Properties

Label 6825.2.a.bi.1.2
Level $6825$
Weight $2$
Character 6825.1
Self dual yes
Analytic conductor $54.498$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6825,2,Mod(1,6825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6825.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6825 = 3 \cdot 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.4978993795\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.3981.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.785261\) of defining polynomial
Character \(\chi\) \(=\) 6825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.785261 q^{2} +1.00000 q^{3} -1.38336 q^{4} -0.785261 q^{6} +1.00000 q^{7} +2.65683 q^{8} +1.00000 q^{9} +4.44209 q^{11} -1.38336 q^{12} +1.00000 q^{13} -0.785261 q^{14} +0.680426 q^{16} +3.93029 q^{17} -0.785261 q^{18} -3.89010 q^{19} +1.00000 q^{21} -3.48820 q^{22} -5.54692 q^{23} +2.65683 q^{24} -0.785261 q^{26} +1.00000 q^{27} -1.38336 q^{28} -5.44716 q^{29} -0.343174 q^{31} -5.84796 q^{32} +4.44209 q^{33} -3.08630 q^{34} -1.38336 q^{36} -10.9118 q^{37} +3.05474 q^{38} +1.00000 q^{39} -11.0753 q^{41} -0.785261 q^{42} -6.46460 q^{43} -6.14503 q^{44} +4.35578 q^{46} -7.61469 q^{47} +0.680426 q^{48} +1.00000 q^{49} +3.93029 q^{51} -1.38336 q^{52} -11.8019 q^{53} -0.785261 q^{54} +2.65683 q^{56} -3.89010 q^{57} +4.27744 q^{58} -7.16754 q^{59} -1.42550 q^{61} +0.269482 q^{62} +1.00000 q^{63} +3.23133 q^{64} -3.48820 q^{66} +14.8732 q^{67} -5.43702 q^{68} -5.54692 q^{69} +13.6745 q^{71} +2.65683 q^{72} +3.08521 q^{73} +8.56858 q^{74} +5.38142 q^{76} +4.44209 q^{77} -0.785261 q^{78} -4.82147 q^{79} +1.00000 q^{81} +8.69702 q^{82} +11.9694 q^{83} -1.38336 q^{84} +5.07640 q^{86} -5.44716 q^{87} +11.8019 q^{88} -15.5997 q^{89} +1.00000 q^{91} +7.67342 q^{92} -0.343174 q^{93} +5.97952 q^{94} -5.84796 q^{96} +2.43304 q^{97} -0.785261 q^{98} +4.44209 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 4 q^{3} + q^{4} - q^{6} + 4 q^{7} - 3 q^{8} + 4 q^{9} + 2 q^{11} + q^{12} + 4 q^{13} - q^{14} - q^{16} - 5 q^{17} - q^{18} - 15 q^{19} + 4 q^{21} - 9 q^{22} - 8 q^{23} - 3 q^{24} - q^{26}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.785261 −0.555264 −0.277632 0.960688i \(-0.589550\pi\)
−0.277632 + 0.960688i \(0.589550\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.38336 −0.691682
\(5\) 0 0
\(6\) −0.785261 −0.320582
\(7\) 1.00000 0.377964
\(8\) 2.65683 0.939330
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.44209 1.33934 0.669670 0.742659i \(-0.266436\pi\)
0.669670 + 0.742659i \(0.266436\pi\)
\(12\) −1.38336 −0.399343
\(13\) 1.00000 0.277350
\(14\) −0.785261 −0.209870
\(15\) 0 0
\(16\) 0.680426 0.170107
\(17\) 3.93029 0.953235 0.476617 0.879111i \(-0.341863\pi\)
0.476617 + 0.879111i \(0.341863\pi\)
\(18\) −0.785261 −0.185088
\(19\) −3.89010 −0.892449 −0.446225 0.894921i \(-0.647232\pi\)
−0.446225 + 0.894921i \(0.647232\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) −3.48820 −0.743687
\(23\) −5.54692 −1.15661 −0.578307 0.815819i \(-0.696286\pi\)
−0.578307 + 0.815819i \(0.696286\pi\)
\(24\) 2.65683 0.542322
\(25\) 0 0
\(26\) −0.785261 −0.154002
\(27\) 1.00000 0.192450
\(28\) −1.38336 −0.261431
\(29\) −5.44716 −1.01151 −0.505756 0.862677i \(-0.668786\pi\)
−0.505756 + 0.862677i \(0.668786\pi\)
\(30\) 0 0
\(31\) −0.343174 −0.0616359 −0.0308180 0.999525i \(-0.509811\pi\)
−0.0308180 + 0.999525i \(0.509811\pi\)
\(32\) −5.84796 −1.03378
\(33\) 4.44209 0.773268
\(34\) −3.08630 −0.529297
\(35\) 0 0
\(36\) −1.38336 −0.230561
\(37\) −10.9118 −1.79388 −0.896941 0.442151i \(-0.854216\pi\)
−0.896941 + 0.442151i \(0.854216\pi\)
\(38\) 3.05474 0.495545
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) −11.0753 −1.72967 −0.864837 0.502053i \(-0.832578\pi\)
−0.864837 + 0.502053i \(0.832578\pi\)
\(42\) −0.785261 −0.121168
\(43\) −6.46460 −0.985842 −0.492921 0.870074i \(-0.664071\pi\)
−0.492921 + 0.870074i \(0.664071\pi\)
\(44\) −6.14503 −0.926397
\(45\) 0 0
\(46\) 4.35578 0.642225
\(47\) −7.61469 −1.11072 −0.555359 0.831611i \(-0.687419\pi\)
−0.555359 + 0.831611i \(0.687419\pi\)
\(48\) 0.680426 0.0982111
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 3.93029 0.550350
\(52\) −1.38336 −0.191838
\(53\) −11.8019 −1.62111 −0.810554 0.585663i \(-0.800834\pi\)
−0.810554 + 0.585663i \(0.800834\pi\)
\(54\) −0.785261 −0.106861
\(55\) 0 0
\(56\) 2.65683 0.355033
\(57\) −3.89010 −0.515256
\(58\) 4.27744 0.561656
\(59\) −7.16754 −0.933134 −0.466567 0.884486i \(-0.654509\pi\)
−0.466567 + 0.884486i \(0.654509\pi\)
\(60\) 0 0
\(61\) −1.42550 −0.182516 −0.0912581 0.995827i \(-0.529089\pi\)
−0.0912581 + 0.995827i \(0.529089\pi\)
\(62\) 0.269482 0.0342242
\(63\) 1.00000 0.125988
\(64\) 3.23133 0.403916
\(65\) 0 0
\(66\) −3.48820 −0.429368
\(67\) 14.8732 1.81705 0.908524 0.417832i \(-0.137210\pi\)
0.908524 + 0.417832i \(0.137210\pi\)
\(68\) −5.43702 −0.659335
\(69\) −5.54692 −0.667771
\(70\) 0 0
\(71\) 13.6745 1.62287 0.811433 0.584446i \(-0.198688\pi\)
0.811433 + 0.584446i \(0.198688\pi\)
\(72\) 2.65683 0.313110
\(73\) 3.08521 0.361097 0.180549 0.983566i \(-0.442213\pi\)
0.180549 + 0.983566i \(0.442213\pi\)
\(74\) 8.56858 0.996077
\(75\) 0 0
\(76\) 5.38142 0.617291
\(77\) 4.44209 0.506223
\(78\) −0.785261 −0.0889134
\(79\) −4.82147 −0.542458 −0.271229 0.962515i \(-0.587430\pi\)
−0.271229 + 0.962515i \(0.587430\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 8.69702 0.960425
\(83\) 11.9694 1.31381 0.656906 0.753973i \(-0.271865\pi\)
0.656906 + 0.753973i \(0.271865\pi\)
\(84\) −1.38336 −0.150937
\(85\) 0 0
\(86\) 5.07640 0.547402
\(87\) −5.44716 −0.583996
\(88\) 11.8019 1.25808
\(89\) −15.5997 −1.65357 −0.826784 0.562520i \(-0.809832\pi\)
−0.826784 + 0.562520i \(0.809832\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 7.67342 0.800009
\(93\) −0.343174 −0.0355855
\(94\) 5.97952 0.616741
\(95\) 0 0
\(96\) −5.84796 −0.596855
\(97\) 2.43304 0.247038 0.123519 0.992342i \(-0.460582\pi\)
0.123519 + 0.992342i \(0.460582\pi\)
\(98\) −0.785261 −0.0793234
\(99\) 4.44209 0.446447
\(100\) 0 0
\(101\) 8.77427 0.873073 0.436536 0.899687i \(-0.356205\pi\)
0.436536 + 0.899687i \(0.356205\pi\)
\(102\) −3.08630 −0.305590
\(103\) −11.6222 −1.14517 −0.572586 0.819844i \(-0.694060\pi\)
−0.572586 + 0.819844i \(0.694060\pi\)
\(104\) 2.65683 0.260523
\(105\) 0 0
\(106\) 9.26754 0.900143
\(107\) −7.44209 −0.719454 −0.359727 0.933058i \(-0.617130\pi\)
−0.359727 + 0.933058i \(0.617130\pi\)
\(108\) −1.38336 −0.133114
\(109\) −8.00754 −0.766983 −0.383492 0.923544i \(-0.625279\pi\)
−0.383492 + 0.923544i \(0.625279\pi\)
\(110\) 0 0
\(111\) −10.9118 −1.03570
\(112\) 0.680426 0.0642942
\(113\) −7.68688 −0.723121 −0.361560 0.932349i \(-0.617756\pi\)
−0.361560 + 0.932349i \(0.617756\pi\)
\(114\) 3.05474 0.286103
\(115\) 0 0
\(116\) 7.53540 0.699644
\(117\) 1.00000 0.0924500
\(118\) 5.62839 0.518135
\(119\) 3.93029 0.360289
\(120\) 0 0
\(121\) 8.73214 0.793831
\(122\) 1.11939 0.101345
\(123\) −11.0753 −0.998627
\(124\) 0.474735 0.0426325
\(125\) 0 0
\(126\) −0.785261 −0.0699566
\(127\) 21.4327 1.90185 0.950923 0.309428i \(-0.100137\pi\)
0.950923 + 0.309428i \(0.100137\pi\)
\(128\) 9.15849 0.809504
\(129\) −6.46460 −0.569176
\(130\) 0 0
\(131\) 4.26506 0.372640 0.186320 0.982489i \(-0.440344\pi\)
0.186320 + 0.982489i \(0.440344\pi\)
\(132\) −6.14503 −0.534856
\(133\) −3.89010 −0.337314
\(134\) −11.6793 −1.00894
\(135\) 0 0
\(136\) 10.4421 0.895402
\(137\) −7.44318 −0.635913 −0.317957 0.948105i \(-0.602997\pi\)
−0.317957 + 0.948105i \(0.602997\pi\)
\(138\) 4.35578 0.370789
\(139\) −0.389287 −0.0330189 −0.0165094 0.999864i \(-0.505255\pi\)
−0.0165094 + 0.999864i \(0.505255\pi\)
\(140\) 0 0
\(141\) −7.61469 −0.641273
\(142\) −10.7381 −0.901118
\(143\) 4.44209 0.371466
\(144\) 0.680426 0.0567022
\(145\) 0 0
\(146\) −2.42270 −0.200504
\(147\) 1.00000 0.0824786
\(148\) 15.0949 1.24080
\(149\) 11.8966 0.974603 0.487302 0.873234i \(-0.337981\pi\)
0.487302 + 0.873234i \(0.337981\pi\)
\(150\) 0 0
\(151\) −16.1627 −1.31530 −0.657651 0.753323i \(-0.728450\pi\)
−0.657651 + 0.753323i \(0.728450\pi\)
\(152\) −10.3353 −0.838304
\(153\) 3.93029 0.317745
\(154\) −3.48820 −0.281087
\(155\) 0 0
\(156\) −1.38336 −0.110758
\(157\) −12.1951 −0.973276 −0.486638 0.873604i \(-0.661777\pi\)
−0.486638 + 0.873604i \(0.661777\pi\)
\(158\) 3.78612 0.301207
\(159\) −11.8019 −0.935948
\(160\) 0 0
\(161\) −5.54692 −0.437159
\(162\) −0.785261 −0.0616960
\(163\) −6.59551 −0.516600 −0.258300 0.966065i \(-0.583162\pi\)
−0.258300 + 0.966065i \(0.583162\pi\)
\(164\) 15.3212 1.19638
\(165\) 0 0
\(166\) −9.39910 −0.729512
\(167\) −11.6734 −0.903316 −0.451658 0.892191i \(-0.649167\pi\)
−0.451658 + 0.892191i \(0.649167\pi\)
\(168\) 2.65683 0.204979
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −3.89010 −0.297483
\(172\) 8.94290 0.681889
\(173\) 18.0553 1.37272 0.686359 0.727263i \(-0.259208\pi\)
0.686359 + 0.727263i \(0.259208\pi\)
\(174\) 4.27744 0.324272
\(175\) 0 0
\(176\) 3.02251 0.227830
\(177\) −7.16754 −0.538745
\(178\) 12.2499 0.918166
\(179\) −7.27455 −0.543725 −0.271863 0.962336i \(-0.587640\pi\)
−0.271863 + 0.962336i \(0.587640\pi\)
\(180\) 0 0
\(181\) −23.6986 −1.76151 −0.880753 0.473576i \(-0.842963\pi\)
−0.880753 + 0.473576i \(0.842963\pi\)
\(182\) −0.785261 −0.0582075
\(183\) −1.42550 −0.105376
\(184\) −14.7372 −1.08644
\(185\) 0 0
\(186\) 0.269482 0.0197593
\(187\) 17.4587 1.27670
\(188\) 10.5339 0.768263
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 0.907775 0.0656843 0.0328421 0.999461i \(-0.489544\pi\)
0.0328421 + 0.999461i \(0.489544\pi\)
\(192\) 3.23133 0.233201
\(193\) 15.5936 1.12245 0.561225 0.827663i \(-0.310330\pi\)
0.561225 + 0.827663i \(0.310330\pi\)
\(194\) −1.91057 −0.137171
\(195\) 0 0
\(196\) −1.38336 −0.0988117
\(197\) 14.0844 1.00347 0.501735 0.865022i \(-0.332695\pi\)
0.501735 + 0.865022i \(0.332695\pi\)
\(198\) −3.48820 −0.247896
\(199\) 18.6916 1.32501 0.662507 0.749056i \(-0.269492\pi\)
0.662507 + 0.749056i \(0.269492\pi\)
\(200\) 0 0
\(201\) 14.8732 1.04907
\(202\) −6.89010 −0.484786
\(203\) −5.44716 −0.382315
\(204\) −5.43702 −0.380667
\(205\) 0 0
\(206\) 9.12649 0.635873
\(207\) −5.54692 −0.385538
\(208\) 0.680426 0.0471791
\(209\) −17.2801 −1.19529
\(210\) 0 0
\(211\) −13.5997 −0.936244 −0.468122 0.883664i \(-0.655069\pi\)
−0.468122 + 0.883664i \(0.655069\pi\)
\(212\) 16.3263 1.12129
\(213\) 13.6745 0.936962
\(214\) 5.84398 0.399487
\(215\) 0 0
\(216\) 2.65683 0.180774
\(217\) −0.343174 −0.0232962
\(218\) 6.28801 0.425878
\(219\) 3.08521 0.208479
\(220\) 0 0
\(221\) 3.93029 0.264380
\(222\) 8.56858 0.575085
\(223\) −20.9809 −1.40499 −0.702493 0.711691i \(-0.747930\pi\)
−0.702493 + 0.711691i \(0.747930\pi\)
\(224\) −5.84796 −0.390734
\(225\) 0 0
\(226\) 6.03621 0.401523
\(227\) −1.44209 −0.0957147 −0.0478573 0.998854i \(-0.515239\pi\)
−0.0478573 + 0.998854i \(0.515239\pi\)
\(228\) 5.38142 0.356393
\(229\) −23.1118 −1.52727 −0.763634 0.645649i \(-0.776587\pi\)
−0.763634 + 0.645649i \(0.776587\pi\)
\(230\) 0 0
\(231\) 4.44209 0.292268
\(232\) −14.4721 −0.950143
\(233\) 20.3713 1.33457 0.667284 0.744804i \(-0.267457\pi\)
0.667284 + 0.744804i \(0.267457\pi\)
\(234\) −0.785261 −0.0513341
\(235\) 0 0
\(236\) 9.91532 0.645432
\(237\) −4.82147 −0.313188
\(238\) −3.08630 −0.200055
\(239\) −27.0539 −1.74997 −0.874985 0.484150i \(-0.839129\pi\)
−0.874985 + 0.484150i \(0.839129\pi\)
\(240\) 0 0
\(241\) −17.6600 −1.13758 −0.568789 0.822484i \(-0.692588\pi\)
−0.568789 + 0.822484i \(0.692588\pi\)
\(242\) −6.85701 −0.440785
\(243\) 1.00000 0.0641500
\(244\) 1.97198 0.126243
\(245\) 0 0
\(246\) 8.69702 0.554501
\(247\) −3.89010 −0.247521
\(248\) −0.911754 −0.0578965
\(249\) 11.9694 0.758529
\(250\) 0 0
\(251\) −0.0827403 −0.00522252 −0.00261126 0.999997i \(-0.500831\pi\)
−0.00261126 + 0.999997i \(0.500831\pi\)
\(252\) −1.38336 −0.0871438
\(253\) −24.6399 −1.54910
\(254\) −16.8303 −1.05603
\(255\) 0 0
\(256\) −13.6545 −0.853404
\(257\) 0.589706 0.0367849 0.0183924 0.999831i \(-0.494145\pi\)
0.0183924 + 0.999831i \(0.494145\pi\)
\(258\) 5.07640 0.316043
\(259\) −10.9118 −0.678023
\(260\) 0 0
\(261\) −5.44716 −0.337170
\(262\) −3.34919 −0.206914
\(263\) 8.88568 0.547914 0.273957 0.961742i \(-0.411667\pi\)
0.273957 + 0.961742i \(0.411667\pi\)
\(264\) 11.8019 0.726354
\(265\) 0 0
\(266\) 3.05474 0.187298
\(267\) −15.5997 −0.954688
\(268\) −20.5750 −1.25682
\(269\) −19.1037 −1.16477 −0.582385 0.812913i \(-0.697880\pi\)
−0.582385 + 0.812913i \(0.697880\pi\)
\(270\) 0 0
\(271\) 9.56351 0.580942 0.290471 0.956884i \(-0.406188\pi\)
0.290471 + 0.956884i \(0.406188\pi\)
\(272\) 2.67427 0.162151
\(273\) 1.00000 0.0605228
\(274\) 5.84484 0.353100
\(275\) 0 0
\(276\) 7.67342 0.461885
\(277\) −17.8265 −1.07109 −0.535546 0.844506i \(-0.679894\pi\)
−0.535546 + 0.844506i \(0.679894\pi\)
\(278\) 0.305692 0.0183342
\(279\) −0.343174 −0.0205453
\(280\) 0 0
\(281\) −6.92038 −0.412836 −0.206418 0.978464i \(-0.566181\pi\)
−0.206418 + 0.978464i \(0.566181\pi\)
\(282\) 5.97952 0.356076
\(283\) 18.7286 1.11330 0.556649 0.830748i \(-0.312087\pi\)
0.556649 + 0.830748i \(0.312087\pi\)
\(284\) −18.9168 −1.12251
\(285\) 0 0
\(286\) −3.48820 −0.206262
\(287\) −11.0753 −0.653755
\(288\) −5.84796 −0.344595
\(289\) −1.55284 −0.0913438
\(290\) 0 0
\(291\) 2.43304 0.142627
\(292\) −4.26798 −0.249764
\(293\) 6.06712 0.354445 0.177222 0.984171i \(-0.443289\pi\)
0.177222 + 0.984171i \(0.443289\pi\)
\(294\) −0.785261 −0.0457974
\(295\) 0 0
\(296\) −28.9906 −1.68505
\(297\) 4.44209 0.257756
\(298\) −9.34190 −0.541162
\(299\) −5.54692 −0.320787
\(300\) 0 0
\(301\) −6.46460 −0.372613
\(302\) 12.6919 0.730340
\(303\) 8.77427 0.504069
\(304\) −2.64692 −0.151811
\(305\) 0 0
\(306\) −3.08630 −0.176432
\(307\) 12.8504 0.733413 0.366707 0.930337i \(-0.380485\pi\)
0.366707 + 0.930337i \(0.380485\pi\)
\(308\) −6.14503 −0.350145
\(309\) −11.6222 −0.661166
\(310\) 0 0
\(311\) 18.2771 1.03640 0.518200 0.855259i \(-0.326602\pi\)
0.518200 + 0.855259i \(0.326602\pi\)
\(312\) 2.65683 0.150413
\(313\) 27.7830 1.57039 0.785194 0.619250i \(-0.212563\pi\)
0.785194 + 0.619250i \(0.212563\pi\)
\(314\) 9.57636 0.540425
\(315\) 0 0
\(316\) 6.66985 0.375209
\(317\) 28.9555 1.62630 0.813152 0.582052i \(-0.197750\pi\)
0.813152 + 0.582052i \(0.197750\pi\)
\(318\) 9.26754 0.519698
\(319\) −24.1967 −1.35476
\(320\) 0 0
\(321\) −7.44209 −0.415377
\(322\) 4.35578 0.242738
\(323\) −15.2892 −0.850714
\(324\) −1.38336 −0.0768536
\(325\) 0 0
\(326\) 5.17920 0.286849
\(327\) −8.00754 −0.442818
\(328\) −29.4252 −1.62473
\(329\) −7.61469 −0.419812
\(330\) 0 0
\(331\) −18.0191 −0.990417 −0.495209 0.868774i \(-0.664908\pi\)
−0.495209 + 0.868774i \(0.664908\pi\)
\(332\) −16.5580 −0.908740
\(333\) −10.9118 −0.597960
\(334\) 9.16668 0.501579
\(335\) 0 0
\(336\) 0.680426 0.0371203
\(337\) −11.1289 −0.606227 −0.303114 0.952954i \(-0.598026\pi\)
−0.303114 + 0.952954i \(0.598026\pi\)
\(338\) −0.785261 −0.0427126
\(339\) −7.68688 −0.417494
\(340\) 0 0
\(341\) −1.52441 −0.0825514
\(342\) 3.05474 0.165182
\(343\) 1.00000 0.0539949
\(344\) −17.1753 −0.926031
\(345\) 0 0
\(346\) −14.1781 −0.762220
\(347\) 1.87156 0.100471 0.0502354 0.998737i \(-0.484003\pi\)
0.0502354 + 0.998737i \(0.484003\pi\)
\(348\) 7.53540 0.403940
\(349\) 6.08232 0.325579 0.162790 0.986661i \(-0.447951\pi\)
0.162790 + 0.986661i \(0.447951\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) −25.9772 −1.38459
\(353\) 29.7860 1.58535 0.792675 0.609644i \(-0.208688\pi\)
0.792675 + 0.609644i \(0.208688\pi\)
\(354\) 5.62839 0.299146
\(355\) 0 0
\(356\) 21.5801 1.14374
\(357\) 3.93029 0.208013
\(358\) 5.71242 0.301911
\(359\) −29.6380 −1.56423 −0.782116 0.623133i \(-0.785860\pi\)
−0.782116 + 0.623133i \(0.785860\pi\)
\(360\) 0 0
\(361\) −3.86715 −0.203534
\(362\) 18.6096 0.978100
\(363\) 8.73214 0.458318
\(364\) −1.38336 −0.0725080
\(365\) 0 0
\(366\) 1.11939 0.0585114
\(367\) 25.7726 1.34532 0.672658 0.739953i \(-0.265152\pi\)
0.672658 + 0.739953i \(0.265152\pi\)
\(368\) −3.77427 −0.196747
\(369\) −11.0753 −0.576558
\(370\) 0 0
\(371\) −11.8019 −0.612722
\(372\) 0.474735 0.0246139
\(373\) 9.95322 0.515358 0.257679 0.966231i \(-0.417042\pi\)
0.257679 + 0.966231i \(0.417042\pi\)
\(374\) −13.7096 −0.708908
\(375\) 0 0
\(376\) −20.2309 −1.04333
\(377\) −5.44716 −0.280543
\(378\) −0.785261 −0.0403895
\(379\) −12.9288 −0.664107 −0.332053 0.943261i \(-0.607741\pi\)
−0.332053 + 0.943261i \(0.607741\pi\)
\(380\) 0 0
\(381\) 21.4327 1.09803
\(382\) −0.712840 −0.0364721
\(383\) −6.27617 −0.320697 −0.160349 0.987060i \(-0.551262\pi\)
−0.160349 + 0.987060i \(0.551262\pi\)
\(384\) 9.15849 0.467367
\(385\) 0 0
\(386\) −12.2450 −0.623255
\(387\) −6.46460 −0.328614
\(388\) −3.36578 −0.170872
\(389\) 29.6812 1.50490 0.752448 0.658652i \(-0.228873\pi\)
0.752448 + 0.658652i \(0.228873\pi\)
\(390\) 0 0
\(391\) −21.8010 −1.10252
\(392\) 2.65683 0.134190
\(393\) 4.26506 0.215144
\(394\) −11.0599 −0.557190
\(395\) 0 0
\(396\) −6.14503 −0.308799
\(397\) −34.1072 −1.71179 −0.855896 0.517148i \(-0.826994\pi\)
−0.855896 + 0.517148i \(0.826994\pi\)
\(398\) −14.6778 −0.735732
\(399\) −3.89010 −0.194748
\(400\) 0 0
\(401\) 12.9220 0.645294 0.322647 0.946519i \(-0.395427\pi\)
0.322647 + 0.946519i \(0.395427\pi\)
\(402\) −11.6793 −0.582512
\(403\) −0.343174 −0.0170947
\(404\) −12.1380 −0.603889
\(405\) 0 0
\(406\) 4.27744 0.212286
\(407\) −48.4710 −2.40262
\(408\) 10.4421 0.516960
\(409\) 26.3329 1.30208 0.651040 0.759043i \(-0.274333\pi\)
0.651040 + 0.759043i \(0.274333\pi\)
\(410\) 0 0
\(411\) −7.44318 −0.367145
\(412\) 16.0778 0.792096
\(413\) −7.16754 −0.352691
\(414\) 4.35578 0.214075
\(415\) 0 0
\(416\) −5.84796 −0.286720
\(417\) −0.389287 −0.0190635
\(418\) 13.5694 0.663703
\(419\) −3.70639 −0.181069 −0.0905344 0.995893i \(-0.528858\pi\)
−0.0905344 + 0.995893i \(0.528858\pi\)
\(420\) 0 0
\(421\) 4.04635 0.197207 0.0986034 0.995127i \(-0.468562\pi\)
0.0986034 + 0.995127i \(0.468562\pi\)
\(422\) 10.6793 0.519862
\(423\) −7.61469 −0.370239
\(424\) −31.3555 −1.52276
\(425\) 0 0
\(426\) −10.7381 −0.520261
\(427\) −1.42550 −0.0689847
\(428\) 10.2951 0.497633
\(429\) 4.44209 0.214466
\(430\) 0 0
\(431\) −28.5509 −1.37525 −0.687624 0.726067i \(-0.741346\pi\)
−0.687624 + 0.726067i \(0.741346\pi\)
\(432\) 0.680426 0.0327370
\(433\) −2.84066 −0.136513 −0.0682566 0.997668i \(-0.521744\pi\)
−0.0682566 + 0.997668i \(0.521744\pi\)
\(434\) 0.269482 0.0129355
\(435\) 0 0
\(436\) 11.0773 0.530509
\(437\) 21.5781 1.03222
\(438\) −2.42270 −0.115761
\(439\) −10.8628 −0.518451 −0.259225 0.965817i \(-0.583467\pi\)
−0.259225 + 0.965817i \(0.583467\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) −3.08630 −0.146800
\(443\) 16.2620 0.772633 0.386316 0.922366i \(-0.373747\pi\)
0.386316 + 0.922366i \(0.373747\pi\)
\(444\) 15.0949 0.716374
\(445\) 0 0
\(446\) 16.4755 0.780138
\(447\) 11.8966 0.562688
\(448\) 3.23133 0.152666
\(449\) −11.1922 −0.528194 −0.264097 0.964496i \(-0.585074\pi\)
−0.264097 + 0.964496i \(0.585074\pi\)
\(450\) 0 0
\(451\) −49.1975 −2.31662
\(452\) 10.6338 0.500170
\(453\) −16.1627 −0.759390
\(454\) 1.13242 0.0531469
\(455\) 0 0
\(456\) −10.3353 −0.483995
\(457\) 32.8364 1.53602 0.768010 0.640438i \(-0.221247\pi\)
0.768010 + 0.640438i \(0.221247\pi\)
\(458\) 18.1488 0.848036
\(459\) 3.93029 0.183450
\(460\) 0 0
\(461\) −22.8699 −1.06516 −0.532578 0.846381i \(-0.678777\pi\)
−0.532578 + 0.846381i \(0.678777\pi\)
\(462\) −3.48820 −0.162286
\(463\) 38.4806 1.78835 0.894173 0.447721i \(-0.147764\pi\)
0.894173 + 0.447721i \(0.147764\pi\)
\(464\) −3.70639 −0.172065
\(465\) 0 0
\(466\) −15.9968 −0.741037
\(467\) 23.9851 1.10990 0.554950 0.831884i \(-0.312738\pi\)
0.554950 + 0.831884i \(0.312738\pi\)
\(468\) −1.38336 −0.0639460
\(469\) 14.8732 0.686780
\(470\) 0 0
\(471\) −12.1951 −0.561921
\(472\) −19.0429 −0.876520
\(473\) −28.7163 −1.32038
\(474\) 3.78612 0.173902
\(475\) 0 0
\(476\) −5.43702 −0.249205
\(477\) −11.8019 −0.540370
\(478\) 21.2444 0.971695
\(479\) 41.6669 1.90381 0.951905 0.306392i \(-0.0991218\pi\)
0.951905 + 0.306392i \(0.0991218\pi\)
\(480\) 0 0
\(481\) −10.9118 −0.497533
\(482\) 13.8677 0.631655
\(483\) −5.54692 −0.252394
\(484\) −12.0797 −0.549079
\(485\) 0 0
\(486\) −0.785261 −0.0356202
\(487\) −38.9230 −1.76377 −0.881884 0.471467i \(-0.843725\pi\)
−0.881884 + 0.471467i \(0.843725\pi\)
\(488\) −3.78730 −0.171443
\(489\) −6.59551 −0.298259
\(490\) 0 0
\(491\) 35.2153 1.58924 0.794621 0.607105i \(-0.207669\pi\)
0.794621 + 0.607105i \(0.207669\pi\)
\(492\) 15.3212 0.690733
\(493\) −21.4089 −0.964208
\(494\) 3.05474 0.137439
\(495\) 0 0
\(496\) −0.233505 −0.0104847
\(497\) 13.6745 0.613385
\(498\) −9.39910 −0.421184
\(499\) −0.390235 −0.0174693 −0.00873467 0.999962i \(-0.502780\pi\)
−0.00873467 + 0.999962i \(0.502780\pi\)
\(500\) 0 0
\(501\) −11.6734 −0.521530
\(502\) 0.0649728 0.00289988
\(503\) −10.0548 −0.448323 −0.224162 0.974552i \(-0.571964\pi\)
−0.224162 + 0.974552i \(0.571964\pi\)
\(504\) 2.65683 0.118344
\(505\) 0 0
\(506\) 19.3488 0.860158
\(507\) 1.00000 0.0444116
\(508\) −29.6493 −1.31547
\(509\) 30.0527 1.33206 0.666030 0.745925i \(-0.267992\pi\)
0.666030 + 0.745925i \(0.267992\pi\)
\(510\) 0 0
\(511\) 3.08521 0.136482
\(512\) −7.59465 −0.335639
\(513\) −3.89010 −0.171752
\(514\) −0.463074 −0.0204253
\(515\) 0 0
\(516\) 8.94290 0.393689
\(517\) −33.8251 −1.48763
\(518\) 8.56858 0.376482
\(519\) 18.0553 0.792539
\(520\) 0 0
\(521\) −13.3168 −0.583419 −0.291709 0.956507i \(-0.594224\pi\)
−0.291709 + 0.956507i \(0.594224\pi\)
\(522\) 4.27744 0.187219
\(523\) 11.2662 0.492637 0.246319 0.969189i \(-0.420779\pi\)
0.246319 + 0.969189i \(0.420779\pi\)
\(524\) −5.90014 −0.257749
\(525\) 0 0
\(526\) −6.97758 −0.304237
\(527\) −1.34877 −0.0587535
\(528\) 3.02251 0.131538
\(529\) 7.76835 0.337754
\(530\) 0 0
\(531\) −7.16754 −0.311045
\(532\) 5.38142 0.233314
\(533\) −11.0753 −0.479725
\(534\) 12.2499 0.530103
\(535\) 0 0
\(536\) 39.5155 1.70681
\(537\) −7.27455 −0.313920
\(538\) 15.0014 0.646755
\(539\) 4.44209 0.191334
\(540\) 0 0
\(541\) 2.78815 0.119872 0.0599360 0.998202i \(-0.480910\pi\)
0.0599360 + 0.998202i \(0.480910\pi\)
\(542\) −7.50986 −0.322576
\(543\) −23.6986 −1.01701
\(544\) −22.9842 −0.985438
\(545\) 0 0
\(546\) −0.785261 −0.0336061
\(547\) −0.906453 −0.0387571 −0.0193786 0.999812i \(-0.506169\pi\)
−0.0193786 + 0.999812i \(0.506169\pi\)
\(548\) 10.2966 0.439850
\(549\) −1.42550 −0.0608387
\(550\) 0 0
\(551\) 21.1900 0.902723
\(552\) −14.7372 −0.627257
\(553\) −4.82147 −0.205030
\(554\) 13.9985 0.594739
\(555\) 0 0
\(556\) 0.538526 0.0228386
\(557\) 20.2794 0.859265 0.429633 0.903004i \(-0.358643\pi\)
0.429633 + 0.903004i \(0.358643\pi\)
\(558\) 0.269482 0.0114081
\(559\) −6.46460 −0.273423
\(560\) 0 0
\(561\) 17.4587 0.737106
\(562\) 5.43431 0.229233
\(563\) −23.8201 −1.00390 −0.501948 0.864898i \(-0.667383\pi\)
−0.501948 + 0.864898i \(0.667383\pi\)
\(564\) 10.5339 0.443557
\(565\) 0 0
\(566\) −14.7068 −0.618174
\(567\) 1.00000 0.0419961
\(568\) 36.3308 1.52441
\(569\) −9.00375 −0.377457 −0.188728 0.982029i \(-0.560437\pi\)
−0.188728 + 0.982029i \(0.560437\pi\)
\(570\) 0 0
\(571\) −8.33454 −0.348790 −0.174395 0.984676i \(-0.555797\pi\)
−0.174395 + 0.984676i \(0.555797\pi\)
\(572\) −6.14503 −0.256936
\(573\) 0.907775 0.0379228
\(574\) 8.69702 0.363006
\(575\) 0 0
\(576\) 3.23133 0.134639
\(577\) −14.3589 −0.597769 −0.298885 0.954289i \(-0.596615\pi\)
−0.298885 + 0.954289i \(0.596615\pi\)
\(578\) 1.21939 0.0507199
\(579\) 15.5936 0.648047
\(580\) 0 0
\(581\) 11.9694 0.496574
\(582\) −1.91057 −0.0791958
\(583\) −52.4249 −2.17122
\(584\) 8.19688 0.339189
\(585\) 0 0
\(586\) −4.76427 −0.196810
\(587\) 7.83397 0.323342 0.161671 0.986845i \(-0.448312\pi\)
0.161671 + 0.986845i \(0.448312\pi\)
\(588\) −1.38336 −0.0570490
\(589\) 1.33498 0.0550069
\(590\) 0 0
\(591\) 14.0844 0.579353
\(592\) −7.42464 −0.305151
\(593\) −11.4547 −0.470388 −0.235194 0.971948i \(-0.575573\pi\)
−0.235194 + 0.971948i \(0.575573\pi\)
\(594\) −3.48820 −0.143123
\(595\) 0 0
\(596\) −16.4573 −0.674116
\(597\) 18.6916 0.764997
\(598\) 4.35578 0.178121
\(599\) 5.93464 0.242483 0.121241 0.992623i \(-0.461312\pi\)
0.121241 + 0.992623i \(0.461312\pi\)
\(600\) 0 0
\(601\) 12.1173 0.494275 0.247138 0.968980i \(-0.420510\pi\)
0.247138 + 0.968980i \(0.420510\pi\)
\(602\) 5.07640 0.206899
\(603\) 14.8732 0.605683
\(604\) 22.3589 0.909771
\(605\) 0 0
\(606\) −6.89010 −0.279891
\(607\) −46.2065 −1.87547 −0.937733 0.347357i \(-0.887079\pi\)
−0.937733 + 0.347357i \(0.887079\pi\)
\(608\) 22.7491 0.922600
\(609\) −5.44716 −0.220730
\(610\) 0 0
\(611\) −7.61469 −0.308057
\(612\) −5.43702 −0.219778
\(613\) −35.9679 −1.45273 −0.726365 0.687310i \(-0.758792\pi\)
−0.726365 + 0.687310i \(0.758792\pi\)
\(614\) −10.0910 −0.407238
\(615\) 0 0
\(616\) 11.8019 0.475510
\(617\) −21.0454 −0.847255 −0.423627 0.905837i \(-0.639243\pi\)
−0.423627 + 0.905837i \(0.639243\pi\)
\(618\) 9.12649 0.367121
\(619\) 39.9069 1.60399 0.801997 0.597328i \(-0.203771\pi\)
0.801997 + 0.597328i \(0.203771\pi\)
\(620\) 0 0
\(621\) −5.54692 −0.222590
\(622\) −14.3523 −0.575475
\(623\) −15.5997 −0.624990
\(624\) 0.680426 0.0272388
\(625\) 0 0
\(626\) −21.8169 −0.871979
\(627\) −17.2801 −0.690103
\(628\) 16.8703 0.673198
\(629\) −42.8863 −1.70999
\(630\) 0 0
\(631\) 21.5073 0.856191 0.428095 0.903734i \(-0.359185\pi\)
0.428095 + 0.903734i \(0.359185\pi\)
\(632\) −12.8098 −0.509547
\(633\) −13.5997 −0.540540
\(634\) −22.7376 −0.903027
\(635\) 0 0
\(636\) 16.3263 0.647378
\(637\) 1.00000 0.0396214
\(638\) 19.0008 0.752247
\(639\) 13.6745 0.540955
\(640\) 0 0
\(641\) 31.9699 1.26273 0.631367 0.775484i \(-0.282494\pi\)
0.631367 + 0.775484i \(0.282494\pi\)
\(642\) 5.84398 0.230644
\(643\) 17.9515 0.707939 0.353970 0.935257i \(-0.384832\pi\)
0.353970 + 0.935257i \(0.384832\pi\)
\(644\) 7.67342 0.302375
\(645\) 0 0
\(646\) 12.0060 0.472370
\(647\) 29.9900 1.17903 0.589513 0.807759i \(-0.299320\pi\)
0.589513 + 0.807759i \(0.299320\pi\)
\(648\) 2.65683 0.104370
\(649\) −31.8388 −1.24978
\(650\) 0 0
\(651\) −0.343174 −0.0134501
\(652\) 9.12399 0.357323
\(653\) −18.4148 −0.720627 −0.360313 0.932831i \(-0.617330\pi\)
−0.360313 + 0.932831i \(0.617330\pi\)
\(654\) 6.28801 0.245881
\(655\) 0 0
\(656\) −7.53593 −0.294229
\(657\) 3.08521 0.120366
\(658\) 5.97952 0.233106
\(659\) −11.7754 −0.458703 −0.229351 0.973344i \(-0.573661\pi\)
−0.229351 + 0.973344i \(0.573661\pi\)
\(660\) 0 0
\(661\) 4.74843 0.184693 0.0923463 0.995727i \(-0.470563\pi\)
0.0923463 + 0.995727i \(0.470563\pi\)
\(662\) 14.1497 0.549943
\(663\) 3.93029 0.152640
\(664\) 31.8006 1.23410
\(665\) 0 0
\(666\) 8.56858 0.332026
\(667\) 30.2149 1.16993
\(668\) 16.1486 0.624808
\(669\) −20.9809 −0.811169
\(670\) 0 0
\(671\) −6.33218 −0.244451
\(672\) −5.84796 −0.225590
\(673\) −6.91346 −0.266494 −0.133247 0.991083i \(-0.542540\pi\)
−0.133247 + 0.991083i \(0.542540\pi\)
\(674\) 8.73906 0.336616
\(675\) 0 0
\(676\) −1.38336 −0.0532063
\(677\) 12.1493 0.466937 0.233468 0.972364i \(-0.424992\pi\)
0.233468 + 0.972364i \(0.424992\pi\)
\(678\) 6.03621 0.231819
\(679\) 2.43304 0.0933715
\(680\) 0 0
\(681\) −1.44209 −0.0552609
\(682\) 1.19706 0.0458378
\(683\) 16.4342 0.628838 0.314419 0.949284i \(-0.398190\pi\)
0.314419 + 0.949284i \(0.398190\pi\)
\(684\) 5.38142 0.205764
\(685\) 0 0
\(686\) −0.785261 −0.0299814
\(687\) −23.1118 −0.881769
\(688\) −4.39868 −0.167698
\(689\) −11.8019 −0.449615
\(690\) 0 0
\(691\) −47.8805 −1.82146 −0.910730 0.413001i \(-0.864481\pi\)
−0.910730 + 0.413001i \(0.864481\pi\)
\(692\) −24.9770 −0.949484
\(693\) 4.44209 0.168741
\(694\) −1.46967 −0.0557878
\(695\) 0 0
\(696\) −14.4721 −0.548565
\(697\) −43.5292 −1.64878
\(698\) −4.77621 −0.180782
\(699\) 20.3713 0.770513
\(700\) 0 0
\(701\) −4.77760 −0.180447 −0.0902237 0.995922i \(-0.528758\pi\)
−0.0902237 + 0.995922i \(0.528758\pi\)
\(702\) −0.785261 −0.0296378
\(703\) 42.4478 1.60095
\(704\) 14.3538 0.540981
\(705\) 0 0
\(706\) −23.3898 −0.880287
\(707\) 8.77427 0.329990
\(708\) 9.91532 0.372640
\(709\) 35.6958 1.34058 0.670292 0.742097i \(-0.266169\pi\)
0.670292 + 0.742097i \(0.266169\pi\)
\(710\) 0 0
\(711\) −4.82147 −0.180819
\(712\) −41.4457 −1.55324
\(713\) 1.90356 0.0712889
\(714\) −3.08630 −0.115502
\(715\) 0 0
\(716\) 10.0634 0.376085
\(717\) −27.0539 −1.01035
\(718\) 23.2736 0.868561
\(719\) 7.69636 0.287026 0.143513 0.989648i \(-0.454160\pi\)
0.143513 + 0.989648i \(0.454160\pi\)
\(720\) 0 0
\(721\) −11.6222 −0.432835
\(722\) 3.03672 0.113015
\(723\) −17.6600 −0.656781
\(724\) 32.7838 1.21840
\(725\) 0 0
\(726\) −6.85701 −0.254488
\(727\) −50.9619 −1.89007 −0.945036 0.326967i \(-0.893973\pi\)
−0.945036 + 0.326967i \(0.893973\pi\)
\(728\) 2.65683 0.0984685
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −25.4077 −0.939739
\(732\) 1.97198 0.0728866
\(733\) −35.7998 −1.32230 −0.661148 0.750256i \(-0.729930\pi\)
−0.661148 + 0.750256i \(0.729930\pi\)
\(734\) −20.2382 −0.747006
\(735\) 0 0
\(736\) 32.4382 1.19569
\(737\) 66.0680 2.43365
\(738\) 8.69702 0.320142
\(739\) −4.62881 −0.170273 −0.0851367 0.996369i \(-0.527133\pi\)
−0.0851367 + 0.996369i \(0.527133\pi\)
\(740\) 0 0
\(741\) −3.89010 −0.142906
\(742\) 9.26754 0.340222
\(743\) 36.7084 1.34670 0.673351 0.739323i \(-0.264854\pi\)
0.673351 + 0.739323i \(0.264854\pi\)
\(744\) −0.911754 −0.0334265
\(745\) 0 0
\(746\) −7.81588 −0.286160
\(747\) 11.9694 0.437937
\(748\) −24.1517 −0.883074
\(749\) −7.44209 −0.271928
\(750\) 0 0
\(751\) −22.0166 −0.803397 −0.401698 0.915772i \(-0.631580\pi\)
−0.401698 + 0.915772i \(0.631580\pi\)
\(752\) −5.18124 −0.188940
\(753\) −0.0827403 −0.00301523
\(754\) 4.27744 0.155775
\(755\) 0 0
\(756\) −1.38336 −0.0503125
\(757\) 33.7558 1.22688 0.613438 0.789743i \(-0.289786\pi\)
0.613438 + 0.789743i \(0.289786\pi\)
\(758\) 10.1525 0.368754
\(759\) −24.6399 −0.894372
\(760\) 0 0
\(761\) −12.2115 −0.442666 −0.221333 0.975198i \(-0.571041\pi\)
−0.221333 + 0.975198i \(0.571041\pi\)
\(762\) −16.8303 −0.609697
\(763\) −8.00754 −0.289892
\(764\) −1.25578 −0.0454326
\(765\) 0 0
\(766\) 4.92843 0.178072
\(767\) −7.16754 −0.258805
\(768\) −13.6545 −0.492713
\(769\) 47.6084 1.71680 0.858402 0.512977i \(-0.171457\pi\)
0.858402 + 0.512977i \(0.171457\pi\)
\(770\) 0 0
\(771\) 0.589706 0.0212378
\(772\) −21.5716 −0.776378
\(773\) 18.4610 0.663997 0.331999 0.943280i \(-0.392277\pi\)
0.331999 + 0.943280i \(0.392277\pi\)
\(774\) 5.07640 0.182467
\(775\) 0 0
\(776\) 6.46416 0.232050
\(777\) −10.9118 −0.391457
\(778\) −23.3075 −0.835614
\(779\) 43.0840 1.54365
\(780\) 0 0
\(781\) 60.7433 2.17357
\(782\) 17.1195 0.612191
\(783\) −5.44716 −0.194665
\(784\) 0.680426 0.0243009
\(785\) 0 0
\(786\) −3.34919 −0.119462
\(787\) 43.8059 1.56151 0.780757 0.624835i \(-0.214834\pi\)
0.780757 + 0.624835i \(0.214834\pi\)
\(788\) −19.4838 −0.694082
\(789\) 8.88568 0.316339
\(790\) 0 0
\(791\) −7.68688 −0.273314
\(792\) 11.8019 0.419361
\(793\) −1.42550 −0.0506209
\(794\) 26.7831 0.950496
\(795\) 0 0
\(796\) −25.8573 −0.916489
\(797\) −35.9518 −1.27348 −0.636738 0.771080i \(-0.719717\pi\)
−0.636738 + 0.771080i \(0.719717\pi\)
\(798\) 3.05474 0.108137
\(799\) −29.9279 −1.05877
\(800\) 0 0
\(801\) −15.5997 −0.551189
\(802\) −10.1472 −0.358308
\(803\) 13.7048 0.483632
\(804\) −20.5750 −0.725625
\(805\) 0 0
\(806\) 0.269482 0.00949208
\(807\) −19.1037 −0.672481
\(808\) 23.3117 0.820103
\(809\) 18.7954 0.660810 0.330405 0.943839i \(-0.392815\pi\)
0.330405 + 0.943839i \(0.392815\pi\)
\(810\) 0 0
\(811\) 30.2850 1.06345 0.531726 0.846917i \(-0.321544\pi\)
0.531726 + 0.846917i \(0.321544\pi\)
\(812\) 7.53540 0.264441
\(813\) 9.56351 0.335407
\(814\) 38.0624 1.33409
\(815\) 0 0
\(816\) 2.67427 0.0936182
\(817\) 25.1479 0.879814
\(818\) −20.6782 −0.722998
\(819\) 1.00000 0.0349428
\(820\) 0 0
\(821\) 29.5739 1.03213 0.516067 0.856548i \(-0.327395\pi\)
0.516067 + 0.856548i \(0.327395\pi\)
\(822\) 5.84484 0.203862
\(823\) −12.3767 −0.431426 −0.215713 0.976457i \(-0.569207\pi\)
−0.215713 + 0.976457i \(0.569207\pi\)
\(824\) −30.8783 −1.07569
\(825\) 0 0
\(826\) 5.62839 0.195837
\(827\) 13.8824 0.482739 0.241369 0.970433i \(-0.422403\pi\)
0.241369 + 0.970433i \(0.422403\pi\)
\(828\) 7.67342 0.266670
\(829\) −21.2005 −0.736323 −0.368162 0.929762i \(-0.620013\pi\)
−0.368162 + 0.929762i \(0.620013\pi\)
\(830\) 0 0
\(831\) −17.8265 −0.618396
\(832\) 3.23133 0.112026
\(833\) 3.93029 0.136176
\(834\) 0.305692 0.0105853
\(835\) 0 0
\(836\) 23.9047 0.826763
\(837\) −0.343174 −0.0118618
\(838\) 2.91048 0.100541
\(839\) −12.6352 −0.436214 −0.218107 0.975925i \(-0.569988\pi\)
−0.218107 + 0.975925i \(0.569988\pi\)
\(840\) 0 0
\(841\) 0.671498 0.0231551
\(842\) −3.17744 −0.109502
\(843\) −6.92038 −0.238351
\(844\) 18.8134 0.647583
\(845\) 0 0
\(846\) 5.97952 0.205580
\(847\) 8.73214 0.300040
\(848\) −8.03029 −0.275761
\(849\) 18.7286 0.642763
\(850\) 0 0
\(851\) 60.5267 2.07483
\(852\) −18.9168 −0.648080
\(853\) −33.6330 −1.15157 −0.575787 0.817600i \(-0.695304\pi\)
−0.575787 + 0.817600i \(0.695304\pi\)
\(854\) 1.11939 0.0383047
\(855\) 0 0
\(856\) −19.7723 −0.675804
\(857\) −21.1767 −0.723382 −0.361691 0.932298i \(-0.617801\pi\)
−0.361691 + 0.932298i \(0.617801\pi\)
\(858\) −3.48820 −0.119085
\(859\) 9.19482 0.313723 0.156862 0.987621i \(-0.449862\pi\)
0.156862 + 0.987621i \(0.449862\pi\)
\(860\) 0 0
\(861\) −11.0753 −0.377446
\(862\) 22.4199 0.763626
\(863\) 25.7046 0.874993 0.437497 0.899220i \(-0.355865\pi\)
0.437497 + 0.899220i \(0.355865\pi\)
\(864\) −5.84796 −0.198952
\(865\) 0 0
\(866\) 2.23066 0.0758008
\(867\) −1.55284 −0.0527374
\(868\) 0.474735 0.0161136
\(869\) −21.4174 −0.726535
\(870\) 0 0
\(871\) 14.8732 0.503959
\(872\) −21.2746 −0.720450
\(873\) 2.43304 0.0823459
\(874\) −16.9444 −0.573154
\(875\) 0 0
\(876\) −4.26798 −0.144202
\(877\) 34.3037 1.15836 0.579178 0.815201i \(-0.303374\pi\)
0.579178 + 0.815201i \(0.303374\pi\)
\(878\) 8.53010 0.287877
\(879\) 6.06712 0.204639
\(880\) 0 0
\(881\) 27.9014 0.940023 0.470012 0.882660i \(-0.344250\pi\)
0.470012 + 0.882660i \(0.344250\pi\)
\(882\) −0.785261 −0.0264411
\(883\) −28.4426 −0.957170 −0.478585 0.878041i \(-0.658850\pi\)
−0.478585 + 0.878041i \(0.658850\pi\)
\(884\) −5.43702 −0.182867
\(885\) 0 0
\(886\) −12.7699 −0.429015
\(887\) 33.4374 1.12272 0.561360 0.827572i \(-0.310278\pi\)
0.561360 + 0.827572i \(0.310278\pi\)
\(888\) −28.9906 −0.972862
\(889\) 21.4327 0.718830
\(890\) 0 0
\(891\) 4.44209 0.148816
\(892\) 29.0242 0.971804
\(893\) 29.6219 0.991259
\(894\) −9.34190 −0.312440
\(895\) 0 0
\(896\) 9.15849 0.305964
\(897\) −5.54692 −0.185206
\(898\) 8.78882 0.293287
\(899\) 1.86932 0.0623454
\(900\) 0 0
\(901\) −46.3847 −1.54530
\(902\) 38.6329 1.28633
\(903\) −6.46460 −0.215128
\(904\) −20.4227 −0.679249
\(905\) 0 0
\(906\) 12.6919 0.421662
\(907\) 54.9066 1.82314 0.911572 0.411141i \(-0.134870\pi\)
0.911572 + 0.411141i \(0.134870\pi\)
\(908\) 1.99493 0.0662041
\(909\) 8.77427 0.291024
\(910\) 0 0
\(911\) −41.0350 −1.35955 −0.679776 0.733420i \(-0.737923\pi\)
−0.679776 + 0.733420i \(0.737923\pi\)
\(912\) −2.64692 −0.0876484
\(913\) 53.1691 1.75964
\(914\) −25.7851 −0.852896
\(915\) 0 0
\(916\) 31.9720 1.05638
\(917\) 4.26506 0.140845
\(918\) −3.08630 −0.101863
\(919\) −28.8154 −0.950533 −0.475266 0.879842i \(-0.657648\pi\)
−0.475266 + 0.879842i \(0.657648\pi\)
\(920\) 0 0
\(921\) 12.8504 0.423436
\(922\) 17.9588 0.591442
\(923\) 13.6745 0.450102
\(924\) −6.14503 −0.202156
\(925\) 0 0
\(926\) −30.2174 −0.993004
\(927\) −11.6222 −0.381724
\(928\) 31.8548 1.04568
\(929\) −36.7756 −1.20657 −0.603284 0.797527i \(-0.706141\pi\)
−0.603284 + 0.797527i \(0.706141\pi\)
\(930\) 0 0
\(931\) −3.89010 −0.127493
\(932\) −28.1809 −0.923096
\(933\) 18.2771 0.598366
\(934\) −18.8346 −0.616287
\(935\) 0 0
\(936\) 2.65683 0.0868411
\(937\) −17.3914 −0.568151 −0.284076 0.958802i \(-0.591687\pi\)
−0.284076 + 0.958802i \(0.591687\pi\)
\(938\) −11.6793 −0.381344
\(939\) 27.7830 0.906664
\(940\) 0 0
\(941\) −29.2628 −0.953940 −0.476970 0.878920i \(-0.658265\pi\)
−0.476970 + 0.878920i \(0.658265\pi\)
\(942\) 9.57636 0.312015
\(943\) 61.4339 2.00056
\(944\) −4.87698 −0.158732
\(945\) 0 0
\(946\) 22.5498 0.733158
\(947\) 14.0943 0.458004 0.229002 0.973426i \(-0.426454\pi\)
0.229002 + 0.973426i \(0.426454\pi\)
\(948\) 6.66985 0.216627
\(949\) 3.08521 0.100150
\(950\) 0 0
\(951\) 28.9555 0.938947
\(952\) 10.4421 0.338430
\(953\) −10.4133 −0.337320 −0.168660 0.985674i \(-0.553944\pi\)
−0.168660 + 0.985674i \(0.553944\pi\)
\(954\) 9.26754 0.300048
\(955\) 0 0
\(956\) 37.4254 1.21042
\(957\) −24.1967 −0.782169
\(958\) −32.7194 −1.05712
\(959\) −7.44318 −0.240353
\(960\) 0 0
\(961\) −30.8822 −0.996201
\(962\) 8.56858 0.276262
\(963\) −7.44209 −0.239818
\(964\) 24.4301 0.786842
\(965\) 0 0
\(966\) 4.35578 0.140145
\(967\) −19.2259 −0.618264 −0.309132 0.951019i \(-0.600039\pi\)
−0.309132 + 0.951019i \(0.600039\pi\)
\(968\) 23.1998 0.745669
\(969\) −15.2892 −0.491160
\(970\) 0 0
\(971\) −61.0257 −1.95841 −0.979203 0.202881i \(-0.934969\pi\)
−0.979203 + 0.202881i \(0.934969\pi\)
\(972\) −1.38336 −0.0443714
\(973\) −0.389287 −0.0124800
\(974\) 30.5647 0.979356
\(975\) 0 0
\(976\) −0.969946 −0.0310472
\(977\) −33.5580 −1.07362 −0.536808 0.843704i \(-0.680370\pi\)
−0.536808 + 0.843704i \(0.680370\pi\)
\(978\) 5.17920 0.165613
\(979\) −69.2953 −2.21469
\(980\) 0 0
\(981\) −8.00754 −0.255661
\(982\) −27.6532 −0.882449
\(983\) −27.0187 −0.861764 −0.430882 0.902408i \(-0.641797\pi\)
−0.430882 + 0.902408i \(0.641797\pi\)
\(984\) −29.4252 −0.938040
\(985\) 0 0
\(986\) 16.8116 0.535389
\(987\) −7.61469 −0.242378
\(988\) 5.38142 0.171206
\(989\) 35.8586 1.14024
\(990\) 0 0
\(991\) −35.7526 −1.13572 −0.567859 0.823126i \(-0.692228\pi\)
−0.567859 + 0.823126i \(0.692228\pi\)
\(992\) 2.00687 0.0637182
\(993\) −18.0191 −0.571818
\(994\) −10.7381 −0.340591
\(995\) 0 0
\(996\) −16.5580 −0.524661
\(997\) −55.6051 −1.76103 −0.880515 0.474018i \(-0.842803\pi\)
−0.880515 + 0.474018i \(0.842803\pi\)
\(998\) 0.306437 0.00970009
\(999\) −10.9118 −0.345233
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6825.2.a.bi.1.2 4
5.4 even 2 6825.2.a.bj.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6825.2.a.bi.1.2 4 1.1 even 1 trivial
6825.2.a.bj.1.3 yes 4 5.4 even 2