Properties

Label 6762.2.a.h
Level $6762$
Weight $2$
Character orbit 6762.a
Self dual yes
Analytic conductor $53.995$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6762 = 2 \cdot 3 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6762.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(53.9948418468\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 966)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + q^{6} - q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} - q^{3} + q^{4} + q^{6} - q^{8} + q^{9} + 6q^{11} - q^{12} - 2q^{13} + q^{16} + 6q^{17} - q^{18} - 2q^{19} - 6q^{22} + q^{23} + q^{24} - 5q^{25} + 2q^{26} - q^{27} - 6q^{29} - 8q^{31} - q^{32} - 6q^{33} - 6q^{34} + q^{36} + 8q^{37} + 2q^{38} + 2q^{39} - 6q^{41} + 2q^{43} + 6q^{44} - q^{46} - q^{48} + 5q^{50} - 6q^{51} - 2q^{52} - 12q^{53} + q^{54} + 2q^{57} + 6q^{58} - 8q^{61} + 8q^{62} + q^{64} + 6q^{66} - 10q^{67} + 6q^{68} - q^{69} - q^{72} - 14q^{73} - 8q^{74} + 5q^{75} - 2q^{76} - 2q^{78} + 8q^{79} + q^{81} + 6q^{82} - 6q^{83} - 2q^{86} + 6q^{87} - 6q^{88} - 6q^{89} + q^{92} + 8q^{93} + q^{96} + 10q^{97} + 6q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −1.00000 1.00000 0 1.00000 0 −1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(7\) \(-1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6762.2.a.h 1
7.b odd 2 1 966.2.a.f 1
21.c even 2 1 2898.2.a.o 1
28.d even 2 1 7728.2.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
966.2.a.f 1 7.b odd 2 1
2898.2.a.o 1 21.c even 2 1
6762.2.a.h 1 1.a even 1 1 trivial
7728.2.a.c 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6762))\):

\( T_{5} \)
\( T_{11} - 6 \)
\( T_{13} + 2 \)
\( T_{17} - 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( 1 + T \)
$5$ \( T \)
$7$ \( T \)
$11$ \( -6 + T \)
$13$ \( 2 + T \)
$17$ \( -6 + T \)
$19$ \( 2 + T \)
$23$ \( -1 + T \)
$29$ \( 6 + T \)
$31$ \( 8 + T \)
$37$ \( -8 + T \)
$41$ \( 6 + T \)
$43$ \( -2 + T \)
$47$ \( T \)
$53$ \( 12 + T \)
$59$ \( T \)
$61$ \( 8 + T \)
$67$ \( 10 + T \)
$71$ \( T \)
$73$ \( 14 + T \)
$79$ \( -8 + T \)
$83$ \( 6 + T \)
$89$ \( 6 + T \)
$97$ \( -10 + T \)
show more
show less