Properties

Label 6800.2.a.t
Level $6800$
Weight $2$
Character orbit 6800.a
Self dual yes
Analytic conductor $54.298$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6800,2,Mod(1,6800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6800.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6800.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,1,0,0,0,2,0,-2,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.2982733745\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{3} + 2 q^{7} - 2 q^{9} + q^{13} + q^{17} + q^{19} + 2 q^{21} - 6 q^{23} - 5 q^{27} - 3 q^{29} - 5 q^{31} - 8 q^{37} + q^{39} + 6 q^{41} - 10 q^{43} - 3 q^{47} - 3 q^{49} + q^{51} + 3 q^{53}+ \cdots + 7 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 0 0 2.00000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6800.2.a.t 1
4.b odd 2 1 850.2.a.b 1
5.b even 2 1 1360.2.a.d 1
12.b even 2 1 7650.2.a.bo 1
20.d odd 2 1 170.2.a.e 1
20.e even 4 2 850.2.c.e 2
40.e odd 2 1 5440.2.a.k 1
40.f even 2 1 5440.2.a.r 1
60.h even 2 1 1530.2.a.g 1
140.c even 2 1 8330.2.a.q 1
340.d odd 2 1 2890.2.a.n 1
340.n odd 4 2 2890.2.b.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
170.2.a.e 1 20.d odd 2 1
850.2.a.b 1 4.b odd 2 1
850.2.c.e 2 20.e even 4 2
1360.2.a.d 1 5.b even 2 1
1530.2.a.g 1 60.h even 2 1
2890.2.a.n 1 340.d odd 2 1
2890.2.b.b 2 340.n odd 4 2
5440.2.a.k 1 40.e odd 2 1
5440.2.a.r 1 40.f even 2 1
6800.2.a.t 1 1.a even 1 1 trivial
7650.2.a.bo 1 12.b even 2 1
8330.2.a.q 1 140.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6800))\):

\( T_{3} - 1 \) Copy content Toggle raw display
\( T_{7} - 2 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{13} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 1 \) Copy content Toggle raw display
$17$ \( T - 1 \) Copy content Toggle raw display
$19$ \( T - 1 \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T + 3 \) Copy content Toggle raw display
$31$ \( T + 5 \) Copy content Toggle raw display
$37$ \( T + 8 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T + 10 \) Copy content Toggle raw display
$47$ \( T + 3 \) Copy content Toggle raw display
$53$ \( T - 3 \) Copy content Toggle raw display
$59$ \( T + 3 \) Copy content Toggle raw display
$61$ \( T - 11 \) Copy content Toggle raw display
$67$ \( T - 2 \) Copy content Toggle raw display
$71$ \( T + 9 \) Copy content Toggle raw display
$73$ \( T + 11 \) Copy content Toggle raw display
$79$ \( T + 8 \) Copy content Toggle raw display
$83$ \( T + 12 \) Copy content Toggle raw display
$89$ \( T - 15 \) Copy content Toggle raw display
$97$ \( T - 7 \) Copy content Toggle raw display
show more
show less