Properties

Label 6825.2.a.bi.1.3
Level $6825$
Weight $2$
Character 6825.1
Self dual yes
Analytic conductor $54.498$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6825,2,Mod(1,6825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6825.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6825 = 3 \cdot 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.4978993795\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.3981.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.318459\) of defining polynomial
Character \(\chi\) \(=\) 6825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.318459 q^{2} +1.00000 q^{3} -1.89858 q^{4} +0.318459 q^{6} +1.00000 q^{7} -1.24154 q^{8} +1.00000 q^{9} -0.559998 q^{11} -1.89858 q^{12} +1.00000 q^{13} +0.318459 q^{14} +3.40179 q^{16} -4.38166 q^{17} +0.318459 q^{18} +1.03871 q^{19} +1.00000 q^{21} -0.178336 q^{22} +3.28025 q^{23} -1.24154 q^{24} +0.318459 q^{26} +1.00000 q^{27} -1.89858 q^{28} -9.19896 q^{29} -4.24154 q^{31} +3.56641 q^{32} -0.559998 q^{33} -1.39538 q^{34} -1.89858 q^{36} -4.73397 q^{37} +0.330785 q^{38} +1.00000 q^{39} +4.44486 q^{41} +0.318459 q^{42} +3.46499 q^{43} +1.06320 q^{44} +1.04462 q^{46} +0.769240 q^{47} +3.40179 q^{48} +1.00000 q^{49} -4.38166 q^{51} -1.89858 q^{52} -0.695259 q^{53} +0.318459 q^{54} -1.24154 q^{56} +1.03871 q^{57} -2.92949 q^{58} +4.96820 q^{59} -6.42628 q^{61} -1.35076 q^{62} +1.00000 q^{63} -5.66782 q^{64} -0.178336 q^{66} -8.96024 q^{67} +8.31895 q^{68} +3.28025 q^{69} +11.3205 q^{71} -1.24154 q^{72} -10.1529 q^{73} -1.50757 q^{74} -1.97207 q^{76} -0.559998 q^{77} +0.318459 q^{78} -3.12795 q^{79} +1.00000 q^{81} +1.41551 q^{82} -11.2729 q^{83} -1.89858 q^{84} +1.10346 q^{86} -9.19896 q^{87} +0.695259 q^{88} +3.82012 q^{89} +1.00000 q^{91} -6.22782 q^{92} -4.24154 q^{93} +0.244971 q^{94} +3.56641 q^{96} -8.52959 q^{97} +0.318459 q^{98} -0.559998 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 4 q^{3} + q^{4} - q^{6} + 4 q^{7} - 3 q^{8} + 4 q^{9} + 2 q^{11} + q^{12} + 4 q^{13} - q^{14} - q^{16} - 5 q^{17} - q^{18} - 15 q^{19} + 4 q^{21} - 9 q^{22} - 8 q^{23} - 3 q^{24} - q^{26}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.318459 0.225184 0.112592 0.993641i \(-0.464085\pi\)
0.112592 + 0.993641i \(0.464085\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.89858 −0.949292
\(5\) 0 0
\(6\) 0.318459 0.130010
\(7\) 1.00000 0.377964
\(8\) −1.24154 −0.438950
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −0.559998 −0.168846 −0.0844228 0.996430i \(-0.526905\pi\)
−0.0844228 + 0.996430i \(0.526905\pi\)
\(12\) −1.89858 −0.548074
\(13\) 1.00000 0.277350
\(14\) 0.318459 0.0851117
\(15\) 0 0
\(16\) 3.40179 0.850447
\(17\) −4.38166 −1.06271 −0.531354 0.847150i \(-0.678317\pi\)
−0.531354 + 0.847150i \(0.678317\pi\)
\(18\) 0.318459 0.0750615
\(19\) 1.03871 0.238296 0.119148 0.992877i \(-0.461984\pi\)
0.119148 + 0.992877i \(0.461984\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) −0.178336 −0.0380214
\(23\) 3.28025 0.683978 0.341989 0.939704i \(-0.388899\pi\)
0.341989 + 0.939704i \(0.388899\pi\)
\(24\) −1.24154 −0.253428
\(25\) 0 0
\(26\) 0.318459 0.0624549
\(27\) 1.00000 0.192450
\(28\) −1.89858 −0.358799
\(29\) −9.19896 −1.70820 −0.854102 0.520106i \(-0.825892\pi\)
−0.854102 + 0.520106i \(0.825892\pi\)
\(30\) 0 0
\(31\) −4.24154 −0.761803 −0.380901 0.924616i \(-0.624386\pi\)
−0.380901 + 0.924616i \(0.624386\pi\)
\(32\) 3.56641 0.630458
\(33\) −0.559998 −0.0974831
\(34\) −1.39538 −0.239306
\(35\) 0 0
\(36\) −1.89858 −0.316431
\(37\) −4.73397 −0.778259 −0.389130 0.921183i \(-0.627224\pi\)
−0.389130 + 0.921183i \(0.627224\pi\)
\(38\) 0.330785 0.0536605
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) 4.44486 0.694171 0.347086 0.937833i \(-0.387171\pi\)
0.347086 + 0.937833i \(0.387171\pi\)
\(42\) 0.318459 0.0491393
\(43\) 3.46499 0.528406 0.264203 0.964467i \(-0.414891\pi\)
0.264203 + 0.964467i \(0.414891\pi\)
\(44\) 1.06320 0.160284
\(45\) 0 0
\(46\) 1.04462 0.154021
\(47\) 0.769240 0.112205 0.0561026 0.998425i \(-0.482133\pi\)
0.0561026 + 0.998425i \(0.482133\pi\)
\(48\) 3.40179 0.491006
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −4.38166 −0.613555
\(52\) −1.89858 −0.263286
\(53\) −0.695259 −0.0955011 −0.0477506 0.998859i \(-0.515205\pi\)
−0.0477506 + 0.998859i \(0.515205\pi\)
\(54\) 0.318459 0.0433368
\(55\) 0 0
\(56\) −1.24154 −0.165908
\(57\) 1.03871 0.137580
\(58\) −2.92949 −0.384661
\(59\) 4.96820 0.646804 0.323402 0.946262i \(-0.395173\pi\)
0.323402 + 0.946262i \(0.395173\pi\)
\(60\) 0 0
\(61\) −6.42628 −0.822801 −0.411401 0.911455i \(-0.634960\pi\)
−0.411401 + 0.911455i \(0.634960\pi\)
\(62\) −1.35076 −0.171546
\(63\) 1.00000 0.125988
\(64\) −5.66782 −0.708478
\(65\) 0 0
\(66\) −0.178336 −0.0219517
\(67\) −8.96024 −1.09467 −0.547334 0.836914i \(-0.684357\pi\)
−0.547334 + 0.836914i \(0.684357\pi\)
\(68\) 8.31895 1.00882
\(69\) 3.28025 0.394895
\(70\) 0 0
\(71\) 11.3205 1.34350 0.671748 0.740780i \(-0.265544\pi\)
0.671748 + 0.740780i \(0.265544\pi\)
\(72\) −1.24154 −0.146317
\(73\) −10.1529 −1.18831 −0.594156 0.804350i \(-0.702514\pi\)
−0.594156 + 0.804350i \(0.702514\pi\)
\(74\) −1.50757 −0.175252
\(75\) 0 0
\(76\) −1.97207 −0.226212
\(77\) −0.559998 −0.0638177
\(78\) 0.318459 0.0360584
\(79\) −3.12795 −0.351922 −0.175961 0.984397i \(-0.556303\pi\)
−0.175961 + 0.984397i \(0.556303\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 1.41551 0.156317
\(83\) −11.2729 −1.23737 −0.618683 0.785641i \(-0.712333\pi\)
−0.618683 + 0.785641i \(0.712333\pi\)
\(84\) −1.89858 −0.207152
\(85\) 0 0
\(86\) 1.10346 0.118989
\(87\) −9.19896 −0.986232
\(88\) 0.695259 0.0741148
\(89\) 3.82012 0.404931 0.202466 0.979289i \(-0.435105\pi\)
0.202466 + 0.979289i \(0.435105\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) −6.22782 −0.649295
\(93\) −4.24154 −0.439827
\(94\) 0.244971 0.0252668
\(95\) 0 0
\(96\) 3.56641 0.363995
\(97\) −8.52959 −0.866048 −0.433024 0.901382i \(-0.642553\pi\)
−0.433024 + 0.901382i \(0.642553\pi\)
\(98\) 0.318459 0.0321692
\(99\) −0.559998 −0.0562819
\(100\) 0 0
\(101\) −6.15870 −0.612814 −0.306407 0.951901i \(-0.599127\pi\)
−0.306407 + 0.951901i \(0.599127\pi\)
\(102\) −1.39538 −0.138163
\(103\) 12.7251 1.25384 0.626921 0.779083i \(-0.284315\pi\)
0.626921 + 0.779083i \(0.284315\pi\)
\(104\) −1.24154 −0.121743
\(105\) 0 0
\(106\) −0.221411 −0.0215054
\(107\) −2.44000 −0.235884 −0.117942 0.993020i \(-0.537630\pi\)
−0.117942 + 0.993020i \(0.537630\pi\)
\(108\) −1.89858 −0.182691
\(109\) 7.95587 0.762034 0.381017 0.924568i \(-0.375574\pi\)
0.381017 + 0.924568i \(0.375574\pi\)
\(110\) 0 0
\(111\) −4.73397 −0.449328
\(112\) 3.40179 0.321439
\(113\) 17.1024 1.60886 0.804429 0.594048i \(-0.202471\pi\)
0.804429 + 0.594048i \(0.202471\pi\)
\(114\) 0.330785 0.0309809
\(115\) 0 0
\(116\) 17.4650 1.62158
\(117\) 1.00000 0.0924500
\(118\) 1.58217 0.145650
\(119\) −4.38166 −0.401666
\(120\) 0 0
\(121\) −10.6864 −0.971491
\(122\) −2.04651 −0.185282
\(123\) 4.44486 0.400780
\(124\) 8.05292 0.723173
\(125\) 0 0
\(126\) 0.318459 0.0283706
\(127\) −18.4374 −1.63605 −0.818027 0.575179i \(-0.804932\pi\)
−0.818027 + 0.575179i \(0.804932\pi\)
\(128\) −8.93778 −0.789996
\(129\) 3.46499 0.305075
\(130\) 0 0
\(131\) 19.4934 1.70315 0.851574 0.524235i \(-0.175649\pi\)
0.851574 + 0.524235i \(0.175649\pi\)
\(132\) 1.06320 0.0925399
\(133\) 1.03871 0.0900673
\(134\) −2.85347 −0.246502
\(135\) 0 0
\(136\) 5.44000 0.466476
\(137\) −13.9883 −1.19510 −0.597552 0.801830i \(-0.703860\pi\)
−0.597552 + 0.801830i \(0.703860\pi\)
\(138\) 1.04462 0.0889242
\(139\) −5.97987 −0.507206 −0.253603 0.967308i \(-0.581616\pi\)
−0.253603 + 0.967308i \(0.581616\pi\)
\(140\) 0 0
\(141\) 0.769240 0.0647817
\(142\) 3.60511 0.302534
\(143\) −0.559998 −0.0468294
\(144\) 3.40179 0.283482
\(145\) 0 0
\(146\) −3.23329 −0.267589
\(147\) 1.00000 0.0824786
\(148\) 8.98783 0.738795
\(149\) −20.5429 −1.68294 −0.841470 0.540304i \(-0.818309\pi\)
−0.841470 + 0.540304i \(0.818309\pi\)
\(150\) 0 0
\(151\) −10.4988 −0.854383 −0.427192 0.904161i \(-0.640497\pi\)
−0.427192 + 0.904161i \(0.640497\pi\)
\(152\) −1.28959 −0.104600
\(153\) −4.38166 −0.354236
\(154\) −0.178336 −0.0143707
\(155\) 0 0
\(156\) −1.89858 −0.152008
\(157\) −3.88576 −0.310118 −0.155059 0.987905i \(-0.549557\pi\)
−0.155059 + 0.987905i \(0.549557\pi\)
\(158\) −0.996125 −0.0792474
\(159\) −0.695259 −0.0551376
\(160\) 0 0
\(161\) 3.28025 0.258520
\(162\) 0.318459 0.0250205
\(163\) 25.2567 1.97826 0.989130 0.147043i \(-0.0469756\pi\)
0.989130 + 0.147043i \(0.0469756\pi\)
\(164\) −8.43895 −0.658971
\(165\) 0 0
\(166\) −3.58997 −0.278635
\(167\) 2.22782 0.172394 0.0861970 0.996278i \(-0.472529\pi\)
0.0861970 + 0.996278i \(0.472529\pi\)
\(168\) −1.24154 −0.0957868
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 1.03871 0.0794319
\(172\) −6.57858 −0.501612
\(173\) −17.2547 −1.31185 −0.655925 0.754826i \(-0.727721\pi\)
−0.655925 + 0.754826i \(0.727721\pi\)
\(174\) −2.92949 −0.222084
\(175\) 0 0
\(176\) −1.90499 −0.143594
\(177\) 4.96820 0.373432
\(178\) 1.21655 0.0911843
\(179\) −14.4082 −1.07692 −0.538460 0.842651i \(-0.680994\pi\)
−0.538460 + 0.842651i \(0.680994\pi\)
\(180\) 0 0
\(181\) 4.62165 0.343525 0.171762 0.985138i \(-0.445054\pi\)
0.171762 + 0.985138i \(0.445054\pi\)
\(182\) 0.318459 0.0236057
\(183\) −6.42628 −0.475045
\(184\) −4.07255 −0.300232
\(185\) 0 0
\(186\) −1.35076 −0.0990422
\(187\) 2.45372 0.179434
\(188\) −1.46047 −0.106515
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −2.47667 −0.179205 −0.0896027 0.995978i \(-0.528560\pi\)
−0.0896027 + 0.995978i \(0.528560\pi\)
\(192\) −5.66782 −0.409040
\(193\) −24.1274 −1.73673 −0.868364 0.495928i \(-0.834828\pi\)
−0.868364 + 0.495928i \(0.834828\pi\)
\(194\) −2.71632 −0.195021
\(195\) 0 0
\(196\) −1.89858 −0.135613
\(197\) 4.52472 0.322373 0.161187 0.986924i \(-0.448468\pi\)
0.161187 + 0.986924i \(0.448468\pi\)
\(198\) −0.178336 −0.0126738
\(199\) −26.2513 −1.86090 −0.930451 0.366416i \(-0.880585\pi\)
−0.930451 + 0.366416i \(0.880585\pi\)
\(200\) 0 0
\(201\) −8.96024 −0.632006
\(202\) −1.96129 −0.137996
\(203\) −9.19896 −0.645640
\(204\) 8.31895 0.582443
\(205\) 0 0
\(206\) 4.05242 0.282346
\(207\) 3.28025 0.227993
\(208\) 3.40179 0.235872
\(209\) −0.581673 −0.0402352
\(210\) 0 0
\(211\) 5.82012 0.400673 0.200337 0.979727i \(-0.435796\pi\)
0.200337 + 0.979727i \(0.435796\pi\)
\(212\) 1.32001 0.0906585
\(213\) 11.3205 0.775668
\(214\) −0.777040 −0.0531174
\(215\) 0 0
\(216\) −1.24154 −0.0844760
\(217\) −4.24154 −0.287934
\(218\) 2.53362 0.171598
\(219\) −10.1529 −0.686072
\(220\) 0 0
\(221\) −4.38166 −0.294742
\(222\) −1.50757 −0.101182
\(223\) 21.0182 1.40748 0.703741 0.710457i \(-0.251512\pi\)
0.703741 + 0.710457i \(0.251512\pi\)
\(224\) 3.56641 0.238291
\(225\) 0 0
\(226\) 5.44641 0.362290
\(227\) 3.56000 0.236285 0.118143 0.992997i \(-0.462306\pi\)
0.118143 + 0.992997i \(0.462306\pi\)
\(228\) −1.97207 −0.130604
\(229\) −22.2275 −1.46884 −0.734418 0.678697i \(-0.762545\pi\)
−0.734418 + 0.678697i \(0.762545\pi\)
\(230\) 0 0
\(231\) −0.559998 −0.0368451
\(232\) 11.4209 0.749816
\(233\) −4.48998 −0.294148 −0.147074 0.989125i \(-0.546986\pi\)
−0.147074 + 0.989125i \(0.546986\pi\)
\(234\) 0.318459 0.0208183
\(235\) 0 0
\(236\) −9.43254 −0.614006
\(237\) −3.12795 −0.203182
\(238\) −1.39538 −0.0904490
\(239\) −28.0085 −1.81172 −0.905858 0.423581i \(-0.860773\pi\)
−0.905858 + 0.423581i \(0.860773\pi\)
\(240\) 0 0
\(241\) −14.6468 −0.943481 −0.471740 0.881738i \(-0.656374\pi\)
−0.471740 + 0.881738i \(0.656374\pi\)
\(242\) −3.40318 −0.218765
\(243\) 1.00000 0.0641500
\(244\) 12.2008 0.781079
\(245\) 0 0
\(246\) 1.41551 0.0902494
\(247\) 1.03871 0.0660913
\(248\) 5.26603 0.334394
\(249\) −11.2729 −0.714393
\(250\) 0 0
\(251\) −11.5619 −0.729780 −0.364890 0.931051i \(-0.618893\pi\)
−0.364890 + 0.931051i \(0.618893\pi\)
\(252\) −1.89858 −0.119600
\(253\) −1.83693 −0.115487
\(254\) −5.87155 −0.368414
\(255\) 0 0
\(256\) 8.48933 0.530583
\(257\) 21.8506 1.36300 0.681501 0.731817i \(-0.261328\pi\)
0.681501 + 0.731817i \(0.261328\pi\)
\(258\) 1.10346 0.0686983
\(259\) −4.73397 −0.294154
\(260\) 0 0
\(261\) −9.19896 −0.569401
\(262\) 6.20785 0.383522
\(263\) 20.8055 1.28292 0.641460 0.767157i \(-0.278329\pi\)
0.641460 + 0.767157i \(0.278329\pi\)
\(264\) 0.695259 0.0427902
\(265\) 0 0
\(266\) 0.330785 0.0202818
\(267\) 3.82012 0.233787
\(268\) 17.0118 1.03916
\(269\) 9.95040 0.606686 0.303343 0.952881i \(-0.401897\pi\)
0.303343 + 0.952881i \(0.401897\pi\)
\(270\) 0 0
\(271\) −9.26653 −0.562901 −0.281451 0.959576i \(-0.590816\pi\)
−0.281451 + 0.959576i \(0.590816\pi\)
\(272\) −14.9055 −0.903778
\(273\) 1.00000 0.0605228
\(274\) −4.45471 −0.269119
\(275\) 0 0
\(276\) −6.22782 −0.374871
\(277\) −24.8869 −1.49531 −0.747655 0.664088i \(-0.768820\pi\)
−0.747655 + 0.664088i \(0.768820\pi\)
\(278\) −1.90434 −0.114215
\(279\) −4.24154 −0.253934
\(280\) 0 0
\(281\) 3.67358 0.219148 0.109574 0.993979i \(-0.465051\pi\)
0.109574 + 0.993979i \(0.465051\pi\)
\(282\) 0.244971 0.0145878
\(283\) 12.4801 0.741865 0.370932 0.928660i \(-0.379038\pi\)
0.370932 + 0.928660i \(0.379038\pi\)
\(284\) −21.4929 −1.27537
\(285\) 0 0
\(286\) −0.178336 −0.0105452
\(287\) 4.44486 0.262372
\(288\) 3.56641 0.210153
\(289\) 2.19896 0.129350
\(290\) 0 0
\(291\) −8.52959 −0.500013
\(292\) 19.2762 1.12806
\(293\) −19.0921 −1.11537 −0.557687 0.830052i \(-0.688311\pi\)
−0.557687 + 0.830052i \(0.688311\pi\)
\(294\) 0.318459 0.0185729
\(295\) 0 0
\(296\) 5.87740 0.341617
\(297\) −0.559998 −0.0324944
\(298\) −6.54207 −0.378972
\(299\) 3.28025 0.189701
\(300\) 0 0
\(301\) 3.46499 0.199719
\(302\) −3.34345 −0.192394
\(303\) −6.15870 −0.353808
\(304\) 3.53346 0.202658
\(305\) 0 0
\(306\) −1.39538 −0.0797685
\(307\) −21.2812 −1.21458 −0.607292 0.794479i \(-0.707744\pi\)
−0.607292 + 0.794479i \(0.707744\pi\)
\(308\) 1.06320 0.0605816
\(309\) 12.7251 0.723906
\(310\) 0 0
\(311\) −17.8373 −1.01146 −0.505730 0.862692i \(-0.668777\pi\)
−0.505730 + 0.862692i \(0.668777\pi\)
\(312\) −1.24154 −0.0702883
\(313\) −10.0969 −0.570712 −0.285356 0.958422i \(-0.592112\pi\)
−0.285356 + 0.958422i \(0.592112\pi\)
\(314\) −1.23746 −0.0698337
\(315\) 0 0
\(316\) 5.93868 0.334077
\(317\) 6.22451 0.349603 0.174802 0.984604i \(-0.444072\pi\)
0.174802 + 0.984604i \(0.444072\pi\)
\(318\) −0.221411 −0.0124161
\(319\) 5.15139 0.288423
\(320\) 0 0
\(321\) −2.44000 −0.136188
\(322\) 1.04462 0.0582146
\(323\) −4.55126 −0.253239
\(324\) −1.89858 −0.105477
\(325\) 0 0
\(326\) 8.04323 0.445473
\(327\) 7.95587 0.439961
\(328\) −5.51847 −0.304707
\(329\) 0.769240 0.0424095
\(330\) 0 0
\(331\) 16.7011 0.917976 0.458988 0.888443i \(-0.348212\pi\)
0.458988 + 0.888443i \(0.348212\pi\)
\(332\) 21.4026 1.17462
\(333\) −4.73397 −0.259420
\(334\) 0.709469 0.0388204
\(335\) 0 0
\(336\) 3.40179 0.185583
\(337\) −24.3002 −1.32372 −0.661859 0.749629i \(-0.730232\pi\)
−0.661859 + 0.749629i \(0.730232\pi\)
\(338\) 0.318459 0.0173219
\(339\) 17.1024 0.928875
\(340\) 0 0
\(341\) 2.37525 0.128627
\(342\) 0.330785 0.0178868
\(343\) 1.00000 0.0539949
\(344\) −4.30192 −0.231944
\(345\) 0 0
\(346\) −5.49491 −0.295408
\(347\) −0.923080 −0.0495535 −0.0247768 0.999693i \(-0.507887\pi\)
−0.0247768 + 0.999693i \(0.507887\pi\)
\(348\) 17.4650 0.936222
\(349\) 7.18475 0.384591 0.192295 0.981337i \(-0.438407\pi\)
0.192295 + 0.981337i \(0.438407\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) −1.99718 −0.106450
\(353\) 11.3220 0.602612 0.301306 0.953528i \(-0.402577\pi\)
0.301306 + 0.953528i \(0.402577\pi\)
\(354\) 1.58217 0.0840912
\(355\) 0 0
\(356\) −7.25281 −0.384398
\(357\) −4.38166 −0.231902
\(358\) −4.58842 −0.242505
\(359\) 1.03373 0.0545580 0.0272790 0.999628i \(-0.491316\pi\)
0.0272790 + 0.999628i \(0.491316\pi\)
\(360\) 0 0
\(361\) −17.9211 −0.943215
\(362\) 1.47181 0.0773564
\(363\) −10.6864 −0.560891
\(364\) −1.89858 −0.0995128
\(365\) 0 0
\(366\) −2.04651 −0.106973
\(367\) 18.1966 0.949856 0.474928 0.880025i \(-0.342474\pi\)
0.474928 + 0.880025i \(0.342474\pi\)
\(368\) 11.1587 0.581688
\(369\) 4.44486 0.231390
\(370\) 0 0
\(371\) −0.695259 −0.0360960
\(372\) 8.05292 0.417524
\(373\) 7.09048 0.367131 0.183566 0.983007i \(-0.441236\pi\)
0.183566 + 0.983007i \(0.441236\pi\)
\(374\) 0.781409 0.0404057
\(375\) 0 0
\(376\) −0.955041 −0.0492525
\(377\) −9.19896 −0.473770
\(378\) 0.318459 0.0163798
\(379\) 17.3071 0.889007 0.444503 0.895777i \(-0.353380\pi\)
0.444503 + 0.895777i \(0.353380\pi\)
\(380\) 0 0
\(381\) −18.4374 −0.944577
\(382\) −0.788717 −0.0403543
\(383\) 7.62896 0.389822 0.194911 0.980821i \(-0.437558\pi\)
0.194911 + 0.980821i \(0.437558\pi\)
\(384\) −8.93778 −0.456104
\(385\) 0 0
\(386\) −7.68358 −0.391084
\(387\) 3.46499 0.176135
\(388\) 16.1941 0.822133
\(389\) 15.0423 0.762675 0.381337 0.924436i \(-0.375464\pi\)
0.381337 + 0.924436i \(0.375464\pi\)
\(390\) 0 0
\(391\) −14.3729 −0.726870
\(392\) −1.24154 −0.0627072
\(393\) 19.4934 0.983313
\(394\) 1.44094 0.0725934
\(395\) 0 0
\(396\) 1.06320 0.0534279
\(397\) 8.11690 0.407375 0.203688 0.979036i \(-0.434707\pi\)
0.203688 + 0.979036i \(0.434707\pi\)
\(398\) −8.35995 −0.419046
\(399\) 1.03871 0.0520004
\(400\) 0 0
\(401\) −18.7107 −0.934370 −0.467185 0.884160i \(-0.654732\pi\)
−0.467185 + 0.884160i \(0.654732\pi\)
\(402\) −2.85347 −0.142318
\(403\) −4.24154 −0.211286
\(404\) 11.6928 0.581739
\(405\) 0 0
\(406\) −2.92949 −0.145388
\(407\) 2.65101 0.131406
\(408\) 5.44000 0.269320
\(409\) −0.958197 −0.0473798 −0.0236899 0.999719i \(-0.507541\pi\)
−0.0236899 + 0.999719i \(0.507541\pi\)
\(410\) 0 0
\(411\) −13.9883 −0.689993
\(412\) −24.1597 −1.19026
\(413\) 4.96820 0.244469
\(414\) 1.04462 0.0513404
\(415\) 0 0
\(416\) 3.56641 0.174858
\(417\) −5.97987 −0.292836
\(418\) −0.185239 −0.00906034
\(419\) −31.2929 −1.52876 −0.764379 0.644767i \(-0.776954\pi\)
−0.764379 + 0.644767i \(0.776954\pi\)
\(420\) 0 0
\(421\) 20.9643 1.02174 0.510869 0.859658i \(-0.329324\pi\)
0.510869 + 0.859658i \(0.329324\pi\)
\(422\) 1.85347 0.0902254
\(423\) 0.769240 0.0374017
\(424\) 0.863191 0.0419202
\(425\) 0 0
\(426\) 3.60511 0.174668
\(427\) −6.42628 −0.310990
\(428\) 4.63255 0.223923
\(429\) −0.559998 −0.0270369
\(430\) 0 0
\(431\) −16.9304 −0.815508 −0.407754 0.913092i \(-0.633688\pi\)
−0.407754 + 0.913092i \(0.633688\pi\)
\(432\) 3.40179 0.163669
\(433\) −24.6154 −1.18294 −0.591471 0.806326i \(-0.701453\pi\)
−0.591471 + 0.806326i \(0.701453\pi\)
\(434\) −1.35076 −0.0648384
\(435\) 0 0
\(436\) −15.1049 −0.723393
\(437\) 3.40721 0.162989
\(438\) −3.23329 −0.154493
\(439\) −17.3333 −0.827274 −0.413637 0.910442i \(-0.635742\pi\)
−0.413637 + 0.910442i \(0.635742\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) −1.39538 −0.0663714
\(443\) 12.0744 0.573674 0.286837 0.957979i \(-0.407396\pi\)
0.286837 + 0.957979i \(0.407396\pi\)
\(444\) 8.98783 0.426544
\(445\) 0 0
\(446\) 6.69342 0.316943
\(447\) −20.5429 −0.971646
\(448\) −5.66782 −0.267779
\(449\) −17.2235 −0.812825 −0.406412 0.913690i \(-0.633220\pi\)
−0.406412 + 0.913690i \(0.633220\pi\)
\(450\) 0 0
\(451\) −2.48911 −0.117208
\(452\) −32.4703 −1.52728
\(453\) −10.4988 −0.493278
\(454\) 1.13371 0.0532078
\(455\) 0 0
\(456\) −1.28959 −0.0603908
\(457\) 28.4970 1.33303 0.666517 0.745490i \(-0.267784\pi\)
0.666517 + 0.745490i \(0.267784\pi\)
\(458\) −7.07856 −0.330759
\(459\) −4.38166 −0.204518
\(460\) 0 0
\(461\) −27.4323 −1.27765 −0.638824 0.769353i \(-0.720579\pi\)
−0.638824 + 0.769353i \(0.720579\pi\)
\(462\) −0.178336 −0.00829695
\(463\) −25.5851 −1.18904 −0.594520 0.804081i \(-0.702658\pi\)
−0.594520 + 0.804081i \(0.702658\pi\)
\(464\) −31.2929 −1.45274
\(465\) 0 0
\(466\) −1.42987 −0.0662376
\(467\) −5.58155 −0.258284 −0.129142 0.991626i \(-0.541222\pi\)
−0.129142 + 0.991626i \(0.541222\pi\)
\(468\) −1.89858 −0.0877621
\(469\) −8.96024 −0.413745
\(470\) 0 0
\(471\) −3.88576 −0.179047
\(472\) −6.16821 −0.283915
\(473\) −1.94039 −0.0892191
\(474\) −0.996125 −0.0457535
\(475\) 0 0
\(476\) 8.31895 0.381299
\(477\) −0.695259 −0.0318337
\(478\) −8.91954 −0.407970
\(479\) −21.4429 −0.979752 −0.489876 0.871792i \(-0.662958\pi\)
−0.489876 + 0.871792i \(0.662958\pi\)
\(480\) 0 0
\(481\) −4.73397 −0.215850
\(482\) −4.66439 −0.212457
\(483\) 3.28025 0.149256
\(484\) 20.2890 0.922229
\(485\) 0 0
\(486\) 0.318459 0.0144456
\(487\) 14.9191 0.676048 0.338024 0.941137i \(-0.390241\pi\)
0.338024 + 0.941137i \(0.390241\pi\)
\(488\) 7.97848 0.361169
\(489\) 25.2567 1.14215
\(490\) 0 0
\(491\) 3.73298 0.168467 0.0842335 0.996446i \(-0.473156\pi\)
0.0842335 + 0.996446i \(0.473156\pi\)
\(492\) −8.43895 −0.380457
\(493\) 40.3067 1.81532
\(494\) 0.330785 0.0148827
\(495\) 0 0
\(496\) −14.4288 −0.647873
\(497\) 11.3205 0.507794
\(498\) −3.58997 −0.160870
\(499\) 16.2285 0.726486 0.363243 0.931694i \(-0.381669\pi\)
0.363243 + 0.931694i \(0.381669\pi\)
\(500\) 0 0
\(501\) 2.22782 0.0995317
\(502\) −3.68198 −0.164335
\(503\) 11.1999 0.499379 0.249689 0.968326i \(-0.419672\pi\)
0.249689 + 0.968326i \(0.419672\pi\)
\(504\) −1.24154 −0.0553025
\(505\) 0 0
\(506\) −0.584987 −0.0260058
\(507\) 1.00000 0.0444116
\(508\) 35.0049 1.55309
\(509\) −14.2965 −0.633683 −0.316841 0.948479i \(-0.602622\pi\)
−0.316841 + 0.948479i \(0.602622\pi\)
\(510\) 0 0
\(511\) −10.1529 −0.449140
\(512\) 20.5791 0.909475
\(513\) 1.03871 0.0458600
\(514\) 6.95851 0.306927
\(515\) 0 0
\(516\) −6.57858 −0.289606
\(517\) −0.430772 −0.0189453
\(518\) −1.50757 −0.0662390
\(519\) −17.2547 −0.757397
\(520\) 0 0
\(521\) −6.40522 −0.280618 −0.140309 0.990108i \(-0.544810\pi\)
−0.140309 + 0.990108i \(0.544810\pi\)
\(522\) −2.92949 −0.128220
\(523\) −24.9957 −1.09299 −0.546493 0.837464i \(-0.684038\pi\)
−0.546493 + 0.837464i \(0.684038\pi\)
\(524\) −37.0099 −1.61678
\(525\) 0 0
\(526\) 6.62568 0.288894
\(527\) 18.5850 0.809575
\(528\) −1.90499 −0.0829042
\(529\) −12.2400 −0.532174
\(530\) 0 0
\(531\) 4.96820 0.215601
\(532\) −1.97207 −0.0855001
\(533\) 4.44486 0.192528
\(534\) 1.21655 0.0526453
\(535\) 0 0
\(536\) 11.1245 0.480504
\(537\) −14.4082 −0.621760
\(538\) 3.16879 0.136616
\(539\) −0.559998 −0.0241208
\(540\) 0 0
\(541\) −12.6561 −0.544130 −0.272065 0.962279i \(-0.587707\pi\)
−0.272065 + 0.962279i \(0.587707\pi\)
\(542\) −2.95101 −0.126757
\(543\) 4.62165 0.198334
\(544\) −15.6268 −0.669993
\(545\) 0 0
\(546\) 0.318459 0.0136288
\(547\) 29.2510 1.25068 0.625341 0.780352i \(-0.284960\pi\)
0.625341 + 0.780352i \(0.284960\pi\)
\(548\) 26.5580 1.13450
\(549\) −6.42628 −0.274267
\(550\) 0 0
\(551\) −9.55502 −0.407057
\(552\) −4.07255 −0.173339
\(553\) −3.12795 −0.133014
\(554\) −7.92546 −0.336720
\(555\) 0 0
\(556\) 11.3533 0.481487
\(557\) 20.9412 0.887306 0.443653 0.896199i \(-0.353682\pi\)
0.443653 + 0.896199i \(0.353682\pi\)
\(558\) −1.35076 −0.0571821
\(559\) 3.46499 0.146554
\(560\) 0 0
\(561\) 2.45372 0.103596
\(562\) 1.16989 0.0493486
\(563\) 18.3282 0.772441 0.386220 0.922407i \(-0.373780\pi\)
0.386220 + 0.922407i \(0.373780\pi\)
\(564\) −1.46047 −0.0614967
\(565\) 0 0
\(566\) 3.97440 0.167056
\(567\) 1.00000 0.0419961
\(568\) −14.0548 −0.589728
\(569\) 9.01535 0.377943 0.188972 0.981983i \(-0.439485\pi\)
0.188972 + 0.981983i \(0.439485\pi\)
\(570\) 0 0
\(571\) −16.6491 −0.696743 −0.348371 0.937357i \(-0.613265\pi\)
−0.348371 + 0.937357i \(0.613265\pi\)
\(572\) 1.06320 0.0444547
\(573\) −2.47667 −0.103464
\(574\) 1.41551 0.0590821
\(575\) 0 0
\(576\) −5.66782 −0.236159
\(577\) −11.9329 −0.496774 −0.248387 0.968661i \(-0.579900\pi\)
−0.248387 + 0.968661i \(0.579900\pi\)
\(578\) 0.700277 0.0291277
\(579\) −24.1274 −1.00270
\(580\) 0 0
\(581\) −11.2729 −0.467680
\(582\) −2.71632 −0.112595
\(583\) 0.389343 0.0161250
\(584\) 12.6053 0.521610
\(585\) 0 0
\(586\) −6.08005 −0.251165
\(587\) 41.8937 1.72914 0.864568 0.502516i \(-0.167592\pi\)
0.864568 + 0.502516i \(0.167592\pi\)
\(588\) −1.89858 −0.0782963
\(589\) −4.40571 −0.181534
\(590\) 0 0
\(591\) 4.52472 0.186122
\(592\) −16.1040 −0.661868
\(593\) 0.756913 0.0310827 0.0155413 0.999879i \(-0.495053\pi\)
0.0155413 + 0.999879i \(0.495053\pi\)
\(594\) −0.178336 −0.00731722
\(595\) 0 0
\(596\) 39.0024 1.59760
\(597\) −26.2513 −1.07439
\(598\) 1.04462 0.0427178
\(599\) 43.8116 1.79009 0.895047 0.445971i \(-0.147142\pi\)
0.895047 + 0.445971i \(0.147142\pi\)
\(600\) 0 0
\(601\) −32.6738 −1.33279 −0.666397 0.745597i \(-0.732164\pi\)
−0.666397 + 0.745597i \(0.732164\pi\)
\(602\) 1.10346 0.0449736
\(603\) −8.96024 −0.364889
\(604\) 19.9329 0.811059
\(605\) 0 0
\(606\) −1.96129 −0.0796721
\(607\) −5.45870 −0.221562 −0.110781 0.993845i \(-0.535335\pi\)
−0.110781 + 0.993845i \(0.535335\pi\)
\(608\) 3.70445 0.150235
\(609\) −9.19896 −0.372761
\(610\) 0 0
\(611\) 0.769240 0.0311201
\(612\) 8.31895 0.336274
\(613\) 9.19839 0.371520 0.185760 0.982595i \(-0.440525\pi\)
0.185760 + 0.982595i \(0.440525\pi\)
\(614\) −6.77720 −0.273505
\(615\) 0 0
\(616\) 0.695259 0.0280128
\(617\) 16.5466 0.666142 0.333071 0.942902i \(-0.391915\pi\)
0.333071 + 0.942902i \(0.391915\pi\)
\(618\) 4.05242 0.163012
\(619\) 40.2010 1.61581 0.807907 0.589310i \(-0.200600\pi\)
0.807907 + 0.589310i \(0.200600\pi\)
\(620\) 0 0
\(621\) 3.28025 0.131632
\(622\) −5.68045 −0.227765
\(623\) 3.82012 0.153050
\(624\) 3.40179 0.136181
\(625\) 0 0
\(626\) −3.21546 −0.128515
\(627\) −0.581673 −0.0232298
\(628\) 7.37745 0.294392
\(629\) 20.7426 0.827063
\(630\) 0 0
\(631\) −16.5228 −0.657761 −0.328881 0.944372i \(-0.606671\pi\)
−0.328881 + 0.944372i \(0.606671\pi\)
\(632\) 3.88348 0.154476
\(633\) 5.82012 0.231329
\(634\) 1.98225 0.0787252
\(635\) 0 0
\(636\) 1.32001 0.0523417
\(637\) 1.00000 0.0396214
\(638\) 1.64051 0.0649483
\(639\) 11.3205 0.447832
\(640\) 0 0
\(641\) 39.1790 1.54748 0.773739 0.633504i \(-0.218384\pi\)
0.773739 + 0.633504i \(0.218384\pi\)
\(642\) −0.777040 −0.0306673
\(643\) −1.98613 −0.0783251 −0.0391626 0.999233i \(-0.512469\pi\)
−0.0391626 + 0.999233i \(0.512469\pi\)
\(644\) −6.22782 −0.245411
\(645\) 0 0
\(646\) −1.44939 −0.0570255
\(647\) −6.04859 −0.237794 −0.118897 0.992907i \(-0.537936\pi\)
−0.118897 + 0.992907i \(0.537936\pi\)
\(648\) −1.24154 −0.0487722
\(649\) −2.78218 −0.109210
\(650\) 0 0
\(651\) −4.24154 −0.166239
\(652\) −47.9520 −1.87795
\(653\) 38.2254 1.49588 0.747938 0.663768i \(-0.231044\pi\)
0.747938 + 0.663768i \(0.231044\pi\)
\(654\) 2.53362 0.0990723
\(655\) 0 0
\(656\) 15.1205 0.590356
\(657\) −10.1529 −0.396104
\(658\) 0.244971 0.00954997
\(659\) −8.38962 −0.326813 −0.163407 0.986559i \(-0.552248\pi\)
−0.163407 + 0.986559i \(0.552248\pi\)
\(660\) 0 0
\(661\) 23.1388 0.899994 0.449997 0.893030i \(-0.351425\pi\)
0.449997 + 0.893030i \(0.351425\pi\)
\(662\) 5.31862 0.206714
\(663\) −4.38166 −0.170170
\(664\) 13.9958 0.543142
\(665\) 0 0
\(666\) −1.50757 −0.0584173
\(667\) −30.1748 −1.16837
\(668\) −4.22971 −0.163652
\(669\) 21.0182 0.812610
\(670\) 0 0
\(671\) 3.59870 0.138926
\(672\) 3.56641 0.137577
\(673\) 6.62137 0.255235 0.127617 0.991823i \(-0.459267\pi\)
0.127617 + 0.991823i \(0.459267\pi\)
\(674\) −7.73862 −0.298081
\(675\) 0 0
\(676\) −1.89858 −0.0730225
\(677\) 31.0552 1.19355 0.596775 0.802409i \(-0.296448\pi\)
0.596775 + 0.802409i \(0.296448\pi\)
\(678\) 5.44641 0.209168
\(679\) −8.52959 −0.327335
\(680\) 0 0
\(681\) 3.56000 0.136419
\(682\) 0.756420 0.0289648
\(683\) −1.51194 −0.0578528 −0.0289264 0.999582i \(-0.509209\pi\)
−0.0289264 + 0.999582i \(0.509209\pi\)
\(684\) −1.97207 −0.0754040
\(685\) 0 0
\(686\) 0.318459 0.0121588
\(687\) −22.2275 −0.848033
\(688\) 11.7872 0.449382
\(689\) −0.695259 −0.0264872
\(690\) 0 0
\(691\) −37.3647 −1.42142 −0.710710 0.703485i \(-0.751626\pi\)
−0.710710 + 0.703485i \(0.751626\pi\)
\(692\) 32.7595 1.24533
\(693\) −0.559998 −0.0212726
\(694\) −0.293963 −0.0111587
\(695\) 0 0
\(696\) 11.4209 0.432907
\(697\) −19.4759 −0.737702
\(698\) 2.28805 0.0866038
\(699\) −4.48998 −0.169827
\(700\) 0 0
\(701\) 38.5512 1.45606 0.728029 0.685546i \(-0.240437\pi\)
0.728029 + 0.685546i \(0.240437\pi\)
\(702\) 0.318459 0.0120195
\(703\) −4.91720 −0.185456
\(704\) 3.17397 0.119623
\(705\) 0 0
\(706\) 3.60561 0.135699
\(707\) −6.15870 −0.231622
\(708\) −9.43254 −0.354496
\(709\) −41.3214 −1.55186 −0.775929 0.630820i \(-0.782719\pi\)
−0.775929 + 0.630820i \(0.782719\pi\)
\(710\) 0 0
\(711\) −3.12795 −0.117307
\(712\) −4.74282 −0.177745
\(713\) −13.9133 −0.521057
\(714\) −1.39538 −0.0522207
\(715\) 0 0
\(716\) 27.3552 1.02231
\(717\) −28.0085 −1.04599
\(718\) 0.329199 0.0122856
\(719\) −25.1876 −0.939340 −0.469670 0.882842i \(-0.655627\pi\)
−0.469670 + 0.882842i \(0.655627\pi\)
\(720\) 0 0
\(721\) 12.7251 0.473908
\(722\) −5.70713 −0.212397
\(723\) −14.6468 −0.544719
\(724\) −8.77459 −0.326105
\(725\) 0 0
\(726\) −3.40318 −0.126304
\(727\) 12.9615 0.480716 0.240358 0.970684i \(-0.422735\pi\)
0.240358 + 0.970684i \(0.422735\pi\)
\(728\) −1.24154 −0.0460145
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −15.1824 −0.561542
\(732\) 12.2008 0.450956
\(733\) 41.3640 1.52781 0.763907 0.645326i \(-0.223279\pi\)
0.763907 + 0.645326i \(0.223279\pi\)
\(734\) 5.79488 0.213893
\(735\) 0 0
\(736\) 11.6987 0.431219
\(737\) 5.01771 0.184830
\(738\) 1.41551 0.0521055
\(739\) −10.9593 −0.403144 −0.201572 0.979474i \(-0.564605\pi\)
−0.201572 + 0.979474i \(0.564605\pi\)
\(740\) 0 0
\(741\) 1.03871 0.0381578
\(742\) −0.221411 −0.00812827
\(743\) −3.01156 −0.110483 −0.0552417 0.998473i \(-0.517593\pi\)
−0.0552417 + 0.998473i \(0.517593\pi\)
\(744\) 5.26603 0.193062
\(745\) 0 0
\(746\) 2.25803 0.0826722
\(747\) −11.2729 −0.412455
\(748\) −4.65859 −0.170335
\(749\) −2.44000 −0.0891557
\(750\) 0 0
\(751\) −12.0137 −0.438387 −0.219193 0.975681i \(-0.570343\pi\)
−0.219193 + 0.975681i \(0.570343\pi\)
\(752\) 2.61679 0.0954245
\(753\) −11.5619 −0.421338
\(754\) −2.92949 −0.106686
\(755\) 0 0
\(756\) −1.89858 −0.0690508
\(757\) 2.42625 0.0881834 0.0440917 0.999027i \(-0.485961\pi\)
0.0440917 + 0.999027i \(0.485961\pi\)
\(758\) 5.51161 0.200191
\(759\) −1.83693 −0.0666763
\(760\) 0 0
\(761\) 21.3265 0.773085 0.386543 0.922272i \(-0.373669\pi\)
0.386543 + 0.922272i \(0.373669\pi\)
\(762\) −5.87155 −0.212704
\(763\) 7.95587 0.288022
\(764\) 4.70216 0.170118
\(765\) 0 0
\(766\) 2.42951 0.0877818
\(767\) 4.96820 0.179391
\(768\) 8.48933 0.306332
\(769\) 5.24166 0.189019 0.0945095 0.995524i \(-0.469872\pi\)
0.0945095 + 0.995524i \(0.469872\pi\)
\(770\) 0 0
\(771\) 21.8506 0.786929
\(772\) 45.8079 1.64866
\(773\) 21.7015 0.780549 0.390275 0.920699i \(-0.372380\pi\)
0.390275 + 0.920699i \(0.372380\pi\)
\(774\) 1.10346 0.0396630
\(775\) 0 0
\(776\) 10.5898 0.380152
\(777\) −4.73397 −0.169830
\(778\) 4.79035 0.171742
\(779\) 4.61691 0.165418
\(780\) 0 0
\(781\) −6.33945 −0.226843
\(782\) −4.57719 −0.163680
\(783\) −9.19896 −0.328744
\(784\) 3.40179 0.121492
\(785\) 0 0
\(786\) 6.20785 0.221427
\(787\) −13.0567 −0.465422 −0.232711 0.972546i \(-0.574760\pi\)
−0.232711 + 0.972546i \(0.574760\pi\)
\(788\) −8.59057 −0.306026
\(789\) 20.8055 0.740694
\(790\) 0 0
\(791\) 17.1024 0.608091
\(792\) 0.695259 0.0247049
\(793\) −6.42628 −0.228204
\(794\) 2.58490 0.0917346
\(795\) 0 0
\(796\) 49.8402 1.76654
\(797\) −31.2399 −1.10657 −0.553286 0.832991i \(-0.686626\pi\)
−0.553286 + 0.832991i \(0.686626\pi\)
\(798\) 0.330785 0.0117097
\(799\) −3.37055 −0.119241
\(800\) 0 0
\(801\) 3.82012 0.134977
\(802\) −5.95860 −0.210406
\(803\) 5.68562 0.200641
\(804\) 17.0118 0.599959
\(805\) 0 0
\(806\) −1.35076 −0.0475783
\(807\) 9.95040 0.350271
\(808\) 7.64627 0.268995
\(809\) −41.5198 −1.45976 −0.729880 0.683576i \(-0.760424\pi\)
−0.729880 + 0.683576i \(0.760424\pi\)
\(810\) 0 0
\(811\) 27.1895 0.954752 0.477376 0.878699i \(-0.341588\pi\)
0.477376 + 0.878699i \(0.341588\pi\)
\(812\) 17.4650 0.612901
\(813\) −9.26653 −0.324991
\(814\) 0.844238 0.0295905
\(815\) 0 0
\(816\) −14.9055 −0.521796
\(817\) 3.59911 0.125917
\(818\) −0.305146 −0.0106692
\(819\) 1.00000 0.0349428
\(820\) 0 0
\(821\) −33.2419 −1.16015 −0.580075 0.814563i \(-0.696977\pi\)
−0.580075 + 0.814563i \(0.696977\pi\)
\(822\) −4.45471 −0.155376
\(823\) −45.2516 −1.57737 −0.788686 0.614796i \(-0.789238\pi\)
−0.788686 + 0.614796i \(0.789238\pi\)
\(824\) −15.7987 −0.550374
\(825\) 0 0
\(826\) 1.58217 0.0550506
\(827\) −8.83950 −0.307380 −0.153690 0.988119i \(-0.549116\pi\)
−0.153690 + 0.988119i \(0.549116\pi\)
\(828\) −6.22782 −0.216432
\(829\) 26.1667 0.908809 0.454404 0.890796i \(-0.349852\pi\)
0.454404 + 0.890796i \(0.349852\pi\)
\(830\) 0 0
\(831\) −24.8869 −0.863317
\(832\) −5.66782 −0.196496
\(833\) −4.38166 −0.151816
\(834\) −1.90434 −0.0659420
\(835\) 0 0
\(836\) 1.10436 0.0381949
\(837\) −4.24154 −0.146609
\(838\) −9.96550 −0.344253
\(839\) −9.98579 −0.344748 −0.172374 0.985032i \(-0.555144\pi\)
−0.172374 + 0.985032i \(0.555144\pi\)
\(840\) 0 0
\(841\) 55.6208 1.91796
\(842\) 6.67627 0.230080
\(843\) 3.67358 0.126525
\(844\) −11.0500 −0.380356
\(845\) 0 0
\(846\) 0.244971 0.00842228
\(847\) −10.6864 −0.367189
\(848\) −2.36512 −0.0812187
\(849\) 12.4801 0.428316
\(850\) 0 0
\(851\) −15.5286 −0.532312
\(852\) −21.4929 −0.736335
\(853\) −27.9640 −0.957469 −0.478734 0.877960i \(-0.658904\pi\)
−0.478734 + 0.877960i \(0.658904\pi\)
\(854\) −2.04651 −0.0700300
\(855\) 0 0
\(856\) 3.02936 0.103541
\(857\) 27.9612 0.955137 0.477569 0.878594i \(-0.341518\pi\)
0.477569 + 0.878594i \(0.341518\pi\)
\(858\) −0.178336 −0.00608830
\(859\) 48.6972 1.66153 0.830764 0.556625i \(-0.187904\pi\)
0.830764 + 0.556625i \(0.187904\pi\)
\(860\) 0 0
\(861\) 4.44486 0.151481
\(862\) −5.39163 −0.183640
\(863\) 2.45964 0.0837270 0.0418635 0.999123i \(-0.486671\pi\)
0.0418635 + 0.999123i \(0.486671\pi\)
\(864\) 3.56641 0.121332
\(865\) 0 0
\(866\) −7.83901 −0.266380
\(867\) 2.19896 0.0746805
\(868\) 8.05292 0.273334
\(869\) 1.75165 0.0594205
\(870\) 0 0
\(871\) −8.96024 −0.303606
\(872\) −9.87752 −0.334495
\(873\) −8.52959 −0.288683
\(874\) 1.08506 0.0367026
\(875\) 0 0
\(876\) 19.2762 0.651283
\(877\) 24.2250 0.818020 0.409010 0.912530i \(-0.365874\pi\)
0.409010 + 0.912530i \(0.365874\pi\)
\(878\) −5.51995 −0.186289
\(879\) −19.0921 −0.643961
\(880\) 0 0
\(881\) 9.06491 0.305405 0.152702 0.988272i \(-0.451202\pi\)
0.152702 + 0.988272i \(0.451202\pi\)
\(882\) 0.318459 0.0107231
\(883\) 9.14548 0.307770 0.153885 0.988089i \(-0.450821\pi\)
0.153885 + 0.988089i \(0.450821\pi\)
\(884\) 8.31895 0.279797
\(885\) 0 0
\(886\) 3.84521 0.129182
\(887\) 30.0582 1.00926 0.504628 0.863337i \(-0.331630\pi\)
0.504628 + 0.863337i \(0.331630\pi\)
\(888\) 5.87740 0.197233
\(889\) −18.4374 −0.618371
\(890\) 0 0
\(891\) −0.559998 −0.0187606
\(892\) −39.9048 −1.33611
\(893\) 0.799014 0.0267380
\(894\) −6.54207 −0.218800
\(895\) 0 0
\(896\) −8.93778 −0.298590
\(897\) 3.28025 0.109524
\(898\) −5.48496 −0.183036
\(899\) 39.0177 1.30131
\(900\) 0 0
\(901\) 3.04639 0.101490
\(902\) −0.792680 −0.0263934
\(903\) 3.46499 0.115308
\(904\) −21.2333 −0.706209
\(905\) 0 0
\(906\) −3.34345 −0.111079
\(907\) 26.2932 0.873051 0.436525 0.899692i \(-0.356209\pi\)
0.436525 + 0.899692i \(0.356209\pi\)
\(908\) −6.75895 −0.224304
\(909\) −6.15870 −0.204271
\(910\) 0 0
\(911\) −15.2163 −0.504137 −0.252069 0.967709i \(-0.581111\pi\)
−0.252069 + 0.967709i \(0.581111\pi\)
\(912\) 3.53346 0.117005
\(913\) 6.31282 0.208924
\(914\) 9.07512 0.300178
\(915\) 0 0
\(916\) 42.2008 1.39436
\(917\) 19.4934 0.643729
\(918\) −1.39538 −0.0460544
\(919\) 11.7100 0.386277 0.193139 0.981171i \(-0.438133\pi\)
0.193139 + 0.981171i \(0.438133\pi\)
\(920\) 0 0
\(921\) −21.2812 −0.701240
\(922\) −8.73604 −0.287706
\(923\) 11.3205 0.372619
\(924\) 1.06320 0.0349768
\(925\) 0 0
\(926\) −8.14779 −0.267753
\(927\) 12.7251 0.417947
\(928\) −32.8072 −1.07695
\(929\) 28.1037 0.922052 0.461026 0.887387i \(-0.347482\pi\)
0.461026 + 0.887387i \(0.347482\pi\)
\(930\) 0 0
\(931\) 1.03871 0.0340422
\(932\) 8.52460 0.279233
\(933\) −17.8373 −0.583967
\(934\) −1.77750 −0.0581614
\(935\) 0 0
\(936\) −1.24154 −0.0405810
\(937\) −32.3947 −1.05829 −0.529144 0.848532i \(-0.677487\pi\)
−0.529144 + 0.848532i \(0.677487\pi\)
\(938\) −2.85347 −0.0931690
\(939\) −10.0969 −0.329501
\(940\) 0 0
\(941\) −7.71494 −0.251500 −0.125750 0.992062i \(-0.540134\pi\)
−0.125750 + 0.992062i \(0.540134\pi\)
\(942\) −1.23746 −0.0403185
\(943\) 14.5802 0.474798
\(944\) 16.9008 0.550073
\(945\) 0 0
\(946\) −0.617933 −0.0200908
\(947\) 26.8915 0.873856 0.436928 0.899497i \(-0.356066\pi\)
0.436928 + 0.899497i \(0.356066\pi\)
\(948\) 5.93868 0.192879
\(949\) −10.1529 −0.329578
\(950\) 0 0
\(951\) 6.22451 0.201843
\(952\) 5.44000 0.176311
\(953\) −33.0003 −1.06899 −0.534493 0.845173i \(-0.679497\pi\)
−0.534493 + 0.845173i \(0.679497\pi\)
\(954\) −0.221411 −0.00716846
\(955\) 0 0
\(956\) 53.1764 1.71985
\(957\) 5.15139 0.166521
\(958\) −6.82869 −0.220625
\(959\) −13.9883 −0.451707
\(960\) 0 0
\(961\) −13.0093 −0.419656
\(962\) −1.50757 −0.0486061
\(963\) −2.44000 −0.0786280
\(964\) 27.8081 0.895639
\(965\) 0 0
\(966\) 1.04462 0.0336102
\(967\) 27.3346 0.879021 0.439511 0.898237i \(-0.355152\pi\)
0.439511 + 0.898237i \(0.355152\pi\)
\(968\) 13.2676 0.426436
\(969\) −4.55126 −0.146208
\(970\) 0 0
\(971\) −0.338862 −0.0108746 −0.00543731 0.999985i \(-0.501731\pi\)
−0.00543731 + 0.999985i \(0.501731\pi\)
\(972\) −1.89858 −0.0608971
\(973\) −5.97987 −0.191706
\(974\) 4.75112 0.152236
\(975\) 0 0
\(976\) −21.8609 −0.699749
\(977\) 36.6151 1.17142 0.585711 0.810520i \(-0.300815\pi\)
0.585711 + 0.810520i \(0.300815\pi\)
\(978\) 8.04323 0.257194
\(979\) −2.13926 −0.0683709
\(980\) 0 0
\(981\) 7.95587 0.254011
\(982\) 1.18880 0.0379361
\(983\) 36.6089 1.16764 0.583822 0.811882i \(-0.301557\pi\)
0.583822 + 0.811882i \(0.301557\pi\)
\(984\) −5.51847 −0.175922
\(985\) 0 0
\(986\) 12.8360 0.408783
\(987\) 0.769240 0.0244852
\(988\) −1.97207 −0.0627400
\(989\) 11.3660 0.361418
\(990\) 0 0
\(991\) 54.6507 1.73604 0.868018 0.496533i \(-0.165394\pi\)
0.868018 + 0.496533i \(0.165394\pi\)
\(992\) −15.1271 −0.480284
\(993\) 16.7011 0.529994
\(994\) 3.60511 0.114347
\(995\) 0 0
\(996\) 21.4026 0.678168
\(997\) 2.87263 0.0909770 0.0454885 0.998965i \(-0.485516\pi\)
0.0454885 + 0.998965i \(0.485516\pi\)
\(998\) 5.16810 0.163593
\(999\) −4.73397 −0.149776
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6825.2.a.bi.1.3 4
5.4 even 2 6825.2.a.bj.1.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6825.2.a.bi.1.3 4 1.1 even 1 trivial
6825.2.a.bj.1.2 yes 4 5.4 even 2