Defining parameters
| Level: | \( N \) | \(=\) | \( 678 = 2 \cdot 3 \cdot 113 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 678.d (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 339 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(342\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(678, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 232 | 76 | 156 |
| Cusp forms | 224 | 76 | 148 |
| Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(678, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 678.3.d.a | $76$ | $18.474$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{3}^{\mathrm{old}}(678, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(678, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(339, [\chi])\)\(^{\oplus 2}\)