Properties

Label 678.3.d
Level $678$
Weight $3$
Character orbit 678.d
Rep. character $\chi_{678}(677,\cdot)$
Character field $\Q$
Dimension $76$
Newform subspaces $1$
Sturm bound $342$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 678 = 2 \cdot 3 \cdot 113 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 678.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 339 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(342\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(678, [\chi])\).

Total New Old
Modular forms 232 76 156
Cusp forms 224 76 148
Eisenstein series 8 0 8

Trace form

\( 76 q - 152 q^{4} - 24 q^{9} + 40 q^{13} + 28 q^{15} + 304 q^{16} - 48 q^{18} + 48 q^{22} + 476 q^{25} + 112 q^{30} - 104 q^{31} + 48 q^{36} + 516 q^{49} + 252 q^{51} - 80 q^{52} + 132 q^{57} - 56 q^{60}+ \cdots + 540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(678, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
678.3.d.a 678.d 339.c $76$ $18.474$ None 678.3.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{3}^{\mathrm{old}}(678, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(678, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(339, [\chi])\)\(^{\oplus 2}\)