Properties

Label 6762.2.a.q
Level $6762$
Weight $2$
Character orbit 6762.a
Self dual yes
Analytic conductor $53.995$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6762 = 2 \cdot 3 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6762.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(53.9948418468\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 138)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} + 2q^{5} - q^{6} - q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} + q^{4} + 2q^{5} - q^{6} - q^{8} + q^{9} - 2q^{10} - 6q^{11} + q^{12} + 2q^{13} + 2q^{15} + q^{16} - q^{18} + 2q^{20} + 6q^{22} - q^{23} - q^{24} - q^{25} - 2q^{26} + q^{27} + 6q^{29} - 2q^{30} - 8q^{31} - q^{32} - 6q^{33} + q^{36} + 2q^{39} - 2q^{40} - 10q^{41} - 12q^{43} - 6q^{44} + 2q^{45} + q^{46} + 8q^{47} + q^{48} + q^{50} + 2q^{52} + 2q^{53} - q^{54} - 12q^{55} - 6q^{58} + 12q^{59} + 2q^{60} - 4q^{61} + 8q^{62} + q^{64} + 4q^{65} + 6q^{66} - 12q^{67} - q^{69} - q^{72} + 10q^{73} - q^{75} - 2q^{78} - 6q^{79} + 2q^{80} + q^{81} + 10q^{82} - 14q^{83} + 12q^{86} + 6q^{87} + 6q^{88} - 2q^{90} - q^{92} - 8q^{93} - 8q^{94} - q^{96} + 6q^{97} - 6q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 2.00000 −1.00000 0 −1.00000 1.00000 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(7\) \(-1\)
\(23\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6762.2.a.q 1
7.b odd 2 1 138.2.a.a 1
21.c even 2 1 414.2.a.d 1
28.d even 2 1 1104.2.a.e 1
35.c odd 2 1 3450.2.a.y 1
35.f even 4 2 3450.2.d.j 2
56.e even 2 1 4416.2.a.m 1
56.h odd 2 1 4416.2.a.z 1
84.h odd 2 1 3312.2.a.n 1
161.c even 2 1 3174.2.a.b 1
483.c odd 2 1 9522.2.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
138.2.a.a 1 7.b odd 2 1
414.2.a.d 1 21.c even 2 1
1104.2.a.e 1 28.d even 2 1
3174.2.a.b 1 161.c even 2 1
3312.2.a.n 1 84.h odd 2 1
3450.2.a.y 1 35.c odd 2 1
3450.2.d.j 2 35.f even 4 2
4416.2.a.m 1 56.e even 2 1
4416.2.a.z 1 56.h odd 2 1
6762.2.a.q 1 1.a even 1 1 trivial
9522.2.a.i 1 483.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6762))\):

\( T_{5} - 2 \)
\( T_{11} + 6 \)
\( T_{13} - 2 \)
\( T_{17} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( -1 + T \)
$5$ \( -2 + T \)
$7$ \( T \)
$11$ \( 6 + T \)
$13$ \( -2 + T \)
$17$ \( T \)
$19$ \( T \)
$23$ \( 1 + T \)
$29$ \( -6 + T \)
$31$ \( 8 + T \)
$37$ \( T \)
$41$ \( 10 + T \)
$43$ \( 12 + T \)
$47$ \( -8 + T \)
$53$ \( -2 + T \)
$59$ \( -12 + T \)
$61$ \( 4 + T \)
$67$ \( 12 + T \)
$71$ \( T \)
$73$ \( -10 + T \)
$79$ \( 6 + T \)
$83$ \( 14 + T \)
$89$ \( T \)
$97$ \( -6 + T \)
show more
show less