Properties

Label 6825.2.a.bi.1.1
Level $6825$
Weight $2$
Character 6825.1
Self dual yes
Analytic conductor $54.498$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6825,2,Mod(1,6825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6825.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6825 = 3 \cdot 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.4978993795\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.3981.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.28400\) of defining polynomial
Character \(\chi\) \(=\) 6825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.28400 q^{2} +1.00000 q^{3} +3.21665 q^{4} -2.28400 q^{6} +1.00000 q^{7} -2.77882 q^{8} +1.00000 q^{9} +0.505180 q^{11} +3.21665 q^{12} +1.00000 q^{13} -2.28400 q^{14} -0.0864793 q^{16} -2.34099 q^{17} -2.28400 q^{18} -7.65448 q^{19} +1.00000 q^{21} -1.15383 q^{22} -3.87566 q^{23} -2.77882 q^{24} -2.28400 q^{26} +1.00000 q^{27} +3.21665 q^{28} +4.51977 q^{29} -5.77882 q^{31} +5.75515 q^{32} +0.505180 q^{33} +5.34681 q^{34} +3.21665 q^{36} +6.05828 q^{37} +17.4828 q^{38} +1.00000 q^{39} +2.96598 q^{41} -2.28400 q^{42} +0.538507 q^{43} +1.62499 q^{44} +8.85199 q^{46} +13.1884 q^{47} -0.0864793 q^{48} +1.00000 q^{49} -2.34099 q^{51} +3.21665 q^{52} +1.40380 q^{53} -2.28400 q^{54} -2.77882 q^{56} -7.65448 q^{57} -10.3231 q^{58} +3.66867 q^{59} -12.1930 q^{61} +13.1988 q^{62} +1.00000 q^{63} -12.9718 q^{64} -1.15383 q^{66} +1.39120 q^{67} -7.53013 q^{68} -3.87566 q^{69} +1.26941 q^{71} -2.77882 q^{72} -13.0828 q^{73} -13.8371 q^{74} -24.6217 q^{76} +0.505180 q^{77} -2.28400 q^{78} -10.0495 q^{79} +1.00000 q^{81} -6.77428 q^{82} -12.0725 q^{83} +3.21665 q^{84} -1.22995 q^{86} +4.51977 q^{87} -1.40380 q^{88} -2.95337 q^{89} +1.00000 q^{91} -12.4666 q^{92} -5.77882 q^{93} -30.1224 q^{94} +5.75515 q^{96} +18.2911 q^{97} -2.28400 q^{98} +0.505180 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 4 q^{3} + q^{4} - q^{6} + 4 q^{7} - 3 q^{8} + 4 q^{9} + 2 q^{11} + q^{12} + 4 q^{13} - q^{14} - q^{16} - 5 q^{17} - q^{18} - 15 q^{19} + 4 q^{21} - 9 q^{22} - 8 q^{23} - 3 q^{24} - q^{26}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.28400 −1.61503 −0.807515 0.589847i \(-0.799188\pi\)
−0.807515 + 0.589847i \(0.799188\pi\)
\(3\) 1.00000 0.577350
\(4\) 3.21665 1.60832
\(5\) 0 0
\(6\) −2.28400 −0.932438
\(7\) 1.00000 0.377964
\(8\) −2.77882 −0.982460
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0.505180 0.152318 0.0761588 0.997096i \(-0.475734\pi\)
0.0761588 + 0.997096i \(0.475734\pi\)
\(12\) 3.21665 0.928566
\(13\) 1.00000 0.277350
\(14\) −2.28400 −0.610424
\(15\) 0 0
\(16\) −0.0864793 −0.0216198
\(17\) −2.34099 −0.567773 −0.283887 0.958858i \(-0.591624\pi\)
−0.283887 + 0.958858i \(0.591624\pi\)
\(18\) −2.28400 −0.538343
\(19\) −7.65448 −1.75606 −0.878029 0.478608i \(-0.841141\pi\)
−0.878029 + 0.478608i \(0.841141\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) −1.15383 −0.245998
\(23\) −3.87566 −0.808130 −0.404065 0.914730i \(-0.632403\pi\)
−0.404065 + 0.914730i \(0.632403\pi\)
\(24\) −2.77882 −0.567224
\(25\) 0 0
\(26\) −2.28400 −0.447929
\(27\) 1.00000 0.192450
\(28\) 3.21665 0.607889
\(29\) 4.51977 0.839301 0.419650 0.907686i \(-0.362153\pi\)
0.419650 + 0.907686i \(0.362153\pi\)
\(30\) 0 0
\(31\) −5.77882 −1.03791 −0.518953 0.854803i \(-0.673678\pi\)
−0.518953 + 0.854803i \(0.673678\pi\)
\(32\) 5.75515 1.01738
\(33\) 0.505180 0.0879406
\(34\) 5.34681 0.916971
\(35\) 0 0
\(36\) 3.21665 0.536108
\(37\) 6.05828 0.995975 0.497987 0.867184i \(-0.334073\pi\)
0.497987 + 0.867184i \(0.334073\pi\)
\(38\) 17.4828 2.83609
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) 2.96598 0.463208 0.231604 0.972810i \(-0.425603\pi\)
0.231604 + 0.972810i \(0.425603\pi\)
\(42\) −2.28400 −0.352429
\(43\) 0.538507 0.0821216 0.0410608 0.999157i \(-0.486926\pi\)
0.0410608 + 0.999157i \(0.486926\pi\)
\(44\) 1.62499 0.244976
\(45\) 0 0
\(46\) 8.85199 1.30516
\(47\) 13.1884 1.92373 0.961866 0.273520i \(-0.0881880\pi\)
0.961866 + 0.273520i \(0.0881880\pi\)
\(48\) −0.0864793 −0.0124822
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.34099 −0.327804
\(52\) 3.21665 0.446069
\(53\) 1.40380 0.192827 0.0964137 0.995341i \(-0.469263\pi\)
0.0964137 + 0.995341i \(0.469263\pi\)
\(54\) −2.28400 −0.310813
\(55\) 0 0
\(56\) −2.77882 −0.371335
\(57\) −7.65448 −1.01386
\(58\) −10.3231 −1.35550
\(59\) 3.66867 0.477621 0.238810 0.971066i \(-0.423243\pi\)
0.238810 + 0.971066i \(0.423243\pi\)
\(60\) 0 0
\(61\) −12.1930 −1.56115 −0.780576 0.625061i \(-0.785074\pi\)
−0.780576 + 0.625061i \(0.785074\pi\)
\(62\) 13.1988 1.67625
\(63\) 1.00000 0.125988
\(64\) −12.9718 −1.62147
\(65\) 0 0
\(66\) −1.15383 −0.142027
\(67\) 1.39120 0.169962 0.0849810 0.996383i \(-0.472917\pi\)
0.0849810 + 0.996383i \(0.472917\pi\)
\(68\) −7.53013 −0.913163
\(69\) −3.87566 −0.466574
\(70\) 0 0
\(71\) 1.26941 0.150651 0.0753254 0.997159i \(-0.476000\pi\)
0.0753254 + 0.997159i \(0.476000\pi\)
\(72\) −2.77882 −0.327487
\(73\) −13.0828 −1.53123 −0.765615 0.643299i \(-0.777565\pi\)
−0.765615 + 0.643299i \(0.777565\pi\)
\(74\) −13.8371 −1.60853
\(75\) 0 0
\(76\) −24.6217 −2.82431
\(77\) 0.505180 0.0575706
\(78\) −2.28400 −0.258612
\(79\) −10.0495 −1.13066 −0.565329 0.824865i \(-0.691251\pi\)
−0.565329 + 0.824865i \(0.691251\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −6.77428 −0.748094
\(83\) −12.0725 −1.32513 −0.662563 0.749006i \(-0.730531\pi\)
−0.662563 + 0.749006i \(0.730531\pi\)
\(84\) 3.21665 0.350965
\(85\) 0 0
\(86\) −1.22995 −0.132629
\(87\) 4.51977 0.484570
\(88\) −1.40380 −0.149646
\(89\) −2.95337 −0.313057 −0.156528 0.987673i \(-0.550030\pi\)
−0.156528 + 0.987673i \(0.550030\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) −12.4666 −1.29973
\(93\) −5.77882 −0.599235
\(94\) −30.1224 −3.10689
\(95\) 0 0
\(96\) 5.75515 0.587383
\(97\) 18.2911 1.85718 0.928590 0.371106i \(-0.121021\pi\)
0.928590 + 0.371106i \(0.121021\pi\)
\(98\) −2.28400 −0.230719
\(99\) 0.505180 0.0507725
\(100\) 0 0
\(101\) 4.66484 0.464169 0.232084 0.972696i \(-0.425445\pi\)
0.232084 + 0.972696i \(0.425445\pi\)
\(102\) 5.34681 0.529413
\(103\) 4.09032 0.403031 0.201515 0.979485i \(-0.435413\pi\)
0.201515 + 0.979485i \(0.435413\pi\)
\(104\) −2.77882 −0.272485
\(105\) 0 0
\(106\) −3.20629 −0.311422
\(107\) −3.50518 −0.338859 −0.169429 0.985542i \(-0.554192\pi\)
−0.169429 + 0.985542i \(0.554192\pi\)
\(108\) 3.21665 0.309522
\(109\) −13.0981 −1.25457 −0.627287 0.778789i \(-0.715835\pi\)
−0.627287 + 0.778789i \(0.715835\pi\)
\(110\) 0 0
\(111\) 6.05828 0.575026
\(112\) −0.0864793 −0.00817153
\(113\) −4.27562 −0.402217 −0.201108 0.979569i \(-0.564454\pi\)
−0.201108 + 0.979569i \(0.564454\pi\)
\(114\) 17.4828 1.63741
\(115\) 0 0
\(116\) 14.5385 1.34987
\(117\) 1.00000 0.0924500
\(118\) −8.37924 −0.771372
\(119\) −2.34099 −0.214598
\(120\) 0 0
\(121\) −10.7448 −0.976799
\(122\) 27.8487 2.52131
\(123\) 2.96598 0.267433
\(124\) −18.5884 −1.66929
\(125\) 0 0
\(126\) −2.28400 −0.203475
\(127\) 5.34003 0.473851 0.236926 0.971528i \(-0.423860\pi\)
0.236926 + 0.971528i \(0.423860\pi\)
\(128\) 18.1173 1.60135
\(129\) 0.538507 0.0474129
\(130\) 0 0
\(131\) −19.3294 −1.68881 −0.844407 0.535702i \(-0.820047\pi\)
−0.844407 + 0.535702i \(0.820047\pi\)
\(132\) 1.62499 0.141437
\(133\) −7.65448 −0.663727
\(134\) −3.17749 −0.274494
\(135\) 0 0
\(136\) 6.50518 0.557815
\(137\) −11.2412 −0.960401 −0.480201 0.877159i \(-0.659436\pi\)
−0.480201 + 0.877159i \(0.659436\pi\)
\(138\) 8.85199 0.753532
\(139\) −7.42747 −0.629990 −0.314995 0.949093i \(-0.602003\pi\)
−0.314995 + 0.949093i \(0.602003\pi\)
\(140\) 0 0
\(141\) 13.1884 1.11067
\(142\) −2.89932 −0.243306
\(143\) 0.505180 0.0422453
\(144\) −0.0864793 −0.00720661
\(145\) 0 0
\(146\) 29.8812 2.47298
\(147\) 1.00000 0.0824786
\(148\) 19.4873 1.60185
\(149\) 13.0166 1.06636 0.533180 0.846002i \(-0.320997\pi\)
0.533180 + 0.846002i \(0.320997\pi\)
\(150\) 0 0
\(151\) −1.42324 −0.115821 −0.0579107 0.998322i \(-0.518444\pi\)
−0.0579107 + 0.998322i \(0.518444\pi\)
\(152\) 21.2704 1.72526
\(153\) −2.34099 −0.189258
\(154\) −1.15383 −0.0929783
\(155\) 0 0
\(156\) 3.21665 0.257538
\(157\) 7.73731 0.617505 0.308752 0.951142i \(-0.400089\pi\)
0.308752 + 0.951142i \(0.400089\pi\)
\(158\) 22.9531 1.82605
\(159\) 1.40380 0.111329
\(160\) 0 0
\(161\) −3.87566 −0.305445
\(162\) −2.28400 −0.179448
\(163\) −17.6474 −1.38225 −0.691125 0.722735i \(-0.742885\pi\)
−0.691125 + 0.722735i \(0.742885\pi\)
\(164\) 9.54049 0.744987
\(165\) 0 0
\(166\) 27.5735 2.14012
\(167\) 8.46662 0.655167 0.327583 0.944822i \(-0.393766\pi\)
0.327583 + 0.944822i \(0.393766\pi\)
\(168\) −2.77882 −0.214390
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −7.65448 −0.585352
\(172\) 1.73219 0.132078
\(173\) 18.2008 1.38378 0.691890 0.722003i \(-0.256778\pi\)
0.691890 + 0.722003i \(0.256778\pi\)
\(174\) −10.3231 −0.782596
\(175\) 0 0
\(176\) −0.0436877 −0.00329308
\(177\) 3.66867 0.275754
\(178\) 6.74549 0.505596
\(179\) −14.1739 −1.05940 −0.529702 0.848184i \(-0.677696\pi\)
−0.529702 + 0.848184i \(0.677696\pi\)
\(180\) 0 0
\(181\) −1.67973 −0.124854 −0.0624268 0.998050i \(-0.519884\pi\)
−0.0624268 + 0.998050i \(0.519884\pi\)
\(182\) −2.28400 −0.169301
\(183\) −12.1930 −0.901331
\(184\) 10.7697 0.793956
\(185\) 0 0
\(186\) 13.1988 0.967783
\(187\) −1.18262 −0.0864819
\(188\) 42.4226 3.09398
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −2.29730 −0.166227 −0.0831134 0.996540i \(-0.526486\pi\)
−0.0831134 + 0.996540i \(0.526486\pi\)
\(192\) −12.9718 −0.936159
\(193\) 1.24230 0.0894224 0.0447112 0.999000i \(-0.485763\pi\)
0.0447112 + 0.999000i \(0.485763\pi\)
\(194\) −41.7769 −2.99940
\(195\) 0 0
\(196\) 3.21665 0.229760
\(197\) −19.7519 −1.40727 −0.703633 0.710564i \(-0.748440\pi\)
−0.703633 + 0.710564i \(0.748440\pi\)
\(198\) −1.15383 −0.0819992
\(199\) −22.7004 −1.60919 −0.804595 0.593824i \(-0.797617\pi\)
−0.804595 + 0.593824i \(0.797617\pi\)
\(200\) 0 0
\(201\) 1.39120 0.0981276
\(202\) −10.6545 −0.749646
\(203\) 4.51977 0.317226
\(204\) −7.53013 −0.527215
\(205\) 0 0
\(206\) −9.34228 −0.650907
\(207\) −3.87566 −0.269377
\(208\) −0.0864793 −0.00599626
\(209\) −3.86689 −0.267478
\(210\) 0 0
\(211\) −0.953370 −0.0656327 −0.0328163 0.999461i \(-0.510448\pi\)
−0.0328163 + 0.999461i \(0.510448\pi\)
\(212\) 4.51554 0.310129
\(213\) 1.26941 0.0869783
\(214\) 8.00582 0.547267
\(215\) 0 0
\(216\) −2.77882 −0.189075
\(217\) −5.77882 −0.392292
\(218\) 29.9161 2.02617
\(219\) −13.0828 −0.884056
\(220\) 0 0
\(221\) −2.34099 −0.157472
\(222\) −13.8371 −0.928685
\(223\) 11.7353 0.785856 0.392928 0.919569i \(-0.371462\pi\)
0.392928 + 0.919569i \(0.371462\pi\)
\(224\) 5.75515 0.384532
\(225\) 0 0
\(226\) 9.76551 0.649592
\(227\) 2.49482 0.165587 0.0827935 0.996567i \(-0.473616\pi\)
0.0827935 + 0.996567i \(0.473616\pi\)
\(228\) −24.6217 −1.63061
\(229\) −2.86650 −0.189424 −0.0947118 0.995505i \(-0.530193\pi\)
−0.0947118 + 0.995505i \(0.530193\pi\)
\(230\) 0 0
\(231\) 0.505180 0.0332384
\(232\) −12.5596 −0.824580
\(233\) 2.42817 0.159074 0.0795372 0.996832i \(-0.474656\pi\)
0.0795372 + 0.996832i \(0.474656\pi\)
\(234\) −2.28400 −0.149310
\(235\) 0 0
\(236\) 11.8008 0.768168
\(237\) −10.0495 −0.652786
\(238\) 5.34681 0.346582
\(239\) −23.8137 −1.54038 −0.770191 0.637813i \(-0.779839\pi\)
−0.770191 + 0.637813i \(0.779839\pi\)
\(240\) 0 0
\(241\) 19.2089 1.23735 0.618676 0.785646i \(-0.287669\pi\)
0.618676 + 0.785646i \(0.287669\pi\)
\(242\) 24.5411 1.57756
\(243\) 1.00000 0.0641500
\(244\) −39.2205 −2.51084
\(245\) 0 0
\(246\) −6.77428 −0.431912
\(247\) −7.65448 −0.487043
\(248\) 16.0583 1.01970
\(249\) −12.0725 −0.765062
\(250\) 0 0
\(251\) 27.2059 1.71722 0.858611 0.512627i \(-0.171328\pi\)
0.858611 + 0.512627i \(0.171328\pi\)
\(252\) 3.21665 0.202630
\(253\) −1.95791 −0.123093
\(254\) −12.1966 −0.765284
\(255\) 0 0
\(256\) −15.4362 −0.964761
\(257\) −28.2678 −1.76330 −0.881650 0.471904i \(-0.843567\pi\)
−0.881650 + 0.471904i \(0.843567\pi\)
\(258\) −1.22995 −0.0765733
\(259\) 6.05828 0.376443
\(260\) 0 0
\(261\) 4.51977 0.279767
\(262\) 44.1482 2.72749
\(263\) −23.8737 −1.47212 −0.736058 0.676919i \(-0.763315\pi\)
−0.736058 + 0.676919i \(0.763315\pi\)
\(264\) −1.40380 −0.0863982
\(265\) 0 0
\(266\) 17.4828 1.07194
\(267\) −2.95337 −0.180743
\(268\) 4.47499 0.273354
\(269\) 28.2497 1.72241 0.861206 0.508256i \(-0.169709\pi\)
0.861206 + 0.508256i \(0.169709\pi\)
\(270\) 0 0
\(271\) −6.81214 −0.413808 −0.206904 0.978361i \(-0.566339\pi\)
−0.206904 + 0.978361i \(0.566339\pi\)
\(272\) 0.202447 0.0122752
\(273\) 1.00000 0.0605228
\(274\) 25.6749 1.55108
\(275\) 0 0
\(276\) −12.4666 −0.750402
\(277\) −17.0246 −1.02291 −0.511453 0.859311i \(-0.670893\pi\)
−0.511453 + 0.859311i \(0.670893\pi\)
\(278\) 16.9643 1.01745
\(279\) −5.77882 −0.345969
\(280\) 0 0
\(281\) −2.77588 −0.165595 −0.0827974 0.996566i \(-0.526385\pi\)
−0.0827974 + 0.996566i \(0.526385\pi\)
\(282\) −30.1224 −1.79376
\(283\) −19.6039 −1.16533 −0.582665 0.812712i \(-0.697990\pi\)
−0.582665 + 0.812712i \(0.697990\pi\)
\(284\) 4.08323 0.242295
\(285\) 0 0
\(286\) −1.15383 −0.0682275
\(287\) 2.96598 0.175076
\(288\) 5.75515 0.339126
\(289\) −11.5198 −0.677634
\(290\) 0 0
\(291\) 18.2911 1.07224
\(292\) −42.0829 −2.46271
\(293\) 29.4890 1.72277 0.861384 0.507955i \(-0.169598\pi\)
0.861384 + 0.507955i \(0.169598\pi\)
\(294\) −2.28400 −0.133205
\(295\) 0 0
\(296\) −16.8349 −0.978506
\(297\) 0.505180 0.0293135
\(298\) −29.7298 −1.72220
\(299\) −3.87566 −0.224135
\(300\) 0 0
\(301\) 0.538507 0.0310390
\(302\) 3.25067 0.187055
\(303\) 4.66484 0.267988
\(304\) 0.661954 0.0379656
\(305\) 0 0
\(306\) 5.34681 0.305657
\(307\) 12.3679 0.705875 0.352937 0.935647i \(-0.385183\pi\)
0.352937 + 0.935647i \(0.385183\pi\)
\(308\) 1.62499 0.0925922
\(309\) 4.09032 0.232690
\(310\) 0 0
\(311\) −28.2742 −1.60328 −0.801642 0.597804i \(-0.796040\pi\)
−0.801642 + 0.597804i \(0.796040\pi\)
\(312\) −2.77882 −0.157320
\(313\) −28.0722 −1.58673 −0.793367 0.608744i \(-0.791674\pi\)
−0.793367 + 0.608744i \(0.791674\pi\)
\(314\) −17.6720 −0.997289
\(315\) 0 0
\(316\) −32.3257 −1.81846
\(317\) 20.8054 1.16855 0.584273 0.811557i \(-0.301380\pi\)
0.584273 + 0.811557i \(0.301380\pi\)
\(318\) −3.20629 −0.179800
\(319\) 2.28330 0.127840
\(320\) 0 0
\(321\) −3.50518 −0.195640
\(322\) 8.85199 0.493302
\(323\) 17.9190 0.997042
\(324\) 3.21665 0.178703
\(325\) 0 0
\(326\) 40.3066 2.23238
\(327\) −13.0981 −0.724328
\(328\) −8.24190 −0.455083
\(329\) 13.1884 0.727103
\(330\) 0 0
\(331\) −14.4353 −0.793435 −0.396717 0.917941i \(-0.629851\pi\)
−0.396717 + 0.917941i \(0.629851\pi\)
\(332\) −38.8329 −2.13123
\(333\) 6.05828 0.331992
\(334\) −19.3377 −1.05811
\(335\) 0 0
\(336\) −0.0864793 −0.00471783
\(337\) 14.5573 0.792985 0.396492 0.918038i \(-0.370227\pi\)
0.396492 + 0.918038i \(0.370227\pi\)
\(338\) −2.28400 −0.124233
\(339\) −4.27562 −0.232220
\(340\) 0 0
\(341\) −2.91935 −0.158091
\(342\) 17.4828 0.945362
\(343\) 1.00000 0.0539949
\(344\) −1.49641 −0.0806812
\(345\) 0 0
\(346\) −41.5706 −2.23485
\(347\) −5.06282 −0.271786 −0.135893 0.990724i \(-0.543390\pi\)
−0.135893 + 0.990724i \(0.543390\pi\)
\(348\) 14.5385 0.779346
\(349\) 11.4142 0.610986 0.305493 0.952194i \(-0.401179\pi\)
0.305493 + 0.952194i \(0.401179\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 2.90739 0.154964
\(353\) 7.06895 0.376242 0.188121 0.982146i \(-0.439760\pi\)
0.188121 + 0.982146i \(0.439760\pi\)
\(354\) −8.37924 −0.445352
\(355\) 0 0
\(356\) −9.49995 −0.503496
\(357\) −2.34099 −0.123898
\(358\) 32.3731 1.71097
\(359\) 18.4472 0.973605 0.486803 0.873512i \(-0.338163\pi\)
0.486803 + 0.873512i \(0.338163\pi\)
\(360\) 0 0
\(361\) 39.5910 2.08374
\(362\) 3.83651 0.201642
\(363\) −10.7448 −0.563955
\(364\) 3.21665 0.168598
\(365\) 0 0
\(366\) 27.8487 1.45568
\(367\) −13.6733 −0.713740 −0.356870 0.934154i \(-0.616156\pi\)
−0.356870 + 0.934154i \(0.616156\pi\)
\(368\) 0.335164 0.0174716
\(369\) 2.96598 0.154403
\(370\) 0 0
\(371\) 1.40380 0.0728819
\(372\) −18.5884 −0.963764
\(373\) −32.0048 −1.65714 −0.828572 0.559883i \(-0.810846\pi\)
−0.828572 + 0.559883i \(0.810846\pi\)
\(374\) 2.70111 0.139671
\(375\) 0 0
\(376\) −36.6483 −1.88999
\(377\) 4.51977 0.232780
\(378\) −2.28400 −0.117476
\(379\) −31.5431 −1.62026 −0.810129 0.586251i \(-0.800603\pi\)
−0.810129 + 0.586251i \(0.800603\pi\)
\(380\) 0 0
\(381\) 5.34003 0.273578
\(382\) 5.24703 0.268461
\(383\) −6.62787 −0.338668 −0.169334 0.985559i \(-0.554162\pi\)
−0.169334 + 0.985559i \(0.554162\pi\)
\(384\) 18.1173 0.924542
\(385\) 0 0
\(386\) −2.83740 −0.144420
\(387\) 0.538507 0.0273739
\(388\) 58.8360 2.98695
\(389\) 4.69847 0.238222 0.119111 0.992881i \(-0.461996\pi\)
0.119111 + 0.992881i \(0.461996\pi\)
\(390\) 0 0
\(391\) 9.07287 0.458835
\(392\) −2.77882 −0.140351
\(393\) −19.3294 −0.975038
\(394\) 45.1133 2.27278
\(395\) 0 0
\(396\) 1.62499 0.0816586
\(397\) −5.60944 −0.281530 −0.140765 0.990043i \(-0.544956\pi\)
−0.140765 + 0.990043i \(0.544956\pi\)
\(398\) 51.8477 2.59889
\(399\) −7.65448 −0.383203
\(400\) 0 0
\(401\) 2.22989 0.111355 0.0556777 0.998449i \(-0.482268\pi\)
0.0556777 + 0.998449i \(0.482268\pi\)
\(402\) −3.17749 −0.158479
\(403\) −5.77882 −0.287863
\(404\) 15.0051 0.746533
\(405\) 0 0
\(406\) −10.3231 −0.512329
\(407\) 3.06052 0.151705
\(408\) 6.50518 0.322054
\(409\) 1.94460 0.0961544 0.0480772 0.998844i \(-0.484691\pi\)
0.0480772 + 0.998844i \(0.484691\pi\)
\(410\) 0 0
\(411\) −11.2412 −0.554488
\(412\) 13.1571 0.648204
\(413\) 3.66867 0.180524
\(414\) 8.85199 0.435052
\(415\) 0 0
\(416\) 5.75515 0.282170
\(417\) −7.42747 −0.363725
\(418\) 8.83197 0.431986
\(419\) −0.390867 −0.0190951 −0.00954755 0.999954i \(-0.503039\pi\)
−0.00954755 + 0.999954i \(0.503039\pi\)
\(420\) 0 0
\(421\) −4.28439 −0.208808 −0.104404 0.994535i \(-0.533294\pi\)
−0.104404 + 0.994535i \(0.533294\pi\)
\(422\) 2.17749 0.105999
\(423\) 13.1884 0.641244
\(424\) −3.90092 −0.189445
\(425\) 0 0
\(426\) −2.89932 −0.140473
\(427\) −12.1930 −0.590060
\(428\) −11.2749 −0.544994
\(429\) 0.505180 0.0243903
\(430\) 0 0
\(431\) −13.1147 −0.631712 −0.315856 0.948807i \(-0.602292\pi\)
−0.315856 + 0.948807i \(0.602292\pi\)
\(432\) −0.0864793 −0.00416074
\(433\) 23.7863 1.14310 0.571549 0.820568i \(-0.306343\pi\)
0.571549 + 0.820568i \(0.306343\pi\)
\(434\) 13.1988 0.633563
\(435\) 0 0
\(436\) −42.1320 −2.01776
\(437\) 29.6661 1.41912
\(438\) 29.8812 1.42778
\(439\) −13.7901 −0.658164 −0.329082 0.944301i \(-0.606739\pi\)
−0.329082 + 0.944301i \(0.606739\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 5.34681 0.254322
\(443\) −40.4705 −1.92281 −0.961405 0.275136i \(-0.911277\pi\)
−0.961405 + 0.275136i \(0.911277\pi\)
\(444\) 19.4873 0.924828
\(445\) 0 0
\(446\) −26.8035 −1.26918
\(447\) 13.0166 0.615663
\(448\) −12.9718 −0.612860
\(449\) −12.7597 −0.602167 −0.301083 0.953598i \(-0.597348\pi\)
−0.301083 + 0.953598i \(0.597348\pi\)
\(450\) 0 0
\(451\) 1.49835 0.0705547
\(452\) −13.7532 −0.646895
\(453\) −1.42324 −0.0668695
\(454\) −5.69816 −0.267428
\(455\) 0 0
\(456\) 21.2704 0.996077
\(457\) −11.9764 −0.560233 −0.280117 0.959966i \(-0.590373\pi\)
−0.280117 + 0.959966i \(0.590373\pi\)
\(458\) 6.54708 0.305925
\(459\) −2.34099 −0.109268
\(460\) 0 0
\(461\) 19.4009 0.903592 0.451796 0.892121i \(-0.350783\pi\)
0.451796 + 0.892121i \(0.350783\pi\)
\(462\) −1.15383 −0.0536811
\(463\) −5.24435 −0.243725 −0.121863 0.992547i \(-0.538887\pi\)
−0.121863 + 0.992547i \(0.538887\pi\)
\(464\) −0.390867 −0.0181455
\(465\) 0 0
\(466\) −5.54593 −0.256910
\(467\) −32.4293 −1.50065 −0.750326 0.661068i \(-0.770103\pi\)
−0.750326 + 0.661068i \(0.770103\pi\)
\(468\) 3.21665 0.148690
\(469\) 1.39120 0.0642396
\(470\) 0 0
\(471\) 7.73731 0.356517
\(472\) −10.1946 −0.469243
\(473\) 0.272043 0.0125086
\(474\) 22.9531 1.05427
\(475\) 0 0
\(476\) −7.53013 −0.345143
\(477\) 1.40380 0.0642758
\(478\) 54.3905 2.48776
\(479\) −12.1288 −0.554178 −0.277089 0.960844i \(-0.589370\pi\)
−0.277089 + 0.960844i \(0.589370\pi\)
\(480\) 0 0
\(481\) 6.05828 0.276234
\(482\) −43.8730 −1.99836
\(483\) −3.87566 −0.176349
\(484\) −34.5622 −1.57101
\(485\) 0 0
\(486\) −2.28400 −0.103604
\(487\) 18.6722 0.846118 0.423059 0.906102i \(-0.360956\pi\)
0.423059 + 0.906102i \(0.360956\pi\)
\(488\) 33.8821 1.53377
\(489\) −17.6474 −0.798043
\(490\) 0 0
\(491\) 19.4340 0.877044 0.438522 0.898721i \(-0.355502\pi\)
0.438522 + 0.898721i \(0.355502\pi\)
\(492\) 9.54049 0.430119
\(493\) −10.5807 −0.476532
\(494\) 17.4828 0.786589
\(495\) 0 0
\(496\) 0.499748 0.0224394
\(497\) 1.26941 0.0569407
\(498\) 27.5735 1.23560
\(499\) 39.4746 1.76713 0.883564 0.468311i \(-0.155137\pi\)
0.883564 + 0.468311i \(0.155137\pi\)
\(500\) 0 0
\(501\) 8.46662 0.378261
\(502\) −62.1383 −2.77337
\(503\) 40.0884 1.78745 0.893726 0.448614i \(-0.148082\pi\)
0.893726 + 0.448614i \(0.148082\pi\)
\(504\) −2.77882 −0.123778
\(505\) 0 0
\(506\) 4.47185 0.198798
\(507\) 1.00000 0.0444116
\(508\) 17.1770 0.762106
\(509\) −35.5604 −1.57619 −0.788094 0.615555i \(-0.788932\pi\)
−0.788094 + 0.615555i \(0.788932\pi\)
\(510\) 0 0
\(511\) −13.0828 −0.578751
\(512\) −0.978322 −0.0432361
\(513\) −7.65448 −0.337953
\(514\) 64.5637 2.84778
\(515\) 0 0
\(516\) 1.73219 0.0762553
\(517\) 6.66254 0.293018
\(518\) −13.8371 −0.607967
\(519\) 18.2008 0.798926
\(520\) 0 0
\(521\) 28.9877 1.26997 0.634987 0.772523i \(-0.281006\pi\)
0.634987 + 0.772523i \(0.281006\pi\)
\(522\) −10.3231 −0.451832
\(523\) 0.990729 0.0433216 0.0216608 0.999765i \(-0.493105\pi\)
0.0216608 + 0.999765i \(0.493105\pi\)
\(524\) −62.1757 −2.71616
\(525\) 0 0
\(526\) 54.5275 2.37751
\(527\) 13.5281 0.589295
\(528\) −0.0436877 −0.00190126
\(529\) −7.97928 −0.346925
\(530\) 0 0
\(531\) 3.66867 0.159207
\(532\) −24.6217 −1.06749
\(533\) 2.96598 0.128471
\(534\) 6.74549 0.291906
\(535\) 0 0
\(536\) −3.86589 −0.166981
\(537\) −14.1739 −0.611647
\(538\) −64.5222 −2.78175
\(539\) 0.505180 0.0217597
\(540\) 0 0
\(541\) −17.2130 −0.740045 −0.370022 0.929023i \(-0.620650\pi\)
−0.370022 + 0.929023i \(0.620650\pi\)
\(542\) 15.5589 0.668313
\(543\) −1.67973 −0.0720842
\(544\) −13.4727 −0.577639
\(545\) 0 0
\(546\) −2.28400 −0.0977461
\(547\) 0.100286 0.00428793 0.00214396 0.999998i \(-0.499318\pi\)
0.00214396 + 0.999998i \(0.499318\pi\)
\(548\) −36.1590 −1.54464
\(549\) −12.1930 −0.520384
\(550\) 0 0
\(551\) −34.5965 −1.47386
\(552\) 10.7697 0.458391
\(553\) −10.0495 −0.427349
\(554\) 38.8841 1.65203
\(555\) 0 0
\(556\) −23.8915 −1.01323
\(557\) 31.0819 1.31698 0.658492 0.752588i \(-0.271195\pi\)
0.658492 + 0.752588i \(0.271195\pi\)
\(558\) 13.1988 0.558750
\(559\) 0.538507 0.0227764
\(560\) 0 0
\(561\) −1.18262 −0.0499303
\(562\) 6.34009 0.267441
\(563\) 10.6376 0.448321 0.224161 0.974552i \(-0.428036\pi\)
0.224161 + 0.974552i \(0.428036\pi\)
\(564\) 42.4226 1.78631
\(565\) 0 0
\(566\) 44.7753 1.88204
\(567\) 1.00000 0.0419961
\(568\) −3.52745 −0.148008
\(569\) −5.17206 −0.216824 −0.108412 0.994106i \(-0.534577\pi\)
−0.108412 + 0.994106i \(0.534577\pi\)
\(570\) 0 0
\(571\) −0.944663 −0.0395329 −0.0197665 0.999805i \(-0.506292\pi\)
−0.0197665 + 0.999805i \(0.506292\pi\)
\(572\) 1.62499 0.0679441
\(573\) −2.29730 −0.0959711
\(574\) −6.77428 −0.282753
\(575\) 0 0
\(576\) −12.9718 −0.540492
\(577\) 12.5781 0.523631 0.261816 0.965118i \(-0.415679\pi\)
0.261816 + 0.965118i \(0.415679\pi\)
\(578\) 26.3111 1.09440
\(579\) 1.24230 0.0516281
\(580\) 0 0
\(581\) −12.0725 −0.500851
\(582\) −41.7769 −1.73171
\(583\) 0.709174 0.0293710
\(584\) 36.3548 1.50437
\(585\) 0 0
\(586\) −67.3529 −2.78232
\(587\) −6.21538 −0.256536 −0.128268 0.991740i \(-0.540942\pi\)
−0.128268 + 0.991740i \(0.540942\pi\)
\(588\) 3.21665 0.132652
\(589\) 44.2338 1.82262
\(590\) 0 0
\(591\) −19.7519 −0.812485
\(592\) −0.523916 −0.0215328
\(593\) −6.57836 −0.270141 −0.135070 0.990836i \(-0.543126\pi\)
−0.135070 + 0.990836i \(0.543126\pi\)
\(594\) −1.15383 −0.0473423
\(595\) 0 0
\(596\) 41.8697 1.71505
\(597\) −22.7004 −0.929066
\(598\) 8.85199 0.361985
\(599\) 30.6031 1.25041 0.625205 0.780461i \(-0.285015\pi\)
0.625205 + 0.780461i \(0.285015\pi\)
\(600\) 0 0
\(601\) −41.1945 −1.68036 −0.840179 0.542310i \(-0.817550\pi\)
−0.840179 + 0.542310i \(0.817550\pi\)
\(602\) −1.22995 −0.0501290
\(603\) 1.39120 0.0566540
\(604\) −4.57805 −0.186278
\(605\) 0 0
\(606\) −10.6545 −0.432808
\(607\) 24.2843 0.985669 0.492834 0.870123i \(-0.335961\pi\)
0.492834 + 0.870123i \(0.335961\pi\)
\(608\) −44.0527 −1.78657
\(609\) 4.51977 0.183150
\(610\) 0 0
\(611\) 13.1884 0.533547
\(612\) −7.53013 −0.304388
\(613\) −36.8116 −1.48681 −0.743403 0.668844i \(-0.766789\pi\)
−0.743403 + 0.668844i \(0.766789\pi\)
\(614\) −28.2483 −1.14001
\(615\) 0 0
\(616\) −1.40380 −0.0565609
\(617\) −23.3177 −0.938734 −0.469367 0.883003i \(-0.655518\pi\)
−0.469367 + 0.883003i \(0.655518\pi\)
\(618\) −9.34228 −0.375801
\(619\) 19.0336 0.765026 0.382513 0.923950i \(-0.375059\pi\)
0.382513 + 0.923950i \(0.375059\pi\)
\(620\) 0 0
\(621\) −3.87566 −0.155525
\(622\) 64.5783 2.58935
\(623\) −2.95337 −0.118324
\(624\) −0.0864793 −0.00346194
\(625\) 0 0
\(626\) 64.1168 2.56262
\(627\) −3.86689 −0.154429
\(628\) 24.8882 0.993147
\(629\) −14.1824 −0.565488
\(630\) 0 0
\(631\) 15.5891 0.620593 0.310296 0.950640i \(-0.399572\pi\)
0.310296 + 0.950640i \(0.399572\pi\)
\(632\) 27.9258 1.11083
\(633\) −0.953370 −0.0378931
\(634\) −47.5194 −1.88724
\(635\) 0 0
\(636\) 4.51554 0.179053
\(637\) 1.00000 0.0396214
\(638\) −5.21505 −0.206466
\(639\) 1.26941 0.0502169
\(640\) 0 0
\(641\) −11.9386 −0.471545 −0.235772 0.971808i \(-0.575762\pi\)
−0.235772 + 0.971808i \(0.575762\pi\)
\(642\) 8.00582 0.315965
\(643\) 23.5663 0.929366 0.464683 0.885477i \(-0.346168\pi\)
0.464683 + 0.885477i \(0.346168\pi\)
\(644\) −12.4666 −0.491254
\(645\) 0 0
\(646\) −40.9270 −1.61025
\(647\) −22.5213 −0.885402 −0.442701 0.896669i \(-0.645980\pi\)
−0.442701 + 0.896669i \(0.645980\pi\)
\(648\) −2.77882 −0.109162
\(649\) 1.85334 0.0727500
\(650\) 0 0
\(651\) −5.77882 −0.226490
\(652\) −56.7654 −2.22310
\(653\) −19.2248 −0.752326 −0.376163 0.926553i \(-0.622757\pi\)
−0.376163 + 0.926553i \(0.622757\pi\)
\(654\) 29.9161 1.16981
\(655\) 0 0
\(656\) −0.256495 −0.0100145
\(657\) −13.0828 −0.510410
\(658\) −30.1224 −1.17429
\(659\) −15.4009 −0.599932 −0.299966 0.953950i \(-0.596975\pi\)
−0.299966 + 0.953950i \(0.596975\pi\)
\(660\) 0 0
\(661\) −25.0836 −0.975640 −0.487820 0.872944i \(-0.662208\pi\)
−0.487820 + 0.872944i \(0.662208\pi\)
\(662\) 32.9701 1.28142
\(663\) −2.34099 −0.0909165
\(664\) 33.5472 1.30188
\(665\) 0 0
\(666\) −13.8371 −0.536177
\(667\) −17.5171 −0.678264
\(668\) 27.2341 1.05372
\(669\) 11.7353 0.453714
\(670\) 0 0
\(671\) −6.15966 −0.237791
\(672\) 5.75515 0.222010
\(673\) −25.2799 −0.974467 −0.487233 0.873272i \(-0.661994\pi\)
−0.487233 + 0.873272i \(0.661994\pi\)
\(674\) −33.2488 −1.28069
\(675\) 0 0
\(676\) 3.21665 0.123717
\(677\) 22.5651 0.867248 0.433624 0.901094i \(-0.357235\pi\)
0.433624 + 0.901094i \(0.357235\pi\)
\(678\) 9.76551 0.375042
\(679\) 18.2911 0.701948
\(680\) 0 0
\(681\) 2.49482 0.0956017
\(682\) 6.66778 0.255322
\(683\) −24.5440 −0.939151 −0.469576 0.882892i \(-0.655593\pi\)
−0.469576 + 0.882892i \(0.655593\pi\)
\(684\) −24.6217 −0.941436
\(685\) 0 0
\(686\) −2.28400 −0.0872034
\(687\) −2.86650 −0.109364
\(688\) −0.0465697 −0.00177545
\(689\) 1.40380 0.0534807
\(690\) 0 0
\(691\) 20.7329 0.788715 0.394358 0.918957i \(-0.370967\pi\)
0.394358 + 0.918957i \(0.370967\pi\)
\(692\) 58.5455 2.22557
\(693\) 0.505180 0.0191902
\(694\) 11.5635 0.438943
\(695\) 0 0
\(696\) −12.5596 −0.476071
\(697\) −6.94331 −0.262997
\(698\) −26.0699 −0.986761
\(699\) 2.42817 0.0918417
\(700\) 0 0
\(701\) −29.4570 −1.11257 −0.556287 0.830990i \(-0.687775\pi\)
−0.556287 + 0.830990i \(0.687775\pi\)
\(702\) −2.28400 −0.0862039
\(703\) −46.3729 −1.74899
\(704\) −6.55310 −0.246979
\(705\) 0 0
\(706\) −16.1455 −0.607642
\(707\) 4.66484 0.175439
\(708\) 11.8008 0.443502
\(709\) 40.7608 1.53080 0.765402 0.643552i \(-0.222540\pi\)
0.765402 + 0.643552i \(0.222540\pi\)
\(710\) 0 0
\(711\) −10.0495 −0.376886
\(712\) 8.20688 0.307566
\(713\) 22.3967 0.838764
\(714\) 5.34681 0.200099
\(715\) 0 0
\(716\) −45.5923 −1.70386
\(717\) −23.8137 −0.889340
\(718\) −42.1333 −1.57240
\(719\) 34.7788 1.29703 0.648516 0.761201i \(-0.275390\pi\)
0.648516 + 0.761201i \(0.275390\pi\)
\(720\) 0 0
\(721\) 4.09032 0.152331
\(722\) −90.4257 −3.36530
\(723\) 19.2089 0.714385
\(724\) −5.40311 −0.200805
\(725\) 0 0
\(726\) 24.5411 0.910805
\(727\) 1.71665 0.0636671 0.0318336 0.999493i \(-0.489865\pi\)
0.0318336 + 0.999493i \(0.489865\pi\)
\(728\) −2.77882 −0.102990
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −1.26064 −0.0466264
\(732\) −39.2205 −1.44963
\(733\) −25.4622 −0.940468 −0.470234 0.882542i \(-0.655831\pi\)
−0.470234 + 0.882542i \(0.655831\pi\)
\(734\) 31.2298 1.15271
\(735\) 0 0
\(736\) −22.3050 −0.822173
\(737\) 0.702806 0.0258882
\(738\) −6.77428 −0.249365
\(739\) 41.9993 1.54497 0.772485 0.635033i \(-0.219013\pi\)
0.772485 + 0.635033i \(0.219013\pi\)
\(740\) 0 0
\(741\) −7.65448 −0.281194
\(742\) −3.20629 −0.117706
\(743\) −29.3212 −1.07569 −0.537846 0.843043i \(-0.680762\pi\)
−0.537846 + 0.843043i \(0.680762\pi\)
\(744\) 16.0583 0.588725
\(745\) 0 0
\(746\) 73.0988 2.67634
\(747\) −12.0725 −0.441709
\(748\) −3.80408 −0.139091
\(749\) −3.50518 −0.128077
\(750\) 0 0
\(751\) −7.31220 −0.266826 −0.133413 0.991061i \(-0.542594\pi\)
−0.133413 + 0.991061i \(0.542594\pi\)
\(752\) −1.14053 −0.0415908
\(753\) 27.2059 0.991439
\(754\) −10.3231 −0.375947
\(755\) 0 0
\(756\) 3.21665 0.116988
\(757\) −45.6236 −1.65822 −0.829109 0.559087i \(-0.811152\pi\)
−0.829109 + 0.559087i \(0.811152\pi\)
\(758\) 72.0443 2.61677
\(759\) −1.95791 −0.0710675
\(760\) 0 0
\(761\) 12.4921 0.452837 0.226419 0.974030i \(-0.427298\pi\)
0.226419 + 0.974030i \(0.427298\pi\)
\(762\) −12.1966 −0.441837
\(763\) −13.0981 −0.474184
\(764\) −7.38960 −0.267347
\(765\) 0 0
\(766\) 15.1380 0.546960
\(767\) 3.66867 0.132468
\(768\) −15.4362 −0.557005
\(769\) −16.7836 −0.605233 −0.302617 0.953112i \(-0.597860\pi\)
−0.302617 + 0.953112i \(0.597860\pi\)
\(770\) 0 0
\(771\) −28.2678 −1.01804
\(772\) 3.99603 0.143820
\(773\) −7.39761 −0.266074 −0.133037 0.991111i \(-0.542473\pi\)
−0.133037 + 0.991111i \(0.542473\pi\)
\(774\) −1.22995 −0.0442096
\(775\) 0 0
\(776\) −50.8277 −1.82461
\(777\) 6.05828 0.217340
\(778\) −10.7313 −0.384735
\(779\) −22.7030 −0.813419
\(780\) 0 0
\(781\) 0.641279 0.0229468
\(782\) −20.7224 −0.741032
\(783\) 4.51977 0.161523
\(784\) −0.0864793 −0.00308855
\(785\) 0 0
\(786\) 44.1482 1.57472
\(787\) 35.1733 1.25379 0.626896 0.779103i \(-0.284325\pi\)
0.626896 + 0.779103i \(0.284325\pi\)
\(788\) −63.5349 −2.26334
\(789\) −23.8737 −0.849926
\(790\) 0 0
\(791\) −4.27562 −0.152024
\(792\) −1.40380 −0.0498820
\(793\) −12.1930 −0.432985
\(794\) 12.8119 0.454679
\(795\) 0 0
\(796\) −73.0192 −2.58810
\(797\) −31.6333 −1.12051 −0.560255 0.828321i \(-0.689297\pi\)
−0.560255 + 0.828321i \(0.689297\pi\)
\(798\) 17.4828 0.618885
\(799\) −30.8740 −1.09224
\(800\) 0 0
\(801\) −2.95337 −0.104352
\(802\) −5.09306 −0.179842
\(803\) −6.60919 −0.233233
\(804\) 4.47499 0.157821
\(805\) 0 0
\(806\) 13.1988 0.464908
\(807\) 28.2497 0.994435
\(808\) −12.9627 −0.456027
\(809\) −28.0660 −0.986746 −0.493373 0.869818i \(-0.664236\pi\)
−0.493373 + 0.869818i \(0.664236\pi\)
\(810\) 0 0
\(811\) 33.5290 1.17736 0.588681 0.808366i \(-0.299647\pi\)
0.588681 + 0.808366i \(0.299647\pi\)
\(812\) 14.5385 0.510202
\(813\) −6.81214 −0.238912
\(814\) −6.99023 −0.245007
\(815\) 0 0
\(816\) 0.202447 0.00708707
\(817\) −4.12199 −0.144210
\(818\) −4.44147 −0.155292
\(819\) 1.00000 0.0349428
\(820\) 0 0
\(821\) −45.0951 −1.57383 −0.786916 0.617061i \(-0.788323\pi\)
−0.786916 + 0.617061i \(0.788323\pi\)
\(822\) 25.6749 0.895515
\(823\) −33.1083 −1.15408 −0.577041 0.816715i \(-0.695793\pi\)
−0.577041 + 0.816715i \(0.695793\pi\)
\(824\) −11.3662 −0.395962
\(825\) 0 0
\(826\) −8.37924 −0.291551
\(827\) −42.0818 −1.46333 −0.731663 0.681666i \(-0.761256\pi\)
−0.731663 + 0.681666i \(0.761256\pi\)
\(828\) −12.4666 −0.433245
\(829\) 9.11124 0.316446 0.158223 0.987403i \(-0.449423\pi\)
0.158223 + 0.987403i \(0.449423\pi\)
\(830\) 0 0
\(831\) −17.0246 −0.590575
\(832\) −12.9718 −0.449716
\(833\) −2.34099 −0.0811105
\(834\) 16.9643 0.587426
\(835\) 0 0
\(836\) −12.4384 −0.430192
\(837\) −5.77882 −0.199745
\(838\) 0.892739 0.0308392
\(839\) −27.9339 −0.964387 −0.482193 0.876065i \(-0.660160\pi\)
−0.482193 + 0.876065i \(0.660160\pi\)
\(840\) 0 0
\(841\) −8.57166 −0.295575
\(842\) 9.78554 0.337232
\(843\) −2.77588 −0.0956062
\(844\) −3.06665 −0.105559
\(845\) 0 0
\(846\) −30.1224 −1.03563
\(847\) −10.7448 −0.369195
\(848\) −0.121400 −0.00416889
\(849\) −19.6039 −0.672804
\(850\) 0 0
\(851\) −23.4798 −0.804878
\(852\) 4.08323 0.139889
\(853\) −46.2159 −1.58240 −0.791201 0.611556i \(-0.790544\pi\)
−0.791201 + 0.611556i \(0.790544\pi\)
\(854\) 27.8487 0.952964
\(855\) 0 0
\(856\) 9.74026 0.332915
\(857\) −8.88347 −0.303453 −0.151727 0.988422i \(-0.548483\pi\)
−0.151727 + 0.988422i \(0.548483\pi\)
\(858\) −1.15383 −0.0393911
\(859\) −6.38834 −0.217967 −0.108984 0.994044i \(-0.534760\pi\)
−0.108984 + 0.994044i \(0.534760\pi\)
\(860\) 0 0
\(861\) 2.96598 0.101080
\(862\) 29.9539 1.02023
\(863\) 15.3238 0.521630 0.260815 0.965389i \(-0.416009\pi\)
0.260815 + 0.965389i \(0.416009\pi\)
\(864\) 5.75515 0.195794
\(865\) 0 0
\(866\) −54.3279 −1.84614
\(867\) −11.5198 −0.391232
\(868\) −18.5884 −0.630932
\(869\) −5.07682 −0.172219
\(870\) 0 0
\(871\) 1.39120 0.0471390
\(872\) 36.3973 1.23257
\(873\) 18.2911 0.619060
\(874\) −67.7574 −2.29193
\(875\) 0 0
\(876\) −42.0829 −1.42185
\(877\) 25.5592 0.863074 0.431537 0.902095i \(-0.357971\pi\)
0.431537 + 0.902095i \(0.357971\pi\)
\(878\) 31.4965 1.06296
\(879\) 29.4890 0.994640
\(880\) 0 0
\(881\) 45.6787 1.53895 0.769477 0.638675i \(-0.220517\pi\)
0.769477 + 0.638675i \(0.220517\pi\)
\(882\) −2.28400 −0.0769062
\(883\) −10.2232 −0.344037 −0.172019 0.985094i \(-0.555029\pi\)
−0.172019 + 0.985094i \(0.555029\pi\)
\(884\) −7.53013 −0.253266
\(885\) 0 0
\(886\) 92.4345 3.10540
\(887\) 2.91005 0.0977099 0.0488549 0.998806i \(-0.484443\pi\)
0.0488549 + 0.998806i \(0.484443\pi\)
\(888\) −16.8349 −0.564941
\(889\) 5.34003 0.179099
\(890\) 0 0
\(891\) 0.505180 0.0169242
\(892\) 37.7484 1.26391
\(893\) −100.951 −3.37818
\(894\) −29.7298 −0.994314
\(895\) 0 0
\(896\) 18.1173 0.605255
\(897\) −3.87566 −0.129404
\(898\) 29.1431 0.972518
\(899\) −26.1189 −0.871115
\(900\) 0 0
\(901\) −3.28629 −0.109482
\(902\) −3.42223 −0.113948
\(903\) 0.538507 0.0179204
\(904\) 11.8812 0.395162
\(905\) 0 0
\(906\) 3.25067 0.107996
\(907\) 2.08255 0.0691501 0.0345750 0.999402i \(-0.488992\pi\)
0.0345750 + 0.999402i \(0.488992\pi\)
\(908\) 8.02495 0.266317
\(909\) 4.66484 0.154723
\(910\) 0 0
\(911\) 4.85463 0.160841 0.0804205 0.996761i \(-0.474374\pi\)
0.0804205 + 0.996761i \(0.474374\pi\)
\(912\) 0.661954 0.0219195
\(913\) −6.09878 −0.201840
\(914\) 27.3541 0.904794
\(915\) 0 0
\(916\) −9.22051 −0.304654
\(917\) −19.3294 −0.638312
\(918\) 5.34681 0.176471
\(919\) 32.2327 1.06326 0.531630 0.846977i \(-0.321580\pi\)
0.531630 + 0.846977i \(0.321580\pi\)
\(920\) 0 0
\(921\) 12.3679 0.407537
\(922\) −44.3117 −1.45933
\(923\) 1.26941 0.0417830
\(924\) 1.62499 0.0534581
\(925\) 0 0
\(926\) 11.9781 0.393624
\(927\) 4.09032 0.134344
\(928\) 26.0120 0.853885
\(929\) 5.83223 0.191349 0.0956746 0.995413i \(-0.469499\pi\)
0.0956746 + 0.995413i \(0.469499\pi\)
\(930\) 0 0
\(931\) −7.65448 −0.250865
\(932\) 7.81055 0.255843
\(933\) −28.2742 −0.925657
\(934\) 74.0686 2.42360
\(935\) 0 0
\(936\) −2.77882 −0.0908285
\(937\) 1.98460 0.0648340 0.0324170 0.999474i \(-0.489680\pi\)
0.0324170 + 0.999474i \(0.489680\pi\)
\(938\) −3.17749 −0.103749
\(939\) −28.0722 −0.916101
\(940\) 0 0
\(941\) 51.6855 1.68490 0.842450 0.538774i \(-0.181112\pi\)
0.842450 + 0.538774i \(0.181112\pi\)
\(942\) −17.6720 −0.575785
\(943\) −11.4951 −0.374332
\(944\) −0.317264 −0.0103261
\(945\) 0 0
\(946\) −0.621346 −0.0202017
\(947\) −9.11477 −0.296190 −0.148095 0.988973i \(-0.547314\pi\)
−0.148095 + 0.988973i \(0.547314\pi\)
\(948\) −32.3257 −1.04989
\(949\) −13.0828 −0.424687
\(950\) 0 0
\(951\) 20.8054 0.674660
\(952\) 6.50518 0.210834
\(953\) 10.5003 0.340137 0.170069 0.985432i \(-0.445601\pi\)
0.170069 + 0.985432i \(0.445601\pi\)
\(954\) −3.20629 −0.103807
\(955\) 0 0
\(956\) −76.6004 −2.47743
\(957\) 2.28330 0.0738086
\(958\) 27.7021 0.895014
\(959\) −11.2412 −0.362997
\(960\) 0 0
\(961\) 2.39473 0.0772494
\(962\) −13.8371 −0.446126
\(963\) −3.50518 −0.112953
\(964\) 61.7881 1.99006
\(965\) 0 0
\(966\) 8.85199 0.284808
\(967\) 22.8979 0.736348 0.368174 0.929757i \(-0.379983\pi\)
0.368174 + 0.929757i \(0.379983\pi\)
\(968\) 29.8578 0.959667
\(969\) 17.9190 0.575642
\(970\) 0 0
\(971\) −2.98022 −0.0956399 −0.0478199 0.998856i \(-0.515227\pi\)
−0.0478199 + 0.998856i \(0.515227\pi\)
\(972\) 3.21665 0.103174
\(973\) −7.42747 −0.238114
\(974\) −42.6473 −1.36651
\(975\) 0 0
\(976\) 1.05444 0.0337518
\(977\) 50.6224 1.61955 0.809777 0.586738i \(-0.199588\pi\)
0.809777 + 0.586738i \(0.199588\pi\)
\(978\) 40.3066 1.28886
\(979\) −1.49198 −0.0476840
\(980\) 0 0
\(981\) −13.0981 −0.418191
\(982\) −44.3872 −1.41645
\(983\) 8.51580 0.271612 0.135806 0.990735i \(-0.456638\pi\)
0.135806 + 0.990735i \(0.456638\pi\)
\(984\) −8.24190 −0.262742
\(985\) 0 0
\(986\) 24.1664 0.769614
\(987\) 13.1884 0.419793
\(988\) −24.6217 −0.783322
\(989\) −2.08707 −0.0663650
\(990\) 0 0
\(991\) −16.0775 −0.510720 −0.255360 0.966846i \(-0.582194\pi\)
−0.255360 + 0.966846i \(0.582194\pi\)
\(992\) −33.2580 −1.05594
\(993\) −14.4353 −0.458090
\(994\) −2.89932 −0.0919609
\(995\) 0 0
\(996\) −38.8329 −1.23047
\(997\) −32.5794 −1.03180 −0.515901 0.856648i \(-0.672543\pi\)
−0.515901 + 0.856648i \(0.672543\pi\)
\(998\) −90.1600 −2.85396
\(999\) 6.05828 0.191675
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6825.2.a.bi.1.1 4
5.4 even 2 6825.2.a.bj.1.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6825.2.a.bi.1.1 4 1.1 even 1 trivial
6825.2.a.bj.1.4 yes 4 5.4 even 2