Properties

Label 6825.2.a.be.1.1
Level $6825$
Weight $2$
Character 6825.1
Self dual yes
Analytic conductor $54.498$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6825,2,Mod(1,6825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6825.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6825 = 3 \cdot 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.4978993795\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1365)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.90211\) of defining polynomial
Character \(\chi\) \(=\) 6825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.61803 q^{2} +1.00000 q^{3} +0.618034 q^{4} -1.61803 q^{6} +1.00000 q^{7} +2.23607 q^{8} +1.00000 q^{9} -4.80423 q^{11} +0.618034 q^{12} +1.00000 q^{13} -1.61803 q^{14} -4.85410 q^{16} +3.24669 q^{17} -1.61803 q^{18} -0.891491 q^{19} +1.00000 q^{21} +7.77340 q^{22} +1.41164 q^{23} +2.23607 q^{24} -1.61803 q^{26} +1.00000 q^{27} +0.618034 q^{28} +0.459650 q^{29} +0.340519 q^{31} +3.38197 q^{32} -4.80423 q^{33} -5.25325 q^{34} +0.618034 q^{36} -1.71592 q^{37} +1.44246 q^{38} +1.00000 q^{39} -3.07768 q^{41} -1.61803 q^{42} -11.8885 q^{43} -2.96917 q^{44} -2.28408 q^{46} -4.50953 q^{47} -4.85410 q^{48} +1.00000 q^{49} +3.24669 q^{51} +0.618034 q^{52} -0.405074 q^{53} -1.61803 q^{54} +2.23607 q^{56} -0.891491 q^{57} -0.743729 q^{58} +8.94241 q^{59} -10.3138 q^{61} -0.550972 q^{62} +1.00000 q^{63} +4.23607 q^{64} +7.77340 q^{66} +8.24367 q^{67} +2.00656 q^{68} +1.41164 q^{69} +7.57763 q^{71} +2.23607 q^{72} +2.48276 q^{73} +2.77642 q^{74} -0.550972 q^{76} -4.80423 q^{77} -1.61803 q^{78} -9.07112 q^{79} +1.00000 q^{81} +4.97980 q^{82} -3.83035 q^{83} +0.618034 q^{84} +19.2360 q^{86} +0.459650 q^{87} -10.7426 q^{88} +15.2935 q^{89} +1.00000 q^{91} +0.872441 q^{92} +0.340519 q^{93} +7.29657 q^{94} +3.38197 q^{96} -10.4893 q^{97} -1.61803 q^{98} -4.80423 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 4 q^{3} - 2 q^{4} - 2 q^{6} + 4 q^{7} + 4 q^{9} - 4 q^{11} - 2 q^{12} + 4 q^{13} - 2 q^{14} - 6 q^{16} - 2 q^{17} - 2 q^{18} - 2 q^{19} + 4 q^{21} + 2 q^{22} - 8 q^{23} - 2 q^{26} + 4 q^{27}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61803 −1.14412 −0.572061 0.820211i \(-0.693856\pi\)
−0.572061 + 0.820211i \(0.693856\pi\)
\(3\) 1.00000 0.577350
\(4\) 0.618034 0.309017
\(5\) 0 0
\(6\) −1.61803 −0.660560
\(7\) 1.00000 0.377964
\(8\) 2.23607 0.790569
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.80423 −1.44853 −0.724264 0.689522i \(-0.757820\pi\)
−0.724264 + 0.689522i \(0.757820\pi\)
\(12\) 0.618034 0.178411
\(13\) 1.00000 0.277350
\(14\) −1.61803 −0.432438
\(15\) 0 0
\(16\) −4.85410 −1.21353
\(17\) 3.24669 0.787438 0.393719 0.919231i \(-0.371188\pi\)
0.393719 + 0.919231i \(0.371188\pi\)
\(18\) −1.61803 −0.381374
\(19\) −0.891491 −0.204522 −0.102261 0.994758i \(-0.532608\pi\)
−0.102261 + 0.994758i \(0.532608\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 7.77340 1.65729
\(23\) 1.41164 0.294347 0.147173 0.989111i \(-0.452982\pi\)
0.147173 + 0.989111i \(0.452982\pi\)
\(24\) 2.23607 0.456435
\(25\) 0 0
\(26\) −1.61803 −0.317323
\(27\) 1.00000 0.192450
\(28\) 0.618034 0.116797
\(29\) 0.459650 0.0853548 0.0426774 0.999089i \(-0.486411\pi\)
0.0426774 + 0.999089i \(0.486411\pi\)
\(30\) 0 0
\(31\) 0.340519 0.0611591 0.0305795 0.999532i \(-0.490265\pi\)
0.0305795 + 0.999532i \(0.490265\pi\)
\(32\) 3.38197 0.597853
\(33\) −4.80423 −0.836308
\(34\) −5.25325 −0.900926
\(35\) 0 0
\(36\) 0.618034 0.103006
\(37\) −1.71592 −0.282096 −0.141048 0.990003i \(-0.545047\pi\)
−0.141048 + 0.990003i \(0.545047\pi\)
\(38\) 1.44246 0.233998
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) −3.07768 −0.480653 −0.240327 0.970692i \(-0.577255\pi\)
−0.240327 + 0.970692i \(0.577255\pi\)
\(42\) −1.61803 −0.249668
\(43\) −11.8885 −1.81298 −0.906488 0.422232i \(-0.861247\pi\)
−0.906488 + 0.422232i \(0.861247\pi\)
\(44\) −2.96917 −0.447620
\(45\) 0 0
\(46\) −2.28408 −0.336769
\(47\) −4.50953 −0.657782 −0.328891 0.944368i \(-0.606675\pi\)
−0.328891 + 0.944368i \(0.606675\pi\)
\(48\) −4.85410 −0.700629
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 3.24669 0.454627
\(52\) 0.618034 0.0857059
\(53\) −0.405074 −0.0556412 −0.0278206 0.999613i \(-0.508857\pi\)
−0.0278206 + 0.999613i \(0.508857\pi\)
\(54\) −1.61803 −0.220187
\(55\) 0 0
\(56\) 2.23607 0.298807
\(57\) −0.891491 −0.118081
\(58\) −0.743729 −0.0976563
\(59\) 8.94241 1.16420 0.582101 0.813116i \(-0.302231\pi\)
0.582101 + 0.813116i \(0.302231\pi\)
\(60\) 0 0
\(61\) −10.3138 −1.32054 −0.660270 0.751028i \(-0.729558\pi\)
−0.660270 + 0.751028i \(0.729558\pi\)
\(62\) −0.550972 −0.0699735
\(63\) 1.00000 0.125988
\(64\) 4.23607 0.529508
\(65\) 0 0
\(66\) 7.77340 0.956840
\(67\) 8.24367 1.00712 0.503562 0.863959i \(-0.332022\pi\)
0.503562 + 0.863959i \(0.332022\pi\)
\(68\) 2.00656 0.243332
\(69\) 1.41164 0.169941
\(70\) 0 0
\(71\) 7.57763 0.899299 0.449649 0.893205i \(-0.351549\pi\)
0.449649 + 0.893205i \(0.351549\pi\)
\(72\) 2.23607 0.263523
\(73\) 2.48276 0.290585 0.145292 0.989389i \(-0.453588\pi\)
0.145292 + 0.989389i \(0.453588\pi\)
\(74\) 2.77642 0.322752
\(75\) 0 0
\(76\) −0.550972 −0.0632008
\(77\) −4.80423 −0.547492
\(78\) −1.61803 −0.183206
\(79\) −9.07112 −1.02058 −0.510290 0.860002i \(-0.670462\pi\)
−0.510290 + 0.860002i \(0.670462\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 4.97980 0.549927
\(83\) −3.83035 −0.420436 −0.210218 0.977655i \(-0.567417\pi\)
−0.210218 + 0.977655i \(0.567417\pi\)
\(84\) 0.618034 0.0674330
\(85\) 0 0
\(86\) 19.2360 2.07427
\(87\) 0.459650 0.0492796
\(88\) −10.7426 −1.14516
\(89\) 15.2935 1.62111 0.810556 0.585661i \(-0.199165\pi\)
0.810556 + 0.585661i \(0.199165\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0.872441 0.0909582
\(93\) 0.340519 0.0353102
\(94\) 7.29657 0.752583
\(95\) 0 0
\(96\) 3.38197 0.345170
\(97\) −10.4893 −1.06503 −0.532515 0.846421i \(-0.678753\pi\)
−0.532515 + 0.846421i \(0.678753\pi\)
\(98\) −1.61803 −0.163446
\(99\) −4.80423 −0.482843
\(100\) 0 0
\(101\) 2.46151 0.244930 0.122465 0.992473i \(-0.460920\pi\)
0.122465 + 0.992473i \(0.460920\pi\)
\(102\) −5.25325 −0.520150
\(103\) −4.66906 −0.460056 −0.230028 0.973184i \(-0.573882\pi\)
−0.230028 + 0.973184i \(0.573882\pi\)
\(104\) 2.23607 0.219265
\(105\) 0 0
\(106\) 0.655423 0.0636604
\(107\) −6.28949 −0.608028 −0.304014 0.952668i \(-0.598327\pi\)
−0.304014 + 0.952668i \(0.598327\pi\)
\(108\) 0.618034 0.0594703
\(109\) −3.92045 −0.375511 −0.187756 0.982216i \(-0.560121\pi\)
−0.187756 + 0.982216i \(0.560121\pi\)
\(110\) 0 0
\(111\) −1.71592 −0.162868
\(112\) −4.85410 −0.458670
\(113\) −2.43841 −0.229386 −0.114693 0.993401i \(-0.536588\pi\)
−0.114693 + 0.993401i \(0.536588\pi\)
\(114\) 1.44246 0.135099
\(115\) 0 0
\(116\) 0.284079 0.0263761
\(117\) 1.00000 0.0924500
\(118\) −14.4691 −1.33199
\(119\) 3.24669 0.297624
\(120\) 0 0
\(121\) 12.0806 1.09824
\(122\) 16.6880 1.51086
\(123\) −3.07768 −0.277505
\(124\) 0.210453 0.0188992
\(125\) 0 0
\(126\) −1.61803 −0.144146
\(127\) −13.3974 −1.18882 −0.594412 0.804161i \(-0.702615\pi\)
−0.594412 + 0.804161i \(0.702615\pi\)
\(128\) −13.6180 −1.20368
\(129\) −11.8885 −1.04672
\(130\) 0 0
\(131\) −20.5593 −1.79627 −0.898137 0.439716i \(-0.855079\pi\)
−0.898137 + 0.439716i \(0.855079\pi\)
\(132\) −2.96917 −0.258434
\(133\) −0.891491 −0.0773021
\(134\) −13.3385 −1.15227
\(135\) 0 0
\(136\) 7.25982 0.622524
\(137\) −4.74258 −0.405186 −0.202593 0.979263i \(-0.564937\pi\)
−0.202593 + 0.979263i \(0.564937\pi\)
\(138\) −2.28408 −0.194434
\(139\) 14.9069 1.26439 0.632193 0.774811i \(-0.282155\pi\)
0.632193 + 0.774811i \(0.282155\pi\)
\(140\) 0 0
\(141\) −4.50953 −0.379771
\(142\) −12.2609 −1.02891
\(143\) −4.80423 −0.401750
\(144\) −4.85410 −0.404508
\(145\) 0 0
\(146\) −4.01719 −0.332465
\(147\) 1.00000 0.0824786
\(148\) −1.06050 −0.0871724
\(149\) −9.09372 −0.744986 −0.372493 0.928035i \(-0.621497\pi\)
−0.372493 + 0.928035i \(0.621497\pi\)
\(150\) 0 0
\(151\) −12.9864 −1.05682 −0.528408 0.848991i \(-0.677211\pi\)
−0.528408 + 0.848991i \(0.677211\pi\)
\(152\) −1.99344 −0.161689
\(153\) 3.24669 0.262479
\(154\) 7.77340 0.626399
\(155\) 0 0
\(156\) 0.618034 0.0494823
\(157\) 2.55703 0.204073 0.102036 0.994781i \(-0.467464\pi\)
0.102036 + 0.994781i \(0.467464\pi\)
\(158\) 14.6774 1.16767
\(159\) −0.405074 −0.0321245
\(160\) 0 0
\(161\) 1.41164 0.111253
\(162\) −1.61803 −0.127125
\(163\) 25.2136 1.97488 0.987439 0.157999i \(-0.0505044\pi\)
0.987439 + 0.157999i \(0.0505044\pi\)
\(164\) −1.90211 −0.148530
\(165\) 0 0
\(166\) 6.19764 0.481030
\(167\) −14.4068 −1.11483 −0.557414 0.830235i \(-0.688206\pi\)
−0.557414 + 0.830235i \(0.688206\pi\)
\(168\) 2.23607 0.172516
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −0.891491 −0.0681741
\(172\) −7.34748 −0.560240
\(173\) −10.0659 −0.765297 −0.382648 0.923894i \(-0.624988\pi\)
−0.382648 + 0.923894i \(0.624988\pi\)
\(174\) −0.743729 −0.0563819
\(175\) 0 0
\(176\) 23.3202 1.75783
\(177\) 8.94241 0.672152
\(178\) −24.7455 −1.85475
\(179\) 8.15910 0.609840 0.304920 0.952378i \(-0.401370\pi\)
0.304920 + 0.952378i \(0.401370\pi\)
\(180\) 0 0
\(181\) −20.5509 −1.52753 −0.763767 0.645492i \(-0.776652\pi\)
−0.763767 + 0.645492i \(0.776652\pi\)
\(182\) −1.61803 −0.119937
\(183\) −10.3138 −0.762414
\(184\) 3.15652 0.232702
\(185\) 0 0
\(186\) −0.550972 −0.0403992
\(187\) −15.5978 −1.14063
\(188\) −2.78704 −0.203266
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 14.8310 1.07313 0.536567 0.843858i \(-0.319721\pi\)
0.536567 + 0.843858i \(0.319721\pi\)
\(192\) 4.23607 0.305712
\(193\) −4.38447 −0.315601 −0.157801 0.987471i \(-0.550440\pi\)
−0.157801 + 0.987471i \(0.550440\pi\)
\(194\) 16.9721 1.21852
\(195\) 0 0
\(196\) 0.618034 0.0441453
\(197\) −5.40321 −0.384963 −0.192481 0.981301i \(-0.561653\pi\)
−0.192481 + 0.981301i \(0.561653\pi\)
\(198\) 7.77340 0.552432
\(199\) −11.5692 −0.820119 −0.410059 0.912059i \(-0.634492\pi\)
−0.410059 + 0.912059i \(0.634492\pi\)
\(200\) 0 0
\(201\) 8.24367 0.581464
\(202\) −3.98281 −0.280230
\(203\) 0.459650 0.0322611
\(204\) 2.00656 0.140488
\(205\) 0 0
\(206\) 7.55470 0.526361
\(207\) 1.41164 0.0981157
\(208\) −4.85410 −0.336571
\(209\) 4.28293 0.296256
\(210\) 0 0
\(211\) −10.7653 −0.741113 −0.370556 0.928810i \(-0.620833\pi\)
−0.370556 + 0.928810i \(0.620833\pi\)
\(212\) −0.250349 −0.0171941
\(213\) 7.57763 0.519210
\(214\) 10.1766 0.695659
\(215\) 0 0
\(216\) 2.23607 0.152145
\(217\) 0.340519 0.0231160
\(218\) 6.34342 0.429631
\(219\) 2.48276 0.167769
\(220\) 0 0
\(221\) 3.24669 0.218396
\(222\) 2.77642 0.186341
\(223\) −9.65948 −0.646847 −0.323423 0.946254i \(-0.604834\pi\)
−0.323423 + 0.946254i \(0.604834\pi\)
\(224\) 3.38197 0.225967
\(225\) 0 0
\(226\) 3.94542 0.262446
\(227\) 27.8250 1.84681 0.923406 0.383825i \(-0.125393\pi\)
0.923406 + 0.383825i \(0.125393\pi\)
\(228\) −0.550972 −0.0364890
\(229\) 8.53026 0.563695 0.281848 0.959459i \(-0.409053\pi\)
0.281848 + 0.959459i \(0.409053\pi\)
\(230\) 0 0
\(231\) −4.80423 −0.316095
\(232\) 1.02781 0.0674789
\(233\) 21.1471 1.38540 0.692698 0.721228i \(-0.256422\pi\)
0.692698 + 0.721228i \(0.256422\pi\)
\(234\) −1.61803 −0.105774
\(235\) 0 0
\(236\) 5.52671 0.359758
\(237\) −9.07112 −0.589233
\(238\) −5.25325 −0.340518
\(239\) 18.1840 1.17623 0.588113 0.808779i \(-0.299871\pi\)
0.588113 + 0.808779i \(0.299871\pi\)
\(240\) 0 0
\(241\) −11.7022 −0.753803 −0.376901 0.926253i \(-0.623010\pi\)
−0.376901 + 0.926253i \(0.623010\pi\)
\(242\) −19.5468 −1.25652
\(243\) 1.00000 0.0641500
\(244\) −6.37425 −0.408069
\(245\) 0 0
\(246\) 4.97980 0.317500
\(247\) −0.891491 −0.0567242
\(248\) 0.761425 0.0483505
\(249\) −3.83035 −0.242739
\(250\) 0 0
\(251\) 6.64185 0.419230 0.209615 0.977784i \(-0.432779\pi\)
0.209615 + 0.977784i \(0.432779\pi\)
\(252\) 0.618034 0.0389325
\(253\) −6.78183 −0.426370
\(254\) 21.6774 1.36016
\(255\) 0 0
\(256\) 13.5623 0.847644
\(257\) −16.4358 −1.02524 −0.512618 0.858617i \(-0.671324\pi\)
−0.512618 + 0.858617i \(0.671324\pi\)
\(258\) 19.2360 1.19758
\(259\) −1.71592 −0.106622
\(260\) 0 0
\(261\) 0.459650 0.0284516
\(262\) 33.2656 2.05516
\(263\) −27.9057 −1.72074 −0.860368 0.509673i \(-0.829766\pi\)
−0.860368 + 0.509673i \(0.829766\pi\)
\(264\) −10.7426 −0.661160
\(265\) 0 0
\(266\) 1.44246 0.0884431
\(267\) 15.2935 0.935950
\(268\) 5.09487 0.311219
\(269\) 27.3788 1.66932 0.834659 0.550768i \(-0.185665\pi\)
0.834659 + 0.550768i \(0.185665\pi\)
\(270\) 0 0
\(271\) −3.10600 −0.188676 −0.0943381 0.995540i \(-0.530073\pi\)
−0.0943381 + 0.995540i \(0.530073\pi\)
\(272\) −15.7598 −0.955576
\(273\) 1.00000 0.0605228
\(274\) 7.67365 0.463582
\(275\) 0 0
\(276\) 0.872441 0.0525148
\(277\) 30.2146 1.81542 0.907710 0.419599i \(-0.137829\pi\)
0.907710 + 0.419599i \(0.137829\pi\)
\(278\) −24.1198 −1.44661
\(279\) 0.340519 0.0203864
\(280\) 0 0
\(281\) −0.922959 −0.0550591 −0.0275296 0.999621i \(-0.508764\pi\)
−0.0275296 + 0.999621i \(0.508764\pi\)
\(282\) 7.29657 0.434504
\(283\) −16.7953 −0.998376 −0.499188 0.866494i \(-0.666368\pi\)
−0.499188 + 0.866494i \(0.666368\pi\)
\(284\) 4.68323 0.277899
\(285\) 0 0
\(286\) 7.77340 0.459651
\(287\) −3.07768 −0.181670
\(288\) 3.38197 0.199284
\(289\) −6.45901 −0.379942
\(290\) 0 0
\(291\) −10.4893 −0.614895
\(292\) 1.53443 0.0897956
\(293\) 5.53066 0.323104 0.161552 0.986864i \(-0.448350\pi\)
0.161552 + 0.986864i \(0.448350\pi\)
\(294\) −1.61803 −0.0943657
\(295\) 0 0
\(296\) −3.83692 −0.223016
\(297\) −4.80423 −0.278769
\(298\) 14.7139 0.852356
\(299\) 1.41164 0.0816372
\(300\) 0 0
\(301\) −11.8885 −0.685240
\(302\) 21.0124 1.20913
\(303\) 2.46151 0.141410
\(304\) 4.32739 0.248193
\(305\) 0 0
\(306\) −5.25325 −0.300309
\(307\) −31.3957 −1.79185 −0.895923 0.444208i \(-0.853485\pi\)
−0.895923 + 0.444208i \(0.853485\pi\)
\(308\) −2.96917 −0.169184
\(309\) −4.66906 −0.265614
\(310\) 0 0
\(311\) 2.73362 0.155009 0.0775046 0.996992i \(-0.475305\pi\)
0.0775046 + 0.996992i \(0.475305\pi\)
\(312\) 2.23607 0.126592
\(313\) −2.92489 −0.165325 −0.0826624 0.996578i \(-0.526342\pi\)
−0.0826624 + 0.996578i \(0.526342\pi\)
\(314\) −4.13736 −0.233485
\(315\) 0 0
\(316\) −5.60626 −0.315377
\(317\) 0.810148 0.0455024 0.0227512 0.999741i \(-0.492757\pi\)
0.0227512 + 0.999741i \(0.492757\pi\)
\(318\) 0.655423 0.0367543
\(319\) −2.20826 −0.123639
\(320\) 0 0
\(321\) −6.28949 −0.351045
\(322\) −2.28408 −0.127287
\(323\) −2.89440 −0.161049
\(324\) 0.618034 0.0343352
\(325\) 0 0
\(326\) −40.7964 −2.25950
\(327\) −3.92045 −0.216801
\(328\) −6.88191 −0.379990
\(329\) −4.50953 −0.248618
\(330\) 0 0
\(331\) −5.02278 −0.276077 −0.138038 0.990427i \(-0.544080\pi\)
−0.138038 + 0.990427i \(0.544080\pi\)
\(332\) −2.36729 −0.129922
\(333\) −1.71592 −0.0940319
\(334\) 23.3106 1.27550
\(335\) 0 0
\(336\) −4.85410 −0.264813
\(337\) −14.9881 −0.816455 −0.408227 0.912880i \(-0.633853\pi\)
−0.408227 + 0.912880i \(0.633853\pi\)
\(338\) −1.61803 −0.0880094
\(339\) −2.43841 −0.132436
\(340\) 0 0
\(341\) −1.63593 −0.0885907
\(342\) 1.44246 0.0779995
\(343\) 1.00000 0.0539949
\(344\) −26.5834 −1.43328
\(345\) 0 0
\(346\) 16.2870 0.875594
\(347\) −3.88544 −0.208581 −0.104291 0.994547i \(-0.533257\pi\)
−0.104291 + 0.994547i \(0.533257\pi\)
\(348\) 0.284079 0.0152282
\(349\) 33.1267 1.77323 0.886616 0.462507i \(-0.153050\pi\)
0.886616 + 0.462507i \(0.153050\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) −16.2477 −0.866007
\(353\) 6.16721 0.328248 0.164124 0.986440i \(-0.447520\pi\)
0.164124 + 0.986440i \(0.447520\pi\)
\(354\) −14.4691 −0.769025
\(355\) 0 0
\(356\) 9.45193 0.500951
\(357\) 3.24669 0.171833
\(358\) −13.2017 −0.697731
\(359\) −4.35926 −0.230073 −0.115036 0.993361i \(-0.536698\pi\)
−0.115036 + 0.993361i \(0.536698\pi\)
\(360\) 0 0
\(361\) −18.2052 −0.958171
\(362\) 33.2520 1.74769
\(363\) 12.0806 0.634066
\(364\) 0.618034 0.0323938
\(365\) 0 0
\(366\) 16.6880 0.872296
\(367\) −35.6921 −1.86311 −0.931555 0.363600i \(-0.881547\pi\)
−0.931555 + 0.363600i \(0.881547\pi\)
\(368\) −6.85224 −0.357198
\(369\) −3.07768 −0.160218
\(370\) 0 0
\(371\) −0.405074 −0.0210304
\(372\) 0.210453 0.0109115
\(373\) 11.6759 0.604556 0.302278 0.953220i \(-0.402253\pi\)
0.302278 + 0.953220i \(0.402253\pi\)
\(374\) 25.2378 1.30502
\(375\) 0 0
\(376\) −10.0836 −0.520022
\(377\) 0.459650 0.0236732
\(378\) −1.61803 −0.0832227
\(379\) 20.0941 1.03217 0.516083 0.856539i \(-0.327390\pi\)
0.516083 + 0.856539i \(0.327390\pi\)
\(380\) 0 0
\(381\) −13.3974 −0.686367
\(382\) −23.9971 −1.22780
\(383\) −0.874948 −0.0447078 −0.0223539 0.999750i \(-0.507116\pi\)
−0.0223539 + 0.999750i \(0.507116\pi\)
\(384\) −13.6180 −0.694942
\(385\) 0 0
\(386\) 7.09423 0.361087
\(387\) −11.8885 −0.604325
\(388\) −6.48276 −0.329112
\(389\) 32.7010 1.65801 0.829004 0.559243i \(-0.188908\pi\)
0.829004 + 0.559243i \(0.188908\pi\)
\(390\) 0 0
\(391\) 4.58315 0.231780
\(392\) 2.23607 0.112938
\(393\) −20.5593 −1.03708
\(394\) 8.74258 0.440445
\(395\) 0 0
\(396\) −2.96917 −0.149207
\(397\) −37.1937 −1.86670 −0.933349 0.358971i \(-0.883128\pi\)
−0.933349 + 0.358971i \(0.883128\pi\)
\(398\) 18.7194 0.938316
\(399\) −0.891491 −0.0446304
\(400\) 0 0
\(401\) −3.69636 −0.184587 −0.0922937 0.995732i \(-0.529420\pi\)
−0.0922937 + 0.995732i \(0.529420\pi\)
\(402\) −13.3385 −0.665266
\(403\) 0.340519 0.0169625
\(404\) 1.52130 0.0756875
\(405\) 0 0
\(406\) −0.743729 −0.0369106
\(407\) 8.24367 0.408624
\(408\) 7.25982 0.359415
\(409\) −5.50837 −0.272372 −0.136186 0.990683i \(-0.543484\pi\)
−0.136186 + 0.990683i \(0.543484\pi\)
\(410\) 0 0
\(411\) −4.74258 −0.233934
\(412\) −2.88564 −0.142165
\(413\) 8.94241 0.440027
\(414\) −2.28408 −0.112256
\(415\) 0 0
\(416\) 3.38197 0.165815
\(417\) 14.9069 0.729993
\(418\) −6.92992 −0.338953
\(419\) −24.5229 −1.19802 −0.599012 0.800740i \(-0.704440\pi\)
−0.599012 + 0.800740i \(0.704440\pi\)
\(420\) 0 0
\(421\) −6.91531 −0.337032 −0.168516 0.985699i \(-0.553897\pi\)
−0.168516 + 0.985699i \(0.553897\pi\)
\(422\) 17.4186 0.847924
\(423\) −4.50953 −0.219261
\(424\) −0.905773 −0.0439882
\(425\) 0 0
\(426\) −12.2609 −0.594041
\(427\) −10.3138 −0.499117
\(428\) −3.88712 −0.187891
\(429\) −4.80423 −0.231950
\(430\) 0 0
\(431\) 6.75428 0.325342 0.162671 0.986680i \(-0.447989\pi\)
0.162671 + 0.986680i \(0.447989\pi\)
\(432\) −4.85410 −0.233543
\(433\) 26.2842 1.26314 0.631568 0.775320i \(-0.282412\pi\)
0.631568 + 0.775320i \(0.282412\pi\)
\(434\) −0.550972 −0.0264475
\(435\) 0 0
\(436\) −2.42297 −0.116039
\(437\) −1.25846 −0.0602005
\(438\) −4.01719 −0.191949
\(439\) −21.6867 −1.03505 −0.517526 0.855668i \(-0.673147\pi\)
−0.517526 + 0.855668i \(0.673147\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) −5.25325 −0.249872
\(443\) −30.0870 −1.42948 −0.714739 0.699391i \(-0.753455\pi\)
−0.714739 + 0.699391i \(0.753455\pi\)
\(444\) −1.06050 −0.0503290
\(445\) 0 0
\(446\) 15.6294 0.740072
\(447\) −9.09372 −0.430118
\(448\) 4.23607 0.200135
\(449\) −37.4141 −1.76568 −0.882840 0.469673i \(-0.844372\pi\)
−0.882840 + 0.469673i \(0.844372\pi\)
\(450\) 0 0
\(451\) 14.7859 0.696240
\(452\) −1.50702 −0.0708842
\(453\) −12.9864 −0.610152
\(454\) −45.0218 −2.11298
\(455\) 0 0
\(456\) −1.99344 −0.0933512
\(457\) −8.26452 −0.386598 −0.193299 0.981140i \(-0.561919\pi\)
−0.193299 + 0.981140i \(0.561919\pi\)
\(458\) −13.8022 −0.644937
\(459\) 3.24669 0.151542
\(460\) 0 0
\(461\) 0.874815 0.0407442 0.0203721 0.999792i \(-0.493515\pi\)
0.0203721 + 0.999792i \(0.493515\pi\)
\(462\) 7.77340 0.361651
\(463\) −20.4850 −0.952020 −0.476010 0.879440i \(-0.657917\pi\)
−0.476010 + 0.879440i \(0.657917\pi\)
\(464\) −2.23119 −0.103580
\(465\) 0 0
\(466\) −34.2168 −1.58506
\(467\) −12.7298 −0.589063 −0.294532 0.955642i \(-0.595164\pi\)
−0.294532 + 0.955642i \(0.595164\pi\)
\(468\) 0.618034 0.0285686
\(469\) 8.24367 0.380657
\(470\) 0 0
\(471\) 2.55703 0.117822
\(472\) 19.9958 0.920383
\(473\) 57.1149 2.62615
\(474\) 14.6774 0.674154
\(475\) 0 0
\(476\) 2.00656 0.0919707
\(477\) −0.405074 −0.0185471
\(478\) −29.4223 −1.34575
\(479\) 24.9962 1.14210 0.571052 0.820914i \(-0.306536\pi\)
0.571052 + 0.820914i \(0.306536\pi\)
\(480\) 0 0
\(481\) −1.71592 −0.0782393
\(482\) 18.9345 0.862443
\(483\) 1.41164 0.0642318
\(484\) 7.46621 0.339373
\(485\) 0 0
\(486\) −1.61803 −0.0733955
\(487\) 27.6813 1.25436 0.627180 0.778874i \(-0.284209\pi\)
0.627180 + 0.778874i \(0.284209\pi\)
\(488\) −23.0622 −1.04398
\(489\) 25.2136 1.14020
\(490\) 0 0
\(491\) 5.75969 0.259931 0.129966 0.991518i \(-0.458513\pi\)
0.129966 + 0.991518i \(0.458513\pi\)
\(492\) −1.90211 −0.0857539
\(493\) 1.49234 0.0672116
\(494\) 1.44246 0.0648995
\(495\) 0 0
\(496\) −1.65292 −0.0742181
\(497\) 7.57763 0.339903
\(498\) 6.19764 0.277723
\(499\) −35.2238 −1.57683 −0.788416 0.615143i \(-0.789098\pi\)
−0.788416 + 0.615143i \(0.789098\pi\)
\(500\) 0 0
\(501\) −14.4068 −0.643646
\(502\) −10.7467 −0.479651
\(503\) −23.1576 −1.03254 −0.516272 0.856425i \(-0.672681\pi\)
−0.516272 + 0.856425i \(0.672681\pi\)
\(504\) 2.23607 0.0996024
\(505\) 0 0
\(506\) 10.9732 0.487820
\(507\) 1.00000 0.0444116
\(508\) −8.28002 −0.367367
\(509\) 7.23722 0.320784 0.160392 0.987053i \(-0.448724\pi\)
0.160392 + 0.987053i \(0.448724\pi\)
\(510\) 0 0
\(511\) 2.48276 0.109831
\(512\) 5.29180 0.233867
\(513\) −0.891491 −0.0393603
\(514\) 26.5937 1.17300
\(515\) 0 0
\(516\) −7.34748 −0.323455
\(517\) 21.6648 0.952816
\(518\) 2.77642 0.121989
\(519\) −10.0659 −0.441844
\(520\) 0 0
\(521\) −16.2953 −0.713910 −0.356955 0.934122i \(-0.616185\pi\)
−0.356955 + 0.934122i \(0.616185\pi\)
\(522\) −0.743729 −0.0325521
\(523\) −22.1147 −0.967010 −0.483505 0.875342i \(-0.660637\pi\)
−0.483505 + 0.875342i \(0.660637\pi\)
\(524\) −12.7063 −0.555079
\(525\) 0 0
\(526\) 45.1523 1.96873
\(527\) 1.10556 0.0481590
\(528\) 23.3202 1.01488
\(529\) −21.0073 −0.913360
\(530\) 0 0
\(531\) 8.94241 0.388067
\(532\) −0.550972 −0.0238877
\(533\) −3.07768 −0.133309
\(534\) −24.7455 −1.07084
\(535\) 0 0
\(536\) 18.4334 0.796202
\(537\) 8.15910 0.352091
\(538\) −44.2999 −1.90990
\(539\) −4.80423 −0.206933
\(540\) 0 0
\(541\) −13.0517 −0.561138 −0.280569 0.959834i \(-0.590523\pi\)
−0.280569 + 0.959834i \(0.590523\pi\)
\(542\) 5.02562 0.215869
\(543\) −20.5509 −0.881922
\(544\) 10.9802 0.470772
\(545\) 0 0
\(546\) −1.61803 −0.0692455
\(547\) −21.3283 −0.911933 −0.455966 0.889997i \(-0.650706\pi\)
−0.455966 + 0.889997i \(0.650706\pi\)
\(548\) −2.93107 −0.125209
\(549\) −10.3138 −0.440180
\(550\) 0 0
\(551\) −0.409774 −0.0174569
\(552\) 3.15652 0.134350
\(553\) −9.07112 −0.385743
\(554\) −48.8882 −2.07706
\(555\) 0 0
\(556\) 9.21296 0.390717
\(557\) 18.4676 0.782496 0.391248 0.920285i \(-0.372043\pi\)
0.391248 + 0.920285i \(0.372043\pi\)
\(558\) −0.550972 −0.0233245
\(559\) −11.8885 −0.502829
\(560\) 0 0
\(561\) −15.5978 −0.658541
\(562\) 1.49338 0.0629944
\(563\) 3.69475 0.155715 0.0778575 0.996964i \(-0.475192\pi\)
0.0778575 + 0.996964i \(0.475192\pi\)
\(564\) −2.78704 −0.117356
\(565\) 0 0
\(566\) 27.1753 1.14226
\(567\) 1.00000 0.0419961
\(568\) 16.9441 0.710958
\(569\) −31.4370 −1.31791 −0.658954 0.752183i \(-0.729001\pi\)
−0.658954 + 0.752183i \(0.729001\pi\)
\(570\) 0 0
\(571\) 32.3772 1.35494 0.677471 0.735549i \(-0.263076\pi\)
0.677471 + 0.735549i \(0.263076\pi\)
\(572\) −2.96917 −0.124147
\(573\) 14.8310 0.619574
\(574\) 4.97980 0.207853
\(575\) 0 0
\(576\) 4.23607 0.176503
\(577\) −26.6939 −1.11128 −0.555642 0.831422i \(-0.687527\pi\)
−0.555642 + 0.831422i \(0.687527\pi\)
\(578\) 10.4509 0.434700
\(579\) −4.38447 −0.182212
\(580\) 0 0
\(581\) −3.83035 −0.158910
\(582\) 16.9721 0.703515
\(583\) 1.94607 0.0805979
\(584\) 5.55161 0.229727
\(585\) 0 0
\(586\) −8.94879 −0.369671
\(587\) −25.0174 −1.03258 −0.516289 0.856414i \(-0.672687\pi\)
−0.516289 + 0.856414i \(0.672687\pi\)
\(588\) 0.618034 0.0254873
\(589\) −0.303570 −0.0125084
\(590\) 0 0
\(591\) −5.40321 −0.222258
\(592\) 8.32926 0.342330
\(593\) −30.4293 −1.24958 −0.624791 0.780792i \(-0.714816\pi\)
−0.624791 + 0.780792i \(0.714816\pi\)
\(594\) 7.77340 0.318947
\(595\) 0 0
\(596\) −5.62023 −0.230213
\(597\) −11.5692 −0.473496
\(598\) −2.28408 −0.0934029
\(599\) −45.6159 −1.86382 −0.931908 0.362694i \(-0.881857\pi\)
−0.931908 + 0.362694i \(0.881857\pi\)
\(600\) 0 0
\(601\) 30.8212 1.25722 0.628611 0.777720i \(-0.283624\pi\)
0.628611 + 0.777720i \(0.283624\pi\)
\(602\) 19.2360 0.783999
\(603\) 8.24367 0.335708
\(604\) −8.02601 −0.326574
\(605\) 0 0
\(606\) −3.98281 −0.161791
\(607\) −45.7895 −1.85854 −0.929269 0.369403i \(-0.879562\pi\)
−0.929269 + 0.369403i \(0.879562\pi\)
\(608\) −3.01499 −0.122274
\(609\) 0.459650 0.0186259
\(610\) 0 0
\(611\) −4.50953 −0.182436
\(612\) 2.00656 0.0811106
\(613\) 42.3482 1.71043 0.855214 0.518276i \(-0.173426\pi\)
0.855214 + 0.518276i \(0.173426\pi\)
\(614\) 50.7993 2.05009
\(615\) 0 0
\(616\) −10.7426 −0.432831
\(617\) 20.2302 0.814438 0.407219 0.913331i \(-0.366499\pi\)
0.407219 + 0.913331i \(0.366499\pi\)
\(618\) 7.55470 0.303895
\(619\) −42.9807 −1.72754 −0.863771 0.503885i \(-0.831903\pi\)
−0.863771 + 0.503885i \(0.831903\pi\)
\(620\) 0 0
\(621\) 1.41164 0.0566471
\(622\) −4.42309 −0.177350
\(623\) 15.2935 0.612723
\(624\) −4.85410 −0.194320
\(625\) 0 0
\(626\) 4.73258 0.189152
\(627\) 4.28293 0.171044
\(628\) 1.58033 0.0630620
\(629\) −5.57106 −0.222133
\(630\) 0 0
\(631\) −33.9944 −1.35329 −0.676647 0.736307i \(-0.736568\pi\)
−0.676647 + 0.736307i \(0.736568\pi\)
\(632\) −20.2836 −0.806840
\(633\) −10.7653 −0.427882
\(634\) −1.31085 −0.0520604
\(635\) 0 0
\(636\) −0.250349 −0.00992700
\(637\) 1.00000 0.0396214
\(638\) 3.57304 0.141458
\(639\) 7.57763 0.299766
\(640\) 0 0
\(641\) −4.61668 −0.182348 −0.0911739 0.995835i \(-0.529062\pi\)
−0.0911739 + 0.995835i \(0.529062\pi\)
\(642\) 10.1766 0.401639
\(643\) −15.0975 −0.595386 −0.297693 0.954662i \(-0.596217\pi\)
−0.297693 + 0.954662i \(0.596217\pi\)
\(644\) 0.872441 0.0343790
\(645\) 0 0
\(646\) 4.68323 0.184259
\(647\) 24.3079 0.955642 0.477821 0.878457i \(-0.341427\pi\)
0.477821 + 0.878457i \(0.341427\pi\)
\(648\) 2.23607 0.0878410
\(649\) −42.9613 −1.68638
\(650\) 0 0
\(651\) 0.340519 0.0133460
\(652\) 15.5828 0.610271
\(653\) 36.8251 1.44108 0.720539 0.693415i \(-0.243895\pi\)
0.720539 + 0.693415i \(0.243895\pi\)
\(654\) 6.34342 0.248048
\(655\) 0 0
\(656\) 14.9394 0.583285
\(657\) 2.48276 0.0968616
\(658\) 7.29657 0.284450
\(659\) 26.7208 1.04090 0.520448 0.853893i \(-0.325765\pi\)
0.520448 + 0.853893i \(0.325765\pi\)
\(660\) 0 0
\(661\) 27.8739 1.08417 0.542084 0.840324i \(-0.317636\pi\)
0.542084 + 0.840324i \(0.317636\pi\)
\(662\) 8.12703 0.315866
\(663\) 3.24669 0.126091
\(664\) −8.56493 −0.332384
\(665\) 0 0
\(666\) 2.77642 0.107584
\(667\) 0.648859 0.0251239
\(668\) −8.90387 −0.344501
\(669\) −9.65948 −0.373457
\(670\) 0 0
\(671\) 49.5496 1.91284
\(672\) 3.38197 0.130462
\(673\) −2.24554 −0.0865591 −0.0432795 0.999063i \(-0.513781\pi\)
−0.0432795 + 0.999063i \(0.513781\pi\)
\(674\) 24.2513 0.934124
\(675\) 0 0
\(676\) 0.618034 0.0237705
\(677\) −3.64602 −0.140128 −0.0700640 0.997542i \(-0.522320\pi\)
−0.0700640 + 0.997542i \(0.522320\pi\)
\(678\) 3.94542 0.151523
\(679\) −10.4893 −0.402543
\(680\) 0 0
\(681\) 27.8250 1.06626
\(682\) 2.64699 0.101359
\(683\) −16.3180 −0.624391 −0.312196 0.950018i \(-0.601064\pi\)
−0.312196 + 0.950018i \(0.601064\pi\)
\(684\) −0.550972 −0.0210669
\(685\) 0 0
\(686\) −1.61803 −0.0617768
\(687\) 8.53026 0.325450
\(688\) 57.7079 2.20009
\(689\) −0.405074 −0.0154321
\(690\) 0 0
\(691\) 25.9174 0.985946 0.492973 0.870045i \(-0.335910\pi\)
0.492973 + 0.870045i \(0.335910\pi\)
\(692\) −6.22107 −0.236490
\(693\) −4.80423 −0.182497
\(694\) 6.28677 0.238642
\(695\) 0 0
\(696\) 1.02781 0.0389589
\(697\) −9.99228 −0.378485
\(698\) −53.6001 −2.02879
\(699\) 21.1471 0.799858
\(700\) 0 0
\(701\) 3.27417 0.123664 0.0618318 0.998087i \(-0.480306\pi\)
0.0618318 + 0.998087i \(0.480306\pi\)
\(702\) −1.61803 −0.0610688
\(703\) 1.52973 0.0576948
\(704\) −20.3510 −0.767008
\(705\) 0 0
\(706\) −9.97876 −0.375555
\(707\) 2.46151 0.0925748
\(708\) 5.52671 0.207707
\(709\) −25.4583 −0.956105 −0.478052 0.878331i \(-0.658657\pi\)
−0.478052 + 0.878331i \(0.658657\pi\)
\(710\) 0 0
\(711\) −9.07112 −0.340194
\(712\) 34.1974 1.28160
\(713\) 0.480690 0.0180020
\(714\) −5.25325 −0.196598
\(715\) 0 0
\(716\) 5.04260 0.188451
\(717\) 18.1840 0.679094
\(718\) 7.05342 0.263231
\(719\) −31.3560 −1.16938 −0.584690 0.811257i \(-0.698784\pi\)
−0.584690 + 0.811257i \(0.698784\pi\)
\(720\) 0 0
\(721\) −4.66906 −0.173885
\(722\) 29.4567 1.09626
\(723\) −11.7022 −0.435208
\(724\) −12.7011 −0.472034
\(725\) 0 0
\(726\) −19.5468 −0.725450
\(727\) 31.0101 1.15010 0.575050 0.818118i \(-0.304983\pi\)
0.575050 + 0.818118i \(0.304983\pi\)
\(728\) 2.23607 0.0828742
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −38.5982 −1.42761
\(732\) −6.37425 −0.235599
\(733\) −2.45901 −0.0908255 −0.0454127 0.998968i \(-0.514460\pi\)
−0.0454127 + 0.998968i \(0.514460\pi\)
\(734\) 57.7510 2.13163
\(735\) 0 0
\(736\) 4.77411 0.175976
\(737\) −39.6045 −1.45885
\(738\) 4.97980 0.183309
\(739\) −8.78416 −0.323130 −0.161565 0.986862i \(-0.551654\pi\)
−0.161565 + 0.986862i \(0.551654\pi\)
\(740\) 0 0
\(741\) −0.891491 −0.0327498
\(742\) 0.655423 0.0240614
\(743\) −8.51627 −0.312432 −0.156216 0.987723i \(-0.549930\pi\)
−0.156216 + 0.987723i \(0.549930\pi\)
\(744\) 0.761425 0.0279152
\(745\) 0 0
\(746\) −18.8920 −0.691686
\(747\) −3.83035 −0.140145
\(748\) −9.63999 −0.352473
\(749\) −6.28949 −0.229813
\(750\) 0 0
\(751\) 33.0460 1.20587 0.602933 0.797791i \(-0.293998\pi\)
0.602933 + 0.797791i \(0.293998\pi\)
\(752\) 21.8897 0.798235
\(753\) 6.64185 0.242043
\(754\) −0.743729 −0.0270850
\(755\) 0 0
\(756\) 0.618034 0.0224777
\(757\) −29.7676 −1.08192 −0.540961 0.841048i \(-0.681939\pi\)
−0.540961 + 0.841048i \(0.681939\pi\)
\(758\) −32.5130 −1.18092
\(759\) −6.78183 −0.246165
\(760\) 0 0
\(761\) 14.2403 0.516209 0.258104 0.966117i \(-0.416902\pi\)
0.258104 + 0.966117i \(0.416902\pi\)
\(762\) 21.6774 0.785289
\(763\) −3.92045 −0.141930
\(764\) 9.16606 0.331616
\(765\) 0 0
\(766\) 1.41570 0.0511512
\(767\) 8.94241 0.322892
\(768\) 13.5623 0.489388
\(769\) −38.0129 −1.37078 −0.685390 0.728176i \(-0.740368\pi\)
−0.685390 + 0.728176i \(0.740368\pi\)
\(770\) 0 0
\(771\) −16.4358 −0.591920
\(772\) −2.70975 −0.0975262
\(773\) 39.9492 1.43687 0.718436 0.695593i \(-0.244858\pi\)
0.718436 + 0.695593i \(0.244858\pi\)
\(774\) 19.2360 0.691422
\(775\) 0 0
\(776\) −23.4548 −0.841980
\(777\) −1.71592 −0.0615583
\(778\) −52.9114 −1.89696
\(779\) 2.74373 0.0983043
\(780\) 0 0
\(781\) −36.4046 −1.30266
\(782\) −7.41570 −0.265185
\(783\) 0.459650 0.0164265
\(784\) −4.85410 −0.173361
\(785\) 0 0
\(786\) 33.2656 1.18655
\(787\) −40.2577 −1.43503 −0.717517 0.696541i \(-0.754721\pi\)
−0.717517 + 0.696541i \(0.754721\pi\)
\(788\) −3.33937 −0.118960
\(789\) −27.9057 −0.993468
\(790\) 0 0
\(791\) −2.43841 −0.0866998
\(792\) −10.7426 −0.381721
\(793\) −10.3138 −0.366252
\(794\) 60.1806 2.13573
\(795\) 0 0
\(796\) −7.15016 −0.253431
\(797\) 15.9645 0.565493 0.282747 0.959195i \(-0.408754\pi\)
0.282747 + 0.959195i \(0.408754\pi\)
\(798\) 1.44246 0.0510627
\(799\) −14.6410 −0.517962
\(800\) 0 0
\(801\) 15.2935 0.540371
\(802\) 5.98084 0.211191
\(803\) −11.9277 −0.420920
\(804\) 5.09487 0.179682
\(805\) 0 0
\(806\) −0.550972 −0.0194072
\(807\) 27.3788 0.963781
\(808\) 5.50411 0.193634
\(809\) −31.1877 −1.09650 −0.548251 0.836314i \(-0.684706\pi\)
−0.548251 + 0.836314i \(0.684706\pi\)
\(810\) 0 0
\(811\) 43.7661 1.53684 0.768418 0.639948i \(-0.221044\pi\)
0.768418 + 0.639948i \(0.221044\pi\)
\(812\) 0.284079 0.00996922
\(813\) −3.10600 −0.108932
\(814\) −13.3385 −0.467516
\(815\) 0 0
\(816\) −15.7598 −0.551702
\(817\) 10.5985 0.370794
\(818\) 8.91273 0.311626
\(819\) 1.00000 0.0349428
\(820\) 0 0
\(821\) −29.9442 −1.04506 −0.522529 0.852621i \(-0.675011\pi\)
−0.522529 + 0.852621i \(0.675011\pi\)
\(822\) 7.67365 0.267649
\(823\) −10.1764 −0.354728 −0.177364 0.984145i \(-0.556757\pi\)
−0.177364 + 0.984145i \(0.556757\pi\)
\(824\) −10.4403 −0.363707
\(825\) 0 0
\(826\) −14.4691 −0.503445
\(827\) −36.8304 −1.28072 −0.640360 0.768075i \(-0.721215\pi\)
−0.640360 + 0.768075i \(0.721215\pi\)
\(828\) 0.872441 0.0303194
\(829\) 18.6901 0.649133 0.324567 0.945863i \(-0.394782\pi\)
0.324567 + 0.945863i \(0.394782\pi\)
\(830\) 0 0
\(831\) 30.2146 1.04813
\(832\) 4.23607 0.146859
\(833\) 3.24669 0.112491
\(834\) −24.1198 −0.835202
\(835\) 0 0
\(836\) 2.64699 0.0915482
\(837\) 0.340519 0.0117701
\(838\) 39.6789 1.37069
\(839\) 42.0400 1.45138 0.725692 0.688020i \(-0.241520\pi\)
0.725692 + 0.688020i \(0.241520\pi\)
\(840\) 0 0
\(841\) −28.7887 −0.992715
\(842\) 11.1892 0.385606
\(843\) −0.922959 −0.0317884
\(844\) −6.65331 −0.229016
\(845\) 0 0
\(846\) 7.29657 0.250861
\(847\) 12.0806 0.415094
\(848\) 1.96627 0.0675220
\(849\) −16.7953 −0.576413
\(850\) 0 0
\(851\) −2.42226 −0.0830340
\(852\) 4.68323 0.160445
\(853\) −33.0029 −1.13000 −0.564998 0.825092i \(-0.691123\pi\)
−0.564998 + 0.825092i \(0.691123\pi\)
\(854\) 16.6880 0.571052
\(855\) 0 0
\(856\) −14.0637 −0.480688
\(857\) −6.77951 −0.231583 −0.115792 0.993274i \(-0.536941\pi\)
−0.115792 + 0.993274i \(0.536941\pi\)
\(858\) 7.77340 0.265380
\(859\) −47.5032 −1.62079 −0.810395 0.585884i \(-0.800747\pi\)
−0.810395 + 0.585884i \(0.800747\pi\)
\(860\) 0 0
\(861\) −3.07768 −0.104887
\(862\) −10.9287 −0.372231
\(863\) −35.7993 −1.21862 −0.609311 0.792931i \(-0.708554\pi\)
−0.609311 + 0.792931i \(0.708554\pi\)
\(864\) 3.38197 0.115057
\(865\) 0 0
\(866\) −42.5287 −1.44518
\(867\) −6.45901 −0.219359
\(868\) 0.210453 0.00714323
\(869\) 43.5797 1.47834
\(870\) 0 0
\(871\) 8.24367 0.279326
\(872\) −8.76640 −0.296868
\(873\) −10.4893 −0.355010
\(874\) 2.03624 0.0688767
\(875\) 0 0
\(876\) 1.53443 0.0518435
\(877\) 0.361560 0.0122090 0.00610451 0.999981i \(-0.498057\pi\)
0.00610451 + 0.999981i \(0.498057\pi\)
\(878\) 35.0899 1.18423
\(879\) 5.53066 0.186544
\(880\) 0 0
\(881\) −15.8057 −0.532506 −0.266253 0.963903i \(-0.585786\pi\)
−0.266253 + 0.963903i \(0.585786\pi\)
\(882\) −1.61803 −0.0544820
\(883\) 16.0987 0.541765 0.270883 0.962612i \(-0.412684\pi\)
0.270883 + 0.962612i \(0.412684\pi\)
\(884\) 2.00656 0.0674881
\(885\) 0 0
\(886\) 48.6819 1.63550
\(887\) 23.3425 0.783764 0.391882 0.920015i \(-0.371824\pi\)
0.391882 + 0.920015i \(0.371824\pi\)
\(888\) −3.83692 −0.128758
\(889\) −13.3974 −0.449333
\(890\) 0 0
\(891\) −4.80423 −0.160948
\(892\) −5.96989 −0.199887
\(893\) 4.02020 0.134531
\(894\) 14.7139 0.492108
\(895\) 0 0
\(896\) −13.6180 −0.454947
\(897\) 1.41164 0.0471332
\(898\) 60.5373 2.02016
\(899\) 0.156520 0.00522022
\(900\) 0 0
\(901\) −1.31515 −0.0438140
\(902\) −23.9241 −0.796584
\(903\) −11.8885 −0.395624
\(904\) −5.45244 −0.181346
\(905\) 0 0
\(906\) 21.0124 0.698089
\(907\) 43.6032 1.44782 0.723910 0.689894i \(-0.242343\pi\)
0.723910 + 0.689894i \(0.242343\pi\)
\(908\) 17.1968 0.570696
\(909\) 2.46151 0.0816433
\(910\) 0 0
\(911\) −42.3998 −1.40477 −0.702385 0.711798i \(-0.747881\pi\)
−0.702385 + 0.711798i \(0.747881\pi\)
\(912\) 4.32739 0.143294
\(913\) 18.4019 0.609013
\(914\) 13.3723 0.442315
\(915\) 0 0
\(916\) 5.27199 0.174191
\(917\) −20.5593 −0.678928
\(918\) −5.25325 −0.173383
\(919\) −6.50432 −0.214558 −0.107279 0.994229i \(-0.534214\pi\)
−0.107279 + 0.994229i \(0.534214\pi\)
\(920\) 0 0
\(921\) −31.3957 −1.03452
\(922\) −1.41548 −0.0466164
\(923\) 7.57763 0.249421
\(924\) −2.96917 −0.0976787
\(925\) 0 0
\(926\) 33.1455 1.08923
\(927\) −4.66906 −0.153352
\(928\) 1.55452 0.0510296
\(929\) 44.7854 1.46936 0.734681 0.678412i \(-0.237332\pi\)
0.734681 + 0.678412i \(0.237332\pi\)
\(930\) 0 0
\(931\) −0.891491 −0.0292175
\(932\) 13.0697 0.428111
\(933\) 2.73362 0.0894946
\(934\) 20.5972 0.673961
\(935\) 0 0
\(936\) 2.23607 0.0730882
\(937\) 9.80796 0.320412 0.160206 0.987084i \(-0.448784\pi\)
0.160206 + 0.987084i \(0.448784\pi\)
\(938\) −13.3385 −0.435519
\(939\) −2.92489 −0.0954503
\(940\) 0 0
\(941\) 6.56164 0.213903 0.106952 0.994264i \(-0.465891\pi\)
0.106952 + 0.994264i \(0.465891\pi\)
\(942\) −4.13736 −0.134802
\(943\) −4.34458 −0.141479
\(944\) −43.4074 −1.41279
\(945\) 0 0
\(946\) −92.4139 −3.00463
\(947\) 19.7936 0.643206 0.321603 0.946875i \(-0.395778\pi\)
0.321603 + 0.946875i \(0.395778\pi\)
\(948\) −5.60626 −0.182083
\(949\) 2.48276 0.0805937
\(950\) 0 0
\(951\) 0.810148 0.0262708
\(952\) 7.25982 0.235292
\(953\) 15.0734 0.488275 0.244138 0.969741i \(-0.421495\pi\)
0.244138 + 0.969741i \(0.421495\pi\)
\(954\) 0.655423 0.0212201
\(955\) 0 0
\(956\) 11.2383 0.363474
\(957\) −2.20826 −0.0713829
\(958\) −40.4446 −1.30671
\(959\) −4.74258 −0.153146
\(960\) 0 0
\(961\) −30.8840 −0.996260
\(962\) 2.77642 0.0895153
\(963\) −6.28949 −0.202676
\(964\) −7.23234 −0.232938
\(965\) 0 0
\(966\) −2.28408 −0.0734890
\(967\) 2.83139 0.0910514 0.0455257 0.998963i \(-0.485504\pi\)
0.0455257 + 0.998963i \(0.485504\pi\)
\(968\) 27.0130 0.868231
\(969\) −2.89440 −0.0929814
\(970\) 0 0
\(971\) −2.43707 −0.0782093 −0.0391047 0.999235i \(-0.512451\pi\)
−0.0391047 + 0.999235i \(0.512451\pi\)
\(972\) 0.618034 0.0198234
\(973\) 14.9069 0.477893
\(974\) −44.7893 −1.43514
\(975\) 0 0
\(976\) 50.0640 1.60251
\(977\) −51.3238 −1.64199 −0.820996 0.570934i \(-0.806581\pi\)
−0.820996 + 0.570934i \(0.806581\pi\)
\(978\) −40.7964 −1.30452
\(979\) −73.4737 −2.34823
\(980\) 0 0
\(981\) −3.92045 −0.125170
\(982\) −9.31938 −0.297393
\(983\) 10.8569 0.346283 0.173141 0.984897i \(-0.444608\pi\)
0.173141 + 0.984897i \(0.444608\pi\)
\(984\) −6.88191 −0.219387
\(985\) 0 0
\(986\) −2.41466 −0.0768983
\(987\) −4.50953 −0.143540
\(988\) −0.550972 −0.0175288
\(989\) −16.7822 −0.533644
\(990\) 0 0
\(991\) −5.95012 −0.189012 −0.0945060 0.995524i \(-0.530127\pi\)
−0.0945060 + 0.995524i \(0.530127\pi\)
\(992\) 1.15163 0.0365641
\(993\) −5.02278 −0.159393
\(994\) −12.2609 −0.388891
\(995\) 0 0
\(996\) −2.36729 −0.0750104
\(997\) 3.66128 0.115954 0.0579769 0.998318i \(-0.481535\pi\)
0.0579769 + 0.998318i \(0.481535\pi\)
\(998\) 56.9932 1.80409
\(999\) −1.71592 −0.0542893
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6825.2.a.be.1.1 4
5.2 odd 4 1365.2.f.c.274.1 8
5.3 odd 4 1365.2.f.c.274.7 yes 8
5.4 even 2 6825.2.a.bm.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1365.2.f.c.274.1 8 5.2 odd 4
1365.2.f.c.274.7 yes 8 5.3 odd 4
6825.2.a.be.1.1 4 1.1 even 1 trivial
6825.2.a.bm.1.3 4 5.4 even 2