Properties

Label 68.1.f.a.47.1
Level 68
Weight 1
Character 68.47
Analytic conductor 0.034
Analytic rank 0
Dimension 2
Projective image \(D_{4}\)
CM discriminant -4
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 68 = 2^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 68.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.0339364208590\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{4}\)
Projective field Galois closure of 4.2.19652.1
Artin image $C_4\wr C_2$
Artin field Galois closure of 8.0.1257728.1

Embedding invariants

Embedding label 47.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 68.47
Dual form 68.1.f.a.55.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +(-1.00000 - 1.00000i) q^{5} -1.00000i q^{8} +1.00000i q^{9} +O(q^{10})\) \(q+1.00000i q^{2} -1.00000 q^{4} +(-1.00000 - 1.00000i) q^{5} -1.00000i q^{8} +1.00000i q^{9} +(1.00000 - 1.00000i) q^{10} +1.00000 q^{16} -1.00000 q^{17} -1.00000 q^{18} +(1.00000 + 1.00000i) q^{20} +1.00000i q^{25} +(1.00000 + 1.00000i) q^{29} +1.00000i q^{32} -1.00000i q^{34} -1.00000i q^{36} +(-1.00000 - 1.00000i) q^{37} +(-1.00000 + 1.00000i) q^{40} +(1.00000 - 1.00000i) q^{41} +(1.00000 - 1.00000i) q^{45} -1.00000i q^{49} -1.00000 q^{50} +(-1.00000 + 1.00000i) q^{58} +(-1.00000 + 1.00000i) q^{61} -1.00000 q^{64} +1.00000 q^{68} +1.00000 q^{72} +(1.00000 + 1.00000i) q^{73} +(1.00000 - 1.00000i) q^{74} +(-1.00000 - 1.00000i) q^{80} -1.00000 q^{81} +(1.00000 + 1.00000i) q^{82} +(1.00000 + 1.00000i) q^{85} +(1.00000 + 1.00000i) q^{90} +(-1.00000 - 1.00000i) q^{97} +1.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} - 2q^{5} + O(q^{10}) \) \( 2q - 2q^{4} - 2q^{5} + 2q^{10} + 2q^{16} - 2q^{17} - 2q^{18} + 2q^{20} + 2q^{29} - 2q^{37} - 2q^{40} + 2q^{41} + 2q^{45} - 2q^{50} - 2q^{58} - 2q^{61} - 2q^{64} + 2q^{68} + 2q^{72} + 2q^{73} + 2q^{74} - 2q^{80} - 2q^{81} + 2q^{82} + 2q^{85} + 2q^{90} - 2q^{97} + 2q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/68\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 1.00000i
\(3\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(4\) −1.00000 −1.00000
\(5\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 1.00000i 1.00000i
\(9\) 1.00000i 1.00000i
\(10\) 1.00000 1.00000i 1.00000 1.00000i
\(11\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 1.00000
\(17\) −1.00000 −1.00000
\(18\) −1.00000 −1.00000
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) 0 0
\(25\) 1.00000i 1.00000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(32\) 1.00000i 1.00000i
\(33\) 0 0
\(34\) 1.00000i 1.00000i
\(35\) 0 0
\(36\) 1.00000i 1.00000i
\(37\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(41\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 1.00000 1.00000i 1.00000 1.00000i
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 1.00000i 1.00000i
\(50\) −1.00000 −1.00000
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −1.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 1.00000 1.00000
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(72\) 1.00000 1.00000
\(73\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(74\) 1.00000 1.00000i 1.00000 1.00000i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(80\) −1.00000 1.00000i −1.00000 1.00000i
\(81\) −1.00000 −1.00000
\(82\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(98\) 1.00000 1.00000
\(99\) 0 0
\(100\) 1.00000i 1.00000i
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(108\) 0 0
\(109\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.00000 1.00000i −1.00000 1.00000i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000i 1.00000i
\(122\) −1.00000 1.00000i −1.00000 1.00000i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 1.00000i 1.00000i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 1.00000i 1.00000i
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 1.00000i 1.00000i
\(145\) 2.00000i 2.00000i
\(146\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(147\) 0 0
\(148\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(149\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 1.00000i 1.00000i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(158\) 0 0
\(159\) 0 0
\(160\) 1.00000 1.00000i 1.00000 1.00000i
\(161\) 0 0
\(162\) 1.00000i 1.00000i
\(163\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(164\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(168\) 0 0
\(169\) −1.00000 −1.00000
\(170\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(171\) 0 0
\(172\) 0 0
\(173\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(181\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.00000i 2.00000i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(194\) 1.00000 1.00000i 1.00000 1.00000i
\(195\) 0 0
\(196\) 1.00000i 1.00000i
\(197\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(198\) 0 0
\(199\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(200\) 1.00000 1.00000
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.00000 −2.00000
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −1.00000 1.00000i −1.00000 1.00000i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) −1.00000 −1.00000
\(226\) −1.00000 1.00000i −1.00000 1.00000i
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.00000 1.00000i 1.00000 1.00000i
\(233\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(242\) 1.00000 1.00000
\(243\) 0 0
\(244\) 1.00000 1.00000i 1.00000 1.00000i
\(245\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) −1.00000 −1.00000
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.00000 −1.00000
\(289\) 1.00000 1.00000
\(290\) 2.00000 2.00000
\(291\) 0 0
\(292\) −1.00000 1.00000i −1.00000 1.00000i
\(293\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(297\) 0 0
\(298\) 2.00000i 2.00000i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.00000 2.00000
\(306\) 1.00000 1.00000
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(312\) 0 0
\(313\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(314\) 2.00000i 2.00000i
\(315\) 0 0
\(316\) 0 0
\(317\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) −1.00000 1.00000i −1.00000 1.00000i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 1.00000 1.00000i 1.00000 1.00000i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(338\) 1.00000i 1.00000i
\(339\) 0 0
\(340\) −1.00000 1.00000i −1.00000 1.00000i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(347\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) −1.00000 1.00000i −1.00000 1.00000i
\(361\) −1.00000 −1.00000
\(362\) −1.00000 1.00000i −1.00000 1.00000i
\(363\) 0 0
\(364\) 0 0
\(365\) 2.00000i 2.00000i
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(370\) −2.00000 −2.00000
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(387\) 0 0
\(388\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(389\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.00000 −1.00000
\(393\) 0 0
\(394\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(395\) 0 0
\(396\) 0 0
\(397\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1.00000i 1.00000i
\(401\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(410\) 2.00000i 2.00000i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.00000i 1.00000i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(432\) 0 0
\(433\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.00000 1.00000i 1.00000 1.00000i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(440\) 0 0
\(441\) 1.00000 1.00000
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(450\) 1.00000i 1.00000i
\(451\) 0 0
\(452\) 1.00000 1.00000i 1.00000 1.00000i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 2.00000 2.00000
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(465\) 0 0
\(466\) 1.00000 1.00000i 1.00000 1.00000i
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(483\) 0 0
\(484\) 1.00000i 1.00000i
\(485\) 2.00000i 2.00000i
\(486\) 0 0
\(487\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(489\) 0 0
\(490\) −1.00000 1.00000i −1.00000 1.00000i
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) −1.00000 1.00000i −1.00000 1.00000i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) 0 0
\(514\) −2.00000 −2.00000
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(522\) −1.00000 1.00000i −1.00000 1.00000i
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000i 1.00000i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 1.00000 1.00000i 1.00000 1.00000i
\(539\) 0 0
\(540\) 0 0
\(541\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 1.00000i 1.00000i
\(545\) 2.00000 2.00000
\(546\) 0 0
\(547\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(548\) 0 0
\(549\) −1.00000 1.00000i −1.00000 1.00000i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 2.00000 2.00000
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000i 1.00000i
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 1.00000i 1.00000i
\(579\) 0 0
\(580\) 2.00000i 2.00000i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 1.00000 1.00000i 1.00000 1.00000i
\(585\) 0 0
\(586\) 2.00000i 2.00000i
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −1.00000 1.00000i −1.00000 1.00000i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −2.00000 −2.00000
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(606\) 0 0
\(607\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 2.00000i 2.00000i
\(611\) 0 0
\(612\) 1.00000i 1.00000i
\(613\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(627\) 0 0
\(628\) −2.00000 −2.00000
\(629\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(641\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 1.00000i 1.00000i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.00000 1.00000i 1.00000 1.00000i
\(657\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(674\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(675\) 0 0
\(676\) 1.00000 1.00000
\(677\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.00000 1.00000i 1.00000 1.00000i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(692\) −1.00000 1.00000i −1.00000 1.00000i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 2.00000i 2.00000i
\(707\) 0 0
\(708\) 0 0
\(709\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(720\) 1.00000 1.00000i 1.00000 1.00000i
\(721\) 0 0
\(722\) 1.00000i 1.00000i
\(723\) 0 0
\(724\) 1.00000 1.00000i 1.00000 1.00000i
\(725\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000i 1.00000i
\(730\) 2.00000 2.00000
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 2.00000i 2.00000i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) −2.00000 2.00000i −2.00000 2.00000i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(773\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(777\) 0 0
\(778\) 2.00000 2.00000
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000i 1.00000i
\(785\) −2.00000 2.00000i −2.00000 2.00000i
\(786\) 0 0
\(787\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(788\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −1.00000 1.00000i −1.00000 1.00000i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −1.00000 −1.00000
\(801\) 0 0
\(802\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(810\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(811\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 2.00000i 2.00000i
\(819\) 0 0
\(820\) 2.00000 2.00000
\(821\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 0.707107 0.707107i