Properties

Label 68.2.i
Level $68$
Weight $2$
Character orbit 68.i
Rep. character $\chi_{68}(3,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $56$
Newform subspaces $2$
Sturm bound $18$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 68 = 2^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 68.i (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 68 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 2 \)
Sturm bound: \(18\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(68, [\chi])\).

Total New Old
Modular forms 88 88 0
Cusp forms 56 56 0
Eisenstein series 32 32 0

Trace form

\( 56 q - 8 q^{2} - 8 q^{4} - 16 q^{5} - 8 q^{6} - 8 q^{8} - 16 q^{9} - 8 q^{10} - 8 q^{12} - 16 q^{13} - 8 q^{14} - 16 q^{17} - 16 q^{18} - 8 q^{20} - 16 q^{21} - 8 q^{22} + 8 q^{24} - 16 q^{25} + 24 q^{26}+ \cdots + 128 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(68, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
68.2.i.a 68.i 68.i $8$ $0.543$ \(\Q(\zeta_{16})\) \(\Q(\sqrt{-1}) \) 68.2.i.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{16}]$ \(q+(-\zeta_{16}+\zeta_{16}^{5})q^{2}-2\zeta_{16}^{6}q^{4}+\cdots\)
68.2.i.b 68.i 68.i $48$ $0.543$ None 68.2.i.b \(-8\) \(0\) \(-16\) \(0\) $\mathrm{SU}(2)[C_{16}]$