.499023\pi\)
\(348\) 5.46110 0.292746
\(349\) 0.318766 0.0170632 0.00853158 0.999964i \(-0.497284\pi\)
0.00853158 + 0.999964i \(0.497284\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 13.0670 0.696471
\(353\) −13.1770 −0.701342 −0.350671 0.936499i \(-0.614046\pi\)
−0.350671 + 0.936499i \(0.614046\pi\)
\(354\) −21.8313 −1.16032
\(355\) 0 0
\(356\) 7.17265 0.380150
\(357\) −2.20764 −0.116841
\(358\) 8.50294 0.449394
\(359\) 7.15706 0.377735 0.188868 0.982003i \(-0.439518\pi\)
0.188868 + 0.982003i \(0.439518\pi\)
\(360\) 0 0
\(361\) 1.19725 0.0630130
\(362\) 17.0821 0.897813
\(363\) −5.30094 −0.278227
\(364\) 1.06530 0.0558370
\(365\) 0 0
\(366\) 0.0783737 0.00409666
\(367\) −23.2959 −1.21604 −0.608018 0.793923i \(-0.708035\pi\)
−0.608018 + 0.793923i \(0.708035\pi\)
\(368\) 9.28040 0.483775
\(369\) −1.33553 −0.0695248
\(370\) 0 0
\(371\) −3.90669 −0.202825
\(372\) −4.93924 −0.256088
\(373\) 33.9611 1.75844 0.879219 0.476419i \(-0.158065\pi\)
0.879219 + 0.476419i \(0.158065\pi\)
\(374\) 9.22711 0.477123
\(375\) 0 0
\(376\) 3.83424 0.197736
\(377\) 5.12634 0.264020
\(378\) 1.75080 0.0900515
\(379\) 4.16473 0.213928 0.106964 0.994263i \(-0.465887\pi\)
0.106964 + 0.994263i \(0.465887\pi\)
\(380\) 0 0
\(381\) −18.3353 −0.939348
\(382\) −24.7455 −1.26609
\(383\) 28.2751 1.44479 0.722394 0.691481i \(-0.243042\pi\)
0.722394 + 0.691481i \(0.243042\pi\)
\(384\) 11.6620 0.595126
\(385\) 0 0
\(386\) 12.7660 0.649773
\(387\) −8.53890 −0.434057
\(388\) −7.66439 −0.389100
\(389\) −16.4220 −0.832626 −0.416313 0.909221i \(-0.636678\pi\)
−0.416313 + 0.909221i \(0.636678\pi\)
\(390\) 0 0
\(391\) 4.10105 0.207399
\(392\) −1.63647 −0.0826542
\(393\) −7.42911 −0.374749
\(394\) 12.5057 0.630026
\(395\) 0 0
\(396\) −2.54316 −0.127799
\(397\) 25.5998 1.28482 0.642408 0.766363i \(-0.277936\pi\)
0.642408 + 0.766363i \(0.277936\pi\)
\(398\) −32.8099 −1.64461
\(399\) −4.49413 −0.224988
\(400\) 0 0
\(401\) −36.4412 −1.81978 −0.909892 0.414845i \(-0.863836\pi\)
−0.909892 + 0.414845i \(0.863836\pi\)
\(402\) −16.2897 −0.812456
\(403\) −4.63647 −0.230959
\(404\) −4.55992 −0.226865
\(405\) 0 0
\(406\) 8.97520 0.445432
\(407\) 5.75943 0.285484
\(408\) 3.61273 0.178857
\(409\) −20.3194 −1.00473 −0.502364 0.864656i \(-0.667536\pi\)
−0.502364 + 0.864656i \(0.667536\pi\)
\(410\) 0 0
\(411\) 9.67271 0.477119
\(412\) 1.92480 0.0948279
\(413\) −12.4693 −0.613576
\(414\) −3.25240 −0.159847
\(415\) 0 0
\(416\) −5.47360 −0.268365
\(417\) −12.2034 −0.597602
\(418\) 18.7838 0.918747
\(419\) −25.6098 −1.25112 −0.625561 0.780175i \(-0.715130\pi\)
−0.625561 + 0.780175i \(0.715130\pi\)
\(420\) 0 0
\(421\) −16.7263 −0.815189 −0.407594 0.913163i \(-0.633632\pi\)
−0.407594 + 0.913163i \(0.633632\pi\)
\(422\) 15.2897 0.744291
\(423\) −2.34299 −0.113920
\(424\) 6.39319 0.310481
\(425\) 0 0
\(426\) −10.9677 −0.531388
\(427\) 0.0447645 0.00216631
\(428\) −0.652743 −0.0315515
\(429\) −2.38727 −0.115258
\(430\) 0 0
\(431\) −31.4040 −1.51268 −0.756339 0.654179i \(-0.773014\pi\)
−0.756339 + 0.654179i \(0.773014\pi\)
\(432\) −4.99574 −0.240357
\(433\) 17.6698 0.849156 0.424578 0.905391i \(-0.360423\pi\)
0.424578 + 0.905391i \(0.360423\pi\)
\(434\) −8.11753 −0.389654
\(435\) 0 0
\(436\) 0.159583 0.00764264
\(437\) 8.34860 0.399368
\(438\) 24.7748 1.18379
\(439\) 21.9861 1.04934 0.524671 0.851305i \(-0.324188\pi\)
0.524671 + 0.851305i \(0.324188\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) −3.86513 −0.183846
\(443\) 7.13402 0.338947 0.169474 0.985535i \(-0.445793\pi\)
0.169474 + 0.985535i \(0.445793\pi\)
\(444\) −2.57010 −0.121972
\(445\) 0 0
\(446\) −29.3655 −1.39049
\(447\) 14.6298 0.691964
\(448\) 0.408295 0.0192901
\(449\) −4.82463 −0.227688 −0.113844 0.993499i \(-0.536316\pi\)
−0.113844 + 0.993499i \(0.536316\pi\)
\(450\) 0 0
\(451\) 3.18826 0.150129
\(452\) −4.41024 −0.207440
\(453\) 3.08478 0.144935
\(454\) 9.43203 0.442667
\(455\) 0 0
\(456\) 7.35451 0.344407
\(457\) −24.3569 −1.13937 −0.569685 0.821863i \(-0.692935\pi\)
−0.569685 + 0.821863i \(0.692935\pi\)
\(458\) 49.3827 2.30750
\(459\) −2.20764 −0.103044
\(460\) 0 0
\(461\) 14.9012 0.694016 0.347008 0.937862i \(-0.387198\pi\)
0.347008 + 0.937862i \(0.387198\pi\)
\(462\) −4.17963 −0.194454
\(463\) 33.3488 1.54985 0.774925 0.632053i \(-0.217788\pi\)
0.774925 + 0.632053i \(0.217788\pi\)
\(464\) −25.6098 −1.18891
\(465\) 0 0
\(466\) 30.9726 1.43478
\(467\) −1.97422 −0.0913561 −0.0456781 0.998956i \(-0.514545\pi\)
−0.0456781 + 0.998956i \(0.514545\pi\)
\(468\) 1.06530 0.0492436
\(469\) −9.30414 −0.429625
\(470\) 0 0
\(471\) −22.6564 −1.04395
\(472\) 20.4057 0.939248
\(473\) 20.3847 0.937288
\(474\) 19.2569 0.884501
\(475\) 0 0
\(476\) −2.35180 −0.107795
\(477\) −3.90669 −0.178875
\(478\) 3.28464 0.150236
\(479\) 15.9047 0.726706 0.363353 0.931651i \(-0.381632\pi\)
0.363353 + 0.931651i \(0.381632\pi\)
\(480\) 0 0
\(481\) −2.41256 −0.110003
\(482\) −3.33029 −0.151690
\(483\) −1.85767 −0.0845267
\(484\) −5.64711 −0.256687
\(485\) 0 0
\(486\) 1.75080 0.0794179
\(487\) 1.33166 0.0603433 0.0301716 0.999545i \(-0.490395\pi\)
0.0301716 + 0.999545i \(0.490395\pi\)
\(488\) −0.0732557 −0.00331613
\(489\) −6.01384 −0.271955
\(490\) 0 0
\(491\) 25.6178 1.15611 0.578057 0.815997i \(-0.303811\pi\)
0.578057 + 0.815997i \(0.303811\pi\)
\(492\) −1.42274 −0.0641421
\(493\) −11.3171 −0.509696
\(494\) −7.86833 −0.354013
\(495\) 0 0
\(496\) 23.1626 1.04003
\(497\) −6.26441 −0.280997
\(498\) 16.4156 0.735598
\(499\) −21.3129 −0.954095 −0.477047 0.878878i \(-0.658293\pi\)
−0.477047 + 0.878878i \(0.658293\pi\)
\(500\) 0 0
\(501\) −2.02103 −0.0902927
\(502\) −27.2447 −1.21599
\(503\) 9.76659 0.435471 0.217735 0.976008i \(-0.430133\pi\)
0.217735 + 0.976008i \(0.430133\pi\)
\(504\) −1.63647 −0.0728941
\(505\) 0 0
\(506\) 7.76436 0.345168
\(507\) 1.00000 0.0444116
\(508\) −19.5327 −0.866623
\(509\) 30.8043 1.36538 0.682688 0.730710i \(-0.260811\pi\)
0.682688 + 0.730710i \(0.260811\pi\)
\(510\) 0 0
\(511\) 14.1506 0.625984
\(512\) 10.9939 0.485867
\(513\) −4.49413 −0.198421
\(514\) −16.0591 −0.708337
\(515\) 0 0
\(516\) −9.09651 −0.400451
\(517\) 5.59336 0.245996
\(518\) −4.22391 −0.185588
\(519\) −5.00137 −0.219536
\(520\) 0 0
\(521\) 6.73432 0.295036 0.147518 0.989059i \(-0.452872\pi\)
0.147518 + 0.989059i \(0.452872\pi\)
\(522\) 8.97520 0.392834
\(523\) 33.7388 1.47529 0.737647 0.675187i \(-0.235937\pi\)
0.737647 + 0.675187i \(0.235937\pi\)
\(524\) −7.91425 −0.345736
\(525\) 0 0
\(526\) 10.8244 0.471967
\(527\) 10.2356 0.445872
\(528\) 11.9262 0.519020
\(529\) −19.5491 −0.849960
\(530\) 0 0
\(531\) −12.4693 −0.541123
\(532\) −4.78761 −0.207569
\(533\) −1.33553 −0.0578481
\(534\) 11.7881 0.510121
\(535\) 0 0
\(536\) 15.2259 0.657661
\(537\) 4.85660 0.209578
\(538\) 45.3520 1.95526
\(539\) −2.38727 −0.102827
\(540\) 0 0
\(541\) 17.0810 0.734370 0.367185 0.930148i \(-0.380322\pi\)
0.367185 + 0.930148i \(0.380322\pi\)
\(542\) 0.901942 0.0387417
\(543\) 9.75672 0.418701
\(544\) 12.0837 0.518085
\(545\) 0 0
\(546\) 1.75080 0.0749273
\(547\) −24.4448 −1.04518 −0.522592 0.852583i \(-0.675035\pi\)
−0.522592 + 0.852583i \(0.675035\pi\)
\(548\) 10.3044 0.440180
\(549\) 0.0447645 0.00191050
\(550\) 0 0
\(551\) −23.0385 −0.981471
\(552\) 3.04001 0.129392
\(553\) 10.9989 0.467722
\(554\) 3.04290 0.129281
\(555\) 0 0
\(556\) −13.0003 −0.551335
\(557\) 32.6975 1.38544 0.692719 0.721208i \(-0.256413\pi\)
0.692719 + 0.721208i \(0.256413\pi\)
\(558\) −8.11753 −0.343643
\(559\) −8.53890 −0.361157
\(560\) 0 0
\(561\) 5.27022 0.222509
\(562\) 35.0557 1.47874
\(563\) 11.8543 0.499599 0.249799 0.968298i \(-0.419635\pi\)
0.249799 + 0.968298i \(0.419635\pi\)
\(564\) −2.49600 −0.105100
\(565\) 0 0
\(566\) 33.9572 1.42733
\(567\) 1.00000 0.0419961
\(568\) 10.2515 0.430144
\(569\) −43.8395 −1.83785 −0.918925 0.394433i \(-0.870941\pi\)
−0.918925 + 0.394433i \(0.870941\pi\)
\(570\) 0 0
\(571\) −31.0717 −1.30031 −0.650155 0.759801i \(-0.725296\pi\)
−0.650155 + 0.759801i \(0.725296\pi\)
\(572\) −2.54316 −0.106335
\(573\) −14.1338 −0.590448
\(574\) −2.33824 −0.0975963
\(575\) 0 0
\(576\) 0.408295 0.0170123
\(577\) 4.71378 0.196237 0.0981186 0.995175i \(-0.468718\pi\)
0.0981186 + 0.995175i \(0.468718\pi\)
\(578\) −21.2308 −0.883085
\(579\) 7.29153 0.303026
\(580\) 0 0
\(581\) 9.37603 0.388983
\(582\) −12.5962 −0.522131
\(583\) 9.32633 0.386257
\(584\) −23.1570 −0.958242
\(585\) 0 0
\(586\) 20.1972 0.834338
\(587\) 13.4878 0.556700 0.278350 0.960480i \(-0.410213\pi\)
0.278350 + 0.960480i \(0.410213\pi\)
\(588\) 1.06530 0.0439323
\(589\) 20.8369 0.858570
\(590\) 0 0
\(591\) 7.14282 0.293816
\(592\) 12.0525 0.495355
\(593\) 7.27614 0.298795 0.149398 0.988777i \(-0.452267\pi\)
0.149398 + 0.988777i \(0.452267\pi\)
\(594\) −4.17963 −0.171492
\(595\) 0 0
\(596\) 15.5851 0.638392
\(597\) −18.7400 −0.766975
\(598\) −3.25240 −0.133001
\(599\) −41.3494 −1.68949 −0.844745 0.535169i \(-0.820248\pi\)
−0.844745 + 0.535169i \(0.820248\pi\)
\(600\) 0 0
\(601\) 22.7510 0.928032 0.464016 0.885827i \(-0.346408\pi\)
0.464016 + 0.885827i \(0.346408\pi\)
\(602\) −14.9499 −0.609313
\(603\) −9.30414 −0.378894
\(604\) 3.28622 0.133714
\(605\) 0 0
\(606\) −7.49413 −0.304428
\(607\) 3.38097 0.137229 0.0686146 0.997643i \(-0.478142\pi\)
0.0686146 + 0.997643i \(0.478142\pi\)
\(608\) 24.5991 0.997625
\(609\) 5.12634 0.207730
\(610\) 0 0
\(611\) −2.34299 −0.0947873
\(612\) −2.35180 −0.0950659
\(613\) −22.4189 −0.905492 −0.452746 0.891640i \(-0.649556\pi\)
−0.452746 + 0.891640i \(0.649556\pi\)
\(614\) 14.1165 0.569694
\(615\) 0 0
\(616\) 3.90669 0.157405
\(617\) 22.8164 0.918554 0.459277 0.888293i \(-0.348109\pi\)
0.459277 + 0.888293i \(0.348109\pi\)
\(618\) 3.16336 0.127249
\(619\) 6.85845 0.275664 0.137832 0.990456i \(-0.455987\pi\)
0.137832 + 0.990456i \(0.455987\pi\)
\(620\) 0 0
\(621\) −1.85767 −0.0745455
\(622\) −12.5455 −0.503029
\(623\) 6.73298 0.269751
\(624\) −4.99574 −0.199989
\(625\) 0 0
\(626\) −22.0844 −0.882671
\(627\) 10.7287 0.428464
\(628\) −24.1359 −0.963129
\(629\) 5.32605 0.212364
\(630\) 0 0
\(631\) 12.4264 0.494687 0.247344 0.968928i \(-0.420442\pi\)
0.247344 + 0.968928i \(0.420442\pi\)
\(632\) −17.9994 −0.715979
\(633\) 8.73298 0.347105
\(634\) −1.72520 −0.0685165
\(635\) 0 0
\(636\) −4.16181 −0.165026
\(637\) 1.00000 0.0396214
\(638\) −21.4262 −0.848272
\(639\) −6.26441 −0.247816
\(640\) 0 0
\(641\) −27.2103 −1.07474 −0.537372 0.843345i \(-0.680583\pi\)
−0.537372 + 0.843345i \(0.680583\pi\)
\(642\) −1.07277 −0.0423388
\(643\) −18.5317 −0.730821 −0.365410 0.930847i \(-0.619071\pi\)
−0.365410 + 0.930847i \(0.619071\pi\)
\(644\) −1.97897 −0.0779825
\(645\) 0 0
\(646\) 17.3704 0.683430
\(647\) 28.5799 1.12359 0.561796 0.827276i \(-0.310111\pi\)
0.561796 + 0.827276i \(0.310111\pi\)
\(648\) −1.63647 −0.0642866
\(649\) 29.7677 1.16848
\(650\) 0 0
\(651\) −4.63647 −0.181718
\(652\) −6.40655 −0.250900
\(653\) −22.5858 −0.883850 −0.441925 0.897052i \(-0.645704\pi\)
−0.441925 + 0.897052i \(0.645704\pi\)
\(654\) 0.262271 0.0102556
\(655\) 0 0
\(656\) 6.67194 0.260495
\(657\) 14.1506 0.552066
\(658\) −4.10211 −0.159917
\(659\) 11.5658 0.450541 0.225271 0.974296i \(-0.427673\pi\)
0.225271 + 0.974296i \(0.427673\pi\)
\(660\) 0 0
\(661\) −30.8036 −1.19812 −0.599060 0.800704i \(-0.704459\pi\)
−0.599060 + 0.800704i \(0.704459\pi\)
\(662\) −14.4384 −0.561166
\(663\) −2.20764 −0.0857375
\(664\) −15.3436 −0.595446
\(665\) 0 0
\(666\) −4.22391 −0.163673
\(667\) −9.52302 −0.368733
\(668\) −2.15300 −0.0833022
\(669\) −16.7726 −0.648466
\(670\) 0 0
\(671\) −0.106865 −0.00412547
\(672\) −5.47360 −0.211149
\(673\) −34.4280 −1.32710 −0.663552 0.748130i \(-0.730952\pi\)
−0.663552 + 0.748130i \(0.730952\pi\)
\(674\) −59.7517 −2.30155
\(675\) 0 0
\(676\) 1.06530 0.0409732
\(677\) 45.2303 1.73834 0.869171 0.494512i \(-0.164653\pi\)
0.869171 + 0.494512i \(0.164653\pi\)
\(678\) −7.24814 −0.278363
\(679\) −7.19457 −0.276102
\(680\) 0 0
\(681\) 5.38727 0.206441
\(682\) 19.3787 0.742050
\(683\) −12.3783 −0.473641 −0.236820 0.971553i \(-0.576105\pi\)
−0.236820 + 0.971553i \(0.576105\pi\)
\(684\) −4.78761 −0.183059
\(685\) 0 0
\(686\) 1.75080 0.0668459
\(687\) 28.2058 1.07612
\(688\) 42.6581 1.62632
\(689\) −3.90669 −0.148833
\(690\) 0 0
\(691\) 9.51234 0.361866 0.180933 0.983495i \(-0.442088\pi\)
0.180933 + 0.983495i \(0.442088\pi\)
\(692\) −5.32797 −0.202539
\(693\) −2.38727 −0.0906849
\(694\) 0.200171 0.00759838
\(695\) 0 0
\(696\) −8.38910 −0.317988
\(697\) 2.94836 0.111677
\(698\) 0.558096 0.0211242
\(699\) 17.6905 0.669117
\(700\) 0 0
\(701\) −5.31661 −0.200806 −0.100403 0.994947i \(-0.532013\pi\)
−0.100403 + 0.994947i \(0.532013\pi\)
\(702\) 1.75080 0.0660797
\(703\) 10.8424 0.408928
\(704\) −0.974710 −0.0367358
\(705\) 0 0
\(706\) −23.0703 −0.868263
\(707\) −4.28040 −0.160981
\(708\) −13.2836 −0.499229
\(709\) 29.8648 1.12160 0.560798 0.827953i \(-0.310494\pi\)
0.560798 + 0.827953i \(0.310494\pi\)
\(710\) 0 0
\(711\) 10.9989 0.412492
\(712\) −11.0183 −0.412929
\(713\) 8.61301 0.322560
\(714\) −3.86513 −0.144649
\(715\) 0 0
\(716\) 5.17375 0.193352
\(717\) 1.87608 0.0700634
\(718\) 12.5306 0.467637
\(719\) 3.71241 0.138449 0.0692247 0.997601i \(-0.477947\pi\)
0.0692247 + 0.997601i \(0.477947\pi\)
\(720\) 0 0
\(721\) 1.80681 0.0672890
\(722\) 2.09614 0.0780103
\(723\) −1.90215 −0.0707418
\(724\) 10.3939 0.386284
\(725\) 0 0
\(726\) −9.28089 −0.344446
\(727\) 35.2837 1.30860 0.654300 0.756235i \(-0.272963\pi\)
0.654300 + 0.756235i \(0.272963\pi\)
\(728\) −1.63647 −0.0606516
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 18.8508 0.697222
\(732\) 0.0476877 0.00176259
\(733\) −15.1020 −0.557805 −0.278902 0.960319i \(-0.589971\pi\)
−0.278902 + 0.960319i \(0.589971\pi\)
\(734\) −40.7865 −1.50546
\(735\) 0 0
\(736\) 10.1681 0.374802
\(737\) 22.2115 0.818171
\(738\) −2.33824 −0.0860718
\(739\) 1.58878 0.0584443 0.0292221 0.999573i \(-0.490697\pi\)
0.0292221 + 0.999573i \(0.490697\pi\)
\(740\) 0 0
\(741\) −4.49413 −0.165096
\(742\) −6.83984 −0.251098
\(743\) −34.3756 −1.26112 −0.630560 0.776141i \(-0.717175\pi\)
−0.630560 + 0.776141i \(0.717175\pi\)
\(744\) 7.58744 0.278169
\(745\) 0 0
\(746\) 59.4590 2.17695
\(747\) 9.37603 0.343051
\(748\) 5.61438 0.205282
\(749\) −0.612730 −0.0223887
\(750\) 0 0
\(751\) −16.6575 −0.607841 −0.303920 0.952697i \(-0.598296\pi\)
−0.303920 + 0.952697i \(0.598296\pi\)
\(752\) 11.7050 0.426836
\(753\) −15.5613 −0.567085
\(754\) 8.97520 0.326857
\(755\) 0 0
\(756\) 1.06530 0.0387447
\(757\) 9.44154 0.343159 0.171579 0.985170i \(-0.445113\pi\)
0.171579 + 0.985170i \(0.445113\pi\)
\(758\) 7.29162 0.264843
\(759\) 4.43475 0.160971
\(760\) 0 0
\(761\) −45.6071 −1.65326 −0.826628 0.562749i \(-0.809744\pi\)
−0.826628 + 0.562749i \(0.809744\pi\)
\(762\) −32.1015 −1.16292
\(763\) 0.149801 0.00542315
\(764\) −15.0568 −0.544735
\(765\) 0 0
\(766\) 49.5040 1.78865
\(767\) −12.4693 −0.450242
\(768\) 19.6013 0.707301
\(769\) −2.06647 −0.0745187 −0.0372593 0.999306i \(-0.511863\pi\)
−0.0372593 + 0.999306i \(0.511863\pi\)
\(770\) 0 0
\(771\) −9.17245 −0.330338
\(772\) 7.76768 0.279565
\(773\) 35.2351 1.26732 0.633659 0.773613i \(-0.281552\pi\)
0.633659 + 0.773613i \(0.281552\pi\)
\(774\) −14.9499 −0.537363
\(775\) 0 0
\(776\) 11.7737 0.422651
\(777\) −2.41256 −0.0865501
\(778\) −28.7516 −1.03079
\(779\) 6.00204 0.215045
\(780\) 0 0
\(781\) 14.9548 0.535126
\(782\) 7.18012 0.256761
\(783\) 5.12634 0.183200
\(784\) −4.99574 −0.178419
\(785\) 0 0
\(786\) −13.0069 −0.463940
\(787\) 9.07749 0.323578 0.161789 0.986825i \(-0.448274\pi\)
0.161789 + 0.986825i \(0.448274\pi\)
\(788\) 7.60926 0.271069
\(789\) 6.18256 0.220105
\(790\) 0 0
\(791\) −4.13990 −0.147198
\(792\) 3.90669 0.138818
\(793\) 0.0447645 0.00158963
\(794\) 44.8201 1.59060
\(795\) 0 0
\(796\) −19.9637 −0.707595
\(797\) 28.8249 1.02103 0.510516 0.859868i \(-0.329455\pi\)
0.510516 + 0.859868i \(0.329455\pi\)
\(798\) −7.86833 −0.278536
\(799\) 5.17248 0.182989
\(800\) 0 0
\(801\) 6.73298 0.237898
\(802\) −63.8012 −2.25290
\(803\) −33.7812 −1.19211
\(804\) −9.91172 −0.349560
\(805\) 0 0
\(806\) −8.11753 −0.285928
\(807\) 25.9036 0.911850
\(808\) 7.00475 0.246426
\(809\) −5.20958 −0.183159 −0.0915796 0.995798i \(-0.529192\pi\)
−0.0915796 + 0.995798i \(0.529192\pi\)
\(810\) 0 0
\(811\) −51.0035 −1.79097 −0.895487 0.445087i \(-0.853173\pi\)
−0.895487 + 0.445087i \(0.853173\pi\)
\(812\) 5.46110 0.191647
\(813\) 0.515160 0.0180674
\(814\) 10.0836 0.353430
\(815\) 0 0
\(816\) 11.0288 0.386084
\(817\) 38.3750 1.34257
\(818\) −35.5751 −1.24386
\(819\) 1.00000 0.0349428
\(820\) 0 0
\(821\) −29.2368 −1.02037 −0.510186 0.860064i \(-0.670423\pi\)
−0.510186 + 0.860064i \(0.670423\pi\)
\(822\) 16.9350 0.590675
\(823\) 41.7366 1.45485 0.727424 0.686188i \(-0.240717\pi\)
0.727424 + 0.686188i \(0.240717\pi\)
\(824\) −2.95679 −0.103005
\(825\) 0 0
\(826\) −21.8313 −0.759609
\(827\) 42.0389 1.46183 0.730917 0.682466i \(-0.239093\pi\)
0.730917 + 0.682466i \(0.239093\pi\)
\(828\) −1.97897 −0.0687741
\(829\) −44.0775 −1.53087 −0.765437 0.643510i \(-0.777477\pi\)
−0.765437 + 0.643510i \(0.777477\pi\)
\(830\) 0 0
\(831\) 1.73801 0.0602908
\(832\) 0.408295 0.0141551
\(833\) −2.20764 −0.0764901
\(834\) −21.3657 −0.739833
\(835\) 0 0
\(836\) 11.4293 0.395291
\(837\) −4.63647 −0.160260
\(838\) −44.8377 −1.54889
\(839\) −17.4451 −0.602272 −0.301136 0.953581i \(-0.597366\pi\)
−0.301136 + 0.953581i \(0.597366\pi\)
\(840\) 0 0
\(841\) −2.72064 −0.0938152
\(842\) −29.2844 −1.00921
\(843\) 20.0227 0.689618
\(844\) 9.30326 0.320231
\(845\) 0 0
\(846\) −4.10211 −0.141034
\(847\) −5.30094 −0.182143
\(848\) 19.5168 0.670210
\(849\) 19.3952 0.665642
\(850\) 0 0
\(851\) 4.48173 0.153632
\(852\) −6.67349 −0.228630
\(853\) 18.8129 0.644142 0.322071 0.946716i \(-0.395621\pi\)
0.322071 + 0.946716i \(0.395621\pi\)
\(854\) 0.0783737 0.00268189
\(855\) 0 0
\(856\) 1.00271 0.0342721
\(857\) 4.09894 0.140017 0.0700086 0.997546i \(-0.477697\pi\)
0.0700086 + 0.997546i \(0.477697\pi\)
\(858\) −4.17963 −0.142690
\(859\) 3.49629 0.119292 0.0596460 0.998220i \(-0.481003\pi\)
0.0596460 + 0.998220i \(0.481003\pi\)
\(860\) 0 0
\(861\) −1.33553 −0.0455146
\(862\) −54.9822 −1.87270
\(863\) 6.51196 0.221670 0.110835 0.993839i \(-0.464648\pi\)
0.110835 + 0.993839i \(0.464648\pi\)
\(864\) −5.47360 −0.186216
\(865\) 0 0
\(866\) 30.9363 1.05126
\(867\) −12.1263 −0.411832
\(868\) −4.93924 −0.167649
\(869\) −26.2574 −0.890722
\(870\) 0 0
\(871\) −9.30414 −0.315259
\(872\) −0.245144 −0.00830163
\(873\) −7.19457 −0.243499
\(874\) 14.6167 0.494418
\(875\) 0 0
\(876\) 15.0746 0.509325
\(877\) 4.91202 0.165867 0.0829336 0.996555i \(-0.473571\pi\)
0.0829336 + 0.996555i \(0.473571\pi\)
\(878\) 38.4934 1.29909
\(879\) 11.5360 0.389099
\(880\) 0 0
\(881\) −22.6450 −0.762930 −0.381465 0.924383i \(-0.624580\pi\)
−0.381465 + 0.924383i \(0.624580\pi\)
\(882\) 1.75080 0.0589525
\(883\) −9.47969 −0.319017 −0.159508 0.987197i \(-0.550991\pi\)
−0.159508 + 0.987197i \(0.550991\pi\)
\(884\) −2.35180 −0.0790996
\(885\) 0 0
\(886\) 12.4902 0.419618
\(887\) 51.5943 1.73237 0.866184 0.499725i \(-0.166566\pi\)
0.866184 + 0.499725i \(0.166566\pi\)
\(888\) 3.94808 0.132489
\(889\) −18.3353 −0.614948
\(890\) 0 0
\(891\) −2.38727 −0.0799765
\(892\) −17.8679 −0.598261
\(893\) 10.5297 0.352364
\(894\) 25.6138 0.856654
\(895\) 0 0
\(896\) 11.6620 0.389601
\(897\) −1.85767 −0.0620256
\(898\) −8.44697 −0.281879
\(899\) −23.7681 −0.792711
\(900\) 0 0
\(901\) 8.62456 0.287326
\(902\) 5.58201 0.185861
\(903\) −8.53890 −0.284157
\(904\) 6.77482 0.225327
\(905\) 0 0
\(906\) 5.40083 0.179431
\(907\) −8.28233 −0.275010 −0.137505 0.990501i \(-0.543908\pi\)
−0.137505 + 0.990501i \(0.543908\pi\)
\(908\) 5.73907 0.190458
\(909\) −4.28040 −0.141972
\(910\) 0 0
\(911\) 20.3967 0.675772 0.337886 0.941187i \(-0.390288\pi\)
0.337886 + 0.941187i \(0.390288\pi\)
\(912\) 22.4515 0.743444
\(913\) −22.3831 −0.740773
\(914\) −42.6441 −1.41054
\(915\) 0 0
\(916\) 30.0477 0.992804
\(917\) −7.42911 −0.245331
\(918\) −3.86513 −0.127568
\(919\) −18.1273 −0.597965 −0.298982 0.954259i \(-0.596647\pi\)
−0.298982 + 0.954259i \(0.596647\pi\)
\(920\) 0 0
\(921\) 8.06287 0.265680
\(922\) 26.0890 0.859194
\(923\) −6.26441 −0.206196
\(924\) −2.54316 −0.0836639
\(925\) 0 0
\(926\) 58.3871 1.91872
\(927\) 1.80681 0.0593434
\(928\) −28.0595 −0.921099
\(929\) 28.8397 0.946199 0.473099 0.881009i \(-0.343135\pi\)
0.473099 + 0.881009i \(0.343135\pi\)
\(930\) 0 0
\(931\) −4.49413 −0.147289
\(932\) 18.8458 0.617313
\(933\) −7.16559 −0.234591
\(934\) −3.45647 −0.113099
\(935\) 0 0
\(936\) −1.63647 −0.0534897
\(937\) 49.8015 1.62694 0.813471 0.581605i \(-0.197575\pi\)
0.813471 + 0.581605i \(0.197575\pi\)
\(938\) −16.2897 −0.531878
\(939\) −12.6139 −0.411639
\(940\) 0 0
\(941\) 20.2922 0.661507 0.330753 0.943717i \(-0.392697\pi\)
0.330753 + 0.943717i \(0.392697\pi\)
\(942\) −39.6669 −1.29242
\(943\) 2.48096 0.0807912
\(944\) 62.2935 2.02748
\(945\) 0 0
\(946\) 35.6895 1.16036
\(947\) −49.8710 −1.62059 −0.810295 0.586022i \(-0.800693\pi\)
−0.810295 + 0.586022i \(0.800693\pi\)
\(948\) 11.7172 0.380557
\(949\) 14.1506 0.459347
\(950\) 0 0
\(951\) −0.985378 −0.0319531
\(952\) 3.61273 0.117089
\(953\) −42.0866 −1.36332 −0.681660 0.731669i \(-0.738742\pi\)
−0.681660 + 0.731669i \(0.738742\pi\)
\(954\) −6.83984 −0.221448
\(955\) 0 0
\(956\) 1.99859 0.0646390
\(957\) −12.2380 −0.395597
\(958\) 27.8460 0.899665
\(959\) 9.67271 0.312348
\(960\) 0 0
\(961\) −9.50315 −0.306553
\(962\) −4.22391 −0.136184
\(963\) −0.612730 −0.0197450
\(964\) −2.02637 −0.0652649
\(965\) 0 0
\(966\) −3.25240 −0.104644
\(967\) 9.99342 0.321367 0.160683 0.987006i \(-0.448630\pi\)
0.160683 + 0.987006i \(0.448630\pi\)
\(968\) 8.67483 0.278820
\(969\) 9.92142 0.318722
\(970\) 0 0
\(971\) 33.3447 1.07008 0.535042 0.844826i \(-0.320296\pi\)
0.535042 + 0.844826i \(0.320296\pi\)
\(972\) 1.06530 0.0341696
\(973\) −12.2034 −0.391222
\(974\) 2.33147 0.0747052
\(975\) 0 0
\(976\) −0.223632 −0.00715827
\(977\) 60.3205 1.92982 0.964912 0.262573i \(-0.0845710\pi\)
0.964912 + 0.262573i \(0.0845710\pi\)
\(978\) −10.5290 −0.336681
\(979\) −16.0734 −0.513709
\(980\) 0 0
\(981\) 0.149801 0.00478277
\(982\) 44.8516 1.43127
\(983\) 12.8940 0.411255 0.205628 0.978630i \(-0.434076\pi\)
0.205628 + 0.978630i \(0.434076\pi\)
\(984\) 2.18555 0.0696728
\(985\) 0 0
\(986\) −19.8140 −0.631006
\(987\) −2.34299 −0.0745783
\(988\) −4.78761 −0.152314
\(989\) 15.8624 0.504396
\(990\) 0 0
\(991\) −17.8205 −0.566088 −0.283044 0.959107i \(-0.591344\pi\)
−0.283044 + 0.959107i \(0.591344\pi\)
\(992\) 25.3782 0.805758
\(993\) −8.24676 −0.261703
\(994\) −10.9677 −0.347875
\(995\) 0 0
\(996\) 9.98830 0.316491
\(997\) −45.6881 −1.44696 −0.723478 0.690347i \(-0.757458\pi\)
−0.723478 + 0.690347i \(0.757458\pi\)
\(998\) −37.3146 −1.18117
\(999\) −2.41256 −0.0763300
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6825.2.a.bi.1.4 4
5.4 even 2 6825.2.a.bj.1.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6825.2.a.bi.1.4 4 1.1 even 1 trivial
6825.2.a.bj.1.1 yes 4 5.4 even 2