Properties

Label 678.2.a.j.1.3
Level $678$
Weight $2$
Character 678.1
Self dual yes
Analytic conductor $5.414$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [678,2,Mod(1,678)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("678.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(678, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 678 = 2 \cdot 3 \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 678.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,-3,3,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.41385725704\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.469.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.16425\) of defining polynomial
Character \(\chi\) \(=\) 678.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +3.84822 q^{5} -1.00000 q^{6} +1.68397 q^{7} +1.00000 q^{8} +1.00000 q^{9} +3.84822 q^{10} +1.31603 q^{11} -1.00000 q^{12} -3.84822 q^{13} +1.68397 q^{14} -3.84822 q^{15} +1.00000 q^{16} -6.01247 q^{17} +1.00000 q^{18} +5.64453 q^{19} +3.84822 q^{20} -1.68397 q^{21} +1.31603 q^{22} +2.83575 q^{23} -1.00000 q^{24} +9.80877 q^{25} -3.84822 q^{26} -1.00000 q^{27} +1.68397 q^{28} -10.6570 q^{29} -3.84822 q^{30} -8.12481 q^{31} +1.00000 q^{32} -1.31603 q^{33} -6.01247 q^{34} +6.48028 q^{35} +1.00000 q^{36} -0.683969 q^{37} +5.64453 q^{38} +3.84822 q^{39} +3.84822 q^{40} +9.69643 q^{41} -1.68397 q^{42} +5.53219 q^{43} +1.31603 q^{44} +3.84822 q^{45} +2.83575 q^{46} +6.16425 q^{47} -1.00000 q^{48} -4.16425 q^{49} +9.80877 q^{50} +6.01247 q^{51} -3.84822 q^{52} +7.12481 q^{53} -1.00000 q^{54} +5.06437 q^{55} +1.68397 q^{56} -5.64453 q^{57} -10.6570 q^{58} -3.84822 q^{59} -3.84822 q^{60} -10.4803 q^{61} -8.12481 q^{62} +1.68397 q^{63} +1.00000 q^{64} -14.8088 q^{65} -1.31603 q^{66} +15.4533 q^{67} -6.01247 q^{68} -2.83575 q^{69} +6.48028 q^{70} -0.0124650 q^{71} +1.00000 q^{72} -4.00000 q^{73} -0.683969 q^{74} -9.80877 q^{75} +5.64453 q^{76} +2.21616 q^{77} +3.84822 q^{78} -9.69643 q^{79} +3.84822 q^{80} +1.00000 q^{81} +9.69643 q^{82} +1.12481 q^{83} -1.68397 q^{84} -23.1373 q^{85} +5.53219 q^{86} +10.6570 q^{87} +1.31603 q^{88} -1.09135 q^{89} +3.84822 q^{90} -6.48028 q^{91} +2.83575 q^{92} +8.12481 q^{93} +6.16425 q^{94} +21.7214 q^{95} -1.00000 q^{96} -8.26806 q^{97} -4.16425 q^{98} +1.31603 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} - 3 q^{3} + 3 q^{4} + q^{5} - 3 q^{6} + 2 q^{7} + 3 q^{8} + 3 q^{9} + q^{10} + 7 q^{11} - 3 q^{12} - q^{13} + 2 q^{14} - q^{15} + 3 q^{16} + 3 q^{18} + 5 q^{19} + q^{20} - 2 q^{21} + 7 q^{22}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 3.84822 1.72097 0.860487 0.509472i \(-0.170159\pi\)
0.860487 + 0.509472i \(0.170159\pi\)
\(6\) −1.00000 −0.408248
\(7\) 1.68397 0.636481 0.318240 0.948010i \(-0.396908\pi\)
0.318240 + 0.948010i \(0.396908\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 3.84822 1.21691
\(11\) 1.31603 0.396798 0.198399 0.980121i \(-0.436426\pi\)
0.198399 + 0.980121i \(0.436426\pi\)
\(12\) −1.00000 −0.288675
\(13\) −3.84822 −1.06730 −0.533652 0.845704i \(-0.679181\pi\)
−0.533652 + 0.845704i \(0.679181\pi\)
\(14\) 1.68397 0.450060
\(15\) −3.84822 −0.993605
\(16\) 1.00000 0.250000
\(17\) −6.01247 −1.45824 −0.729118 0.684387i \(-0.760070\pi\)
−0.729118 + 0.684387i \(0.760070\pi\)
\(18\) 1.00000 0.235702
\(19\) 5.64453 1.29494 0.647472 0.762090i \(-0.275826\pi\)
0.647472 + 0.762090i \(0.275826\pi\)
\(20\) 3.84822 0.860487
\(21\) −1.68397 −0.367472
\(22\) 1.31603 0.280579
\(23\) 2.83575 0.591295 0.295648 0.955297i \(-0.404465\pi\)
0.295648 + 0.955297i \(0.404465\pi\)
\(24\) −1.00000 −0.204124
\(25\) 9.80877 1.96175
\(26\) −3.84822 −0.754697
\(27\) −1.00000 −0.192450
\(28\) 1.68397 0.318240
\(29\) −10.6570 −1.97895 −0.989477 0.144691i \(-0.953781\pi\)
−0.989477 + 0.144691i \(0.953781\pi\)
\(30\) −3.84822 −0.702585
\(31\) −8.12481 −1.45926 −0.729629 0.683843i \(-0.760307\pi\)
−0.729629 + 0.683843i \(0.760307\pi\)
\(32\) 1.00000 0.176777
\(33\) −1.31603 −0.229092
\(34\) −6.01247 −1.03113
\(35\) 6.48028 1.09537
\(36\) 1.00000 0.166667
\(37\) −0.683969 −0.112444 −0.0562219 0.998418i \(-0.517905\pi\)
−0.0562219 + 0.998418i \(0.517905\pi\)
\(38\) 5.64453 0.915663
\(39\) 3.84822 0.616208
\(40\) 3.84822 0.608457
\(41\) 9.69643 1.51433 0.757164 0.653224i \(-0.226584\pi\)
0.757164 + 0.653224i \(0.226584\pi\)
\(42\) −1.68397 −0.259842
\(43\) 5.53219 0.843650 0.421825 0.906677i \(-0.361390\pi\)
0.421825 + 0.906677i \(0.361390\pi\)
\(44\) 1.31603 0.198399
\(45\) 3.84822 0.573658
\(46\) 2.83575 0.418109
\(47\) 6.16425 0.899148 0.449574 0.893243i \(-0.351576\pi\)
0.449574 + 0.893243i \(0.351576\pi\)
\(48\) −1.00000 −0.144338
\(49\) −4.16425 −0.594893
\(50\) 9.80877 1.38717
\(51\) 6.01247 0.841914
\(52\) −3.84822 −0.533652
\(53\) 7.12481 0.978667 0.489334 0.872097i \(-0.337240\pi\)
0.489334 + 0.872097i \(0.337240\pi\)
\(54\) −1.00000 −0.136083
\(55\) 5.06437 0.682880
\(56\) 1.68397 0.225030
\(57\) −5.64453 −0.747636
\(58\) −10.6570 −1.39933
\(59\) −3.84822 −0.500995 −0.250498 0.968117i \(-0.580594\pi\)
−0.250498 + 0.968117i \(0.580594\pi\)
\(60\) −3.84822 −0.496803
\(61\) −10.4803 −1.34186 −0.670931 0.741520i \(-0.734105\pi\)
−0.670931 + 0.741520i \(0.734105\pi\)
\(62\) −8.12481 −1.03185
\(63\) 1.68397 0.212160
\(64\) 1.00000 0.125000
\(65\) −14.8088 −1.83680
\(66\) −1.31603 −0.161992
\(67\) 15.4533 1.88792 0.943961 0.330058i \(-0.107068\pi\)
0.943961 + 0.330058i \(0.107068\pi\)
\(68\) −6.01247 −0.729118
\(69\) −2.83575 −0.341384
\(70\) 6.48028 0.774541
\(71\) −0.0124650 −0.00147933 −0.000739663 1.00000i \(-0.500235\pi\)
−0.000739663 1.00000i \(0.500235\pi\)
\(72\) 1.00000 0.117851
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) −0.683969 −0.0795098
\(75\) −9.80877 −1.13262
\(76\) 5.64453 0.647472
\(77\) 2.21616 0.252554
\(78\) 3.84822 0.435725
\(79\) −9.69643 −1.09093 −0.545467 0.838132i \(-0.683648\pi\)
−0.545467 + 0.838132i \(0.683648\pi\)
\(80\) 3.84822 0.430244
\(81\) 1.00000 0.111111
\(82\) 9.69643 1.07079
\(83\) 1.12481 0.123463 0.0617317 0.998093i \(-0.480338\pi\)
0.0617317 + 0.998093i \(0.480338\pi\)
\(84\) −1.68397 −0.183736
\(85\) −23.1373 −2.50959
\(86\) 5.53219 0.596551
\(87\) 10.6570 1.14255
\(88\) 1.31603 0.140289
\(89\) −1.09135 −0.115683 −0.0578414 0.998326i \(-0.518422\pi\)
−0.0578414 + 0.998326i \(0.518422\pi\)
\(90\) 3.84822 0.405638
\(91\) −6.48028 −0.679318
\(92\) 2.83575 0.295648
\(93\) 8.12481 0.842503
\(94\) 6.16425 0.635794
\(95\) 21.7214 2.22856
\(96\) −1.00000 −0.102062
\(97\) −8.26806 −0.839495 −0.419747 0.907641i \(-0.637881\pi\)
−0.419747 + 0.907641i \(0.637881\pi\)
\(98\) −4.16425 −0.420653
\(99\) 1.31603 0.132266
\(100\) 9.80877 0.980877
\(101\) −5.11234 −0.508697 −0.254348 0.967113i \(-0.581861\pi\)
−0.254348 + 0.967113i \(0.581861\pi\)
\(102\) 6.01247 0.595323
\(103\) −16.7608 −1.65149 −0.825746 0.564043i \(-0.809245\pi\)
−0.825746 + 0.564043i \(0.809245\pi\)
\(104\) −3.84822 −0.377349
\(105\) −6.48028 −0.632410
\(106\) 7.12481 0.692022
\(107\) −12.5052 −1.20892 −0.604462 0.796634i \(-0.706612\pi\)
−0.604462 + 0.796634i \(0.706612\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −19.7693 −1.89356 −0.946779 0.321883i \(-0.895684\pi\)
−0.946779 + 0.321883i \(0.895684\pi\)
\(110\) 5.06437 0.482869
\(111\) 0.683969 0.0649195
\(112\) 1.68397 0.159120
\(113\) −1.00000 −0.0940721
\(114\) −5.64453 −0.528658
\(115\) 10.9126 1.01760
\(116\) −10.6570 −0.989477
\(117\) −3.84822 −0.355768
\(118\) −3.84822 −0.354257
\(119\) −10.1248 −0.928139
\(120\) −3.84822 −0.351293
\(121\) −9.26806 −0.842551
\(122\) −10.4803 −0.948840
\(123\) −9.69643 −0.874298
\(124\) −8.12481 −0.729629
\(125\) 18.5052 1.65516
\(126\) 1.68397 0.150020
\(127\) 6.27659 0.556957 0.278479 0.960442i \(-0.410170\pi\)
0.278479 + 0.960442i \(0.410170\pi\)
\(128\) 1.00000 0.0883883
\(129\) −5.53219 −0.487082
\(130\) −14.8088 −1.29882
\(131\) 8.16425 0.713314 0.356657 0.934235i \(-0.383917\pi\)
0.356657 + 0.934235i \(0.383917\pi\)
\(132\) −1.31603 −0.114546
\(133\) 9.50521 0.824206
\(134\) 15.4533 1.33496
\(135\) −3.84822 −0.331202
\(136\) −6.01247 −0.515565
\(137\) 19.5447 1.66981 0.834906 0.550392i \(-0.185522\pi\)
0.834906 + 0.550392i \(0.185522\pi\)
\(138\) −2.83575 −0.241395
\(139\) −5.51972 −0.468177 −0.234088 0.972215i \(-0.575210\pi\)
−0.234088 + 0.972215i \(0.575210\pi\)
\(140\) 6.48028 0.547684
\(141\) −6.16425 −0.519123
\(142\) −0.0124650 −0.00104604
\(143\) −5.06437 −0.423504
\(144\) 1.00000 0.0833333
\(145\) −41.0104 −3.40573
\(146\) −4.00000 −0.331042
\(147\) 4.16425 0.343461
\(148\) −0.683969 −0.0562219
\(149\) −2.02698 −0.166056 −0.0830282 0.996547i \(-0.526459\pi\)
−0.0830282 + 0.996547i \(0.526459\pi\)
\(150\) −9.80877 −0.800883
\(151\) 2.73588 0.222642 0.111321 0.993784i \(-0.464492\pi\)
0.111321 + 0.993784i \(0.464492\pi\)
\(152\) 5.64453 0.457832
\(153\) −6.01247 −0.486079
\(154\) 2.21616 0.178583
\(155\) −31.2660 −2.51135
\(156\) 3.84822 0.308104
\(157\) 18.7608 1.49728 0.748638 0.662979i \(-0.230708\pi\)
0.748638 + 0.662979i \(0.230708\pi\)
\(158\) −9.69643 −0.771407
\(159\) −7.12481 −0.565034
\(160\) 3.84822 0.304228
\(161\) 4.77532 0.376348
\(162\) 1.00000 0.0785674
\(163\) −10.0729 −0.788970 −0.394485 0.918902i \(-0.629077\pi\)
−0.394485 + 0.918902i \(0.629077\pi\)
\(164\) 9.69643 0.757164
\(165\) −5.06437 −0.394261
\(166\) 1.12481 0.0873018
\(167\) 1.19123 0.0921798 0.0460899 0.998937i \(-0.485324\pi\)
0.0460899 + 0.998937i \(0.485324\pi\)
\(168\) −1.68397 −0.129921
\(169\) 1.80877 0.139137
\(170\) −23.1373 −1.77455
\(171\) 5.64453 0.431648
\(172\) 5.53219 0.421825
\(173\) 13.3659 1.01619 0.508095 0.861301i \(-0.330350\pi\)
0.508095 + 0.861301i \(0.330350\pi\)
\(174\) 10.6570 0.807904
\(175\) 16.5177 1.24862
\(176\) 1.31603 0.0991996
\(177\) 3.84822 0.289250
\(178\) −1.09135 −0.0818001
\(179\) −4.17671 −0.312182 −0.156091 0.987743i \(-0.549889\pi\)
−0.156091 + 0.987743i \(0.549889\pi\)
\(180\) 3.84822 0.286829
\(181\) −14.5716 −1.08310 −0.541550 0.840668i \(-0.682162\pi\)
−0.541550 + 0.840668i \(0.682162\pi\)
\(182\) −6.48028 −0.480350
\(183\) 10.4803 0.774725
\(184\) 2.83575 0.209054
\(185\) −2.63206 −0.193513
\(186\) 8.12481 0.595740
\(187\) −7.91259 −0.578626
\(188\) 6.16425 0.449574
\(189\) −1.68397 −0.122491
\(190\) 21.7214 1.57583
\(191\) 14.2286 1.02955 0.514773 0.857326i \(-0.327876\pi\)
0.514773 + 0.857326i \(0.327876\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 8.02493 0.577647 0.288824 0.957382i \(-0.406736\pi\)
0.288824 + 0.957382i \(0.406736\pi\)
\(194\) −8.26806 −0.593612
\(195\) 14.8088 1.06048
\(196\) −4.16425 −0.297446
\(197\) 1.34301 0.0956854 0.0478427 0.998855i \(-0.484765\pi\)
0.0478427 + 0.998855i \(0.484765\pi\)
\(198\) 1.31603 0.0935262
\(199\) 21.0893 1.49498 0.747491 0.664272i \(-0.231259\pi\)
0.747491 + 0.664272i \(0.231259\pi\)
\(200\) 9.80877 0.693585
\(201\) −15.4533 −1.08999
\(202\) −5.11234 −0.359703
\(203\) −17.9460 −1.25957
\(204\) 6.01247 0.420957
\(205\) 37.3140 2.60612
\(206\) −16.7608 −1.16778
\(207\) 2.83575 0.197098
\(208\) −3.84822 −0.266826
\(209\) 7.42837 0.513831
\(210\) −6.48028 −0.447182
\(211\) −15.1373 −1.04209 −0.521046 0.853528i \(-0.674458\pi\)
−0.521046 + 0.853528i \(0.674458\pi\)
\(212\) 7.12481 0.489334
\(213\) 0.0124650 0.000854089 0
\(214\) −12.5052 −0.854838
\(215\) 21.2891 1.45190
\(216\) −1.00000 −0.0680414
\(217\) −13.6819 −0.928789
\(218\) −19.7693 −1.33895
\(219\) 4.00000 0.270295
\(220\) 5.06437 0.341440
\(221\) 23.1373 1.55638
\(222\) 0.683969 0.0459050
\(223\) −16.5781 −1.11015 −0.555076 0.831800i \(-0.687311\pi\)
−0.555076 + 0.831800i \(0.687311\pi\)
\(224\) 1.68397 0.112515
\(225\) 9.80877 0.653918
\(226\) −1.00000 −0.0665190
\(227\) 29.4782 1.95654 0.978269 0.207338i \(-0.0664798\pi\)
0.978269 + 0.207338i \(0.0664798\pi\)
\(228\) −5.64453 −0.373818
\(229\) 19.0104 1.25624 0.628122 0.778115i \(-0.283824\pi\)
0.628122 + 0.778115i \(0.283824\pi\)
\(230\) 10.9126 0.719555
\(231\) −2.21616 −0.145812
\(232\) −10.6570 −0.699666
\(233\) 8.40738 0.550786 0.275393 0.961332i \(-0.411192\pi\)
0.275393 + 0.961332i \(0.411192\pi\)
\(234\) −3.84822 −0.251566
\(235\) 23.7214 1.54741
\(236\) −3.84822 −0.250498
\(237\) 9.69643 0.629851
\(238\) −10.1248 −0.656294
\(239\) −3.26412 −0.211139 −0.105569 0.994412i \(-0.533666\pi\)
−0.105569 + 0.994412i \(0.533666\pi\)
\(240\) −3.84822 −0.248401
\(241\) 1.31603 0.0847730 0.0423865 0.999101i \(-0.486504\pi\)
0.0423865 + 0.999101i \(0.486504\pi\)
\(242\) −9.26806 −0.595774
\(243\) −1.00000 −0.0641500
\(244\) −10.4803 −0.670931
\(245\) −16.0249 −1.02380
\(246\) −9.69643 −0.618222
\(247\) −21.7214 −1.38210
\(248\) −8.12481 −0.515926
\(249\) −1.12481 −0.0712817
\(250\) 18.5052 1.17037
\(251\) 4.35547 0.274915 0.137458 0.990508i \(-0.456107\pi\)
0.137458 + 0.990508i \(0.456107\pi\)
\(252\) 1.68397 0.106080
\(253\) 3.73194 0.234625
\(254\) 6.27659 0.393828
\(255\) 23.1373 1.44891
\(256\) 1.00000 0.0625000
\(257\) −27.4178 −1.71028 −0.855138 0.518401i \(-0.826527\pi\)
−0.855138 + 0.518401i \(0.826527\pi\)
\(258\) −5.53219 −0.344419
\(259\) −1.15178 −0.0715683
\(260\) −14.8088 −0.918401
\(261\) −10.6570 −0.659651
\(262\) 8.16425 0.504389
\(263\) −3.62354 −0.223437 −0.111718 0.993740i \(-0.535635\pi\)
−0.111718 + 0.993740i \(0.535635\pi\)
\(264\) −1.31603 −0.0809961
\(265\) 27.4178 1.68426
\(266\) 9.50521 0.582802
\(267\) 1.09135 0.0667895
\(268\) 15.4533 0.943961
\(269\) −8.78384 −0.535560 −0.267780 0.963480i \(-0.586290\pi\)
−0.267780 + 0.963480i \(0.586290\pi\)
\(270\) −3.84822 −0.234195
\(271\) −7.80025 −0.473831 −0.236916 0.971530i \(-0.576137\pi\)
−0.236916 + 0.971530i \(0.576137\pi\)
\(272\) −6.01247 −0.364559
\(273\) 6.48028 0.392204
\(274\) 19.5447 1.18074
\(275\) 12.9087 0.778421
\(276\) −2.83575 −0.170692
\(277\) 15.6235 0.938727 0.469364 0.883005i \(-0.344483\pi\)
0.469364 + 0.883005i \(0.344483\pi\)
\(278\) −5.51972 −0.331051
\(279\) −8.12481 −0.486419
\(280\) 6.48028 0.387271
\(281\) 22.4782 1.34094 0.670469 0.741937i \(-0.266093\pi\)
0.670469 + 0.741937i \(0.266093\pi\)
\(282\) −6.16425 −0.367076
\(283\) −20.5052 −1.21891 −0.609454 0.792821i \(-0.708611\pi\)
−0.609454 + 0.792821i \(0.708611\pi\)
\(284\) −0.0124650 −0.000739663 0
\(285\) −21.7214 −1.28666
\(286\) −5.06437 −0.299463
\(287\) 16.3285 0.963841
\(288\) 1.00000 0.0589256
\(289\) 19.1497 1.12646
\(290\) −41.0104 −2.40821
\(291\) 8.26806 0.484682
\(292\) −4.00000 −0.234082
\(293\) −2.04797 −0.119644 −0.0598218 0.998209i \(-0.519053\pi\)
−0.0598218 + 0.998209i \(0.519053\pi\)
\(294\) 4.16425 0.242864
\(295\) −14.8088 −0.862200
\(296\) −0.683969 −0.0397549
\(297\) −1.31603 −0.0763639
\(298\) −2.02698 −0.117420
\(299\) −10.9126 −0.631091
\(300\) −9.80877 −0.566310
\(301\) 9.31603 0.536967
\(302\) 2.73588 0.157432
\(303\) 5.11234 0.293696
\(304\) 5.64453 0.323736
\(305\) −40.3304 −2.30931
\(306\) −6.01247 −0.343710
\(307\) −10.2805 −0.586741 −0.293370 0.955999i \(-0.594777\pi\)
−0.293370 + 0.955999i \(0.594777\pi\)
\(308\) 2.21616 0.126277
\(309\) 16.7608 0.953489
\(310\) −31.2660 −1.77579
\(311\) 22.0249 1.24892 0.624460 0.781057i \(-0.285319\pi\)
0.624460 + 0.781057i \(0.285319\pi\)
\(312\) 3.84822 0.217862
\(313\) −11.7174 −0.662308 −0.331154 0.943577i \(-0.607438\pi\)
−0.331154 + 0.943577i \(0.607438\pi\)
\(314\) 18.7608 1.05873
\(315\) 6.48028 0.365122
\(316\) −9.69643 −0.545467
\(317\) −8.60508 −0.483310 −0.241655 0.970362i \(-0.577690\pi\)
−0.241655 + 0.970362i \(0.577690\pi\)
\(318\) −7.12481 −0.399539
\(319\) −14.0249 −0.785245
\(320\) 3.84822 0.215122
\(321\) 12.5052 0.697973
\(322\) 4.77532 0.266118
\(323\) −33.9375 −1.88833
\(324\) 1.00000 0.0555556
\(325\) −37.7463 −2.09379
\(326\) −10.0729 −0.557886
\(327\) 19.7693 1.09325
\(328\) 9.69643 0.535396
\(329\) 10.3804 0.572290
\(330\) −5.06437 −0.278785
\(331\) 20.4014 1.12136 0.560681 0.828032i \(-0.310539\pi\)
0.560681 + 0.828032i \(0.310539\pi\)
\(332\) 1.12481 0.0617317
\(333\) −0.683969 −0.0374813
\(334\) 1.19123 0.0651809
\(335\) 59.4677 3.24907
\(336\) −1.68397 −0.0918680
\(337\) 13.9336 0.759010 0.379505 0.925190i \(-0.376094\pi\)
0.379505 + 0.925190i \(0.376094\pi\)
\(338\) 1.80877 0.0983844
\(339\) 1.00000 0.0543125
\(340\) −23.1373 −1.25479
\(341\) −10.6925 −0.579031
\(342\) 5.64453 0.305221
\(343\) −18.8002 −1.01512
\(344\) 5.53219 0.298275
\(345\) −10.9126 −0.587514
\(346\) 13.3659 0.718555
\(347\) −16.6570 −0.894194 −0.447097 0.894485i \(-0.647542\pi\)
−0.447097 + 0.894485i \(0.647542\pi\)
\(348\) 10.6570 0.571275
\(349\) −33.2870 −1.78181 −0.890906 0.454187i \(-0.849930\pi\)
−0.890906 + 0.454187i \(0.849930\pi\)
\(350\) 16.5177 0.882907
\(351\) 3.84822 0.205403
\(352\) 1.31603 0.0701447
\(353\) 5.69643 0.303191 0.151595 0.988443i \(-0.451559\pi\)
0.151595 + 0.988443i \(0.451559\pi\)
\(354\) 3.84822 0.204530
\(355\) −0.0479681 −0.00254588
\(356\) −1.09135 −0.0578414
\(357\) 10.1248 0.535862
\(358\) −4.17671 −0.220746
\(359\) 36.9500 1.95015 0.975073 0.221885i \(-0.0712210\pi\)
0.975073 + 0.221885i \(0.0712210\pi\)
\(360\) 3.84822 0.202819
\(361\) 12.8607 0.676878
\(362\) −14.5716 −0.765868
\(363\) 9.26806 0.486447
\(364\) −6.48028 −0.339659
\(365\) −15.3929 −0.805700
\(366\) 10.4803 0.547813
\(367\) 2.75687 0.143907 0.0719536 0.997408i \(-0.477077\pi\)
0.0719536 + 0.997408i \(0.477077\pi\)
\(368\) 2.83575 0.147824
\(369\) 9.69643 0.504776
\(370\) −2.63206 −0.136834
\(371\) 11.9980 0.622903
\(372\) 8.12481 0.421252
\(373\) −2.30357 −0.119274 −0.0596371 0.998220i \(-0.518994\pi\)
−0.0596371 + 0.998220i \(0.518994\pi\)
\(374\) −7.91259 −0.409150
\(375\) −18.5052 −0.955605
\(376\) 6.16425 0.317897
\(377\) 41.0104 2.11214
\(378\) −1.68397 −0.0866140
\(379\) −6.05191 −0.310866 −0.155433 0.987846i \(-0.549677\pi\)
−0.155433 + 0.987846i \(0.549677\pi\)
\(380\) 21.7214 1.11428
\(381\) −6.27659 −0.321559
\(382\) 14.2286 0.728000
\(383\) −14.1458 −0.722816 −0.361408 0.932408i \(-0.617704\pi\)
−0.361408 + 0.932408i \(0.617704\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 8.52825 0.434640
\(386\) 8.02493 0.408458
\(387\) 5.53219 0.281217
\(388\) −8.26806 −0.419747
\(389\) −28.7857 −1.45949 −0.729747 0.683717i \(-0.760362\pi\)
−0.729747 + 0.683717i \(0.760362\pi\)
\(390\) 14.8088 0.749871
\(391\) −17.0499 −0.862248
\(392\) −4.16425 −0.210326
\(393\) −8.16425 −0.411832
\(394\) 1.34301 0.0676598
\(395\) −37.3140 −1.87747
\(396\) 1.31603 0.0661330
\(397\) 9.28258 0.465879 0.232940 0.972491i \(-0.425166\pi\)
0.232940 + 0.972491i \(0.425166\pi\)
\(398\) 21.0893 1.05711
\(399\) −9.50521 −0.475856
\(400\) 9.80877 0.490439
\(401\) 17.9460 0.896183 0.448091 0.893988i \(-0.352104\pi\)
0.448091 + 0.893988i \(0.352104\pi\)
\(402\) −15.4533 −0.770741
\(403\) 31.2660 1.55747
\(404\) −5.11234 −0.254348
\(405\) 3.84822 0.191219
\(406\) −17.9460 −0.890647
\(407\) −0.900124 −0.0446175
\(408\) 6.01247 0.297661
\(409\) 16.0000 0.791149 0.395575 0.918434i \(-0.370545\pi\)
0.395575 + 0.918434i \(0.370545\pi\)
\(410\) 37.3140 1.84281
\(411\) −19.5447 −0.964067
\(412\) −16.7608 −0.825746
\(413\) −6.48028 −0.318874
\(414\) 2.83575 0.139370
\(415\) 4.32850 0.212478
\(416\) −3.84822 −0.188674
\(417\) 5.51972 0.270302
\(418\) 7.42837 0.363334
\(419\) −26.7299 −1.30584 −0.652920 0.757427i \(-0.726456\pi\)
−0.652920 + 0.757427i \(0.726456\pi\)
\(420\) −6.48028 −0.316205
\(421\) 19.5197 0.951333 0.475667 0.879626i \(-0.342207\pi\)
0.475667 + 0.879626i \(0.342207\pi\)
\(422\) −15.1373 −0.736871
\(423\) 6.16425 0.299716
\(424\) 7.12481 0.346011
\(425\) −58.9749 −2.86070
\(426\) 0.0124650 0.000603932 0
\(427\) −17.6485 −0.854069
\(428\) −12.5052 −0.604462
\(429\) 5.06437 0.244510
\(430\) 21.2891 1.02665
\(431\) −1.63001 −0.0785150 −0.0392575 0.999229i \(-0.512499\pi\)
−0.0392575 + 0.999229i \(0.512499\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 32.4323 1.55860 0.779299 0.626653i \(-0.215576\pi\)
0.779299 + 0.626653i \(0.215576\pi\)
\(434\) −13.6819 −0.656753
\(435\) 41.0104 1.96630
\(436\) −19.7693 −0.946779
\(437\) 16.0065 0.765694
\(438\) 4.00000 0.191127
\(439\) −5.93957 −0.283480 −0.141740 0.989904i \(-0.545270\pi\)
−0.141740 + 0.989904i \(0.545270\pi\)
\(440\) 5.06437 0.241434
\(441\) −4.16425 −0.198298
\(442\) 23.1373 1.10053
\(443\) 7.98155 0.379215 0.189607 0.981860i \(-0.439278\pi\)
0.189607 + 0.981860i \(0.439278\pi\)
\(444\) 0.683969 0.0324597
\(445\) −4.19975 −0.199087
\(446\) −16.5781 −0.784996
\(447\) 2.02698 0.0958727
\(448\) 1.68397 0.0795601
\(449\) 19.3889 0.915020 0.457510 0.889204i \(-0.348741\pi\)
0.457510 + 0.889204i \(0.348741\pi\)
\(450\) 9.80877 0.462390
\(451\) 12.7608 0.600883
\(452\) −1.00000 −0.0470360
\(453\) −2.73588 −0.128543
\(454\) 29.4782 1.38348
\(455\) −24.9375 −1.16909
\(456\) −5.64453 −0.264329
\(457\) −5.84223 −0.273288 −0.136644 0.990620i \(-0.543632\pi\)
−0.136644 + 0.990620i \(0.543632\pi\)
\(458\) 19.0104 0.888298
\(459\) 6.01247 0.280638
\(460\) 10.9126 0.508802
\(461\) −36.2930 −1.69033 −0.845167 0.534503i \(-0.820499\pi\)
−0.845167 + 0.534503i \(0.820499\pi\)
\(462\) −2.21616 −0.103105
\(463\) 12.7234 0.591307 0.295654 0.955295i \(-0.404463\pi\)
0.295654 + 0.955295i \(0.404463\pi\)
\(464\) −10.6570 −0.494738
\(465\) 31.2660 1.44993
\(466\) 8.40738 0.389464
\(467\) 17.8252 0.824851 0.412425 0.910991i \(-0.364682\pi\)
0.412425 + 0.910991i \(0.364682\pi\)
\(468\) −3.84822 −0.177884
\(469\) 26.0229 1.20163
\(470\) 23.7214 1.09418
\(471\) −18.7608 −0.864452
\(472\) −3.84822 −0.177129
\(473\) 7.28053 0.334759
\(474\) 9.69643 0.445372
\(475\) 55.3659 2.54036
\(476\) −10.1248 −0.464070
\(477\) 7.12481 0.326222
\(478\) −3.26412 −0.149298
\(479\) −23.3659 −1.06761 −0.533807 0.845606i \(-0.679239\pi\)
−0.533807 + 0.845606i \(0.679239\pi\)
\(480\) −3.84822 −0.175646
\(481\) 2.63206 0.120012
\(482\) 1.31603 0.0599436
\(483\) −4.77532 −0.217285
\(484\) −9.26806 −0.421276
\(485\) −31.8173 −1.44475
\(486\) −1.00000 −0.0453609
\(487\) 39.0104 1.76773 0.883865 0.467741i \(-0.154932\pi\)
0.883865 + 0.467741i \(0.154932\pi\)
\(488\) −10.4803 −0.474420
\(489\) 10.0729 0.455512
\(490\) −16.0249 −0.723933
\(491\) 2.04797 0.0924235 0.0462118 0.998932i \(-0.485285\pi\)
0.0462118 + 0.998932i \(0.485285\pi\)
\(492\) −9.69643 −0.437149
\(493\) 64.0748 2.88578
\(494\) −21.7214 −0.977290
\(495\) 5.06437 0.227627
\(496\) −8.12481 −0.364815
\(497\) −0.0209907 −0.000941562 0
\(498\) −1.12481 −0.0504037
\(499\) 4.54670 0.203538 0.101769 0.994808i \(-0.467550\pi\)
0.101769 + 0.994808i \(0.467550\pi\)
\(500\) 18.5052 0.827578
\(501\) −1.19123 −0.0532200
\(502\) 4.35547 0.194394
\(503\) 35.8252 1.59737 0.798683 0.601752i \(-0.205530\pi\)
0.798683 + 0.601752i \(0.205530\pi\)
\(504\) 1.68397 0.0750099
\(505\) −19.6734 −0.875455
\(506\) 3.73194 0.165905
\(507\) −1.80877 −0.0803305
\(508\) 6.27659 0.278479
\(509\) 21.6780 0.960860 0.480430 0.877033i \(-0.340481\pi\)
0.480430 + 0.877033i \(0.340481\pi\)
\(510\) 23.1373 1.02454
\(511\) −6.73588 −0.297978
\(512\) 1.00000 0.0441942
\(513\) −5.64453 −0.249212
\(514\) −27.4178 −1.20935
\(515\) −64.4992 −2.84218
\(516\) −5.53219 −0.243541
\(517\) 8.11234 0.356780
\(518\) −1.15178 −0.0506064
\(519\) −13.3659 −0.586697
\(520\) −14.8088 −0.649408
\(521\) −12.4074 −0.543577 −0.271789 0.962357i \(-0.587615\pi\)
−0.271789 + 0.962357i \(0.587615\pi\)
\(522\) −10.6570 −0.466444
\(523\) 16.2226 0.709366 0.354683 0.934987i \(-0.384589\pi\)
0.354683 + 0.934987i \(0.384589\pi\)
\(524\) 8.16425 0.356657
\(525\) −16.5177 −0.720890
\(526\) −3.62354 −0.157994
\(527\) 48.8501 2.12794
\(528\) −1.31603 −0.0572729
\(529\) −14.9585 −0.650370
\(530\) 27.4178 1.19095
\(531\) −3.84822 −0.166998
\(532\) 9.50521 0.412103
\(533\) −37.3140 −1.61625
\(534\) 1.09135 0.0472273
\(535\) −48.1228 −2.08053
\(536\) 15.4533 0.667481
\(537\) 4.17671 0.180238
\(538\) −8.78384 −0.378698
\(539\) −5.48028 −0.236052
\(540\) −3.84822 −0.165601
\(541\) −28.0314 −1.20516 −0.602582 0.798057i \(-0.705861\pi\)
−0.602582 + 0.798057i \(0.705861\pi\)
\(542\) −7.80025 −0.335049
\(543\) 14.5716 0.625328
\(544\) −6.01247 −0.257782
\(545\) −76.0767 −3.25877
\(546\) 6.48028 0.277330
\(547\) 10.5112 0.449426 0.224713 0.974425i \(-0.427856\pi\)
0.224713 + 0.974425i \(0.427856\pi\)
\(548\) 19.5447 0.834906
\(549\) −10.4803 −0.447287
\(550\) 12.9087 0.550427
\(551\) −60.1537 −2.56263
\(552\) −2.83575 −0.120698
\(553\) −16.3285 −0.694358
\(554\) 15.6235 0.663780
\(555\) 2.63206 0.111725
\(556\) −5.51972 −0.234088
\(557\) 15.5407 0.658481 0.329241 0.944246i \(-0.393207\pi\)
0.329241 + 0.944246i \(0.393207\pi\)
\(558\) −8.12481 −0.343950
\(559\) −21.2891 −0.900431
\(560\) 6.48028 0.273842
\(561\) 7.91259 0.334070
\(562\) 22.4782 0.948187
\(563\) −9.92316 −0.418211 −0.209106 0.977893i \(-0.567055\pi\)
−0.209106 + 0.977893i \(0.567055\pi\)
\(564\) −6.16425 −0.259562
\(565\) −3.84822 −0.161896
\(566\) −20.5052 −0.861898
\(567\) 1.68397 0.0707201
\(568\) −0.0124650 −0.000523020 0
\(569\) 9.41780 0.394815 0.197407 0.980322i \(-0.436748\pi\)
0.197407 + 0.980322i \(0.436748\pi\)
\(570\) −21.7214 −0.909808
\(571\) 15.7193 0.657833 0.328916 0.944359i \(-0.393317\pi\)
0.328916 + 0.944359i \(0.393317\pi\)
\(572\) −5.06437 −0.211752
\(573\) −14.2286 −0.594409
\(574\) 16.3285 0.681538
\(575\) 27.8153 1.15998
\(576\) 1.00000 0.0416667
\(577\) 4.60713 0.191797 0.0958987 0.995391i \(-0.469428\pi\)
0.0958987 + 0.995391i \(0.469428\pi\)
\(578\) 19.1497 0.796524
\(579\) −8.02493 −0.333505
\(580\) −41.0104 −1.70286
\(581\) 1.89414 0.0785821
\(582\) 8.26806 0.342722
\(583\) 9.37646 0.388333
\(584\) −4.00000 −0.165521
\(585\) −14.8088 −0.612267
\(586\) −2.04797 −0.0846008
\(587\) 8.46781 0.349504 0.174752 0.984612i \(-0.444088\pi\)
0.174752 + 0.984612i \(0.444088\pi\)
\(588\) 4.16425 0.171731
\(589\) −45.8607 −1.88966
\(590\) −14.8088 −0.609668
\(591\) −1.34301 −0.0552440
\(592\) −0.683969 −0.0281110
\(593\) −33.0644 −1.35779 −0.678896 0.734235i \(-0.737541\pi\)
−0.678896 + 0.734235i \(0.737541\pi\)
\(594\) −1.31603 −0.0539974
\(595\) −38.9624 −1.59730
\(596\) −2.02698 −0.0830282
\(597\) −21.0893 −0.863128
\(598\) −10.9126 −0.446249
\(599\) 24.7069 1.00949 0.504747 0.863267i \(-0.331586\pi\)
0.504747 + 0.863267i \(0.331586\pi\)
\(600\) −9.80877 −0.400442
\(601\) 21.7424 0.886889 0.443445 0.896302i \(-0.353756\pi\)
0.443445 + 0.896302i \(0.353756\pi\)
\(602\) 9.31603 0.379693
\(603\) 15.4533 0.629307
\(604\) 2.73588 0.111321
\(605\) −35.6655 −1.45001
\(606\) 5.11234 0.207675
\(607\) 22.4743 0.912203 0.456102 0.889928i \(-0.349245\pi\)
0.456102 + 0.889928i \(0.349245\pi\)
\(608\) 5.64453 0.228916
\(609\) 17.9460 0.727210
\(610\) −40.3304 −1.63293
\(611\) −23.7214 −0.959664
\(612\) −6.01247 −0.243039
\(613\) 25.7818 1.04132 0.520658 0.853765i \(-0.325686\pi\)
0.520658 + 0.853765i \(0.325686\pi\)
\(614\) −10.2805 −0.414888
\(615\) −37.3140 −1.50465
\(616\) 2.21616 0.0892914
\(617\) 28.5361 1.14882 0.574411 0.818567i \(-0.305231\pi\)
0.574411 + 0.818567i \(0.305231\pi\)
\(618\) 16.7608 0.674219
\(619\) 29.5820 1.18900 0.594501 0.804095i \(-0.297349\pi\)
0.594501 + 0.804095i \(0.297349\pi\)
\(620\) −31.2660 −1.25567
\(621\) −2.83575 −0.113795
\(622\) 22.0249 0.883119
\(623\) −1.83780 −0.0736299
\(624\) 3.84822 0.154052
\(625\) 22.1682 0.886727
\(626\) −11.7174 −0.468322
\(627\) −7.42837 −0.296661
\(628\) 18.7608 0.748638
\(629\) 4.11234 0.163970
\(630\) 6.48028 0.258180
\(631\) 23.3389 0.929107 0.464554 0.885545i \(-0.346215\pi\)
0.464554 + 0.885545i \(0.346215\pi\)
\(632\) −9.69643 −0.385703
\(633\) 15.1373 0.601652
\(634\) −8.60508 −0.341752
\(635\) 24.1537 0.958509
\(636\) −7.12481 −0.282517
\(637\) 16.0249 0.634931
\(638\) −14.0249 −0.555252
\(639\) −0.0124650 −0.000493108 0
\(640\) 3.84822 0.152114
\(641\) 15.4842 0.611590 0.305795 0.952097i \(-0.401078\pi\)
0.305795 + 0.952097i \(0.401078\pi\)
\(642\) 12.5052 0.493541
\(643\) −30.3015 −1.19498 −0.597488 0.801878i \(-0.703834\pi\)
−0.597488 + 0.801878i \(0.703834\pi\)
\(644\) 4.77532 0.188174
\(645\) −21.2891 −0.838256
\(646\) −33.9375 −1.33525
\(647\) −8.76081 −0.344423 −0.172211 0.985060i \(-0.555091\pi\)
−0.172211 + 0.985060i \(0.555091\pi\)
\(648\) 1.00000 0.0392837
\(649\) −5.06437 −0.198794
\(650\) −37.7463 −1.48053
\(651\) 13.6819 0.536237
\(652\) −10.0729 −0.394485
\(653\) −39.0289 −1.52732 −0.763659 0.645620i \(-0.776599\pi\)
−0.763659 + 0.645620i \(0.776599\pi\)
\(654\) 19.7693 0.773042
\(655\) 31.4178 1.22759
\(656\) 9.69643 0.378582
\(657\) −4.00000 −0.156055
\(658\) 10.3804 0.404670
\(659\) 38.4572 1.49808 0.749041 0.662524i \(-0.230515\pi\)
0.749041 + 0.662524i \(0.230515\pi\)
\(660\) −5.06437 −0.197130
\(661\) −43.6695 −1.69855 −0.849273 0.527955i \(-0.822959\pi\)
−0.849273 + 0.527955i \(0.822959\pi\)
\(662\) 20.4014 0.792923
\(663\) −23.1373 −0.898577
\(664\) 1.12481 0.0436509
\(665\) 36.5781 1.41844
\(666\) −0.683969 −0.0265033
\(667\) −30.2206 −1.17015
\(668\) 1.19123 0.0460899
\(669\) 16.5781 0.640947
\(670\) 59.4677 2.29744
\(671\) −13.7924 −0.532449
\(672\) −1.68397 −0.0649605
\(673\) 14.3825 0.554403 0.277201 0.960812i \(-0.410593\pi\)
0.277201 + 0.960812i \(0.410593\pi\)
\(674\) 13.9336 0.536701
\(675\) −9.80877 −0.377540
\(676\) 1.80877 0.0695683
\(677\) 21.4427 0.824111 0.412055 0.911159i \(-0.364811\pi\)
0.412055 + 0.911159i \(0.364811\pi\)
\(678\) 1.00000 0.0384048
\(679\) −13.9232 −0.534322
\(680\) −23.1373 −0.887274
\(681\) −29.4782 −1.12961
\(682\) −10.6925 −0.409437
\(683\) 40.6589 1.55577 0.777884 0.628407i \(-0.216293\pi\)
0.777884 + 0.628407i \(0.216293\pi\)
\(684\) 5.64453 0.215824
\(685\) 75.2121 2.87371
\(686\) −18.8002 −0.717797
\(687\) −19.0104 −0.725293
\(688\) 5.53219 0.210913
\(689\) −27.4178 −1.04453
\(690\) −10.9126 −0.415435
\(691\) −9.46986 −0.360250 −0.180125 0.983644i \(-0.557650\pi\)
−0.180125 + 0.983644i \(0.557650\pi\)
\(692\) 13.3659 0.508095
\(693\) 2.21616 0.0841848
\(694\) −16.6570 −0.632291
\(695\) −21.2411 −0.805720
\(696\) 10.6570 0.403952
\(697\) −58.2995 −2.20825
\(698\) −33.2870 −1.25993
\(699\) −8.40738 −0.317996
\(700\) 16.5177 0.624309
\(701\) 11.3679 0.429361 0.214681 0.976684i \(-0.431129\pi\)
0.214681 + 0.976684i \(0.431129\pi\)
\(702\) 3.84822 0.145242
\(703\) −3.86068 −0.145608
\(704\) 1.31603 0.0495998
\(705\) −23.7214 −0.893398
\(706\) 5.69643 0.214388
\(707\) −8.60902 −0.323776
\(708\) 3.84822 0.144625
\(709\) −10.3594 −0.389056 −0.194528 0.980897i \(-0.562317\pi\)
−0.194528 + 0.980897i \(0.562317\pi\)
\(710\) −0.0479681 −0.00180021
\(711\) −9.69643 −0.363645
\(712\) −1.09135 −0.0409001
\(713\) −23.0399 −0.862852
\(714\) 10.1248 0.378911
\(715\) −19.4888 −0.728840
\(716\) −4.17671 −0.156091
\(717\) 3.26412 0.121901
\(718\) 36.9500 1.37896
\(719\) 42.9066 1.60015 0.800073 0.599902i \(-0.204794\pi\)
0.800073 + 0.599902i \(0.204794\pi\)
\(720\) 3.84822 0.143415
\(721\) −28.2247 −1.05114
\(722\) 12.8607 0.478625
\(723\) −1.31603 −0.0489437
\(724\) −14.5716 −0.541550
\(725\) −104.532 −3.88222
\(726\) 9.26806 0.343970
\(727\) 41.4487 1.53725 0.768624 0.639701i \(-0.220942\pi\)
0.768624 + 0.639701i \(0.220942\pi\)
\(728\) −6.48028 −0.240175
\(729\) 1.00000 0.0370370
\(730\) −15.3929 −0.569716
\(731\) −33.2621 −1.23024
\(732\) 10.4803 0.387362
\(733\) 3.16819 0.117020 0.0585098 0.998287i \(-0.481365\pi\)
0.0585098 + 0.998287i \(0.481365\pi\)
\(734\) 2.75687 0.101758
\(735\) 16.0249 0.591088
\(736\) 2.83575 0.104527
\(737\) 20.3370 0.749124
\(738\) 9.69643 0.356931
\(739\) 12.2076 0.449065 0.224532 0.974467i \(-0.427915\pi\)
0.224532 + 0.974467i \(0.427915\pi\)
\(740\) −2.63206 −0.0967565
\(741\) 21.7214 0.797954
\(742\) 11.9980 0.440459
\(743\) −18.1557 −0.666069 −0.333034 0.942915i \(-0.608073\pi\)
−0.333034 + 0.942915i \(0.608073\pi\)
\(744\) 8.12481 0.297870
\(745\) −7.80025 −0.285779
\(746\) −2.30357 −0.0843395
\(747\) 1.12481 0.0411545
\(748\) −7.91259 −0.289313
\(749\) −21.0584 −0.769457
\(750\) −18.5052 −0.675715
\(751\) −7.64657 −0.279027 −0.139514 0.990220i \(-0.544554\pi\)
−0.139514 + 0.990220i \(0.544554\pi\)
\(752\) 6.16425 0.224787
\(753\) −4.35547 −0.158722
\(754\) 41.0104 1.49351
\(755\) 10.5282 0.383162
\(756\) −1.68397 −0.0612454
\(757\) 17.6445 0.641301 0.320651 0.947198i \(-0.396098\pi\)
0.320651 + 0.947198i \(0.396098\pi\)
\(758\) −6.05191 −0.219815
\(759\) −3.73194 −0.135461
\(760\) 21.7214 0.787917
\(761\) −19.9211 −0.722140 −0.361070 0.932539i \(-0.617588\pi\)
−0.361070 + 0.932539i \(0.617588\pi\)
\(762\) −6.27659 −0.227377
\(763\) −33.2909 −1.20521
\(764\) 14.2286 0.514773
\(765\) −23.1373 −0.836530
\(766\) −14.1458 −0.511108
\(767\) 14.8088 0.534714
\(768\) −1.00000 −0.0360844
\(769\) −32.2056 −1.16136 −0.580682 0.814131i \(-0.697214\pi\)
−0.580682 + 0.814131i \(0.697214\pi\)
\(770\) 8.52825 0.307337
\(771\) 27.4178 0.987428
\(772\) 8.02493 0.288824
\(773\) −34.6300 −1.24556 −0.622778 0.782399i \(-0.713996\pi\)
−0.622778 + 0.782399i \(0.713996\pi\)
\(774\) 5.53219 0.198850
\(775\) −79.6944 −2.86271
\(776\) −8.26806 −0.296806
\(777\) 1.15178 0.0413200
\(778\) −28.7857 −1.03202
\(779\) 54.7318 1.96097
\(780\) 14.8088 0.530239
\(781\) −0.0164043 −0.000586994 0
\(782\) −17.0499 −0.609702
\(783\) 10.6570 0.380850
\(784\) −4.16425 −0.148723
\(785\) 72.1957 2.57677
\(786\) −8.16425 −0.291209
\(787\) −18.8397 −0.671562 −0.335781 0.941940i \(-0.609000\pi\)
−0.335781 + 0.941940i \(0.609000\pi\)
\(788\) 1.34301 0.0478427
\(789\) 3.62354 0.129001
\(790\) −37.3140 −1.32757
\(791\) −1.68397 −0.0598750
\(792\) 1.31603 0.0467631
\(793\) 40.3304 1.43217
\(794\) 9.28258 0.329426
\(795\) −27.4178 −0.972409
\(796\) 21.0893 0.747491
\(797\) 31.0353 1.09933 0.549664 0.835386i \(-0.314756\pi\)
0.549664 + 0.835386i \(0.314756\pi\)
\(798\) −9.50521 −0.336481
\(799\) −37.0623 −1.31117
\(800\) 9.80877 0.346793
\(801\) −1.09135 −0.0385609
\(802\) 17.9460 0.633697
\(803\) −5.26412 −0.185767
\(804\) −15.4533 −0.544996
\(805\) 18.3765 0.647685
\(806\) 31.2660 1.10130
\(807\) 8.78384 0.309206
\(808\) −5.11234 −0.179852
\(809\) 2.48627 0.0874124 0.0437062 0.999044i \(-0.486083\pi\)
0.0437062 + 0.999044i \(0.486083\pi\)
\(810\) 3.84822 0.135213
\(811\) −37.9355 −1.33209 −0.666047 0.745910i \(-0.732015\pi\)
−0.666047 + 0.745910i \(0.732015\pi\)
\(812\) −17.9460 −0.629783
\(813\) 7.80025 0.273567
\(814\) −0.900124 −0.0315493
\(815\) −38.7627 −1.35780
\(816\) 6.01247 0.210478
\(817\) 31.2266 1.09248
\(818\) 16.0000 0.559427
\(819\) −6.48028 −0.226439
\(820\) 37.3140 1.30306
\(821\) −7.33244 −0.255904 −0.127952 0.991780i \(-0.540840\pi\)
−0.127952 + 0.991780i \(0.540840\pi\)
\(822\) −19.5447 −0.681698
\(823\) −53.9809 −1.88166 −0.940828 0.338885i \(-0.889950\pi\)
−0.940828 + 0.338885i \(0.889950\pi\)
\(824\) −16.7608 −0.583890
\(825\) −12.9087 −0.449422
\(826\) −6.48028 −0.225478
\(827\) 20.3719 0.708400 0.354200 0.935170i \(-0.384753\pi\)
0.354200 + 0.935170i \(0.384753\pi\)
\(828\) 2.83575 0.0985492
\(829\) −49.6859 −1.72566 −0.862831 0.505493i \(-0.831311\pi\)
−0.862831 + 0.505493i \(0.831311\pi\)
\(830\) 4.32850 0.150244
\(831\) −15.6235 −0.541974
\(832\) −3.84822 −0.133413
\(833\) 25.0374 0.867494
\(834\) 5.51972 0.191132
\(835\) 4.58409 0.158639
\(836\) 7.42837 0.256916
\(837\) 8.12481 0.280834
\(838\) −26.7299 −0.923369
\(839\) 51.1622 1.76632 0.883158 0.469076i \(-0.155413\pi\)
0.883158 + 0.469076i \(0.155413\pi\)
\(840\) −6.48028 −0.223591
\(841\) 84.5715 2.91626
\(842\) 19.5197 0.672694
\(843\) −22.4782 −0.774191
\(844\) −15.1373 −0.521046
\(845\) 6.96056 0.239450
\(846\) 6.16425 0.211931
\(847\) −15.6071 −0.536267
\(848\) 7.12481 0.244667
\(849\) 20.5052 0.703737
\(850\) −58.9749 −2.02282
\(851\) −1.93957 −0.0664875
\(852\) 0.0124650 0.000427044 0
\(853\) 1.46387 0.0501221 0.0250611 0.999686i \(-0.492022\pi\)
0.0250611 + 0.999686i \(0.492022\pi\)
\(854\) −17.6485 −0.603918
\(855\) 21.7214 0.742855
\(856\) −12.5052 −0.427419
\(857\) −0.515782 −0.0176188 −0.00880939 0.999961i \(-0.502804\pi\)
−0.00880939 + 0.999961i \(0.502804\pi\)
\(858\) 5.06437 0.172895
\(859\) −56.3429 −1.92239 −0.961197 0.275864i \(-0.911036\pi\)
−0.961197 + 0.275864i \(0.911036\pi\)
\(860\) 21.2891 0.725951
\(861\) −16.3285 −0.556474
\(862\) −1.63001 −0.0555185
\(863\) −38.9315 −1.32524 −0.662622 0.748954i \(-0.730557\pi\)
−0.662622 + 0.748954i \(0.730557\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 51.4348 1.74884
\(866\) 32.4323 1.10209
\(867\) −19.1497 −0.650359
\(868\) −13.6819 −0.464395
\(869\) −12.7608 −0.432881
\(870\) 41.0104 1.39038
\(871\) −59.4677 −2.01498
\(872\) −19.7693 −0.669474
\(873\) −8.26806 −0.279832
\(874\) 16.0065 0.541427
\(875\) 31.1622 1.05347
\(876\) 4.00000 0.135147
\(877\) −17.6360 −0.595525 −0.297763 0.954640i \(-0.596240\pi\)
−0.297763 + 0.954640i \(0.596240\pi\)
\(878\) −5.93957 −0.200451
\(879\) 2.04797 0.0690762
\(880\) 5.06437 0.170720
\(881\) 47.5656 1.60253 0.801264 0.598311i \(-0.204161\pi\)
0.801264 + 0.598311i \(0.204161\pi\)
\(882\) −4.16425 −0.140218
\(883\) 11.2662 0.379137 0.189568 0.981868i \(-0.439291\pi\)
0.189568 + 0.981868i \(0.439291\pi\)
\(884\) 23.1373 0.778191
\(885\) 14.8088 0.497792
\(886\) 7.98155 0.268145
\(887\) −51.0813 −1.71514 −0.857571 0.514366i \(-0.828027\pi\)
−0.857571 + 0.514366i \(0.828027\pi\)
\(888\) 0.683969 0.0229525
\(889\) 10.5696 0.354492
\(890\) −4.19975 −0.140776
\(891\) 1.31603 0.0440887
\(892\) −16.5781 −0.555076
\(893\) 34.7943 1.16435
\(894\) 2.02698 0.0677923
\(895\) −16.0729 −0.537258
\(896\) 1.68397 0.0562575
\(897\) 10.9126 0.364361
\(898\) 19.3889 0.647017
\(899\) 86.5860 2.88780
\(900\) 9.80877 0.326959
\(901\) −42.8376 −1.42713
\(902\) 12.7608 0.424888
\(903\) −9.31603 −0.310018
\(904\) −1.00000 −0.0332595
\(905\) −56.0748 −1.86399
\(906\) −2.73588 −0.0908934
\(907\) 19.5506 0.649168 0.324584 0.945857i \(-0.394776\pi\)
0.324584 + 0.945857i \(0.394776\pi\)
\(908\) 29.4782 0.978269
\(909\) −5.11234 −0.169566
\(910\) −24.9375 −0.826671
\(911\) 13.8791 0.459836 0.229918 0.973210i \(-0.426154\pi\)
0.229918 + 0.973210i \(0.426154\pi\)
\(912\) −5.64453 −0.186909
\(913\) 1.48028 0.0489901
\(914\) −5.84223 −0.193244
\(915\) 40.3304 1.33328
\(916\) 19.0104 0.628122
\(917\) 13.7483 0.454010
\(918\) 6.01247 0.198441
\(919\) 50.3179 1.65984 0.829918 0.557886i \(-0.188387\pi\)
0.829918 + 0.557886i \(0.188387\pi\)
\(920\) 10.9126 0.359777
\(921\) 10.2805 0.338755
\(922\) −36.2930 −1.19525
\(923\) 0.0479681 0.00157889
\(924\) −2.21616 −0.0729062
\(925\) −6.70890 −0.220587
\(926\) 12.7234 0.418117
\(927\) −16.7608 −0.550497
\(928\) −10.6570 −0.349833
\(929\) 3.67150 0.120458 0.0602291 0.998185i \(-0.480817\pi\)
0.0602291 + 0.998185i \(0.480817\pi\)
\(930\) 31.2660 1.02525
\(931\) −23.5052 −0.770352
\(932\) 8.40738 0.275393
\(933\) −22.0249 −0.721064
\(934\) 17.8252 0.583258
\(935\) −30.4494 −0.995801
\(936\) −3.84822 −0.125783
\(937\) 34.0918 1.11373 0.556866 0.830602i \(-0.312004\pi\)
0.556866 + 0.830602i \(0.312004\pi\)
\(938\) 26.0229 0.849677
\(939\) 11.7174 0.382384
\(940\) 23.7214 0.773706
\(941\) −23.3620 −0.761578 −0.380789 0.924662i \(-0.624348\pi\)
−0.380789 + 0.924662i \(0.624348\pi\)
\(942\) −18.7608 −0.611260
\(943\) 27.4967 0.895415
\(944\) −3.84822 −0.125249
\(945\) −6.48028 −0.210803
\(946\) 7.28053 0.236710
\(947\) −6.07888 −0.197537 −0.0987686 0.995110i \(-0.531490\pi\)
−0.0987686 + 0.995110i \(0.531490\pi\)
\(948\) 9.69643 0.314926
\(949\) 15.3929 0.499674
\(950\) 55.3659 1.79631
\(951\) 8.60508 0.279039
\(952\) −10.1248 −0.328147
\(953\) 32.1038 1.03994 0.519972 0.854183i \(-0.325942\pi\)
0.519972 + 0.854183i \(0.325942\pi\)
\(954\) 7.12481 0.230674
\(955\) 54.7548 1.77182
\(956\) −3.26412 −0.105569
\(957\) 14.0249 0.453362
\(958\) −23.3659 −0.754918
\(959\) 32.9126 1.06280
\(960\) −3.84822 −0.124201
\(961\) 35.0125 1.12943
\(962\) 2.63206 0.0848611
\(963\) −12.5052 −0.402975
\(964\) 1.31603 0.0423865
\(965\) 30.8817 0.994116
\(966\) −4.77532 −0.153643
\(967\) −49.2909 −1.58509 −0.792545 0.609813i \(-0.791244\pi\)
−0.792545 + 0.609813i \(0.791244\pi\)
\(968\) −9.26806 −0.297887
\(969\) 33.9375 1.09023
\(970\) −31.8173 −1.02159
\(971\) −32.6759 −1.04862 −0.524310 0.851527i \(-0.675677\pi\)
−0.524310 + 0.851527i \(0.675677\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −9.29504 −0.297985
\(974\) 39.0104 1.24997
\(975\) 37.7463 1.20885
\(976\) −10.4803 −0.335466
\(977\) 4.73588 0.151514 0.0757571 0.997126i \(-0.475863\pi\)
0.0757571 + 0.997126i \(0.475863\pi\)
\(978\) 10.0729 0.322096
\(979\) −1.43625 −0.0459028
\(980\) −16.0249 −0.511898
\(981\) −19.7693 −0.631186
\(982\) 2.04797 0.0653533
\(983\) 21.3015 0.679413 0.339706 0.940532i \(-0.389672\pi\)
0.339706 + 0.940532i \(0.389672\pi\)
\(984\) −9.69643 −0.309111
\(985\) 5.16819 0.164672
\(986\) 64.0748 2.04056
\(987\) −10.3804 −0.330412
\(988\) −21.7214 −0.691049
\(989\) 15.6879 0.498846
\(990\) 5.06437 0.160956
\(991\) 43.0727 1.36825 0.684125 0.729364i \(-0.260184\pi\)
0.684125 + 0.729364i \(0.260184\pi\)
\(992\) −8.12481 −0.257963
\(993\) −20.4014 −0.647419
\(994\) −0.0209907 −0.000665785 0
\(995\) 81.1562 2.57282
\(996\) −1.12481 −0.0356408
\(997\) 8.65051 0.273965 0.136982 0.990574i \(-0.456260\pi\)
0.136982 + 0.990574i \(0.456260\pi\)
\(998\) 4.54670 0.143923
\(999\) 0.683969 0.0216398
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 678.2.a.j.1.3 3
3.2 odd 2 2034.2.a.q.1.1 3
4.3 odd 2 5424.2.a.bk.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
678.2.a.j.1.3 3 1.1 even 1 trivial
2034.2.a.q.1.1 3 3.2 odd 2
5424.2.a.bk.1.3 3 4.3 odd 2